DEVELOPMENT OF BRACKISH GROUND WATER RESOURCES IN THE BROWNSVILLE AREA

TWDB Contract No. 95-483-141

FINAL REPORT

November 1996

Prepared for:
Public Utilities Board of Brownsville, Texas
and the Texas Water Development Board

Prepared by: NRS Consulting Engineers 1222 E. Tyler, Suite C P.O. Box 2544 Harlingen, Texas 78551 (210) 423-7409

6606 LBJ Freeway, Suite 100
Dallas, Texas 75240

R.W. Harden & Associates, Inc.

Boyle Engineering Corporation

In Association with:

R.W. Harden & Associates, Inc. 3409 Executive Center Drive, Suite 226 Austin, Texas 78731

TABLE OF CONTENTS

CHAPTER 1	- EXECUTIVE SUMMARY 1-1
1.1	PURPOSE
1.2	BACKGROUND
1.3	SCOPE 1-1
	1.3.1 Phase I - Preliminary evaluation
	1.3.2 Phase II - Field Drilling and Testing Program
1.4	GROUND-WATER ASSESSMENT
1.5	TREATMENT REQUIREMENTS
1.6	PILOT PLANT OPERATIONS
1.7	SUMMARY OF COST PROJECTIONS
1.8	RECOMMENDATIONS
	1.8.1 Implementation Plan
	
CHAPTER 2	- GROUND-WATER ASSESSMENT
2.1	INTRODUCTION
	2.1.1 Purpose
	2.1.2 Previous Investigation
	2.1.3 Work Conducted
	2.1.4 Acknowledgment
2.2	GEOHYDROLOGIC SETTING 2-2
	2.2.1 Gravel Zone
	2.2.2 Intermediate Zone
	2.2.3 The Lower Zone
2.3	WATER QUALITY
-10	2.3.1 Gravel Zone
	2.3.2 Intermediate Zone
	222 1 7
2.4	AVAILABILITY AND QUALITY OF GROUND WATER FROM PROJECTED WELL
~· -1	
	2.4.1 Gravel and Intermediate Zones
	2.4.2 The Lower Zone
2.5	RECOMMENDATIONS
2.0	2-18
CHAPTER 3	- TREATMENT ALTERNATIVES 3-1
3.1	SCOPE
3.2	GROUNDWATER QUALITY
3.3	TREATMENT ALTERNATIVES
	3.3.1 Electrodialysis (Reversal) - Process Description
	3.3.2 Reverse Osmosis Process Description
	3.3.2.1 BWRO Process Description
3.4	CONCENTRATE DISPOSAL
5.7	3-0
CHAPTER 4	- REVERSE OSMOSIS PILOT STUDY
4.1	PILOT PLANT DESCRIPTION 4-1
4.2	PILOT PLANT OPERATION
4.3	OPERATING DATA
	4.3.1 Pretreatment
	4.3.2 Membrane Performance
4.4	FULL SCALE OPERATIONAL PARAMETERS 4-12
	4.4.1 Pretreatment
	4-12

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

	4.4.2 4.4.3	Membrane Performance	4-12 4-12							
CHAPTER	5 - PROJE	CTED COSTS	<i>~</i> .							
5.1	Treatm	nent Facility	5-I							
	5.1.1	Capital Cost Factors	. 5-1 . 5-1							
	5.1.2	Operational Cost Factors	5-5							
5.2	Transn	nission Costs	5 5							
5.3	Well F	ield Development Costs	5-7							
5.4	Summ	ary of Costs	5-8							
		LIST OF TABLES								
Table 1.1 - S	Summary of	Costs								
Table 2.1 - S	Stratigraphic	Units in the City of Brownsville Area	1-7							
Table 2.2 -	Representati [,]	ve Water Quality	2 12							
Table 3.1 - D	Drinking Wa	ter Standards Comparison	2-12							
Table 3.2 - Design Parameters Electrodialysis Reversal										
Table 4.1 - Pilot Plant Operating Conditions										
Table 4.2 - Feed Water Quality										
Table 5.1 - Projected Capital and O&M Cost for Reverse Osmosis System										
Table 5.2 - Projected Capital and O&M Cost for EDR System										
1 able 5.3 - 1	Table 5.3 - Transmission Costs									
1 able 5.4 - v	veli riela De	evelopment Costs	5-7							
Table 5.6 S	ummary of	Costs RO System	5-8							
14016 3.0 - 8	unimary of G	Costs EDR System	5-9							
		LIST OF FIGURES								
Figure 2.1	Stuationant:-	Santian								
Figure 2.1 - S	orangrapine	Section	2-5							
Figure 2.2 - 6	Estimated Di	of Gravel in Gravel and Intermediate Zones	2-6							
Figure 2.4 - S	Schematic W	issolved Solids of Water in Gravel Zone	2-11							
Figure 2.5 - F	Estimated W	ell Field Layout ater Quality from Well Field	2-16							
Figure 3.1 - S	Simplified Ty	ypical RO Flow Diagram	2-17							
Figure 4.1 - F	R.O. Pilot Pr	ocess and Instrumentation Diagram	3-8							
Figure 4.2 - F	ressure Droi	p Across Cartridge Filter	4-2							
Figure 4.3 - N	Normalized F	Flux	4-3 17							
Figure 4.7 - R	l.O. Flow So	chematic	4-/ /_1/							
Figure 5.1 - V	Vell Field Ti	ransmission System and Concentrate Disposal	5-4							
		*	- '							

LIST OF APPENDIXES

APPENDIX I - GEOLOGIC DATA APPENDIX II - WATER QUALITY DATA APPENDIX III - OPERATIONAL DATA APPENDIX IV - TWDB COMMENTS

CHAPTER 1 - EXECUTIVE SUMMARY

1.1 PURPOSE

The purpose of this report is to evaluate the feasibility of developing and treating brackish ground-water resources available in the Brownsville area. This study was conducted in a two step process. The first step was to determine, from existing data if the project appeared to be feasible. Upon determination that the project could be accomplished at a reasonable cost, the second step was to develop test wells and operate a pilot reverse osmosis facility.

1.2 BACKGROUND

The Brownsville Public Utilities Board (PUB) obtains raw water for treatment from the Rio Grande. Over the past three years, the reservoirs supplying the Rio Grande have continued to deplete due to the drought conditions in the South Texas Region. The PUB has serious concerns that a continuation of this drought, coupled with increased demands from other users and the potential for water theft will severely limit the PUB's ability to meet it's customers demands. The record low flows in the Rio Grande, which represents the only source of water to the PUB, have dramatically increased the potential for water quality problems to occur, especially given the chronically poor water quality within the river caused by wastewater discharges, brackish seepage from irrigation leach drains, and irrigation return flows. Without a means to utilize alternative sources during times of unacceptable water quality or quantity, the PUB and it's customers are likely to be faced with a very critical situation.

Demineralization of groundwater has the potential to partially solve the PUB's long-term drought water storage problems. Currently, the only water available to PUB is the storage in Amistad and Falcon Reservoirs associated with raw water rights. If the PUB was able to demineralize brackish ground water to supplement their daily requirements, then reliance on this reservoir-based storage system would be diminished, and both the quantity and quality of their supplies would potentially be assured.

As part of the PUB's effort to decrease their dependancy on the Rio Grande, this study was authorized by the PUB and the Texas Water Development Board (TWDB). This study was completed in conjunction with the Aquifer Storage and Recovery Project (ASR) and the TWDB drilling crews. Common resources were used to reduce the overall cost to the PUB and the TWDB. This project, which includes the demineralization of brackish ground water, would allow ground water to be treated and distributed to supplement surface water supply and treatment and improve overall water quality.

1.3 SCOPE

The principal elements of the study include:

- 1.3.1 Phase I Preliminary evaluation
- Data Collection and Evaluation
- · Preliminary Ground-water quality and quantity estimates
- Establish Optimum Water Quality for Treatment

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

- Treatment Alternatives
- Develop Range of Costs for Treatment
- Develop preliminary treatment costs
- Concentrate disposal alternatives
- Prepare summary report

1.3.2 Phase II - Field Drilling and Testing Program

- Design field drilling and testing program
- Conduct, in conjunction with TWDB, field drilling and testing
- Develop ground-water quality and quantity estimates
- Conduct pilot plant study to include:

Development of design criteria Evaluate membrane fouling characteristics Service life of membranes Concentrate characteristics Pretreatment requirements

- Monitoring of Pilot Plant
- Evaluate test results
- Provide Final Report of Findings

GROUND-WATER ASSESSMENT 1.4

Several geologic and hydrologic studies and investigations have been conducted within and near the City of Brownsville. Readily available information from published and unpublished sources was utilized in order to assess the geologic and hydrologic conditions, and the availability of ground water in the area. Work for this report has included review of previous reports, records, and data; evaluations of well records in the area; analyses of geophysical logs of wells and test holes in the area; a limited field drilling program and preliminary computer modeling.

Ground-water conditions in and near the City vary considerably vertically and laterally. Geologic units are characterized by complex series of gravel, sand, silt, and clay zones within the Recent Alluvium and the underlying Pleistocene formations. These conditions generally result in extremely variable productivity and water-quality characteristics within the various water-producing zones. For purposes of this evaluation, three potential producing zones have been identified; the Gravel Zone, the Intermediate Zone, and the Lower Zone. Most previous studies have been limited to the Gravel Zone.

Based on preliminary evaluations and computer modeling, 8.0 MGD appears available from the Gravel Zone. In addition another 2.5 MGD may be available for development from the Intermediate Zone. However test drilling indicated little Intermediate Zone materials in Brownsville and development of water from the Intermediate Zone may only be available northwest of Brownsville. For costing purposes and based on preliminary parameters utilized in model calculations, about 26 wells are estimated to be required for a 10.5 MGD supply from these two zones. Projections are based on a 10.5 MGD supply for a 30-year planning period. The developed ground water supply will be available beyond 30 years, although additional wells may be required to maintain the supply at 10.5 MGD.

Additional resources appear to be available from the Gravel Zone and/or Intermediate Zone, although at a higher cost, by extending the well field further northwest.

For costing purposes the projected well field is estimated to extend from about the PUB's Water Treatment Plant No. 1 to the northwest along Military Highway approximately eight miles. The actual number of wells required, well yields, well locations and well field extent will be dependent on property availability, aquifer productivity characteristics at each site, regional hydrologic characteristics of the aquifers and actual well field use. Further work needs to be conducted in this area to firm up these projections. Water availability from these aquifers is independent of Rio Grande river flows and can supply water during drought conditions.

Ground-water quality is extremely variable laterally and vertically in the area. Based on existing data some relatively good quality water is available within the Gravel Zone in and to the west/northwest of the City along the Rio Grande. Away from the river, water within the Gravel Zone ranges from relatively fresh west of the City to brackish within the City to saline east of the City. While some fresh water appears to be available near and west of the City, any well field in this area will with time produce poorer quality water as more highly mineralized water will be induced to flow from the east to the well field. Assuming an initial well field location as herein described, the estimated total dissolved solids in water produced by this proposed well field would be about 1,500 to 2,000 mg/l initially and with pumping time, increase an estimated two to three times over twenty years. Little water-quality information is available for the Intermediate and Lower zones. Preliminary calculations indicate that if the well field is favorably located from water quality standpoints, water quality deterioration will be gradual. Immediate changes will not be required to meet these gradual changes. As wells become less productive in terms of quality over time, either additional wells will be added with expected higher quality and/or treatment technology will increase the efficiencies and costs of treating poorer quality supplies at equal or less costs.

Sufficient ground water is available for the planned project. However, specifics with regard to well field location, number of wells, actual producing zones and water quality, initially and in the future need to be further refined during the later phases of the project. Later phases of the project will include the investigations discussed in Chapter 2 of this report and include more detailed and extensive drilling and testing are required to better define subsurface local and regional hydrologic conditions, verify existing data and better evaluate the feasibility of finding suitable production well sites from quality and quantity standpoints. With this additional work, the cost-effectiveness and development of a 3.5 MGD to 10.5 MGD well field can be further refined.

1.5 TREATMENT REQUIREMENTS

Brackish or highly mineralized water (groundwater) contain excess salts and minerals or total dissolved solids mainly sodium, calcium, magnesium, sulfate, chlorides, and bicarbonates. Nitrates, fluorides, and potassium are found in smaller amounts. The EPA has recommended a maximum total dissolved solids content of domestic water supplies of 500 ppm. Texas standards currently require a total dissolved solids not to exceed 1,000 ppm. At times, the Rio Grande supply exceeds the 1,000 ppm and conventional treatment methods do not remove the TDS in the water. Exceeding this amount is acceptable if no better supplies are available.

Safe Drinking Water Act Standards (SDWA) can only be met through the use of special processes, to remove excess mineral content from brackish water. Two processes are suitable for treating brackish water and generating a product which would meet SDWA standards. These are Reverse Osmosis (R.O.) and Electrodialysis Reversal (EDR). With

the feedwater quality information available, both processes were evaluated and determined that both could easily reduce total dissolved solids levels within the recommended concentration value. Because of the projected higher capital and operational costs associated with the EDR process, the reverse osmosis was installed for testing purposes.

1.6 PILOT PLANT OPERATIONS

A reverse osmosis pilot plant was installed and started on May 8, 1996 and operated successfully for three consecutive months. The purpose of the pilot testing was to determine if there are potential fouling agents found in the ground water that would prematurely cause the plant membranes to foul. During the three month operational period, no excess fouling occurred. The plant testing helped to further refine the costs associated with operation and maintenance of this type of facility.

The pilot plant began operation at a recovery of 75 percent. Recovery is defined as the percentage of feed water that is converted to "treated water", or permeate. This recovery was established from preliminary water quality analyses of the expected feed water. After approximately 2000 hours of operation, the recovery was increased to 80% for the duration of the pilot study.

During the first 2000 hours the membranes displayed no detrimental effects from exposure to the water. Premature replacement of the membrane elements due to deterioration or extensive fouling should not be a concern as long as the wells produce water free of suspended material. Membrane life of at least 5 years should be expected. Chemical cleaning of the membrane elements should be at intervals greater than 2000 hours, or four times a year.

The project could be constructed in three phases, each having a supply capacity of approximately 3.5 mgd. The wells will be located along an eight mile stretch of the Rio Grande northwest of Brownsville. The product water goal for this plant is a TDS of less than 750 mg/l. To achieve this goal, a product water blending rate of 71% permeate was required. This projection is based on a 75% recovery in the RO system, giving an overall system recovery of 80.8%. Assuming that each phase will produce 3.5 mgd in well field capacity, each phase of the RO system will be designed to produce 2.01 mgd of permeate and 0.67 mgd of concentrate. With blending, a total product capacity for each phase would yield 2.83 million gallons per day.

