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FINITE ELEMENT APPROXIMATIONS TO THE SYSTEM OF
SHALLOW WATER EQUATIONS, PART III: ON THE TREATME
OF BOUNDARY CONDITIONS *

CLINT N. DAWSON!TAND MONICA L. MARTINEZ-CANALES®

Abstract. We continue our investigation of finite element approximations to the system of
shallow water equations, based on the gencralized wave continuity equation {GWCE) formulation.
In previous work, we analyzed this system assuming Dirichlet boundary conditions on both eievation
and velocity. Based on physical grounds, it is possible to not impose boundary conditions on elevation.
Thus, we examine the formulation {for the case of Dirichlet conditions on velocity only. The changes
required to the finite element method are presented, and stability and error estimates are derived for
both an approximate linear model and a {ull nonlinear model, assuming continuous time. Stability
for a discrete time method is also shown.

Key words. boundary conditions, shallow water equations, wave shallow water equations, error
estimates
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1. Introduction. In this paper, we continue our investigation of finite element
methods applied to the GWCE (Generalized Wave Continuity Equation) shallow wa-
ter model of Gray et al. This model is described in a series of papers beginning in
[8]. 1t has served as the basis for many shallow water simulators, most notably the
Advanced Circulation Model (ADCIRC) described, for example, in {7]. The method
has the advantages that it allows for a weaker coupling between the continuity and
momentum equations, gives rise to symmetric positive definite matrices, and helps
stabilize the numerical solution. These have been supported by a large number of
studies (see [5, 6] and references therein).

In previous papers [3; 4], we derived a priori error estimates for the method, in
both continuous and discrete time, assuming Dirichlet boundary conditions on both
the free surface elevation and velocity. In this paper, we will relax this assumption
on the elevation and discuss the changes to the model and to the analysis. As it
turns out, the assumption of Dirichlet boundary conditions on elevation allowed for 2
crucial substitution which substantially simplified the analysis. However, by making
appropriate changes to the model, we will demonstrate that we are still able to preserve
the accuracy of the method, at the cost of some additional computational work.

We will denote by £(z,t) the free surface elevation over a reference plane and by
hy(z) the bathymetric depth under that reference plane so that H{z,t) = £ + hs is
the total water column. Also, we denote by u = [u(z,1) v(z,t)]T the depth-averaged
horizontal velocities and we let U = uH.

We will start-with the following simplified linear shallow water model:

(1) &£+V.-U=0,

(2) U, +GVE-puAU = F,

*This work was supported in part by National Science Foundation, Project No. DMS-9408151.
tCenter for Subsurface Modeling - C0200; Texas Institute for Computational and Applied Math-
ematics: The University of Texas at Austin: Austin, TX 78712.

{Dept. of Geological and Environmental Sciences; Braun Hall, Bldg 320; Stanford University;
Stanford, CA 94305-2115.
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which we solve over a domain € x (0,7]. Here G > 0 is a gravitational constant and
g > 0 is the eddy viscosity coefficient.
Note that, integrating (1) over €2,

j{,dﬂ+ U .vds=0,
o an

where v is the outward normal to 8Q. Moreover, integrating (2) over £,

f[Ug+GVE]d9—,uf VU-Vds:/.’FdQ.
o an n

Thus, it is necessary to specify some type of Dirichlet or Neumann boundary condition
on U, but it is not required (nor may it be desirable) to specify a boundary condition
oné.

We will assume the Dirichlet boundary condition

(3) U=g,
on 8Q x (0,7]. We aiso assume initial conditions
(4) £(2,0) = £(2), U(2,00=U%z).

The GWCE is obtained by differentiating (1) with respect to time and substituting
the divergence of (2) into the result. We then obtain

(5) b — V- (GVE)+pV-AU+V - F=0.
with the additional initial condition that
(6) « &(z,0)=b1(z) = -V - U°.

The GWCE shallow water model then consists of (2) and (3)-(6).

The rest of this paper is outlined as follows. In section (2) we introduce definitions
and notation. In section (3), we derive a weak formulation of the GWCE-CME system
of equations and state some assumptions on the soluticn. In section (4), we introduce
the continuous-time finite element approximation to the weak solution, and derive
stability and a priori error estimates for this approximation. in section (5), we extend
these estimates to a nonlinear shallow water model. Finally, in section (6), we discuss
a discrete time approximation to the linear model given above.

2. Preliminaries.

2.1. Notation. For the purposes of our analysis, we define some notation used
throughout the rest of this paper.

Let O be a bounded polygonal domain in IR? and z= (z1,%2) € IR2. Moreover,

let § = QU 89, where 8Q is the boundary of .
The £2 inner product is denoted by

(cp,u)::Lgpoudx, .0 € L@,

where “o” here refers to either multiplication, dot product, or double dot product as
appropriate. We will let {¢,w) denote an inner product on 89 We denote the L?
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norm by {l¢l| = (<p,qo)1/2. In B",a = {@1,...,@n) Is a0 n-tuple with nonnegative
integer components,
g e

Q:Dal_” Un —
D ! DI‘L 31101 azﬂa“

and |al = T i, @i
For £ any nonnegative integer, let
H={p€ L£XQ) | Dp € £(Q) for la]| £ £}

be the Sobolev space with norm

1/2
”PH’H‘(Q) = (2 “DQ‘P Hzc’(ﬂ)) .

fai<t

Additionally, H3(€?) denotes the subspace of H!(§1) obtained by completing C§° ()
with respect to the norm ||-ll31qy where C3° () is the set of infinitely differentiable
functions with compact support in €2.

Moreover, let

WL = {p € L2(Q) | D¥p € £L2(Q) for |af < 13}

be the Sobolev space with norm

||‘ing°(n} = ":I'IZ’E“DG‘P o) -

' For relevant properties of these spaces, please refer to [11.

Observe, for instance, that H*¢ are spaces of lR-valued functions. Spaces of IR™-
valued functions will be denoted in boldface type, but their norms will not be distin-
guished. Thus, £3() = [£L*(Q)]" has norm lell® = Tias le:li%; HAHQ) = KUY
has norm "‘1"”‘2;0(9) =Y im lal<t |D=@;||%; etc. For X, a normed space with norm
Il llx and a map f: 0,71 X, define

T
uﬂ&mgxf=ﬁiuum&au
Wfllgeeo,mix) = Oil:ETHf(',i)Hx-

2.2. Approximation Result and Inverse Estimate. Let 7 bea quasi-uniform
triangulation of the polygonal domain £ into elements E;, i = 1,...,™m, with
diam(E;)} = h; and h = max; h;. Let Sy (S4) denote a finite dimensional subspace of
HHQ) (A} (Q)) defined on this triangulation consisting of piecewise polynomials of
degree less than s;. Let S =8yN{w:w=gon 690} and =8, n{w:w=
0 on 8Q). Assume Sh (Sh) satisfies the standard approximation property

. F . 1 [

(M 'pe.‘l:‘I:%Sh) flv— ‘P“u-o(n) < Koh*™*° llvllw(n) , vEH (Q)n#H (Q),
and the inverse assumptions (see {2}, Theorem 4.5.11)

(®) lellema < Kollellosm bt # € S,

(9) otz ey < Ko llellzaqa b=l p € Sal(8).