To achieve the most cost effective project, the goal of 750 mg/l TDS level was used. At this level, water quality would be an excellent water that exceeds current standards and this quality would be consistent over time. If the PUB were to use the permeate directly, with out blending with the other groundwater, the water would not be suitable for the distribution system without the addition of chemicals to meet the corrosion control guidelines of the Safe Drinking Water Act. From a design standpoint, a plant should be designed achieve a maximum TDS level of 1,000 mg/l, with blending. The plant would also be able to produce the product water that removes in excess of 90% of most minerals in the water. The yield from each phase of the reverse osmosis only plant (no blending) would yield 2.63 million gallons per day of permeate and 0.87 mgd of concentrate. Traditionally, plants have been designed to meet primary and secondary treatment standards, not to the reverse osmosis permeate level.

The amount of blending required by the PUB and it's customers depends upon two key factors. The primary factor is meeting drinking water standards. The combination of a consistent ground water source treated with membrane technology will yield more consistent quality to the consumer. Any changes in groundwater quality will be gradual over time. Quality of feed water and product is constantly monitored to achieve the desired quality. The cost is also

a primary factor in the determination of blending. The greater amount of water that is blended yields a greater total product water for the same capital expenditure. Without blending, additional chemicals would be required to stabilize the water from the R.O. unit. The unit cost per 1,000 gallons produced is considerably higher for the unblended product water.

1.7 SUMMARY OF COST PROJECTIONS

Based on available information and work performed in this study, a reverse osmosis facility utilizing brackish ground water appears to be a viable alternative to supplement Brownsville's current surface water supply from the Rio Grande. The development of a reverse osmosis membrane treatment system, well field and transmission system, an 8.5 mgd product water can be developed at a cost for \$0.56 per 1000 gallons capital cost and \$0.37 per 1,000 gallons operational cost. These figures do not include the cost savings of the value of the surface water rights valued to \$8.1 million. A summary of costs associated with each phase can be found in Table 1.1.

1.8 RECOMMENDATIONS

In order for the PUB to reduce it's overall dependancy on the Rio Grande, an alternative source of water should be established if economically feasible. The use of groundwater can be an alternate water supply that can partially supply current demands on the system that is independent of the Rio Grande supplies. The project recommended in this report is broken down into three phases. Costs contained in Phase I are higher per 1,000 gallons produced due to over sizing of buildings and pipelines to accommodate future phases. If all phases were completed at one time, the economy of scale would lower the overall cost per 1,000 gallons.

The three phase approach may prove to be most feasible at this time. Membrane process continue to be the subject of considerable research. With continued development of technology, the capital and operation and maintenance costs of membrane treatment are expected to decline. As the level of total dissolved solids increase over time from the well field, improved technology is expected to lower the cost of treating the higher mineral content of the water supply.

With the development of the second and third phase of this project, overall costs for treatment would decrease for brackish water treatment. Future membrane expansion could include the PUB's treated surface water to meet future Safe Drinking Water Act regulations.

1.8.1 Implementation Plan

The PUB should complete this project in phases for reasons stated above. To accomplish this, the following items should be completed in the order shown.

1.8.1.1 Initial 3.5 MGD Supply - Part I

- Initiate the permitting process to discharge well water concentrate into the City's North Main Drainage Ditch with ultimate discharge in the Brownsville Ship Channel.
- Compile and review available geologic data, water quality information, and hydraulic characteristics of the Gravel and Intermediate Zones on the Mexican side of the River.
- Conduct additional test drilling to verify that water can be produced from the intermediate zone, to better

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

define the location, feasibility and likelihood of finding favorable sites in the gravel and intermediate zones. An estimated ten to fourteen test hole sites with water samples will be required for this effort.

- Assuming favorable test hole results, construct a pilot production well in the gravel zone, with approximately four associated piezometers, and conduct a long-term pumping test to evaluate the regional hydraulic and boundary conditions of the gravel zone aquifer.
- As applicable, construct a pilot production well in the Intermediate Zone, with approximately four associated piezometers, and conduct a long term pumping test to evaluate the regional hydraulic and boundary conditions in the Intermediate Zone aquifer. Depending on the test drilling and pilot production well test results in the Gravel Zone, this task may not be required to finalize the supply, or it may be possible to delay this task until subsequent phases.
- Develop water quality testing parameter to develop treatment needs.

The pilot production well(s) constructed during these testing programs will be the initial production well(s) in the permanent well field. It is recommended that land purchase options be obtained for test drilling sites, as 50% or more of the sites may not be suitable for construction of production wells. Sites should not be bought until test drilling at each site has indicated favorable subsurface conditions.

1.8.1.2 Initial 3.5 MGD Supply - Part II

- From the data found in Part I, the design and construction of the well field, pipeline and treatment system
 can be completed. Based on the information found in Part I, the PUB can determine the degree of
 oversizing of the supply system to accommodate future well field development.
- Design of the treatment facility should accommodate future expansion needs of the ground water system.

1.8.1.3 Subsequent Supplies

- Previous permitting should account for the subsequent supplies.
- The development of subsequent phases will be identical to those mentioned in the initial 3.5 MGD supply.

Table 1.1 - Summary of Costs

CAPITAL COST PROJECTIONS	PHASE I	PHASE II	PHASE III	TOTAL
REVERSE OSMOSIS	\$6,251,850	\$2,187,900	\$2,187,900	\$10,627,650
OFFSITE TRANSMISSION¹ & CONCENTRATE DISPOSAL	\$1,130,155	\$1,663,253	\$372,223	\$3,165,630
WELL FIELD DEVELOPMENT	\$1,720,000	\$2,110,000	\$2,200,000	\$6,030,000
TOTAL CAPITAL	\$9,102,005	\$5,961,153	\$4,760,123	\$19,823,280
PRODUCT WATER EA. PHASE, MGD	2,830,000	2,830,000	2,830,000	8,490,000
ANNUAL DEBT SERVICE @6%, 20 YRS.	\$793,554	\$519,720	\$415,009	\$1,728,284
DEBT SERVICE PER 1000 GALLONS	\$0.77	\$0.50	\$0.40	\$0.56
OPERATION AND MAINTENANCE PROJE	CTIONS (C	UMULATIVE 1	OTALS)	
POWER @ \$0.038/KWH	\$81,508	\$172,537	\$298,083	
MEMBRANE REPLACEMENT	\$70,000	\$140,000	\$210,000	
CHEMICAL	\$92,000	\$184,000	\$276,000	
LABOR	\$100,000	\$100,000	\$100,000	
MAINTENANCE	\$50,000	\$70,000	\$90,000	
CARTRIDGE FILTER REPLACEMENT	\$35,000	\$70,000	\$105,000	
WELL PUMP REPLACEMENT	\$20,000	\$40,000	\$60,000	
TOTAL TREATMENT O&M PER YEAR	\$448,508	\$776,537	\$1,139,083	
OPERATIONAL COST/1000 GALLONS	\$0.43	\$0.38	\$0.37	(Blended)
TOTAL ANNUAL COST COMPARISONS				
TOTAL \$\$ PER YEAR	\$1,242,062	\$2,089,812	\$2,867,367	
TOTAL \$\$/1,000 GALLONS (Blended)	\$1.20	\$1.01	\$0.93	(Blended)
TOTAL \$\$/ACRE FOOT OF WATER	\$391.79	\$329.60	\$301.49	
PRODUCED				
COMPARISON TO 100% RO PRODUCT WAT	ER			
TOTAL \$\$/1,000 GALLONS	\$1.79	\$1.48	\$1.40	(Pure RO)
COMPARISON OF WATER RIGHTS VALUE	ES			
VALUE OF WATER RIGHTS SAVED	\$2,694,690	\$5,389,379	\$8,084,069	
ANNUALIZED COST OF WATER RIGHTS	\$234,935	\$469,871	\$704,806	
COST PER 1000 GAL WATER RIGHTS SAVED (Not deducted from project costs)	\$0.23	\$0.23	\$0.23	

Note 1 - Offsite transmission costs assume an ultimate pipeline capacity of 10.5 mgd. The total cost to oversize the pipeline to accommodate a 20 mgd ultimate well field capacity would be approximately \$5.9 million. Detailed costs can be found in Table 5.3.

CHAPTER 2 - GROUND-WATER ASSESSMENT

2.1 INTRODUCTION

2.1.1 Purpose

The purpose of this investigation is to conduct a preliminary assessment of the feasibility of developing up to a 10.5 MGD brackish ground-water supply for use as make-up water in desalting treatment processes so that the water can be used as a municipal water supply by the Brownsville Public Utilities Board (PUB). The work conducted is primarily a review of existing information in previous investigations. In addition, a limited field program was conducted.

2.1.2 Previous Investigation

The information included in this report is based primarily on previous investigations within and near the City of Brownsville (see References). Previous investigations have included work by the City of Brownsville in 1953 which included siting and constructing a well field within the City. Also the Texas Water Development Board (TWDB) conducted a detailed test drilling program to investigate ground-water conditions within the City and in an area extending approximately 20 miles west of the City; the results are published in TWDB Report No. 279. Several other investigations have been conducted, including an aquifer storage and recovery study (ASR) conducted by the PUB in Brownsville and studies by R.W. Harden & Associates, Inc. (RWH&A) for a potable ground-water supply located approximately 20 miles west of the City. Most of the previous work has been limited to relatively shallow depths, typically between 200 and 400 feet.

2.1.3 Work Conducted

The work conducted during this investigation consisted primarily of compilation of data, review of previous investigations and information including driller's logs, geophysical logs and water quality information, computer modeling for preliminary evaluation of the quantity and quality of ground-water reserves available and some limited field investigations. The field investigations principally consisted of the following:

- <u>PUB Water Treatment Plant No. 1 (W.P.1.) Site</u>: Drilling and construction of a 4-inch well in the Gravel Zone for use in the pilot water treatment testing;
- Riverbend Site: Drilling and geophysical logging of one test hole.
- <u>Firefighter (F.F.) Site</u>: Drilling and geophysical logging of one test hole and water sampling of water in the Intermediate Zone at the site.

Geologic data from the field drilling program conducted specifically for this project is included in Appendix 1. The information includes geologic logs and well construction information.

2.1.4 Acknowledgment

Special thanks are given to the TWDB for providing drilling, geophysical logging and technical support during the field operations. TWDB personnel who provided invaluable assistance included Messrs. Henry Alvarez, Randy Williams, Glen Haskin and Richard Preston.

This report provides a summary of the geohydrologic conditions in the Brownsville area based on available

information. In addition, a general and preliminary evaluation of the availability and quality of ground water is included. Finally this report provides recommendations which are required to more fully assess the feasibility and cost-effectiveness of developing a system to produce between 3.5 and 10.5 MGD of moderately fresh to brackish ground water.

2.2 GEOHYDROLOGIC SETTING

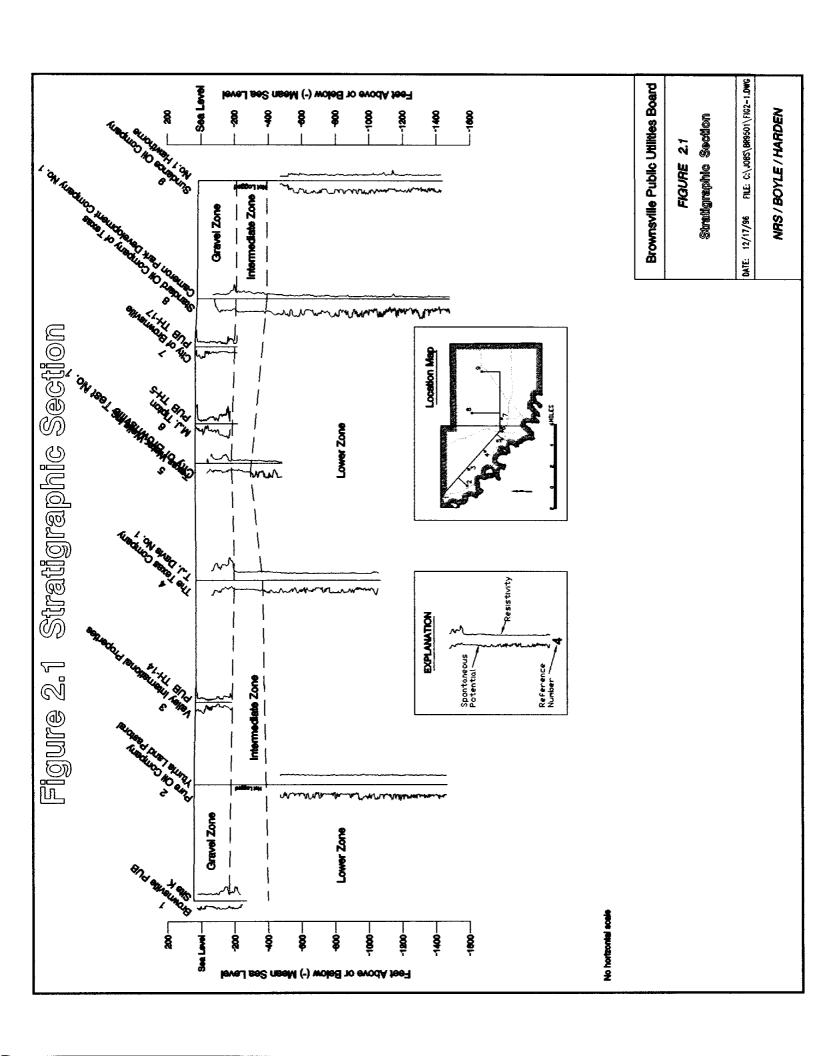
The Brownsville area lies in the Rio Grande embayment of the Gulf Coastal Plain, which is characterized by complexly interbedded sedimentary deposits of gravel, sand, silt and clay of fluvial and deltaic origins. From shallowest to deepest, these geologic materials include Recent alluvium, the Beaumont and Lissie Formation of Pleistocene age, the Uvalde Gravel of Pleistocene or Pliocene age and the Goliad Formation of Pliocene age. Geologic units generally dip toward the Gulf of Mexico, except in local areas that have been disrupted by salt domes, faults, and folds. Historically, geologic strata from Miocene to Recent have been classified as the Gulf Coast Aquifer. However, these deposits have also been designated as the Lower Rio Grande Valley Aquifer and the Chico and Evangeline Aquifers. Table 1 provides a stratigraphic description of the geologic units in the City of Brownsville area.