Here, so and £ are integers, 0<se<E< st Moreover, Ko is a constant independent of
h and v. We also define the space an = Su/S%.
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3. Weak formulation. A weak formulation of (5) is obtained as follows. From
(1), we have

(10) (&, v) — (U, Vo) + (g -r,v) =0
Differentiating this equation in time, holding v fixed in time, and using (2) we find
(11) (€, ) + (GVE, Vo) — p(AU, Vo) = (F, Vo) +{g: - ¥, W=0, veH(Q).
Moreover, multiplying (2) by a test function and integrating by parts,
(12) (Ui, w) + (GVE,w) +p(VU, Vw) = (F, w) + (VU -v,w), w € H Q). '
In our previous work, we were able to replace the term involving AU in (11) by
p(VE:, Vv),
because we had assumed Dirichlet boundary conditions on £. From (1),
AL = AV -U)= =V -AU.
Thus, multiplying by a test function and integrating by parts one found that
—(Vé, Vv) = (AU, Vv),

if the test function was zero on 85). Here, because our test function v is not zero on the
boundary, we cannot make this substitution in (11) without introducing a boundary
term involving &. This term V§; - v is unknown.

In defining our method below, we handle the AU term in (11) without requiring
additional continuity on the finite element space. We will approximate quantities, §,
U,AUonQand A=VU von 59. The equations for £ and U are derived from
(11) and (12). Integration by parts yields an equation for AU

(13) (AU,w) = —~(VU,Vw) + (A, w), we HI(Q).
And finally, by (12), we have an equation for A
(14) p(\w)= U, w)+ (GVE, w) + p(VU,Vw)} - (F,w), we H(Q).

3.1. Some Assumptions. We will make the following assumptions about the
solutions and the data. First, we assume the domain §? is polygonal, and for (z,t) €
Qx (0,717, -

A1l. the solutions &, U to (2) and (3)-(6) exist and are unique,

A2. pis a positive constant, :
We make the following smoothness assumptions on the initial data and on the solu-
tions.

A3. £2.U%(z) € #Y(Q),

A4, £ € HUTHQ), t>0,

A5. U, U, e HYHQ), t >0,

A6. AU € HA(Q), t> 0,

A7. A€ £%(89Q), t> 0,
where the integer £ > 2 is defined in the next section.
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4. A Galerkin Finite Element Approximation.

4.1. The Continuous-Time Galerkin Approximation. Define an approxi-
mation £4(-,t) € Sk by

(15) (Eh(‘,O),U)n_— (EO!U)) v € Sh,

(16) ((€n)e(-,0),v) = (€3, v) = =(V - Un(:,0),0), v € Sh,
and for t > 0,

(17) ((€ndee,v) + (G(VEn), Vv)

— p(ApU4, V) = (F, Vo) +(g: - ¥, v)=0, vESh,

where ©{VE,) denotes the L? projection of V&, into Sa, and AU} is defined below.
Define an approximation Us(-,¢) € 8% by

(18) (VUL{-,0), Vw) = (VU’, Vw), we 59,
and fort > 0,
{19) ((TUh)e,w) + (GVE&s, w) + p(VU,, Vw) = (F, w), wE sY.

The “discrete Laplacian” AyU) € S» in (17) is defined by -
(20) (ApUn,w) = —(VUp, Vw) + (A, w), wESh,
where the approximate boundary flux Ay € Sf,“ is defined by

(21) AR, wo) = ((Un)e, we) + (GVEn, ws)
+u(VUL, Vup) — (Fywp), ws € s,

Thus, the system (15)-(21) yields a system of equations in four unknowns, &s, Uy,
AhUp. and )\h-

In section {6), we will formulate a discrete time version of this scheme and show
that these unknowns can be determined in a sequential manner. Moreover, all matrices
which arise are symmetric, positive definite, and time-independent.

4.2. A stability estimate. As a prelude to deriving an error estimate, we study
the stability of the scheme above in the case g = 0and F=0.

We first manipulate the equations above to yield an equation for elevation. Inte-
grating (17), {19), (20) and (21) in time from zero to t, we obtain

@) (@)on)+ ([ Or(Vends,To) = [ | AnUsds, V3 = (€hv), € Sh,
0 0
t ' ¢

(23) (Ua,w)+ (f GVEnds, w) + p(f VUds, Vw) = (U w), we s,
0 0

t t t
(24) (f A Upds, w) = -—(f VU ds, Vw) + (/ Apds, Vw), w € S,
0 0 0
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(25)  # [ Ands, wo) = (Un,we) + ( [) GVEnds, ws)

t
+,u(f YU ds. Vwy) — (U% we), ws € so9,
8]
Adding (23) and (25) we find
$
(26) (Un,w+ws)+ ([ GVEnds, w + ws)
0

t t
+p(f YU ds, V{w + we)) — y(] Apds, w + wp) = (U°, w+ wp).
0 0

Here we have used the fact that w=0on 5Q in the term involving An.
We now set w + we = (V&) in (26), and set v = &3 in (22) 1o obtain

@7)  ((€n)enEn) + [ Gr(VEn)ds, VEn) — il [ AyUnds, VEn) = (Eh. ),
v} o]
and
t
(28) (Uh.VE}\) + (-[0 GVEnds, W(Vf}.))
t t
+u [ TV TIE) = [ Aads, 7(VE)) = (Un(0), VEu).
+] 0
Setting w = 7(Véx) in (24), we find
t ]
( fo AnU»ds; V1) = ( .[0 AnUnds, (VER))
t 44
- [ U pds, Vr(VE)) + f Ands, T(VER)).-
0 0

Substituting this result into (28) and subtracting from (27), we obtain a useful
equation for elevation.
1 t
(29 ((E)entn) = (U T80 = ([ Gr(Ten)ds, Ten)+ ( [ 6vends, 796

+(€},€8) = (Ua(:0), VEn)
= (U, Vén) + (£h,6n) — (Ua(-,0), V&n)-

We continue by deriving an equation for velocity. Letting w = U in (19) we
obtain

(30) (Un)e, Un) + p(VU R, VU) = —{GVén,Un)-
Now. adding (29) and (30) and integrating by parts we find

(31) ((Eh):-ﬁb)-i-((Uh):,Uh)-HI(VUh,VUh)
= (£),&n) — (V- Un,&n}+ (GER, V- Un)+(V -Up(-0):€n)
= —(V - Uh, &) +{G&+. V- Un),
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where in the last step we have used the fact that &} is the L? projection of =V -Ux(-,0)
into Sh.

Integrating (31) in time from 0 to T we find
T
s T+ WU TP + 20 [ 901

T
<1ECNE + NUCIR + [ [wlIVUAIE + Cligall®] de.
0

An application of Gronwall’s Lemma gives the following result.
LEMMA 4.1. For the case g = 0 and F =0, and any T>90,

(32) lEn(, THI+ U T C (IEN -+ TTU°N) -

4.3. An a priori error estimate. We now consider the more general case where
g and F are not zero. In order to derive an error estimate, let £, denocte the L?
projection of £ into Si, and U, the elliptic projection of U into S%; that is, Un € s9
is defined by
(33) (V(0,—U),Vw) =0, weSy.

Let ¢ = & — &n, ¥u = U — Un, O = € — &, and 0y = U = Un.

We first derive an equation for ;. Integrating (11) in time and combining with
(22) we find

(34) (e)er0) + ([ COx(TeN)ds, o)
t
= (6 - .00 0) + (@) + (| GVEds, T
t
+,u(f (ApU L — AU)ds, V).
0
Integrating (12) and (14) in time, adding them and combining with (26), we find
t
3 (owrws+ ([ OV6dswrw)
0
t
= (8, w +ws) — (u (-, 0),w + wy) + (f GVEds, w + ws)
0

t
+ p(/ (AU — AU)ds, w + we).
0

_Here we have used (20) and (13) in the last term.

Setting v = ¢ in (34) and w +ws = 7(Vy¢) in (35), where m(Vbe) is the L?
projection of Vi into S, and subtracting (35) from (34), we find a desired equation
for 1.

(36) ((96)e, ve) = (v, Tobe) = ( fo GVeds, w(Vve) — Ve)
+((65)h¢f) - (GU:» TF(V’R!JE)) + (GU('s 0)‘ Tr(v"/)'f))

+a ]0 AUds, 7(Vipe) = Voe)) — (V- (Un = UY(, 0, ¥e)-
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We continue by deriving an equation for ¢y . From (19). we find

(37) ((¥w)e Yu) + (GV g, Yu) + p(Vyvu,. Vo)
= ({(6v)r, ¥u) + (GV8,Yu) + u(Véu, Viu).

Adding (36)-(37), integrating by parts, and using the definitions of the L? and
elliptic projections, we find

38 ((e)er V) + ($0)es b + AT, o)
= (7 vo,90) = ([ G(VE = (TE)de,7(To) = Ve
(6 (V) + (B, 0), m(Twe)) + (B0)e. bo)
+ (G5 ~80.7 - o)+ ([ (AU = m(AU))ds, 7(T¥0) = T
(V- Ua - U, 0), %),

where 7{AU) is the L* pro;ecnon of AU into S;.
Integrating this equation in time, and bounding terms on the right hand side, we
find

T
39)  live( T+ wu( TP + 20 [o Vvt
T 2 -2 T 2
s [ I9vulf+ Ch [ 1ve-nwera
T
+0 [ 16l + el
o}
T
+C [0 [h=20u|2 + [100)l? + o] dt + Ch=21i6u (-, O

T T
+ont [ U - w(av)|Pat+ O [ (I + I9vel]
0 0
+CIV - (UA(0) = U, DI
It is easily shown that

(V)] < NVl

This result together with inverse estimate (9) yields
‘ T T
on [ UIr(wwell + 19} e <© [ velle
Combining the above with (39) as well as the approximation result (7) yields
T
- T + v (DI + 3 [ I9wolFet

T
<ot [ el + vl e

Applying Gronwall’s inequality and the triangle inequality, we obtain the following
result.




Boundary Conditions for SWE 9

THEOREM 4.2. Let the assumptions Al-AT hold. Assume the finite element
solutions &x, Un, BaUs, and Ap to (15)-(21) exist and are umque. Then there exists
a constant C independent of h such that

(40) U = Unllze(oscoy + 1€ — Enlice(oTic?) < Ch'71.

We remark that this rate of convergence is the same as that obtained in our earlier
paper [3].

5. A nonlinear model. Realistic shallow water models are nonlinear. For ex-
ample, the term GV¢ in the momentum equation (2) is actually gHVE, where g is
gravitational acceleration (assumed constant). Moreover, an advection term V-U?/H
is also present. There are also forcing terms (Coriolis force, wind stress, tide poten-
tials, bottom friction) present in the equation; we will assume these are known, and
for simplicity lump them into the term F. Thus (2) becomes

2
(41) U;+gHVE+V-EH——pAU=.F,

and the GWCE (5) becomes

2
(42) eu—V-(gHVE)—V-(V-%)+pv.au+v.f=o.
Let
U2
and

U2
Iy =gHWVE+ V- —ﬁ'l,
h

where
Hp = hy+&h-

Let 7T (aT) denote the L? projection of T's (T) into Sa. Qur finite element
method is defined as follows. We choose the initial data as before and define the
discrete Laplacian by (20). Then, for ¢ >0,

(43) ((€n)ee v} + (7T4, V)
— u(ARUR, Vo) = (F,Vv) + (g, v, vy =0, vESh,

(44) (Un)e,w) + p(VU,, Vw) = —(Tp,w) + (F,w)

= —(7Th,w) + (F,w), we S?,,
and
{45) p(hn, we) = (Un)e,we) + (Th, we)

+u(VU,, V) — (F,un), ws € 5%

For the error analysis below, we will assume that a constant K exists such that
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A8. liEnlle=(oric=) + Uklle=iorie=) < K,
and that positive constants He., H*" exist such that

AS8. H.. < Hy < H*.
Using an induction argument as in [3], one can show that K, H.. and H*" are
independent of h for h sufficiently small, for polynomials of degree two and higher.
We will also assume that

A9. £ ke, U WL, T E HE(Q).