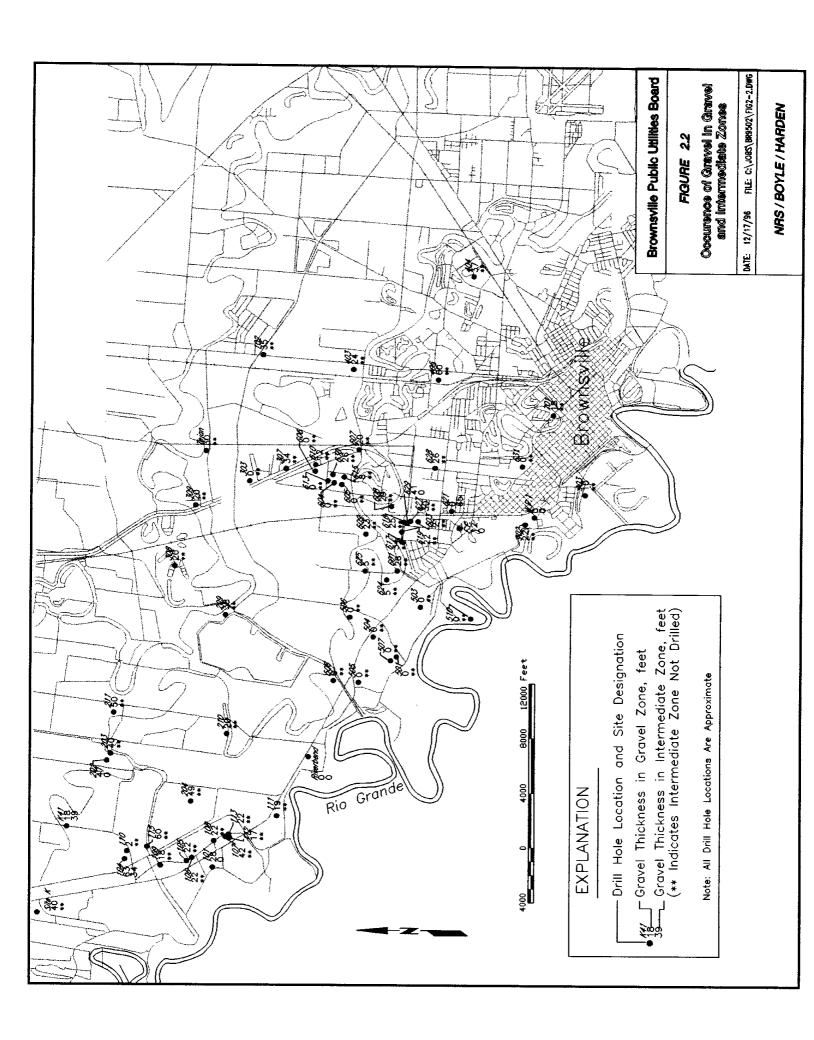
For purposes of this report three distinct geologic/hydrologic units are designated; the Gravel Zone, the Intermediate Zone, and the Lower Zone. The Gravel Zone occurs entirely within the Alluvium. The Intermediate Zone is composed of the Alluvium or underlying Pleistocene deposits depending on location. The Lower Zone consists of the Beaumont, Lissie, Uvalde Gravel and Goliad Formations. Figure 2.1 provides a stratigraphic cross-section showing the general relationship of the different zones identified.

The thickness of the alluvial deposits is difficult to estimate due to similarity with the underlying formations and is likely extremely variable, ranging from 200 to 400 feet thick. The Alluvium was deposited by the Rio Grande system which accounts for a wide variation in depth, thickness and composition. The Alluvium extends laterally from the river to approximately 20 miles north of the City, and apparently about the same distance to the south. It is believed the Alluvium typically thins in a northerly and southerly direction away from the Rio Grande. The lateral extent of the alluvial deposits narrows upstream.

The complex series of gravel, sand, silt and clay zones throughout the entire thickness of this alluvial material results in a complex geohydrologic system with numerous water-bearing zones. The two primary water-bearing zones, the shallower Gravel Zone and the Intermediate Zone, as well as the underlying Lower Zone are discussed below.

Table 2.1 - Stratigraphic Units in the City of Brownsville Area


Geologic/Hydrologic Designation Used in TWDB Report 279		Lower	Rio		Grande		Aquifer		-												
gic TWDB					Gulf			Coast				Aquifer									
Geologic/Hydrologic Designation Used in TWDB Report 316		Chicot	Aquifer										Evangeline								
Geologic/Hydrologic Designations Used in this Report	Gravel Zone	Intermediate Zone							Zone							_					
Geologic/ Designation Re	Alluvium									Lower											
Character of Material	Gravel, sand, silt and clay		Mostly clay with	some sand and	silt.	Clay, silt, sand,	gravel and	caliche		Sand and gravel			Clay, sand,	sandstone, marl,	caliche,	limestone, and	conglomerate.	Mudstone,	claystone,	sandstone, tuff,	and clay.
Stratigraphic Unit	Alluvium		Beaumont	Formation		Lissie	Formation			Uvalde	Gravel			Goliad	Formation	•		Miocene	Formations	Undifferentiated	
Series	Recent	(Holocene)			Pleistocene	<u> </u>			Pleistocene	or	Pliocene				Pliocene		7	Miocene			
System		Quater-	nary		-								Terti-	ary				<u> </u>			
er a							Cen-	6	zoic												


NRS/BOYLE/HARDEN

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

2.2.1 Gravel Zone

Within the study area, the Gravel Zone generally occurs between depths of approximately 150 and 225 feet, and consists of unconsolidated gravels, with pebbles sometimes exceeding two inches in diameter, with interbedded fine sands. Thickness of gravel in the Gravel Zone can vary from zero to about 50 feet. Where the gravel is not present, the zone typically consists of very fine to medium grained sands with occasional interbedded clays and silts. Figure 2.2 indicates the thickness and variability of gravel in the Gravel Zone. Gravel in the Gravel Zone is erratic in occurrence and, based on analysis of historical available driller's logs, is typically only found in sufficient thicknesses suitable for large production wells at about 50 percent of the sites drilled. In the Brownsville area, it is reported that there is a gradual lessening of coarser materials towards the Gulf. Recent test drilling indicates the success rate at finding favorable sites for production wells may be less than 50 percent. Of the six sites recently drilled in conjunction with this study and the ASR study, only two out of six sites (33%) drilled had significant gravel thicknesses. The historical data may indicate a more favorable occurrence of gravel in the Brownsville area than may actually exist as unsuccessful test holes may not have been reported. However, based on TWDB work and results of City of Brownsville work conducted in the 1950's, it is believed that with sufficient test drilling, sites can be found having thick sections of coarse gravel favorable for production well construction. The amount of test drilling required to find the required number of sites is unknown. Two areas believed to have favorable Gravel Zone characteristics are near the City's old well field (northwest portion of the City) and about 8 miles northwest of the City near San Pedro. However, the Gravel Zone is extremely variable over very short distances, as shown in Figure 2.2, and drilling in the very near vicinity of sites having known favorable gravel thicknesses does not guarantee favorable results.

The Gravel Zone is the primary zone where past test drilling and well construction activities have been conducted and is therefore the zone with the most data available. The hydraulic characteristics (production capability) of the Gravel Zone are dependent upon the amount and thickness of gravel encountered at each site. Where no gravel is found, only silts, clays and fine sands, the hydraulic conductivity, transmissivity and resulting production capability of the Gravel Zone are low. Where sufficiently thick gravel is found, the transmissivity and related production capability can be quite high. Hydraulic characteristics have been determined based on about 12 tests previously conducted in Cameron and Hidalgo Counties in the Gravel Zone. These aquifer tests indicate hydraulic conductivities ranging from approximately 50 gpd/ft² (gallons per day per foot squared) to about 4,000 gpd/ft². Transmissivities range from approximately 4,000 gpd/ft (gallons per day per foot) to about 80,000 gpd/ft depending on types of materials composing the Gravel Zone. Most significant to this study are several pumping tests conducted by the U.S. Geological Survey and TWDB on City of Brownsville wells. The U.S. Geological Survey reported an average transmissivity of 54,000 gpd/ft, a hydraulic conductivity of 900 gpd/ft² and a storage coefficient of .00044 (Preston, 1983). The TWDB test results indicated an average transmissivity of 80,000 gpd/ft, an approximate hydraulic conductivity of about 3,000 gpd/ft² and an average storage coefficient of 0.000025 (Preston, 1983). The test results indicate a reasonably productive aquifer which can yield significant quantities of water but which is also extremely variable. These test results likely represent more prolific sites and the average transmissivity of the Gravel Zone likely is less. On average, it is estimated that a reasonably suitable site for a production well in the Gravel Zone would have a minimum of about 20 feet of very coarse gravel and a transmissivity of 30,000 gpd/ft or greater. The difficulty in developing water from the Gravel Zone is finding sufficiently thick gravel deposits suitable for production wells. The Gravel Zone is under artesian conditions in the Brownsville area, and a storage coefficient of about 0.0005 is estimated.

Depths to water in wells in the Gravel Zone are generally shallow, typically ranging between 10 and 30 feet below ground level, depending principally on surface elevations and relationships to recharge and discharge areas. Water-level elevations typically range from approximately 20 feet above sea level in the western portion of the study area to approximately 10 feet above sea level near and in Brownsville. Based on water-level measurements between 1953 and 1987, the maximum water-level fluctuation appears to be approximately 12 feet. In the Brownsville area the Gravel Zone as well as the Intermediate and Lower Zones are not in significant hydraulic communication with the Rio Grande and these aquifers are capable of supplying water during drought conditions.

2.2.2 Intermediate Zone

For purposes of this report the Intermediate Zone is composed of geologic materials below the Gravel Zone to about 400 feet in depth. The Intermediate Zone generally extends from a depth of approximately 225 feet to about 400 feet below ground level. The zone consists of a complex series of interbedded sands, silts and clays, with some occasional gravel layers. The Intermediate Zone has from less than a few tens of feet up to approximately 150 feet of sands and, on occasion, some gravel within its thickness. Interbedded silts and clays are common. The character and composition of the Intermediate Zone is extremely variable over relatively short distances. The Intermediate Zone is either composed of Alluvium and typically overlies older Pleistocene units, or is composed of older Pleistocene materials. Information on the Intermediate Zone is limited as most past drilling conducted for groundwater exploration in the area was limited to the Gravel Zone. Figure 2.2 indicates the limited availability of data and occurrence of gravel in the Intermediate Zone. Some reports indicate that the Intermediate Zone may solely be composed of the older Pleistocene Beaumont and Lissie formations. Test drilling conducted to the west indicates some occasional very coarse gravels in the Intermediate Zone, generally indicating that where coarse gravel is found

NRS/BOYLE/HARDEN Final Report
2-7 November 1996

it is likely associated with the Rio Grande Alluvium. However, due to the variable erosional surface of the underlying Pleistocene beds, the Intermediate Zone at any location may consist of alluvial materials and/or older Pleistocene materials. The recent test drilling conducted indicates that in the Brownsville area the Intermediate Zone may be composed predominately of Pleistocene clays and silty clays which typically would not have significant water producing capabilities. Current data indicates that the only favorable areas for water production from the Intermediate Zone are to the northwest of the City near the San Pedro area. This needs to be confirmed by additional test drilling.

No aquifer or pumping test information is available specifically for the Intermediate Zone. The hydraulic characteristics of the Intermediate Zone will vary dramatically depending on the amount and character of sand and gravel in the zone at each site. However, based on analysis of geophysical logs and some specific capacity information representing the Intermediate Zone in areas to the northwest of Brownsville, it is believed that fine to medium grained sands, where present, may have a hydraulic conductivity on the order of 100 to 150 gpd/ft², while coarser gravels, if present, may have hydraulic conductivities equal to or in excess of the Gravel Zone. With sufficient sand, estimated Transmissivities at better sites could be in excess of 10,000 gpd/ft when about 70 feet of sand is present. However, this can vary considerably and transmissivities at sites having significant gravels may exceed 30,000 gpd/ft. One well located several miles northwest of the City and reported to be screened in the Intermediate Zone, but which may also be screened in the Gravel Zone, was tested to have a transmissivity of 100,000 gpd/ft. This well had over 25 feet of large gravel in the Intermediate Zone, thus indicating the extreme variability of this zone and the potential for it to be as productive or more productive than the Gravel Zone at some sites. The Intermediate Zone is under artesian conditions and a storage coefficient on the order of 0.0005 is estimated.

Little information is available regarding depths to water in wells and elevations of the potentiometric surface in the Intermediate Zone in the study area. However, work conducted approximately 20 miles to the west of Brownsville indicates that the depths to water in the Intermediate Zone approximate the depths to water in the Gravel Zone. It is estimated that depths to water in the Intermediate Zone will range from 10 to 30 feet below ground level. This is consistent with depths to water in the Intermediate Zone further to the west.

2.2.3 The Lower Zone

The Lower Zone is comprised of, from shallowest to deepest, the Beaumont Formation, Lissie Formation, Uvalde Gravel and Goliad Formation. The Lower Zone is made up of a complex depositional framework of interbedded layers and lenses of predominately sand, silt and clay. Typically, the Beaumont consists of massive clay with thin lenses and layers of sand. However, within the Rio Grande Valley the portion of fine to medium grained sand is reported to be much larger. The Beaumont clay is underlain conformably by the Lissie Formation, which consists of alternating layers of unconsolidated sand, silt and clay, oftentimes interbedded with sandy caliche. The Lissie Formation is typically composed of 60 percent fine to medium grained sand, 20 percent sandy clay, 10 percent gravel and 10 percent clay (Sellards, 1958). The Uvalde Gravel, which underlies the Lissie Formation, is a thin unit no greater than about 20 feet thick, consisting of well rounded chert pebbles and cobbles (Fisher, 1976). However, the Uvalde Gravel is likely not present throughout most of the study area. Beneath the Uvalde Gravel lies the Goliad Formation typically consisting of about 10 percent clay, 85 percent sand, gravel and sandstone, and 15 percent calcium carbonate (Sellards, 1958). The combined thicknesses of the Beaumont, Lissie, and Goliad formations can be in excess of 3,000 feet. Based on geophysical log analyses, it is estimated that approximately 40 percent of the combined Lissie and Goliad Formations have sand capable of yielding reasonable quantities of water to wells.

No site-specific information is available on the hydraulic characteristics of the Lower Zone in the vicinity of Brownsville, as this zone contains poor quality water and has therefore not been extensively investigated for groundwater production purposes. However, four pumping tests were conducted in sand zones in the Lower Zone in Willacy and Hidalgo Counties. In addition, as the Lower Zone is part of the Gulf Coastal Plain Aquifer, assumptions and preliminary analysis can be made regarding the hydraulic characteristics of the Lower Zone from data available to the north and as estimated by Ryder (1988). Based on this information, the hydraulic conductivity in the cleaner, more permeable sand zones ranges from about 80 to 150 gpd/ft². Where the sands contain clay, silt and/or clay breaks, hydraulic conductivity will be significantly less. The transmissivity of Lower Zone wells is dependent on how much sand is present at the site and is screened in a production well. Approximately 40 percent of the full thickness of the Lower Zone is estimated to be sand. Therefore, if 1,000 feet of Lower Zone material were targeted for development at a well site, a transmissivity of on the order of 40,000 gpd/ft is estimated. However, contiguous sands in the Lower Zone are typically on the order of 30 to 70 feet thick and rarely more than 100 feet thick. For each clean sand zone averaging 50 feet in thickness, a transmissivity of about 6,000 gpd/ft is estimated. Values will vary considerably based on sand character and thickness at specific locations. Detailed local test drilling needs to be conducted to confirm this reported data. The Lower Zone is under artesian conditions, and a storage coefficient of about 0.0005 appears applicable based on available information.

No specific information is available regarding the depth to water, water-level elevation or hydraulic gradient of the potentiometric surface in the Lower Zone. Based on regional comparisons, depths to water in wells is estimated to be shallow, generally less than about 30 feet below ground level and may be slightly above ground level in some sand zones and locations.

2.3 WATER QUALITY

Ground-water quality in the Brownsville area is characterized by a wide variation in chemical composition. The water quality varies significantly, both laterally and vertically, generally increasing in mineralization from west to east and also vertically from shallow to deep. Existing information appears adequate to generally identify and quantify the water-quality in the Gravel Zone. Detailed water-quality information for the Intermediate and Lower Zones is limited and can mostly only be estimated from available geophysical logs. Water quality analysis for testing completed for this project can be found in Appendix II. The following provides information with regard to water quality in the targeted zones.

2.3.1 Gravel Zone

Water quality in the Gravel Zone is reasonably well mapped mostly based on chemical analyses from wells in the area. Figure 2.3 shows the estimated total dissolved solids (TDS) of water for the Gravel Zone. Much of this information comes from historical records for wells in the area. Due to the construction of many of these older wells and the overlying different quality water, the reliability of many of these historic analyses is questionable as to whether they actually represents water quality in the Gravel Zone. However, the data as a whole indicate an increasing trend in mineralization of water in the Gravel Zone from west to east. Data also indicate large variability in water quality locally in the Gravel Zone, and exceptions to this overall trend exist.

Also shown on Figure 2.3 are locations of selected wells for which specific chemical analyses have been provided in this report. The chemical analyses of water from these wells are provided in Table 2.2, most of these chemical analyses are representative of water quality from the Gravel Zone. Table 2.2 generally shows the range of individual constituents in water from the Gravel Zone. The water-quality analyses provided in Table 2.2 for the Gravel Zone

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

are based on test drilling conducted by the TWDB in 1973, or work conducted for the PUB. Generally the water quality testing conducted for this study is in agreement with previous mappings. However, other data indicates varying water quality not consistent with previous mappings. The reasons for this are currently unknown but may indicate the quality of previous data and/or variability of water quality in the Gravel Zone. Further work is required to verify current water quality mappings. The water in the Gravel zone is believed to have significant concentrations of iron and manganese. To the west along the Rio Grande, data indicate some limited areas of water quality of less than 1,000 mg/l total dissolved solids.

2.3.2 Intermediate Zone

Water quality in the Intermediate Zone is specifically known at only two sites in the general study area; Site K and Site F.F. Analytical results for these two sites are shown in Table 2.2. The location of these sites are shown on Figure 2.3. Site K was drilled during the PUB's potable well field investigations and Site F.F. was drilled during these investigations. Both analyses represent water quality in the Intermediate Zone. Based on these analyses and work conducted to the west, it is generally believed the water quality in the Intermediate Zone is slightly to significantly higher in mineralization than in the Gravel Zone. In and around Brownsville, little or no water quality analyses are available which are believed to represent the Intermediate Zone other than Site F.F. It is estimated that in the Brownsville area, the vertical water quality gradient from the Gravel to the Intermediate Zone is greater than to the west of Brownsville where the Intermediate Zone appears to be composed predominantly of alluvial materials. It is generally estimated that the water quality in the Intermediate Zone will be slightly to significantly higher in mineralization than in the Gravel Zone, depending on depth, location and composition of materials. The water in the Intermediate Zone will likely increase in mineralization and change to a sodium chloride type water eastward and with depth. In the Brownsville area, it is estimated that water quality in the Intermediate Zone ranges from about 1,500 mg/l to about 20,000 mg/l total dissolved solids, depending on depth, location in Brownsville and the type of geologic materials present.

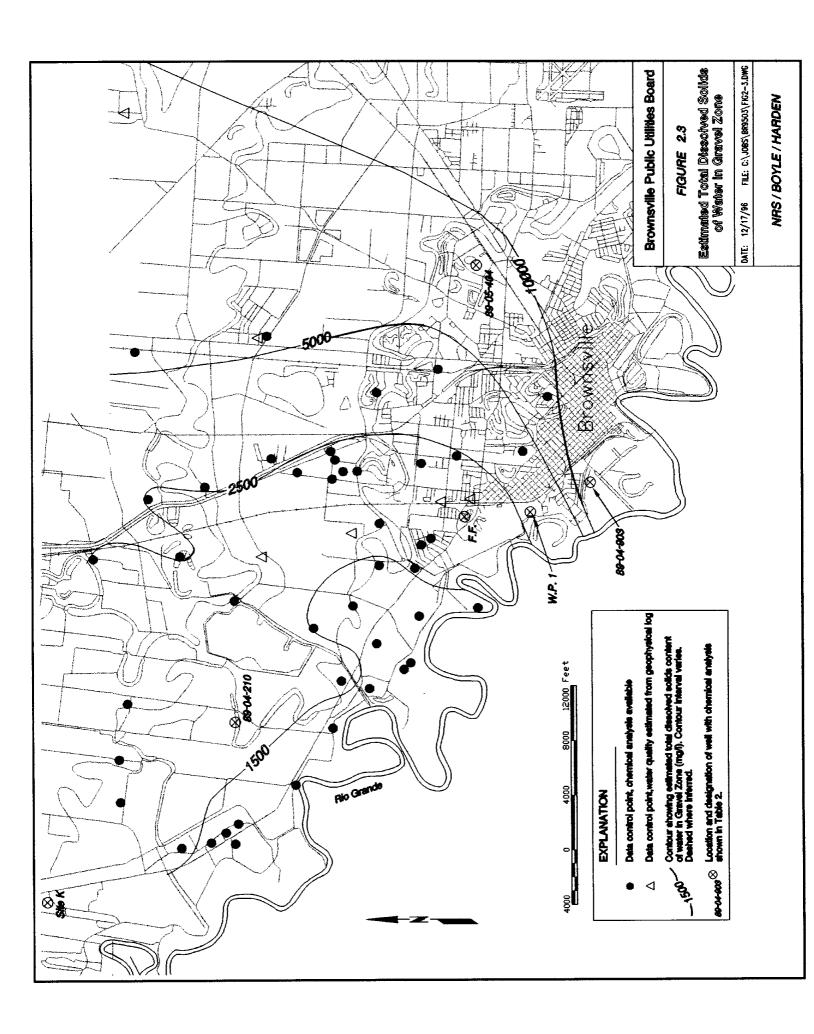


Table 2.2 - Representative Water Quality

Well/Site Designation:	89-04-210	W.P. 1	89-04-903	89-05-404	Site K	T.	88-59-411*
Zone:	Gravel	Gravel	Gravel	Gravel	Intermediate	Intermediate	Lower
Producing Interval (Ft. BGL):	194-217	160-200	166-188	165-225	220-260	316-336	932-952
Constituents:							
pH, units	8.2	7.2	7.8	7.4	8.0	7.3	7.7
Total Dissolved Solids, mg/l	2,280	2,700	11,900	8,400	1,480	006'6	26,277
Total Alkalinity, mg/l (CaCO ₃)	402	380	328	246	370	190	95
Total Hardness, mg/l (CaCO ₃)	476		2,800	1,990	278	•	4,347
Specific Conductance, umhos	3,060	5,000	12,000	10, 540	2,200	16,000	53,760
Cations:							
Boron, mg/l (B)	2.5	1	9.9	3.6	$\overline{\ }$	•	1
Calcium, mg/l (Ca)	06	73	510	369	61	580	1,048
Magnesium, mg/l (Mg)	61	45	370	258	30.5	260	420
Potassium, mg/l (K)	1	4.80	1	16	7.1	40	34
Silica, mg/l (SiO ₂)	34	33	36	19	30.4	54	12
Sodium, mg/l (Na)	009	1,000	3,260	2,260	440	3,200	7,946
Anions:							
Bicarbonate, mg/l (HCO ₃)	490	379	400	300	451	190	116
Chloride, mg/l (Cl)	357	780	5,430	3,680	229	4,000	11,904
Fluoride, mg/l (F)	6.0	1.7	1.2	1.7	0.72	06.0	6.0
Nitrate, mg/l (NO ₃)	0.5	<0.2	5.5	<0.4	0.95	<0.22	0.04
Sulfate, mg/l (SO ₄)	068	098	2,080	1,610	481	1,600	4,855
Metals:							
Total Iron, mg/l (Fe)	0.82	<0.05	1.6	3.74	0.43	3.6	
Total Manganese, mg/l (Mn)	•	0.066	1	<0.05	0.052	0.54	

^{*} Site located approximately 20 miles west of Brownsville in Los Indios area.

NRS/BOYLE/HARDEN

2.3.3 Lower Zone

Mineralization of water in the Lower Zone likely increases from shallow to deep and from west to east. Based on analyses of geophysical logs, it is estimated that in the immediate Brownsville area at a depth of about 400 to 600 feet below ground level, water in the Lower Zone will likely exceed 20,000 mg/l total dissolved solids. Water-quality estimates from geophysical logs are only approximations and as such should be used accordingly. Estimates of water quality with depth for waters above 20,000 mg/l total dissolved solids were attempted but could not be made from available geophysical logs, due to the presence of clay and thin-bedded sand zones, the use of conflicting drilling fluids, and/or electrochemical effects. Table 2.2 includes a water quality analysis which likely represents typical individual constituent concentrations for water in the Lower Zone having a total dissolved solids concentration of about 26,000 mg/l. These data were obtained from a test hole drilled approximately 20 miles to the west of Brownsville by the TWDB. Additional water quality information for the Lower Zone may be available from the PUB's ASR study.

2.4 AVAILABILITY AND QUALITY OF GROUND WATER FROM PROJECTED WELL FIELD

Based on the available geologic and hydrologic information summarized herein, the availability of ground-water near the City of Brownsville has been evaluated on a preliminary basis. The work included making estimates of aquifer hydraulic parameters and boundary conditions and preliminary computer modeling to assist in availability and water quality estimates. Based on results of these investigations, preliminary assessments of the availability and quality of ground water to supply a 3.5 MGD to 10.5 MGD well field are included herein. Additional work is needed to verify the feasibility of such a water supply.

2.4.1 Gravel and Intermediate Zones

Quantity: Based on work done to date, specifically drilling programs to the west of the City and evaluations of geophysical logs, pumping test data and well records near and within the City of Brownsville, 3.5 to 10.5 MGD of brackish ground water appears available to a well field(s) within and near the City. Based on modeling results, a 10.5 MGD, 20 year supply would likely consist of about 8.0 MGD from the Gravel Zone and if favorable conditions could be found, 2.5 MGD from the Intermediate Zone. Projections were made assuming full production (10.5 MGD) continuously for 30 years. However, the longevity of the supply will likely significantly exceed 30 years, although additional wells may be required to maintain the 10.5 MGD supply. Further work needs to be conducted to verify the assumptions used in these analyses.

The ability to develop a 3.5 to 10.5 MGD ground-water supply cost effectively is dependent upon a number of factors including obtaining a sufficient number of productive sites, favorable regional hydraulic conditions and for larger amounts of production the existence of coarse sands and gravels in the Intermediate Zone. Based on historical records, favorable sites in the Gravel Zone are known to exist within and near the City. While the data indicate that favorable sites in the Gravel Zone occur within and near the City, the amount of test drilling required to find such sites and whether a sufficient number of sites can be found is unknown but likely possible with sufficient test drilling. Production from the Intermediate Zone does not appear favorable from water quantity or quality standpoints in Brownsville. However, northwest in the San Pedro area it appears with sufficient test drilling that some water from the Intermediate Zone can be developed. To firm up quantity estimates significant local test drilling and long-term pump testing will be needed in order to better determine the frequency and distribution of productive sites and regional hydraulic conditions.

Wells and Well Fields: Well and well-field design, spacings, locations, and completion zones are dependent upon site-specific and regional aquifer productivity, and water quality. In addition, site availability and engineering considerations are also determining factors. Figure 2.4 provides an example well field for a 3.5 MGD, a 7.0 MGD and a 10.5 MGD system producing from the Gravel and Intermediate Zones and targeting the better water quality available. The example well field is sited along Military Highway due to ease of right-of-way and water quality considerations. The schematic well field layout sites wells generally consistent with Figure 2.2; by-passing areas where current mappings indicate little gravel and locating Gravel and Intermediate Zone wells in areas which appear favorable. However, only test drilling can prove-up well sites. Based on preliminary modeling using an in-house modification of the TWDB well field model IMAGEW-1 and assumed aquifer conditions consistent with the data, calculations were conducted to make a preliminary evaluation of appropriate well spacings, the number of wells required and approximate well yields for development of a 3.5 MGD, 7.0 MGD and 10.5 MGD well field. The following provides the results of this work:

		Estimated	Well
Well Field	Number	Pumping Rate	Spacing
Supply (MGD)	of Wells	per Well (gpm)	(ft)
3.5	7	350	2,500
7.0	16	300	2,500
10.5	26	280	2,500

The locations and capacities of the well field, individual wells and the actual number of wells is determined by aquifer productivity at each site, long-term regional aquifer hydraulic conditions and how the well field is used. In addition it is assumed that a sufficient number of suitable sites can be found.

As mentioned earlier, little information is available pertaining to the Intermediate Zone and present data indicates poor quality water and little Intermediate Zone gravels near Brownsville. Therefore, development of the Intermediate Zone is proposed to the far northwest extent of the well field. To the extent favorable production characteristics are not found near Brownsville the well field can be extended northwest at additional cost to obtain the quality and quantity of water needed. However, the well field layout as discussed provides a preliminary indication and cost basis for evaluating the feasibility of developing such a supply.

<u>Water Quality</u>: The quality of ground water within the Gravel and Intermediate Zones varies significantly laterally and vertically. As indicated by Figure 2.3, total dissolved solids generally increases within the Gravel Zone from west to east. In some limited areas near the river west of the City, good quality water meeting drinking water standards (i.e. TDS < 1,000 mg/l) could be available initially. The initial quality of water produced by the well field(s) is primarily a function of well field location. The location of the well field is primarily dependent on availability of well sites, right of way and finding suitable subsurface conditions. If the best quality water were targeted and enough suitable sites could be found, water initially produced from the Gravel Zone could have a total dissolved solids of about 1,500 mg/l. However the quality of water produced will deteriorate with production as poorer-quality water is drawn into the well field(s).