Define ¢, Yu, 0¢ and 6y as before. We first derive an equation for 1. Integrate

(43) in time and subtract the analogous equation obtained from (42) to find

(46) (D)o o) = (€} — &+ 0), ) + ( ] #( - Ta)ds, Vv)
H{(8e)erv) + ] (T - xT)ds, Vo)
+p(/t(AhU}, - AU)ds,Vv), vE Sk

0

Integrate (44) and (45) in time and subtract the analogous equation obtained from
(41) to find

47 Wuv.w= (f: 7(T — Ty)ds, w) + 'u(]; (AU — AU)ds, w) + (6, )
—(GU(',D),w), w € 8.

Setting v = t in (46), w = #(Ve) in (47), subtracting (47) from (46), and
using the definition of the L? projections, yields

(48) ((¥e)e, vi) = (Yo, T¥e) + ( jo (T — aT)ds, V)

(€L = £e(-,0), %) + il fu (AU — (AUY)ds, m(T¥¢) — Ve)
—~(8y, 7V + (bu (-, 0), TV )

We continue by deriving an equation for Yu. From (44) and (41), and the defini-
tion of the elliptic projection, we obtain :

(49) ($v)e, w) + p{Vw, Vw) = (T —Th,w) + ((6v)ew), wES

Now, adding (48) and (49), we obtain

{(50)  ((¥e)es ¥e) + ((Yu)e, YU} + p(Vvu, VYu)

t

= (6] = £4(-,0), V) + (Yur, V) + i [0 (AU — n(AU))ds, =(Ve) — Vo)

+ j; (T = #T)ds, Vabe) — (b, 7V9¢) + (Bur(-,0), 7V ¥e)
+ (T = Ta), %) + ((6v)e, Yu)-
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The fourth and seventh terms on the right side of (50) are handled as follows.

(51) ([0 (T — nT)ds, Vi) < Ch™3|| j; (T — 2T)ds||* + Ch2||Vee||?
< Ch¥=Y & Cllyell®.

vl Ui
(52)  (F=Thvv) = (@HVE - gHnVén,vu) + (V{7 = 7))
= (ghs V(€ — €n), ¥) + S(VE7 - VEL V)
v Ul
-5 - Tq_,,’w’”)

= —g(€ — &4, Y - (Re¥u)) — %(52 — £,V - $v)
U?H,-UH
—{ TH, ,Viu)
= —g(€ £,V - (hou)} — (€ — €1,V - ¥u)

U (Hy — H) - HaU® = U
—( T, bl Vi)
< Cllwell? + CllBell® + Clivull®

+Cl6er)l? + SNIVhull.

Combining (50), {51) and {52), choosing ¢ sufficiently small, using bounds previ-
ously derived for the remaining terms, and integrating in time, we obtain

T
(53) el T + e, T + fo IV vulifdt
T
< CR-D 4 C ]0 [ligell? + vl 2] dt.

Using Gronwall’s Lemma we obtain the following.

THEOREM 5.1. Assume the finite element solutions &, Un, ApU, and Ay to
(15), (16), (43), (18), (44), (20) and (45) ezist end are unique. Let the assumptions
A1-A10 hold and assume h 1s sufficiently small. Then, there exists a constant C
independent of h such that

(54) U = Unllzeorics) + € = Enlic=o.1:22) < ChL

6. A Discrete-Time Galerkin Approximation. In this section, we return for
simplicity to the linear model presented in Section 1, with g = F = 0, and formulate
a discrete time method. We extend our continuous-time stability argument presented
in section (4) and show that the discrete scheme satisfies the same stability bound.
We leave the derivation of error estimates for this scheme to the reader.

Choose a time step At > 0 and set t% = kAt, k=0,1,.... Denote f(z,t*) by f*.
A discrete time scheme based on (2) and (3)-(6) can be defined as follows. We define
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the initial approximations £} and U as before, see (13), (18). We enforce the initial
condition (6) by

& =& 0 .y =
(55) Gbh o) 4 (V- UR0) =0, vESH

(Note that here, } has a different meaning than in the previous sections, it is defined
by (55).) Then, for k=1,2,..,

vl -Ui! k x 0
Uk —Ui‘-l
(57) #(A’;nwb> = ( : At A !wb) + (Gv‘sfnwb)

+,u(VU'f,,Vwb), wy € Sﬁ“,

(58) (A,.U:,w)z—(vuk,VwH(A’;,,m), w € Sh,
and
k+1 _2&.& +Ek—1 .
(59) (= A ¥ S o)+ (Gr(VEE), Vo) — u(AWU;, V) =0, v €S

At?

Note that, at each step in the above procedure, the matrices which arise are
symmetric and positive definite, and independent of time.

We now extend the stability argument given above for the continuous time scheme
to this discrete scheme. This argument can also be used to show uniqueness (hence
existence) for the solutions to the system give above.

We first derive an equation for £i+!. Adding (56) and (58) and using the definition
(58) of AyUY, we find

Uk - Uk—l
(60) (ShT b a) + (GVEE, w) - p(AUE w) =0, wE S
Multiplying this equation by At and summingon k, ¥ = 1,...,m, for some integer
n> 0, we find

(61) (U, w)+ (O GVEALw) - u(S ARULAL w) = (U, w), wESh
k=1 k=1

Multiplying (59) by At and summing on k we obtain

(62) (u v) + (Zﬂ: Gr(VER AL, V)
At ’ k=1 ’ ,
= K _ & =8
—u(S AWURAL V) = (Fmhe). vE Sh.

k=1
Setting v = £7F! in (62) and w = m(VERth) in (61), subtracting (61) from (62)
and substituting (55), we find

n+l _ ¢n
69 (= -} g - (V- ULETH + TR IR

v A
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We continue by deriving an equation for U?D. Setting k =7 in (56) and w = Uy,

we obtain

vr-uUt!

(64) (A

U + pl| VUSRI = =(GVER, UR):

Now, adding (63) and (64), using the inequality a(a — b) 2 (a2 — b%)/2, and
integrating by parts we find

n+l(12 _ ||gn])2 2 _ -1z
o STl WA Al e

< (G, VU - (V-UL&E™).