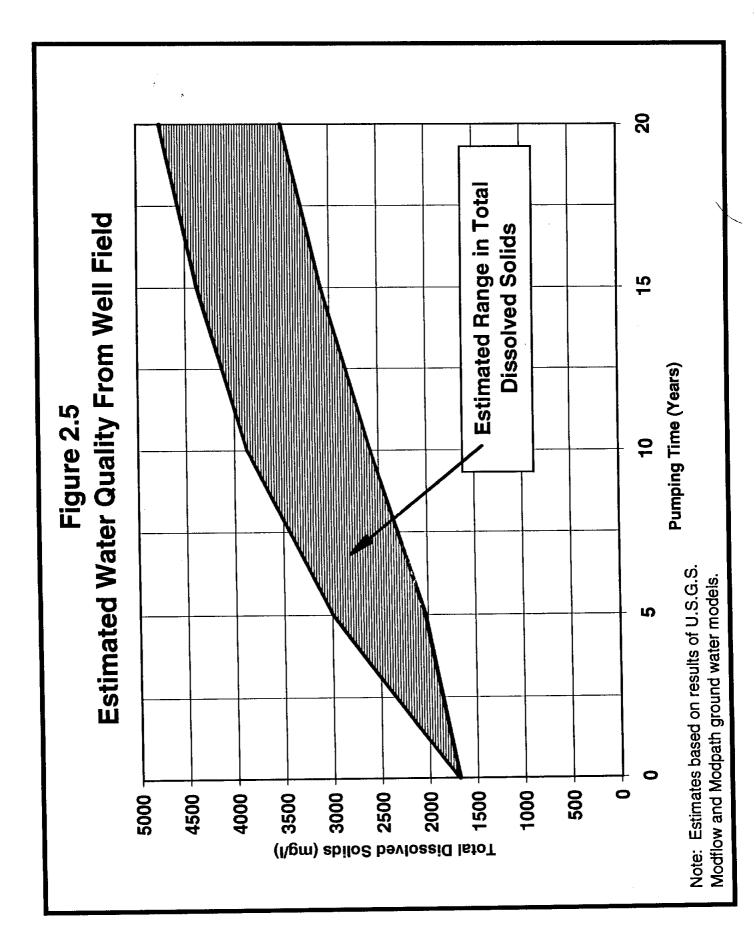
Preliminary estimates have been made to generally quantify the potential for deterioration of water quality as production from the well field occurs. These estimations were conducted using the USGS ground-water flow models MODFLOW and MODPATH. Hydraulic parameters for the modeling were generally consistent with those used to estimate ground water quantity amounts and are based on existing data. The beginning water quality gradient was assumed as that shown on Figure 2.3. The well field location was assumed as that shown on Figure 2.4. Water

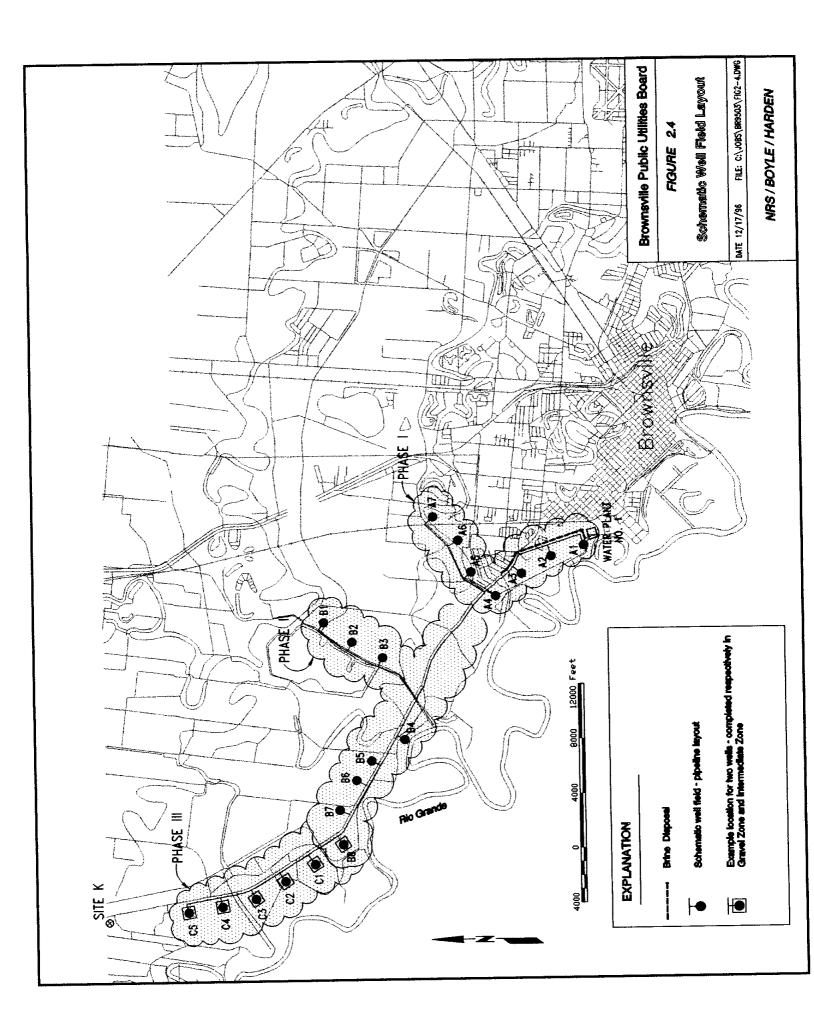
DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

quality on the south side of the Rio Grande was assumed to be a mirror image of the water quality on the United States side. Using the assumed aquifer hydraulic characteristics and water quality the Gravel Zone well field was pumped continuously at 7.5 MGD for 20 years. The models project the movement of more brackish water towards the well field and the resultant increase in total dissolved solids of produced water. As shown, with pumping time, water quality deteriorates. Figure 2.5 generally indicates the change in total dissolved solids produced from the well field with time, as determined from model results.

Figure 2.5 generally brackets conditions that we believe, at this time, take into account the likely variability in subsurface materials. However, due to the high variability in the Gravel Zone and preferential movement through higher permeability gravel channels, this estimate of deterioration of water quality with time is only approximate.

This work indicates that water quality deterioration is not an overly large problem and will occur gradually. In addition, due to the distribution of the natural water quality, the well field water quality can be maintained at better quality levels by dropping out wells on the southeast side of the well field as they become more mineralized and adding wells on the northwest side of the well field.


Insufficient water quality information is available for the Intermediate Zone to determine the impacts of Intermediate Zone production on well field water quality deterioration. However, based on present information the Intermediate Zone, if developed, would probably be on the northwest side of the well field in the area of best water quality. In addition, Intermediate Zone water would be only about 25 percent of total production therefore it is estimated that production in the Intermediate Zone will likely have only slight effect on well field water quality.


2.4.2 The Lower Zone

Quantity: While little information is available for the Lower Zone in the area, it is likely capable of producing significant volumes of water to wells due to its depth and thickness. Assuming wells about 2,000 feet or deeper, screening about 400 feet of more permeable sand, individual wells would likely be capable of producing up to 1,400 gpm. Therefore, it is possible that a well field of five wells could supply up to 10 MGD of ground water. However, actual well yields may largely be governed by required water quality and site sand thicknesses. Water quality deteriorates with depth in the Lower Zone. If no water quality restrictions are placed on development of the well field, wells could screen more sands deeper and larger well yields could be obtained. If treatment considerations require only the better quality water in the Lower Zone, wells may have to screen only shallower Lower Zone sands and well yields will be proportionally smaller. As the vertical water quality gradient in the Lower Zone is at present unknown, further evaluation of water quality versus well yield cannot be conducted.

Quality: Based on very limited information, water within the Lower Zone is highly mineralized. All water produced from the Lower Zone in the area will likely exceed 20,000 mg/l total dissolved solids, and much may contain concentrations of over 40,000 mg/l total dissolved solids.

Wells and Well Fields: Though lateral lithological changes are present, the Lower Zone is likely more uniform in terms of well-yield capacities than the Gravel and Intermediate Zones due to its large thickness. Due to its thickness and lateral extent, wells in the Lower Zone can more likely be conveniently located in the study area. However recommended well spacings are between 2,000 and 2,500 feet.

2.5 RECOMMENDATIONS

To further define the feasibility and cost-effectiveness of a brackish ground water supply in the Brownsville area the following work is recommended:

- Compile and review available geologic data, water quality information, and hydraulic characteristics of the Gravel and Intermediate Zones on the Mexican side of the River.
- Conduct additional test drilling to verify that water can be produced from the intermediate zone, to better
 define the location, feasibility and likelihood of finding favorable sites in the gravel and intermediate zones.
 An estimated ten to fourteen test hole sites with water samples will be required for this effort.
- Assuming favorable test hole results, construct a pilot production well in the gravel zone, with approximately
 four associated piezometers, and conduct a long-term pumping test to evaluate the regional hydraulic and
 boundary conditions of the gravel zone aquifer.
- As applicable, construct a pilot production well in the Intermediate Zone, with approximately four associated piezometers, and conduct a long term pumping test to evaluate the regional hydraulic and boundary conditions in the Intermediate Zone aquifer. Depending on the test drilling and pilot production well test results in the Gravel Zone, this task may not be required to finalize the supply, or it may be possible to delay this task until subsequent phases.
- Develop water quality testing parameter to develop treatment needs.

The pilot production well(s) constructed during these testing programs will be the initial production well(s) in the permanent well field. It is recommended that land purchase options be obtained for test drilling sites, as 50% or more of the sites may not be suitable for construction of production wells. Sites should not be bought until test drilling at each site has indicated favorable subsurface conditions.

2.6 REFERENCES

Published

- Baker, E. T., Jr., 1979, Stratigraphic and Hydrogeologic Framework of Part of the Coastal Plain of Texas, Texas Department of Water Resources, Report 236.
- Baker, Roger C., and Dale, O. C., 1961, Ground Water Resources of the Lower Rio Grande Valley Area, U. S. Department of the Interior and the Lower Rio Grande Valley Chamber of Commerce, Inc., Bulletin 6014.
- Brown Jr., L. F., Brewton, J. L., Evans, T. J., McGowen, J. H., White, W. A., Groat, C. G., and Fisher, W. L., 1980, Environmental Geologic Atlas of the Texas Coastal Zone Brownsville-Harlingen Area, Bureau of Economic Geology, The University of Texas at Austin.
- Carr, J. E., Meyer, W. R., Sandeen, W. M., and McLane, I. R., 1985, Digital Models for Simulation of Ground-Water Hydrology of the Chicot and Evangeline Aquifers along the Gulf Coast of Texas, Texas Department of Water Resources, Report No. 289.
- Dale, Oscar C., and George, William O., 1954, Ground-Water Resources of Cameron County, Texas, Texas Board of Water Engineers, Bulletin 5403.
- Fisher, W. L., 1976, Geologic Atlas of Texas, McAllen-Brownsville Sheet, Bureau of Economic Geology, The University of Texas at Austin.

- Follett, C. R., White, W. N., and Irelan, B., 1949, Occurrence and Development of Ground Water in the Linn-Faysville Area, Hidalgo County, Texas, Texas State Board of Water Engineers.
- Grubb, H. F., 1986, Gulf Coast Regional Aquifer-System Analysis--A Mississippi Perspective, U.S. Geological Survey, Water-Resources Investigations Report 86-4162.
- Harden, R. W. & Associates, Inc., 1991, Draft Ground Water Study-Well Field Siting Study Northwest of Brownsville, Texas, R. W. Harden & Associates, Inc., Consulting Report.
- McCoy, T. Wesley, 1990, Evaluation of Ground-Water Resources In the Lower Rio Grande Valley, Texas, Texas Water Development Board, Report 316.
- Peckham, Richard, C., 1963, Summary of the Ground-Water Aquifers In the Rio Grande Basin, Texas Water Commission, Circular 63-05.
- Pettijohn, R. A., Weiss, J. S., and Williamson, A. K., 1988, Distribution of Dissolved-Solids Concentrations and Temperature in Ground Water of the Gulf Coast Aquifer Systems, South-Central United States, U. S. Geological Survey, Water-Resources Investigations Report 88-4082.
- Preston, Richard D., 1983, Occurrence and Quality of Ground Water in the Vicinity of Brownsville, Texas, Texas Department of Water Resources, Report 279.
- Ratzlaff, Karl, W., 1982, Land-Surface Subsidence in the Texas Coastal Region, Texas Department of Water Resources, Report 272.
- Rose, Nicholas, A., 1954, Investigation of Ground Water Conditions in Hidalgo, Cameron and Willacy Counties in the Lower Rio Grande Valley of Texas, Lower Rio Grande Valley Chamber of Commerce.
- Ryder, Paul D., 1988, Hydrogeology and Predevelopment Flow in the Texas Gulf Coast Aquifer Systems, U.S. Geological Survey, Water-Resources Investigation Report 87-4248.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The Geology of Texas, Vol. I, The University of Texas at Austin, Bulletin No. 3232.
- Wood, L. A., Gabrysch, R. K., and Marvin, R., 1963, Reconnaissance Investigation of the Ground-Water Resources of the Gulf Coast Region, Texas, Texas Water Commission, Bulletin 6305.
- Davis, M. E., and Leggat, E. R., 1965, Reconnaissance Investigation of the Ground-Water Resources of the Upper Rio Grande Basin, Texas, Texas Water Commission, Bulletin 6502.
- Winslow, A. G. and Kister, L. R., 1956, Saline-Water Resources of Texas, U. S. Geological Survey, Water-Supply Paper 1365.

Unpublished

Layne-Western Co., Inc., 1994, P.U.B. City of Brownsville Ground Water Development Project.

Texas Water Development Board, undated, located and plotted well records, Grids 89-04 and 89-05, file data.

Geophysical Logs for water, oil and gas test holes, including:

City of Brownsville, P.U.B. Site K

City of Brownsville, P.U.B. TH-17.

City of Brownsville/TWDB:

88-60-806 89-04-628 88-60-902 89-04-629 89-04-208 89-04-630 89-04-209 89-04-631 89-04-210 89-04-902 89-04-211 89-05-102 89-04-308 89-05-404

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

89-04-309 89-05-405 89-04-510 89-05-701

89-04-627 89-05-903

City of Brownsville Water Well 1

City of Brownsville Water Well 3

City of Brownsville Water Well 4

City of Brownsville Water Well 6

City of Brownsville Water Well 7

City of Brownsville Water Well 8

Discorbis Oil Company, Granada Unit 1

Engelke, R. H., City of Brownsville, No. 1

Grand-Lienard Water Well 2

Pure Oil Company, Ytussia Land Pastoral.

Sohio Petroleum Company, First National Bank No. 1

Standard Oil Company, Cameron Park Development Company No. 1

Sundance Oil Company, Gonzales No. 1

Sundance Oil Company, Hawthorne No. 1

Sundance Oil Company, Hawthorne No. 2

Tejas Production Company, Thelma, Dawson No. 1

The Texas Land Company, T. J. Davis No. 1.

Texas Water Wells, Inc., City of Brownsville Test No. 1.

Tipton, M. J., P.U.B. TH-5

Turnbull & Zoch, Loop Brothers No. 1

Valley International Properties, P.U.B TH-14.

Wardner Water Well 5

CHAPTER 3 - TREATMENT ALTERNATIVES

3.1 SCOPE

One of the main objectives of this project is to present recommendations regarding the treatment of groundwater to produce a product water that would meet regulatory guidelines and requirements of the Safe Drinking Water Act (SDWA). The following guidelines will be followed to evaluate the feasibility of potabilization of groundwater.

- Compare available water quality parameters of the groundwater source with regulatory drinking water standards.
- Identify treatment alternatives.
- Evaluate Membrane Process.
- Identify Range of costs.
- Evaluate Concentrate Disposal.

3.2 GROUNDWATER QUALITY

Groundwater quality in the Brownsville area varies significantly in chemical composition generally increasing in dissolved solid content from west to east and also vertically from shallow to deep. Table 3.1 illustrates the comparison of some of the constituents of the groundwater source found at the Water Plant No. 1 site and the Central Drive site with current Safe Drinking Water Act Standards.

The quality of the groundwater for the well developed at Water Treatment Plant No. 1, was established during the Reverse Osmosis Pilot Study. Samples collected at the well site were analyzed for Synthetic Organic Chemicals (SOC's), Volatile Organic Chemicals (VOC's), some of the Inorganic Chemicals (IOC's), secondary contaminants and disinfection by-products formation potential.

The results summarized in Table 3.1 and further detailed in Appendix II, indicate that the groundwater source complies with the SOC's, VOC's, and IOC's maximum contaminant limits (MCL's) established by the EPA and the Texas Natural Resource Conservation Commission (TNRCC). The secondary contaminant levels are limits applicable to all public water systems. In Texas, a drinking water supply that does not meet the secondary standards cannot be used without written approval of the TNRCC. Of the secondary constituents analyzed, total dissolved solids, chlorides, sulfates and manganese exceed the recommended limits established by the TNRCC and the EPA.

Microbiological analysis were also conducted by the PUB lab personnel. Negative results were obtained for the Total Coliform tests. As indicated in Table 3.1, the potential for the source to form disinfection by-products, such as Trihalomethanes (THM'S) and Haloacetic Acids (HAA5), would not be in excess of maximum contaminant level established or proposed by the EPA.

Table 3.1 - Drinking Water Standards Comparison

Contaminant	EPA Standards	TNRCC Standards	Gro	Groundwater Source					
	(mg/l)	(mg/L)	Plant 1 4/4/96	Plant 1 7/1/96	Central 3/29/96				
ORGANIC CONTAMINANTS (See complete results in App. II)	Variable	Variable	No Sample	None Detected	No Sample				
DISINFECTION BYPRODUCTS									
THM Total *These are formation potential results	0.1	0.1	-	0.026*	-				
HAA(5)	0.06	-	-	N.D.	-				
INORGANIC CONTAMINANTS					J				
Barium	2.0	2.0	0.016	0.020	-				
Fluoride	4.0	4.0	1.60	1.50	0.95				
Nitrate-Nitrite (as N)	10.0	10.0	Nd	nd	nd				
SECONDARY STANDARDS			<u> </u>	<u> </u>					
Chloride	250	300	780	1,000	930				
Fluoride	2.0	2.0	1.60	1.50	0.95				
Iron	0.3	0.3	Nd	0.075	0.300				
Manganese	0.05	0.05	0.070	0.082	0.190				
рН	6.5-8.5	≥7.0	7.2	7.3	7.3				
Sulfate	250	300	860	680	1,000				
Total Dissolved Solids	500	1,000	2,700	3,200	2,700				
Hydrogen Sulfide	-	0.05	nd	nd	-				

3.3 TREATMENT ALTERNATIVES

Groundwater resources present the opportunity to alleviate potential shortages of raw feedwater supplies for a municipality. Water supplies have traditionally, in South Texas and the Rio Grande Valley, obtained water supplies from fresh water sources such as rivers and lakes. Mechanical and chemical treatment methods have been used to remove from fresh water impurities such as bacteria, turbidity, color, tastes, odors, iron, or hardness. Groundwater found in the Rio Grande Valley has been found to be brackish and contain impurities which cannot be removed by available conventional treatment processes.

Brackish or highly mineralized water (groundwater) contain excess salts and minerals or total dissolved solids mainly sodium, calcium, magnesium, sulfate, chlorides, and bicarbonates. Nitrates, fluorides, and potassium are found in smaller amounts. The EPA has recommended a maximum total dissolved solids content of domestic water supplies of 500 ppm whereas Texas standards are set at 1,000 ppm. Water exceeding 1,000 ppm is acceptable if no better supplies are available.

Only through the use of special processes to remove excess mineral content from brackish water can the Safe Drinking Water Act Standards (SDWA) be met. Two processes are suitable for treating brackish water and generating a product which would meet SDWA standards. These are Reverse Osmosis (R.O.) and Electrodialysis Reversal (EDR). With the feedwater quality information available, both processes were evaluated and determined that both could easily reduce total dissolved solids levels within the recommended concentration value.

3.3.1 Electrodialysis (Reversal) - Process Description

Electrodialysis (ED) is a membrane desalting process which uses electrical potential, rather than pressure, as its driving force. The process requires the use of ion exchange membranes, which are sheets of ion exchange material. These membranes are available in two forms, cation and anion, which allow passage of cations (positively charged ions) and anions (negatively charged ions) respectively. The membranes are placed into stacks of typically 500 membranes, with cation and anion membranes alternating. An electrode is placed at the end of each stack. Water is then pumped through the spaces in between the membranes, with alternate spaces connected to different piping systems.

When an electrical potential (voltage) is placed upon the electrodes, it causes ions dissolved in the water to move. Cations migrate toward the negative electrode, while anions migrate toward the positive electrode. As the ions move, they eventually come up against a membrane. If possible, they will pass through the membrane (cations will pass through cation membranes, etc.) into the adjacent flow space. But, since the next membrane will not allow passage of that ion, it will remain in that space. Because of this arrangement, alternate spaces will be depleted in ions, while the other spaces concentrate the ions. Thus, two product streams are produced, one desalted and the other concentrated. These streams are termed "dilute" and "concentrate".

Unlike reverse osmosis, treated water does not pass through an ED membrane. Thus, there is no barrier to microbial passage. In addition, since it is an electrochemical process, only electrically charged substances are affected by ED. Thus, silica and most organics are not affected. In this case, these characteristics are not an impediment to use of ED. Organic contamination is not expected to be a problem, and the lack of silica removal is actually a benefit in allowing increased water recovery. In addition, because the water does not pass through the membranes, EDR is somewhat more tolerant of suspended solids in the feedwater than is RO.

ED requires the use of acid and scale inhibitor to prevent precipitation of scaling materials on the membranes, in a manner very similar to reverse osmosis. A significant modification to ED is the electrodialysis reversal process (EDR). In this process, the electrical potential applied by the electrodes is periodically reversed (the positive electrode becomes the negative electrode, and vice versa). This causes the direction of migration of the ions to reverse, and switches the functions of the flow channels so that the dilute channel becomes the concentrate channel, and vice versa. EDR thus tends to prevent the buildup of scale and foulants on the membrane surfaces, and will in fact tend to remove any scale that may have built up. This will extend the life of the membranes, and can allow higher water recovery than the simple ED process. EDR is a patented process of Ionics, Inc., which is the sole supplier. There are other suppliers of the ED process. (While there is justifiable concern that the use of EDR will lock a user into a proprietary system, in practice it must be remembered that Ionics is in competition with reverse osmosis suppliers. Users have been able to establish long term contracts for supplies and maintenance.)

Ionics has not released their design parameters to the engineering public. It is necessary to obtain process designs and costs directly from them. A preliminary quotation from Ionics was therefore solicited, based upon the design

parameters of the Brownsville system.

It is possible to vary the amount of desalting to some extent by varying the electrical potential across the stack. However, the potential must be kept below a limiting value at which water decomposes to hydrogen and hydroxide ions. As a result, the level of desalting in a stack is limited. In order to obtain the amount of desalting in this case (750 mg/L TDS), it will be necessary to pass the water through two stacks in series.

Like reverse osmosis, EDR is a modular process, with various models of EDR systems capable of treating different amounts of water. In this case, Ionics has recommended the use of four trains, each capable of producing 750,000 gallons of treated water per day. Overall system recovery will be 85 percent (85 percent of the feed water will become product water, while 15 percent will become waste).

Blending with untreated water will not be practiced. The most efficient way to operate EDR is to design the system to meet the desired product water quality. Unlike RO, EDR has the ability to produce a variable product water quality by varying the voltage applied to the system. If blending were required, the system would need to be designed to produce a product quality greater than desired and then blend using a by pass system. This may require an additional stage to the EDR system which adds to the complexity and the capital cost of the system. For comparison with the RO, a product water quality of 750 mg/l total dissolved solids is used.

Table 3.2 presents important design considerations for EDR.

Table 3.2 - Design Parameters Electrodialysis Reversal							
Plant feed flow, MGD	3.5						
Recovery	85%						
Product flow, MGD	3.0						
Concentrate flow, MGD	0.5						
Number of Trains	4.0						
Product TDS, mg/L	750						

3.3.2 Reverse Osmosis Process Description

Reverse osmosis is a water treatment process that utilizes a semipermeable membrane. The membrane allows water to pass while restricting the passage of dissolved solids thereby separating the water from substances dissolved in it. Water treatment by Reverse Osmosis is generally referred to by three broad categories depending upon the raw water quality and treatment requirements as follows:

- Seawater RO These systems operate at high pressure (900 psig and higher) to treat salt water with total dissolved solids (TDS) greater than 15,000 mg/L.
- **Brackish Water RO (BWRO)** These systems treat water with TDS in the range of approximately 2,000 mg/L to 15,000 mg/L. They operate at pressures from about 250 psig up to 600 psig. Recent advances allow some membranes to operate at pressures as low as 120 psig.

Nanofiltration (NF) (or Membrane Softening Reverse Osmosis (MSRO) - These systems treat water with
up to about 2,000 mg/L TDS for removal of divalent ions such as calcium and sulfate. Since these systems
do not remove significant amounts of monovalent ions such as sodium, chloride, and nitrate they are
referred to as softening systems. MSRO typically operates at pressures around 125 psig.

The TDS level of the groundwater located at Water Plant No. 1 in the Brownsville area is approximately 2,700 mg/l, therefore, a BWRO system is appropriate for this condition. The objectives of the pilot plant test were to:

- Establish the design basis for the full-scale treatment plant.
- Establish the raw well water quality data.
- Determine the attainable "treated" (or product) water quality.
- Determine the reject (or concentrate) volume and quality for evaluating disposal options.

3.3.2.1 BWRO Process Description

A typical BWRO process is depicted in Figure 3.1. Brackish water from the wells or other source enters the plant through a pretreatment process designed to protect the membrane system. Pretreatment may include removal of solids or specific contaminants that could damage or foul the membranes, and the addition of acid to adjust pH and scale inhibitor to reduce scaling potential in the membranes. The feed water then passes through cartridge filters as a final barrier to protect the membranes. After cartridge filtration, RO feed pumps increase the feed water pressure to overcome the osmotic pressure, back pressure, and friction losses through the system. The RO membranes separate the feed stream into two parts: the relatively salt free permeate (typically between 70 and 85 percent of the feed water depending on the raw water quality), and a concentrate stream containing the majority of the salts (TDS) and the remaining feed water.

In some cases, raw water can be blended with the permeate at a ratio which produces an acceptable TDS and hardness concentrations. The blending of the permeate and raw waters can reduce the total volume of brackish water that must be treated as well as reduce the product water's corrosivity.

Reverse osmosis membrane performance may be impaired by scaling or fouling from a variety of substances in the water. Scaling occurs as the salts in the feed water are concentrated through the membrane system until the concentration exceeds saturation. This causes salts to precipitate out of solution onto the membrane surface. Precipitation of sparingly soluble salts such as calcium carbonate, calcium sulfate, barium sulfate, and strontium sulfate is a particular problem.

To reduce precipitation and scaling, either a scale inhibitor or an acid are injected into the feed water upstream of the RO feed pump. Scale inhibitor helps to reduce the precipitation of sulfate and carbonate scale forming materials, allowing the concentrated feed water (concentrate) to exit the membranes before precipitation occurs. Acid (typically either sulfuric or hydrochloric) may be injected into the feed water to reduce the pH, converting bicarbonate to carbon dioxide and water, thereby reducing the carbonate scaling potential to a level which can be co-controlled with the sulfates by the scale inhibitor.

Fouling occurs when particulate, organic or biological material (bacteria) accumulates on the membrane surface, building a layer which restricts flow through the membrane. Fouling is limited by ensuring that the feed stream remains within the design limits of the feed water quality and is biologically inert. Typically the quantity of these

materials is not a problem with ground water if the wells producing the water are well maintained and in good condition. Occasionally the raw water contains sufficient suspended solids to foul the membranes. In these cases, filters are included in the pretreatment system. If iron or manganese are present in the feed water, it is necessary to prevent their oxidation or provide for their removal in the pretreatment process. Biological material requires oxidation and filtration as part of pretreatment. Many membrane materials are sensitive to oxidants in the feed water which could limit the membrane selection unless the pretreatment is designed to remove them or they can be prevented from forming.

Cartridge filters are the last pretreatment element prior to the membranes providing a "last ditch" protection in case of failure upstream of the RO system which could allow suspended solids that could foul or plug the membrane elements to enter the system. Cartridge filters are not intended to provide continuous removal of particulate matter from the RO feed stream. If continuous removal of suspended solids is required, additional pretreatment is necessary.

The membranes will loose some productivity over time. This is normal, even with high quality feed water and appropriate protection for the membranes. It is then necessary to chemically clean the membranes. This is done with various detergents, acids, or bases as required to return the membrane performance to a level close to initial. Cleaning is normally required about two to three times per year with a groundwater system.

Membrane life for a groundwater reverse osmosis plant can be expected to range from five to nine years with proper care and correct plant operation.