Multiplying (65) by 2At and summing on 1, = = 1,2,...,N where N > 1 is an
integer, we find

N
(66) UMM + UV I +26D IVURI AL
n= N+1 N
<N+ TR+ C Y RIPat+ p S IVURIPAL
n=1 =1
Finally, we note that, by (55), setting v = £} we find
(67) ekl < Ligslil + AdlY - TRl

Combining (67) with (66) and applying the discrete version of Gronwall’s inequality
we obtain the following.
LEMMA 6.1. For the case g =0 and F =0, N a positive integer and At >0,

(68) e+ oV < € Qiedli + IITR |1+ IV - ulll).
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ABSTRACT

A finite volume method on unstructured
meshes has been developed for solving the
system of shallow water equations. The sys-
tem of equations is formulated as a conserva-
tion law, and integrated over each cell. The
solution is approximated on each cell by con-
stants or linears. Numerical fluxes at cell in-
terfaces are computed using Roe’s approx-
imate solution of the Riemann shock-tube
problem. This paper outlines the method
and discusses the extension of this procedure
to physical problems involving wetting and
drying.

INTRODUCTION.

The shallow water equations (SWE) can
be used to study many physical phenom-
ena of interest such as storm surges, tidal
fluctuations, tsunami waves, forces acting on
off-shore structures, and contaminant and
salinity transport. Due to their practical

*This work supported in part by National Science
Founda'ion grant DMA-9696177.

importance, the SWE have been widely in-
vestigated and a variety of numerical meth-
ods have been developed. As in the case
of Navier-Stokes equations, the coupling be-
tween the velocity field and elevation (which
plays the role of density in SWE) has played
an important tole in the development of
numerical schemes. Finite element meth-
ods based on mixed-order interpolations (e.g.
King & Norton (1978)) and equal-order in-
terpolations {e.g., Kawahara et al. (1982),
Zienkiewicz & Ortiz (1995)) have been de-
veloped. Alternatively, numerical schemes
based on equal-order interpolations and wave
formulations of the SWE have also been de-
veloped ( Lynch & Gray (1979), Luettich et
al. (1991)). Numerical methods developed
in the context of gas dynamics, namely, fi-
nite volume methods based on formulating
Riemann problems at the cell interfaces have
also been applied to the SWE ( Alcrudo and
Garcia-Navarro (1993), Sleigh ef al. (1997)).
The numerical method to be presented in
this paper is a Godunov-type finite volume
method and belongs to the last category.
The basic algorithm is described in {(Chip-
pada et al. (1997})). Here we briefly outline
the method and discuss its extension to prob-
lems with wetting and drying boundaries.



:

.
N

Figure 1: Definition of elevation and
bathymetry

MATHEMATICAL MODEL

The system of shallow water equations are
statements of conservation of mass and mo-
mentum, and are given by:

€ _

and

at H
(2)
In the above equations, £ represents the
deflection of the air-liquid interface from the
mean sea level, H = hy + & represents the
total fluid depth, and hy is the bathymetric
depth (see Fig.1), U = ull = (U,V)is the
fluid discharge field, u is the depth averaged
horizontal velocity field, f. is the Coriolis pa-
rameter resulting from the earth’s rotation,
k is the local vertical vector, g is the gravi-
tational acceleration, and s is the bottom
friction coefficient which is usually computed
using either Manning’s or Chezy’s friction
law. In most practical applications, bottom
friction dominates lateral diffusion and dis-
persion, and these terms are neglected in the
above equations. In addition to the above
described phenomena, often we need to in-
clude the effects of surface wind stress, vari-
able atmospheric pressure and tidal poten-
tials which are expressed through the body
force F (Luettich et al., (1991)).

9U _ [UU
—+v-(——) t+r; U+ fikx U+gHVE = F.

On the land boundary, we have the no nor-
mal flow boundary conditions given by:

U.v=0 (3)

where v is the unit normal. River bound-
aries bring in discarge into the system and
are given by:

U-v=U-v, and £=¢ (4)

where hat quantities are the incoming river
values. On an open ocean boundary, usually
elevation is specified as function of time:

£=¢ (5)

In addition, sometimes a radiation-type
boundary condition is imposed to let waves
leave the domain without any reflections.

NUMERICAL MODELING

A Godunov-type finite volume method
based on unstructured triangular meshes has
been developed to solve the system of shal-
low water equations given by Eqs.1and 2. In
this method, elevation £ and fluid discharges
U/ and V are approximated as piecewise con-
stants within each triangle, and numerical
fluxes at cell edges are computed by solv-
ing the Riemann shock-tube problem in an
approximate manner using Roe’s lineariza-
tion technique (Roe, 1981). This method
has also been extended to a second-order
accurate non-oscillatory scheme through a
slope-limiter type algorithm. This numerical
method is described in detail in (Chippada
et al. (1996)). We briefly outline the scheme
and then present a method for extending it
to handle wetting and drying problems.

The system of SWE can be written in com-
pact form as

de  of,  Of,
+ —

E‘-i-a—z —.d—y—h-, (6)

where

= (& UV, (7)



T
_ I_f_ 9, 2 5 UV

fx_(U,H 2(H -h) ) (8)

Uv v? g A
@:(V,T,—H—— ( —hi)) , (9
and

0

h= | —m U+ £V + 9852 + . (10)

—beV + ch + 95%

Integrating (6) over a control volume €
and over a time interval [t",t"+!], we obtain

j (-, t"1)dQ, -I-/ j f ndl.
:]e of-, 1")dQ, +ft"+l ]ﬂchdﬂe.

Here f = (fx,fy)T, T. is the boundary of Q.
and n is the outward unit normal to Le.

For triangular control volumes, the dis-
crete equations are

i+l

cn+1 —c

3
Se e m(Q) + ) £im(Ti) = him(Qe),
At =1

where the superscript represents the time
level, c. and h represent average values over
the element, and m(Q,) and m(T.) represent
the measures of Q. and T, respectively. In
our scheme the average values are approxi-
mated by constants on each triangular ele-
ment. The fluxes f* approximate the nor-
mal flux - n through each of the three faces
of the triangle. These are calculated explic-
itly using the element averages of the pri-
mary variables and an approximate Riemann
solver (Roe, 1981).

A higher-order variant of this algorithm
can be obtained by approximating the solu-
tion over each element as a linear function.
This linear is of the form

cr = €. + (X — X )(6¢)e, (11)

where x. is the barycenter of Q.. The
“slope” (8¢)e is calculated in a post-
processing step from the average values of the
cells neighboring Q.. The slopes are limited
so as to not allow oscillations in the linear
solution. The specific slope construction and
limiting procedure we use are described in
detail in (Chippada et al. 1997). Note that
the linear ¢y, is mass-preserving. This linear
representation is used to calculate more ac-
curate fluxes through the edges of the bound-
ary. The time discretization is also modified
from that given above to a two-step Runge-
Kutta procedure in order to increase the tem-
poral accuracy.

WETTING AND DRYING

In problems with wetting and drying
boundaries, the free surface approaches the
bottom sea bed, and the fluid depth ap-
proaches zero. The shallow water equations
are no longer valid in this case, and the com-
plete 3-D Navier-Stokes equations should be
solved. This of course is nontrivial, and
hence there has been a great deal of effort in
modifying shallow water simulators to han-
dle problems with wetting and drying bound-
aries. The aim is to modify the numerical
scheme so that it will not break down near
contact points and at the same time models
the movement of the water front with reason-
able accuracy. Fortunately, in the context of
the finite volume method described above,
this can be done quite easily.

Sleigh et al. (1997), Zhao et al. (1994) and
a few others have already done some work on
extending finite volume schemes to the case
of wetting/drying boundaries. Their idea is
to check the fluid depth in a cell, and if it
is less than a cut-off depth Ho, to declare it
as a dry cell and remove it from the compu-
tations. This basic procedure can be further
refined by including partially wet cells in ad-
dition to wet and dry cells. Furthermore, the
equations are reformulated in a partially wet
cell by neglectmg the inertial terms. Sleigh



et al. (1997) consider only mass flux and set
momentum fluxes to zero in a partially wet
cell.

In our numerical scheme, we use a slightly
different approach. We don’t allow the cell
to dry up completely and always maintain
a thin layer of fluid. Thus if the fluid depth
falls below a cut-off depth Ho, the fluid depth
is reset to Ho and the flow velocities are set to
sero within that element. In this way, there
s no need to keep track of wet and dry cells.
Flux calculations are done over all cell edges
and the fluid depth and fluid velocities are
updated in all cells. As will be clear from the
results to be presented in the next section,
this simple procedure works very well and
gives accurate results for a dam break prob-
lem, where an analytical solution is known.

RESULTS

A one-dimensional dam break problem is
solved first. The dam breaks at time ¢ = 0,
and the fluid that is initially at rest upstream
of the dam rushes downstream, which is as-
sumed to be initially dry. The bottom of the
river bed is assumed to be friction-less, and
all other phenomena such as Coriolis forces,
wind stress and atmospheric stress are not
considered. This problem has an analytical
solution (Toro, 1992). The numerical solu-
tion obtained is shown in Fig.2, and com-
pared against the analytical solution in I'ig.3.
The mesh size Az = 0.1m, and the time step
size At = 0.01s. Two different cut-off depths
of Hy = 1.072m and Ho = 1.0-%m have been
used to flag a cell as a wet or a dry cell.
Some differences between the numerical solu-
tion and the exact solution occur at the head
and the foot of the wave front. At the top
of the wave front the differences are due to
qumerical damping. At the foot of the front.
the differences are due to our treatment of
the wetting/drying boundary. However. the
errors due to ad hoc cut-off lengths are not
signif ~ant and the numerical solution is seen

o 2 4 6 a 10 12 14 16 18 20
«(m}

Figure 2: Numerical solution of the 1-D dam
break problem.

(o] 2 4 8 & 10 12 14 16 1B 20
x(m)

Figure 3: Comparison of 1-D numerical so-
lutions with analytical solution.

to be only weakly influenced by the cut-off
depth.

To test our 2-D unstructured numerical
algorithm, the same 1-D dam break prob-
lem is solved as a two-dimensional problem,
with the fluid being confined by solid free-
slip walls on either side. The numerical mesh
used, fluid depth contours at the end of time
t = 1 second, and comparison of the fluid
depth at the centerline with analytical so-
lution are shown in Figs.4- 6. A numerical
cut-off depth of Ho = 10=3%m is used in this
simulation. Again. we find very good agree-
ment between the numerical solution and the
exact solution.
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Figure 4; Numerical mesh used in solving 1-
D dam break problem in a 2-D domain.
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Figure 5: Fluid depth contours at the end of
1s for the dam break problem.
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Figure 6: Comparison of 2-D numerical solu-
tion with analytical solution for fluid depth
at the end of 1s.

CONCLUSIONS

A Godunov-type finite volume method
based on unstructured triangular meshes and
Roe’s approximate Riemann solver has been
developed. This numerical procedure has
been shown to model wetting and drying
problems in a simple and accurate manmer.
Application of this procedure to the study of
storm surges and flood plains is in progress.
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Abstract

In the numerical modeling of fluid flow and transport problems. the velocity field frequently needs to be projected from one finite
dimensional space int another. In cernain applications, especially those involving modeling of multi-species transport, the new projected
velocity field should be accurate as well as locally mass conservative.

In this paper, a velocity projection method has been developed that is both accurate and mass conservative eiement-by-element on the

projected grid. The velocity correction is expressed as gradient of a scalar pressure field, and the resultant Poisson equation i

s solved using a
mixed/hybrid finite element method and lowest-order Raviart-Thomas spaces. The conservative projection method is applied to the system

of shallow water equations and a theoretical error estimate is derived. © 1998 Elsevier Science S.A.

1. Introduction

In the numerical modeling of fluid flow and transport problems, the computed velocity field frequently needs
to be projected from one finite dimensional subspace into another, possibly to satisfy some constraint or because
the underlying mesh has changed. For example, in Lagrangian-based numerical modeling of free boundary

problems, to avoid mesh distortions the numerical mesh is regenerated once every few time steps, and in such

situations the velocity field has to be projected from the old grid onto the new grid. Other important applications

where the velocity field may need to be projected are in the modeling of environmental surface and subsurface
flow and transport problems. In these problems, the flow and transport equations arise from conservation of
mass (plus some additional equations such as Darcy’s Law or the Navier—Stokes equations). The flow and
multi-species transport are often solved separately using completely different numerical methods and grids due
to differences in length and time scales of the phenomena involved. For accurate transport, it is desirable for the
velocities to be locally conservative on the transport grid. This can be accomplished through the projection
algorithm described below.

A particular example on which we will focus is the modeling of surface flow. Here the flow model is
described by the shallow water equations. The ADCIRC (an advanced circulation model for shelves, coasts and
estuaries) [7,8) and RMA codes [5] are examples of widely used shallow water hydrodynamics models. Both
models are based on Galerkin-type finite element methods and unstructured triangular grids. The velocities
computed with these models can serve as input to a multi-species transport model. For example, the

* Corresponding author.
' This paper is dedicated to J. Tinsley Oden on the occasion of his 60th birthday.
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CE-QUAL-ICM [2] simulator is a widely used water quality model. It uses unstructured quadrnilateral grids and
finite volume type discretization. All of these codes are utilized by US Army Corps of Engineers at the
Waterways Experiment Station in Vicksburg. Mississippi, and other state and federal agencies in modeling
environmental quality of shallow water systems. Therefore. there is a need to couple these hydrodynamic and
water quality models and to perform a projection to produce a locally conservative velocity field on the transport
grid.