3.4 CONCENTRATE DISPOSAL

Concentrate disposal can have a considerable impact on the construction and operating costs of a membrane process. Three methods are available:

- Disposal to a brackish surface body Brownsville is in an area that is most conducive and cost-effective to dispose of concentrate to a brackish surface water body due to it's proximity to the Gulf of Mexico. By utilizing a drainage ditch, that ultimately discharges into the Brownsville Ship Channel and then to the Gulf of Mexico, there is minimal impact of the concentrated well water solution due to the high total dissolved solids of the receiving stream. Discharge into the Rio Grande is not recommended upstream of any water intake from the Rio Grande. By utilizing a common ditch for the supply and concentrate disposal, the capital cost for the line would be approximately \$200,000.
- Disposal to a sewer system Based on the proposed design of 10.5 mgd supply water, there would be a need to dispose of 2.0 million gallons per day of concentrate. Based on a capital cost of \$2.00/ gallon of treatment, this would cost \$4,000,000 dollars to add the additional hydraulic capacity to the existing wastewater treatment plant. This does not include any additional costs associated with the collection system or additional operation and maintenance of the sewer system. The addition of a TDS of approximately 10,000 mg/l would minimize the potential for reuse of the water from the wastewater treatment plant for irrigation purposes due to the salinity content of the concentrate.
- Deep well injection Disposal of the concentrate can be discharged into aquifers of higher TDS level than the concentrate discharge. Based on limited information regarding the deep zone, it is expected that a deep well for injection would be 3,000 feet deep. One well would be constructed for each of the three phases with a capacity of 500 gpm for each phase. It is estimated that the total cost for each well would be \$1.2 million including well construction, test hole, permitting and engineering. The total cost for all phases would be \$3.6

NRS/BOYLE/HARDEN Final Report
3-6 November 1996

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

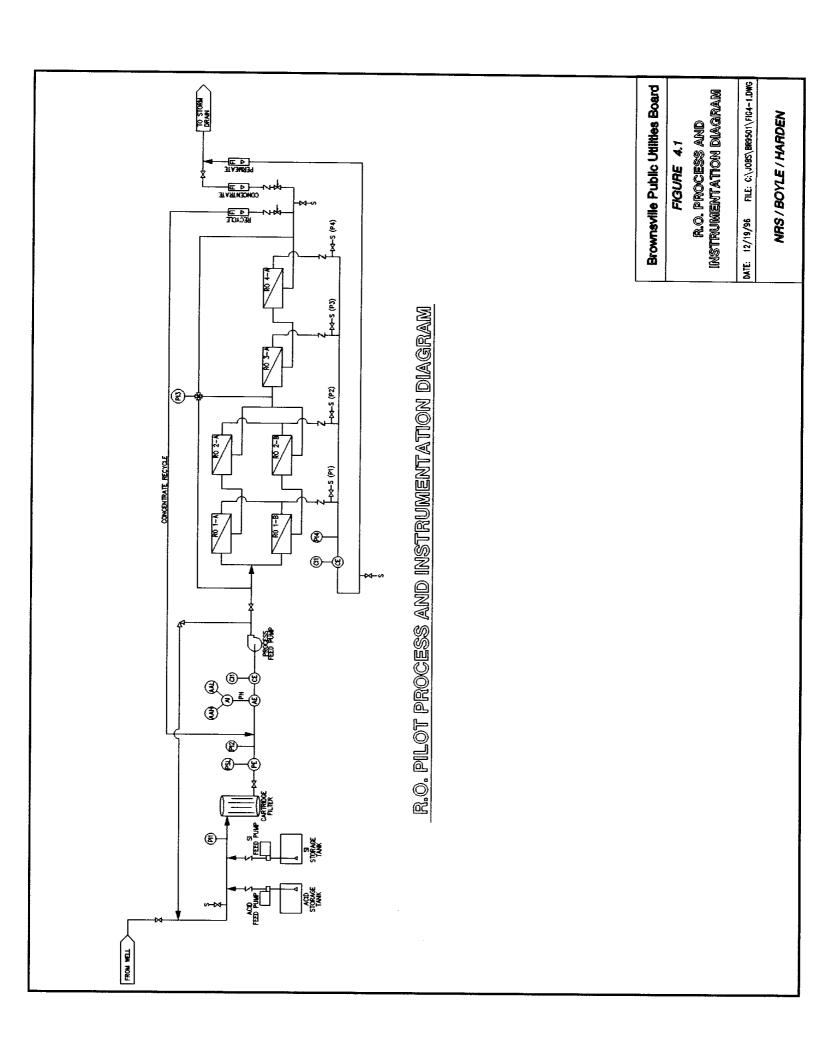
million.

From a cost standpoint, the pursued option at this point would be disposal to a brackish surface body such as a drainage ditch which eventually discharges into the Brownsville Ship Channel. A discharge permit is required by the Texas Natural Resource Conservation Commission (TNRCC). For the purpose of this project, a pipeline is included in the estimated costs to deliver the concentrate into the City's North Main Drainage Ditch, which ultimately discharges into the Brownsville Ship Channel. This pipeline could be installed in the same ditch as the well field delivery pipeline.

CHAPTER 4 - REVERSE OSMOSIS PILOT STUDY

4.1 PILOT PLANT DESCRIPTION

This self-contained trailer mounted system, provided by Boyle Engineering Corporation, includes the RO membranes housed in stainless steel pressure vessels, a chemical feed system, a 12 stage 15 Hp centrifugal pump and motor, a semi-automatic control system, and analytical instrumentation. This unit can accommodate a maximum feed water flow rate of 20 gpm. The process and instrumentation diagram on Figure 4.1 illustrates the system.


The RO system comes standard with six stainless steel pressure vessels arranged into two stages. The first stage contains four vessels in series/parallel arrangement and the second stage contains the remaining two vessels in series. The two stages are interconnected such that the concentrate stream from stage one makes up the feed water for stage two. Each vessel houses three membrane elements for a total of 18 membranes. The Fluid Systems Model 4820HR membrane elements were selected for this study. These are high rejection thin film composite membranes. Each of the three major membrane manufactures (Hydronautics, Fluid Systems, and Dow Filmtec) make a membrane yielding similar performance.

The chemical feed system allows for both scale inhibitor and acid to be introduced into the flow stream upstream of the membranes. The system includes two 25 gallon chemical storage tanks and chemical metering pumps. The pilot plant's control system monitors the chemical levels in each of the storage tanks and shuts the pilot plant down if the levels drops below a preset depth.

Analytical instrumentation installed on the RO system monitors water temperature, electrical conductivity of the feed, and permeate flow streams, pH of the feed water, and pressures through out the system. The RO control system monitors each of these parameters. Rotometers measure the concentrate, permeate and recycle flow streams. A cartridge filter mounted upstream of the membranes protects the membranes from suspended material contained in the feed water.

Initial water quality analyses indicated that the feed water contained a high concentration of silica. A silica scale inhibitor was used to prevent the silica from precipitating onto the membrane. Sulfuric acid was also used, as explained in the previous section, to reduce the carbonate scaling potential. Both the acid and scale inhibitor were injected into the feed water upstream of the cartridge filters.

Brownsville PUB constructed a temporary test well for the pilot study. This well has a capacity of 80 gpm which is more than adequate to supply the pilot plant. The permeate and concentrate produced from the pilot plant were recombined and disposed of in an existing sanitary sewer.

4.2 PILOT PLANT OPERATION

The RO pilot unit was delivered to Brownsville PUB on April 30,1996. After set up and operator training to the PUB staff, the pilot plant began operating on May 8, 1996 and ran continuously for the three month duration of the pilot study with the exception of one brief power outage on 5/28/96 and several brief periods for periodic maintenance.

The PUB operators recorded operating data three times a day. These readings consisted of feed water temperature, permeate and concentrate flow rates, pressures through out the system including feed, concentrate, permeate, interstage, and the pressure drop across the cartridge filter, and the electric conductivity of the feed, and permeate flow streams. Periodic readings of the permeate conductivity at four points between the pressure vessels and concentrate conductive were also taken. In addition, a SDI test was performed daily. Samples of the permeate and concentrate were also taken and sent to a laboratory for analysis. The complete set of the PUB operating data is included as Appendix III.

The pilot plant began operation at a recovery of 75 percent. Recovery is defined as the percentage of feed water that is converted to "treated water", or permeate. This recovery was established from preliminary water quality analyses of the expected feed water. After approximately 2000 hours of operation, the recovery was increased to 80% for the duration of the pilot study. Table 4.1 summarizes the operating conditions of the pilot plant.

Raw/Feed Water Flow Stream (gpm)	Permeate Flow Stream(gpm)	Concentrate Flow Stream (gpm)	Recovery
18.7	14.0	4.7	75%
17.5	14.0	3.5	80%

Table 4.1 - Pilot Plant Operating Conditions

Increasing the recovery of the pilot plant will further define the scaling potential of the feed water. The concentration of soluble salts in the concentrate stream increases dramatically as the recovery increase. This "concentration factor" is the multiple of the soluble salt concentration in the raw water that exists in the concentrate stream. At 75% recovery the concentration factor is 4. This increased to 5 as the recovery was increased to 80%.

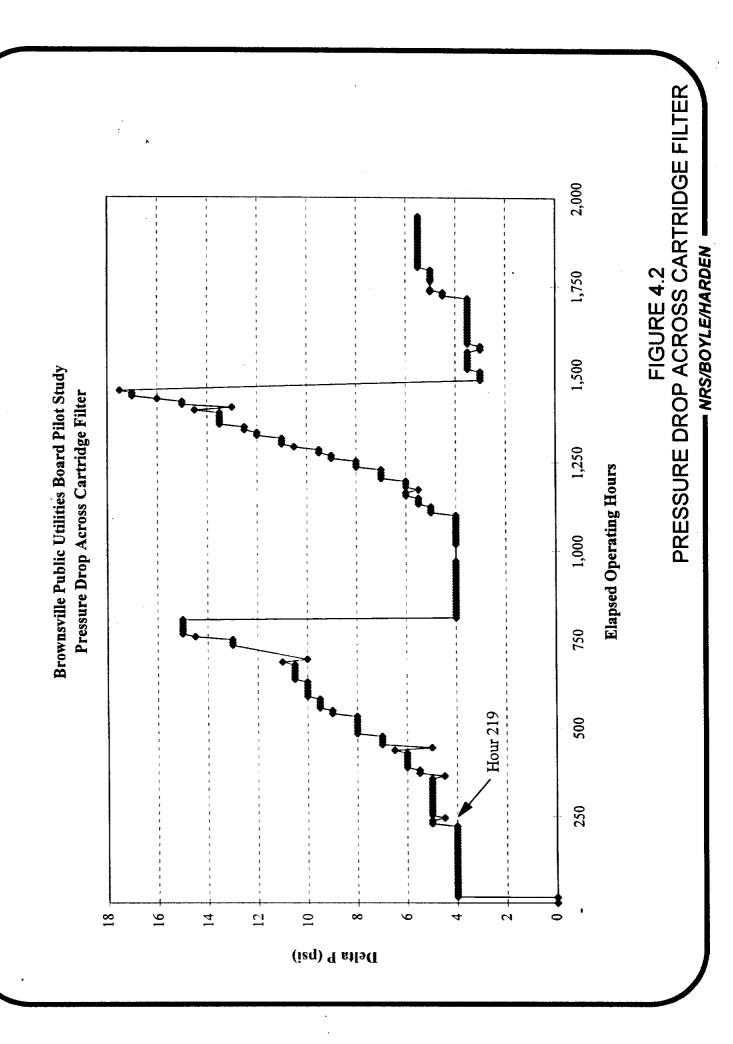
4.3 OPERATING DATA

The data collected at the pilot plant was tabulated and analyzed. The following discussion is a summary of the findings and conclusions of the analysis.

The pilot plant operation was plagued by frequent disruptions due to maintenance shut downs. A power outage was responsible for only one shut down. Due to work taking place at the power plant. These disruptions prevented the plant to from stabilizing for a significant period of time. Field documentation noted a number of the shutdowns, however, the pilot plant's automatic start mechanism would automatically restart the pilot plant, in the absence of an operator, when power was restored. These shut downs can be identified in the data.

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

4.3.1 Pretreatment


Measuring the pressure drop across the cartridge filter gives an indication of the amount of suspended material in the feed water. Cartridge filter elements were replaced when the pressure drop reached approximately 15 psi. As discussed in a previous section, cartridge filters are intended as a last line of protection before the membranes. If suspended material persists in the feed water, an additional pretreatment process, such as a de-sander, will be required. Figure 4.2 illustrates the pressure drop across the cartridge filter.

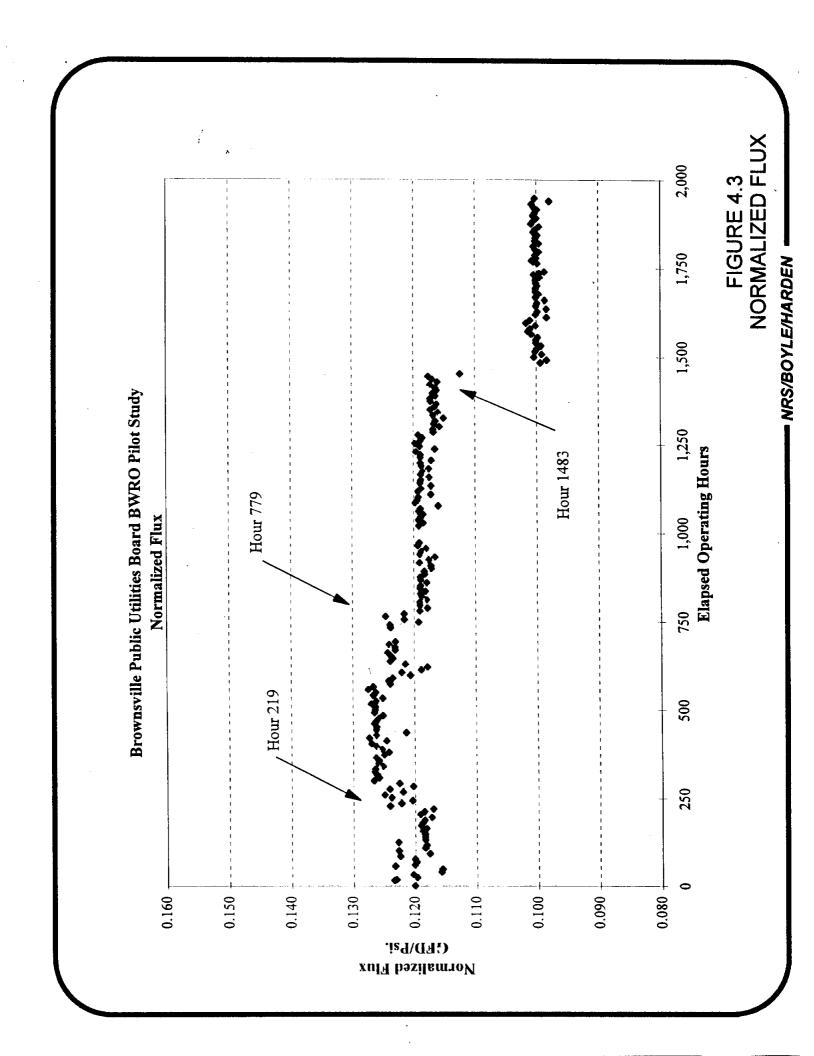
The cartridge filter elements were replaced two times during the study. During the first 219 hours of operation, the pressure drop (delta P) remained constant at 4 psi. The delta P then increased to 15 psi at an increasing rate over the next 525 hours of operation. The cartridge filter elements were replaced after 811 hours of operation. After changing the cartridge filters the delta P dropped to the original 4 psi. It stayed at this level for approximately 300 hours before increasing sharply. Over the next 344 hours (operating hours 1107 through 1451) delta P increased at a fairly constant rate to 17.5 psi. The second cartridge filter was changed after only 640 hours of operation, significantly less than the first. It appears that the rate of fouling is decreasing, indicating that there is less suspended material in the feed water.

Comparing this data with shutdown information indicates that the first increase in delta P corresponds with the first disruption in the system. Additionally, subsequent sharp increases in delta P appear to correspond with disruptions in the system. This leads to the conclusion that sand from the gravel pack is being pulled into the feed water during start up. This problem can be eliminated in the design of the production wells and by providing a reliable power supply. If this problem cannot be eliminated through the well design, then an additional pretreatment process would be required to remove the suspended material.