In this paper we preseni an approach which we call the conservative velocity projection method, which
projects a computed velocity field from one finite dimensional space into another in an accurate and
element-by-element mass conservative manner. In particular, we will focus on a projection algorithm based on
the mixed/hybrid finite element method. This method is well-suited for computing locally conservative velocity
fields.

In Section 2, the mathematical aspects of hydrodynamics and environmental modeling are briefly discussed.
The conservative projection method and the mixed/hybrid finite element method are outlined in Section 3. An
error estimate for the accuracy of the projected velocity field is derived in Section 4. The application of the
projection method to the shallow water equations modeled using the ADCIRC code is presented in Section 5.
Finally, in Section 6, we conclude with some remarks and future research possibilities.

2. Flow and transport modeling

The most general form of the conservation of mass equation is given by

dp

o +V-U=gq. (n
In the above equation, p is the the fluid density, u is the velocity vector field, U = pu, V is the spatial gradient
operator and g represents the sources and sinks that may be present in the flow domain. In most hydrodynamics
situations the fluid flow is incompressible and the mass conservation equations simplifies to

Vu=gq. 2)

We present the projection method for a fluid flow system with conservation of mass of the form given by Eq.
(1), but the procedure and analysis carries forward in a straightforward manner to the case of incompressible
flows also. Further, in the case of shallow water systems, even though the fluid flow is governed by the 3-
incompressible Navier—Stokes equations, after depth-averaging we obtain a mathematical system which is
compressible in nature with conservation of mass equation of the form given by Eq. (1) and the fiuid depth H
playing the role of density.

The fluid flow mathematical model typically consists of 2 mass conservation equation given by either Eqgs. (1)
or (2) and a momentum conservation law. Several forms of momentum conservation laws are used depending
on the flow situations. In high-speed acrodynamic flows compressible Navier-Stokes equations are used
whereas in the case of low speed hydraulic flows the incompressible Navier—Stokes equations are solved. In the
case of flow through porous media the velocity field is determined using Darcy’s law. In certain flow problems
the energy equation and an equation of state may also have to be solved simultaneously along with the mass and
momentum equations. The actual form of the fluid flow model itself is not important since in this paper we ar¢
only interested in post-processing a given fluid flow field so that it is locally mass-conservative on the same grid
or on an entirely new grid. As proof-of-concept, we apply the conservative velocity projection method to the
fluid fiow governed by the system of shallow water equations and this hydrodynamics model is described in
detail in Section 3. :

We assume that we have a hydrodynamics model governing the fluid flow consisting of a mass conservation
law (Eq. (1)) and a momentum conservation law and any other equations that may be necessary to compute the
flow field. This system is numerically solved using any of the exisung finite difference, finite element and finite
volume type numerical schemes.

The multi-species transport model consists of a system of advection—diffusion-reaction type transport
equations of the following form:
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where ¢, is the concentration per uMnt mass of species 1. K, is @ reaction-type source funcuon and D s the
diffusion coefficient. The primary influence of the flow ficld 1s in the advective transport of the concentranion
species. In case of turbulent fluid flows the veiocity ficld can also influence the diffusion coefficient D . Here. we
are assuming passive scalar transport and that the concentration tield does not affect the fluid flow. If this is not
the case then we need to solve the hydrodynamics and concentration equations together preferably on the same
grids.

In the numerical solution of the concentration equations it is imporant that the velocity field be mass

conservative cell-by-cell. This can be seen more clearly 1f we rewrite the transport equation (Eq. (3)) in the
following way:

(39—"+v 1y l) (Lyv )=0 4
ol +u Ve, =5 VD)~ JR )+ el5+ (pu)—q)=0. 4)

The mass conservation equation is present in the species transport equation (Eq. (3)), and if we do not have
local mass conservation it amounts to adding spurious sources and sinks. This could give rise to numerical
instabilities. especially if we are interested in integrating the equations over long periods of time. Also. in some
applications the concentrations are very small (of the order of 107%) and small errors in mass conservation can
have significant influence on the accuracy and stability of the system. Thus, it is important for the velocity field
to be cell-by-cell mass conservative in the multi-species transport studies.

3. Conservative projection formulation

Let 2 ER". n =2 or 3, be the physical domain and 312 the external boundary of this domain. Further, let 4£2,
be the boundary on which we have Dirichlet boundary conditions on the normai velocity expressed as

U-v=g onddl, ()

where v is the outward pointing unit normal vector at the boundary. Let h° be the mesh parameter of the old
grid and A" be the mesh parameter of the new grid. Further, let V), and V. be finite dimensional subspaces
corresponding to the old and new meshes. Given U,. EV,. the problem is to find U}» €V, such that U,. is a
close approximation of U,. and that U,. ‘satisfies’ the mass conservation law given by

ap :

ViUn=q-7;=f in 1,
and 6)

Usor=g on 342, .

The new velocity U,. is expressed in terms of the old velocity U, in the following manner:

U,‘n =Y h"Uh" + I-’:n EV,,.. . (7)
where #,,U,. is the & ? projection of the old velocity U,. into V.. and [;. €V, is the velocity correction which
we need to compute. Substituting Eq. (7) into Eq. (6) we obtain the following boundary value problem:

V-I‘“=f—V-9’,,“U,,D=f in {2,
and (8)

Lvv=g—P.U. v=g¢ onafl.

Further, we express I, as the gradient of a scalar function in the following mannet:

I;'n = _v¢hn . (9)

The scaiar variable @,. can be thought of as a pseudo-pressure. This type of representation implies that the
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Fig. 1. Piece-wise approximations on a triangular element using lowest-order Raviari—-Thomas spaces.

vorticity of the new velocity field U,. is same as that of the old velocity field 2,.U,. and the velocity correction
I« helps us obtain local mass conservation without changing the vorticity of the velocity field. Substituting Eq.
(9) into Eq. (8) we obtain the following elliptic problem:

-Ady.=f on {2,
and V. =3¢ on 42, , (10)
$po=0 on 842/ a{2, .

The elliptic problem given by Eqg. (10) is solved using the mixed/hybnd finite element method which
approximates both fluxes (I") and pressures (). In addition, the fluxes I'- v = —V¢  r are CONLNUOUS across
the edges and the resulting numerical solution satisfies mass conservation cell-by-cell. The mixed/hybrid finite
element approximation of the elliptic problem (Eq. (10)) together with velocity relations (Egs. (7) and (9))
represent the conservative velocity projection formulation.

On the new grid, the elliptic problem is approximated using triangular elements and lowest-order Raviart—
Thomas spaces which are written as follows for a given trianguiar element E (see Fig. 1):

W.(E)={eER on E}, (1
and
V,,..(E)=(a+'8x); a B, yER, (L YEE. (12)
y + By
The finite dimensional scalar and vector spaces on the new grid are defined as
W, = {w € L7(02): wl; € W,u(E)Y E} (13)
V,. = {v € £(2): v| Ev,(EW E} (14)

In the mixed/hybrid finite element method the second-order elliptic problem is written as a first-order sysiem
and we compute I}, &) € Vo, W,n) from

(I-:’n, vhn) —(dl,'n,V'v,,..):O VvhnEth
(V- Foywyo) = (F, Wy) YV wyn €EWpn (15)
(I-;'n' v, vhn' V)=<g, Uhn' V) Vv,,.. Eth

In the above weak formulation, (-, ), and (-, ) are the the usual inner products on the domain {2 and the
boundary 842, respectively. We refer the reader to Raviart and Thomas [10] and Brezzi and Fortin (1] for more
information on the mixed/hybrid finite element method and their implementation details.

4. Theoretical error estimate

The £ projection of U,. into V. 18 defined by
((Uho—?hnuhu),vhn)zo. VvhnEVn.
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THEOREM 4.1 Given U, U, .. 3 1 constant ( mdependent of o0 U such thar
. — U= CUILL — Ui+ U, - Uih. (16}

PROOF. First, write Eq. {7) in weak form to get

Upor 0y = (Pl 0, + (L0 0y0) 0 & Yu,.EV.. (1
Subtract (U, v,.) from both sides of Eq. (17) and use the definition of the £~ projection to get

Uyo — U 0,0)= WUy ~ U vys + (L, U,0) Yu,.eV.. (18)

By choosing v, = U,. — I1,.U, we can reduce to zero the second term in the right-hand side of Eq. (18). This 1s
accomplished by using our chosen est function in the first relation of Eq. (15), together with the definition of
the I1,. projection and the fact that the mass conservation equation is satisfied by both the true velocity U and
the new velocity U, ..

Finally, manipulate

(U, —U. WUy = U= (LU = U) = Uy — U Uy ~ U= UL = UY)

using Cauchy—Schwartz and the arithmetic-geometric-mean inequality,

| S
absTa“+ebz, >0,
€

to obtain the result of the theorem. 0O

The elegance of the estimate comes from the observation that it reduces to an approximation theory question
given an estimate for the difference between U,. and the true velocity U.

For example, using the lowest-order Raviart-Thomas space in computing U,x [10,1] and using, say. the
ADCIRC model to compute U,. (4], then |U,. — U||=<Ch.

5. Application: Shallow water equations

The projection formulation developed in Section 3 is applied to the system of shallow water equations.
Shallow water equations (SWE) are obtained through the vertical integration of the 3-D incompressible
Navier—Stokes along with assumptions of hydrostatic pressure and vertically uniform velocity profiles {1 1]. Due
to the assumptions made in their derivation, SWE are valid only for flow systems with horizontal length scales
much larger compared to the fluid depth. A typical shallow water system is shown in Fig. 2. The conservation of
mass in the system of shallow water equations is given by

LAND
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Fig. 2. A typical shallow water system.




Fig. 3. Defininon of & h, and H.

3
F=—+ V- H)=0. (19

The non-conservative form of the momentum equation is as follows:
du 1
./“E—a?-i-u'Vu+gV§—T{‘V-[H0']+beu+fck>(u—fh=0. 20

In the above system, & is the deflection of the air—water interface from the mean sea level (see Fig. 3),
H = &+ h, is the total fluid depth and h,, is the bathymetric depth. The velocity field is denoted by u and is the
mean velocity across the vertical. U = ufl is the total flow rate (discharge) and 7, and f are. respectively the
bottom friction and Coriolis acceleration coefficients; o is the viscous stress tensor and is neglected in most
applications since the bottom friction terms dominate the lateral diffusion and dispersion. Several types of body
forces act on the system including the wind stress. atmospheric pressure gradient and tidal potential forces and
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Fig. 4. Galveston Bay: numerical mesh. Lengths shown are in meters.
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all of these are iumped 1t e wonese budy e e term 4, The conservalive form ot the momentum eguanen
can be derived from Bus o ard 120010 the tollowing muanner
Mo=HM +uF =0 (=1

A variety of numencal meihods have been developed to solve the system ot shallow water equanons. Due to the
strong coupling between the velocity and elevauon fields. W the numerical method 1s not chosen properly, we
could run into the problem ol spurious saatial oscillatons. Gray et al. {7.8] have developed over the years a
numerical procedure (code) called ADCIRC. They replace the first-order mass conservation equation (Eg. (199
with a second-order generalized wave continuity equaton (GWCE) which 1s given by

aL
g= -V M A7, E =0 (22)
The resulting form of the GWCE is
¢ A ,
—at—2+ o5 + V- ({1, — 7 )Hu) — V[V {Huu)+ Hf k Xu + gHVE -V -[Ho) — Hf1=0 23

In the above equation, 7, is 2 numerical parameter which is chosen based on stability and accuracy criteria and 18
usually 1-10 times the bottomn friction coefficient 7, [6]. The GWCE (Eq. (23)) along with the non-
conservative momentum egquation (Eq. (20)) is solved using the Galerkin finite element method and linear
triangular elements. The main advantage of this method is that it lets us choose the same approximating spaces
for both the velocities and pressure without giving rise to spurious spatial oscillations. Thus, this approach is
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Fig. 7. Gaiveston Bay: local mass conservauon error.



6. Concluding remarks and furure work

A conservative velociny projecion schemme that projects the veiogy Held trom one gnd onto unother 1n Je
onservative manner s been denned. A theorencal error esimate of the conservause

accurate and locaily mass ¢
g 10 the system of shallow water

projection formulation has been deriveq and numerical results peram
equations have been presented. The procedure proposed in this paper 18 Very general and extends readily © 3-D
and other general elements. Another advantage of this procedure 15 that it can be applied only in regions of large
mass conservarion errors thus giving great computational efficiency.

In the future. we are looking at coupling 3-D ADCIRC velociues with CE-QUAL-ICM. We also plan to

investigate the application of this approich to non-matching grids.
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