4.3.2 Membrane Performance

The performance of the membrane elements is generally monitored by observing the relationship between flux and pressure. Flux is expressed as permeate flow through a unit of membrane area measured in volume per square unit of membrane surface area per day. In the United States flux has the units of gallons per square foot per day or GFD. Normalizing the flux consists of compensating for feed water temperature fluctuations and for osmotic pressure variations (a function of the feed, concentrate, and permeate TDS).

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA


Ideally the normalized flux would be constant through out the pilot study. A decrease in normalized flux indicates that the membranes are scaling or fouling and that additional pressure is required to produce the same permeate flow. An increase in normalized flux indicates that less pressure is required to produce the same permeate flow. Increases in normalized flux generally indicates a shifting or tearing of the membranes which allows feed water to by-pass the membranes.

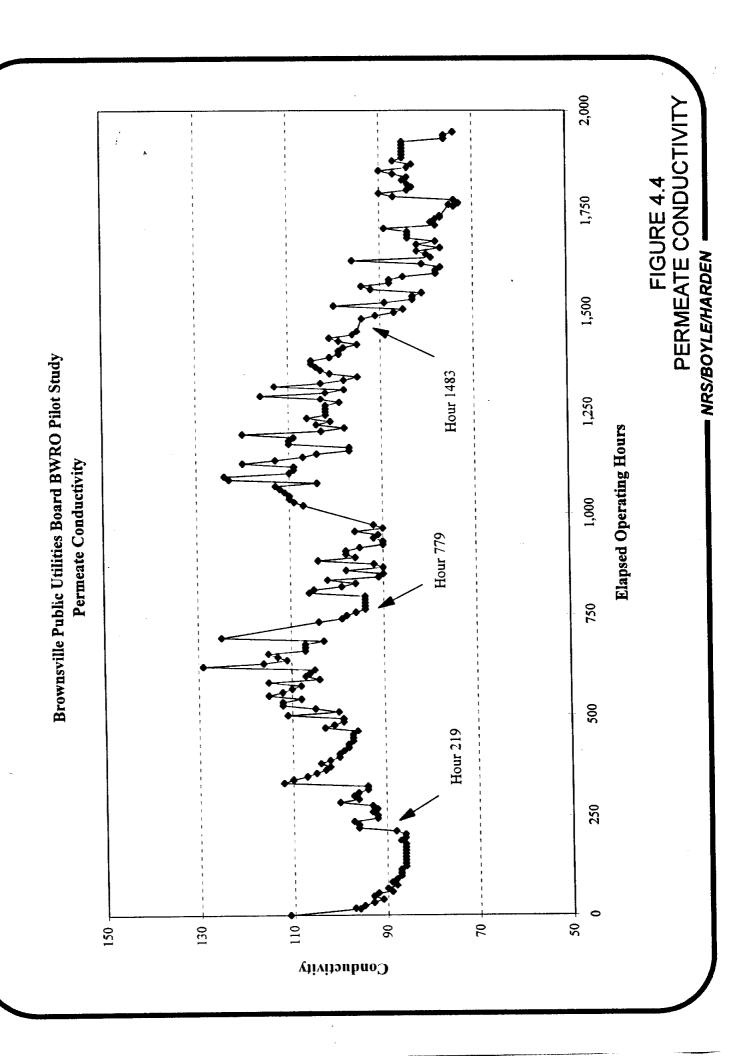
The normalized flux for the pilot plant is plotted against hours of operation in Figure 4.3. After an initial period of instability due to variations in the feed water quality and temperature, the normalized flux stabilizes at approximately 0.118 gfd/psi. At hour 219, the normalized flux increases sharply to 0.124 gfd/psi and does not drop below 0.120 gfd/psi, for an extended period of time, until hour 779. At hour 779 the normalized flux drops back to the original stability range of 0.117 to 0.119 gfd/psi and stays within this range for the next 704 hours (hour 1483). At hour 1483 the normalized flux drops sharply to 0.1 gfd/psi and remains at this point until the end of the data at hour 1947.

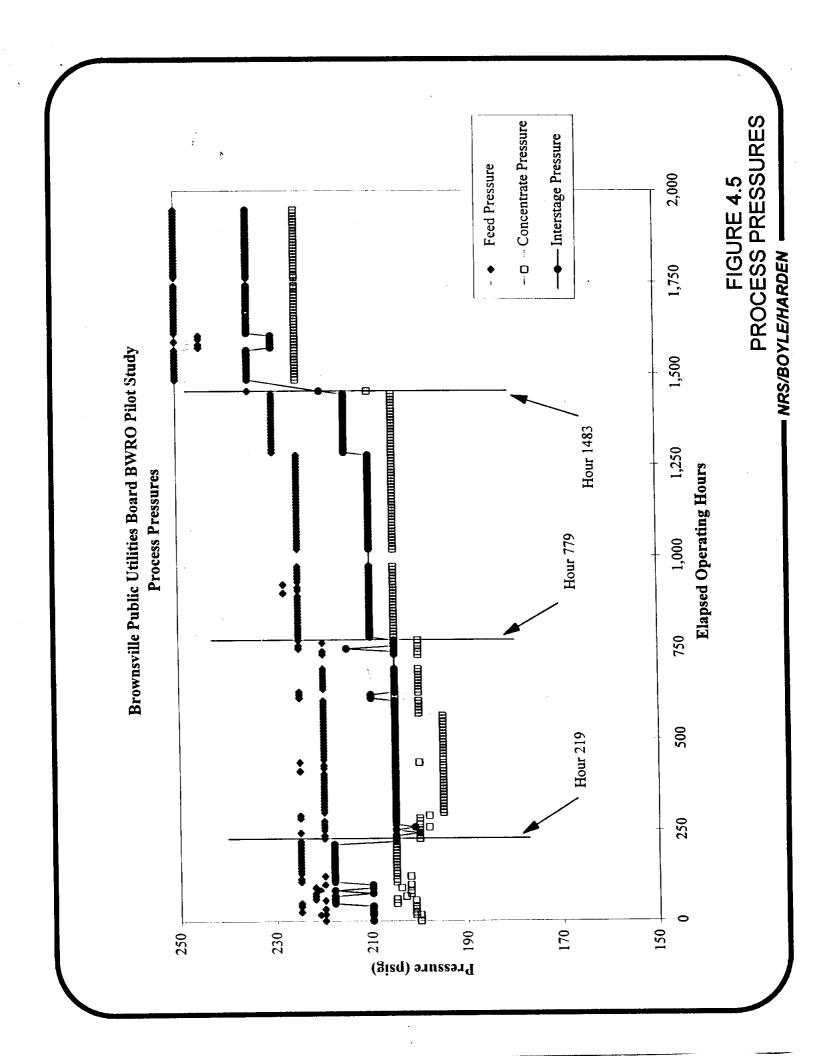
The increase in normalized flux at hour 219 corresponds to the first disruption of the system as described in the pretreatment section. This point can also be seen in Figure 4.4 which plots the permeate stream conductivity and Figures 4-6 and 4-7 which plot the process pressures. It appears that this disruption caused the membranes to shift allowing feed water to bypass the membranes. The membranes appear to have reset themselves at approximately hour 779, indicated by the flux dropping to the original stability range. This conclusion is supported by a general increase in permeate TDS over this time frame. The sharp peaks in the permeate TDS are attributed to system shut downs. Typically the permeate conductivity increase after the system is started and then decreases as the system stabilizes. Sharp fluctuations in the process pressures are also evident at these points. If the membranes were torn, the normalized flux would continue to increase. Since, this did not occur, it can be assumed that the membranes remained intact.

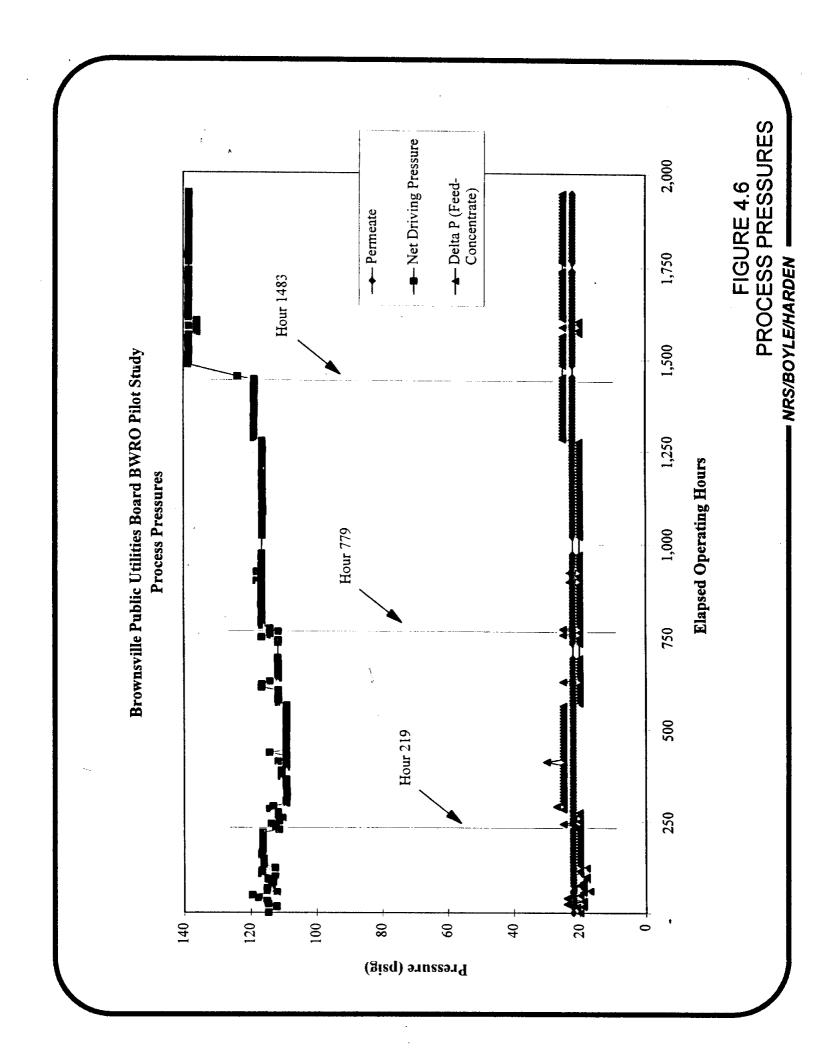
Between hours 779 and 1483, represents a period of relative stability for the system. The normalized flux and process pressures returned to their original stability points (see Figure 4.4, 4.5 & 4.6). The permeate conductivity also shows a general decreasing trend. Again, the sharp spikes in permeate TDS are attributed to shutdowns in the system. The stability in the flux, over this time period, indicates that the membranes are functioning properly and that they are not experiencing scaling or fouling. If the membranes were scaling or fouling, a decreasing trend in the normalized flux would be apparent.

The sharp decrease in the normalized flux at hour 1483 indicates that something caused the membranes to immediately foul. Coincidentally, this point corresponds to the second changing of the cartridge filter elements, This leads to the conclusion that sand or other material was introduced into the system during changing of the cartridge filter. This point is also apparent in the process pressures (Figure 4.5 & 4.6).

The stability in the system after hour 1483 indicates that, again, the membranes are functioning properly and that they are not experiencing scaling or fouling from a component of the feed water. The silica inhibitor appears to have prevented the silica from precipitating on to the membranes.


4.3.3 Membrane Performance vs. Simulated Performance


The membrane element supplier, Fluid Systems, maintains a proprietary computer program, ROPRO6, which approximates membrane performance under defined operating conditions and raw water quality. Boyle performed an initial projection by assuming a feed water quality and using the initial operating condition identified in the previous section. The feed water quality was established by data collected during the geotechnical portion of the study. Table 4.2 compares feed water quality analysis from the projection with data collected from the pilot study.


Table 4.2 - Feed Water Quality

Constituent	Preliminary Projection Feed (mg/l)	Sample (7/1/96) Feed(mg/l)	
	73	76	
Calcium			
Magnesium	45	49	
Sodium	1000	1000	
Potassium	4.8	4.4	
Ammonia			
Strontium	2.9	3.3	
Barium	0.01	0.02	
Iron		0.075	
Manganese	0.07	0.082	
Carbonate			
Bicarbonate	463	429	
Sulfate	860	680	
Chloride	780	1000	
Nitrate			
Fluoride	1.7	1.5	
Silica	33	36	
Carbon Dioxide	47.42		
TDS	3263	3200	

The computer simulation predicted the pilot unit operation pressure at 188 psig (216.2 psig with a 15% fouling allowance). This prediction was based on the initially operating condition of 75% recovery and 14.0 gpm permeate flow. The actual operating pressure ranged from 220-250 psig. Part of the discrepancy between the projection and the actual pressure is due to friction losses in the concentrate manifold, which due to the nature of the pilot unit are not as efficient as a full scale operation. Fouling of the membranes as described in previous sections also contributed to the increase in the actual operating pressure.

4.4 FULL SCALE OPERATIONAL PARAMETERS

4.4.1 Pretreatment

The pilot plant required repeated changing of the cartridge filter elements due to sandy material being pulled into the feed water during start up. This problem maybe solved through design considerations and well placement. However as a precaution, in the event suspended material is still present in the feed water, space for the addition of a desander will be made available in the design of the RO facility.

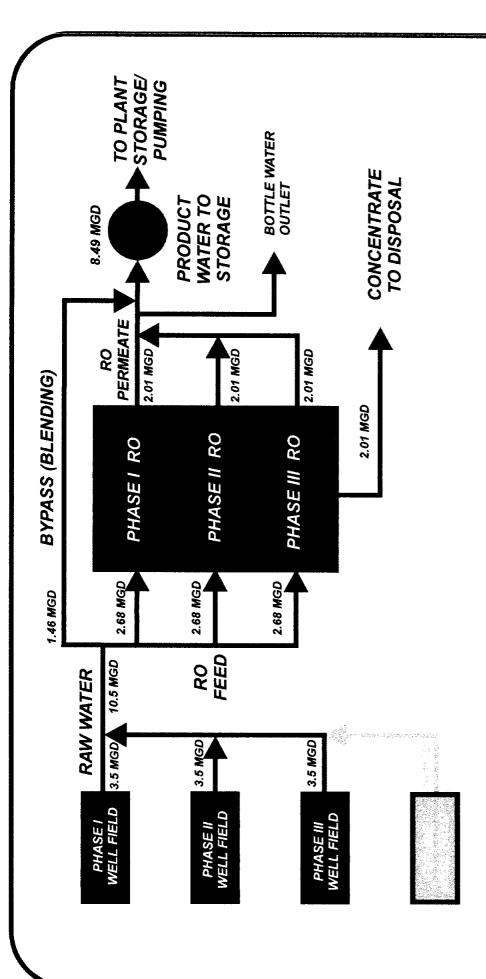
The pilot study required both acid and silica scale inhibitor injection to prevent scale formation. Both these pretreatment processes will be required in the full scale plant.

4.4.2 Membrane Performance

The plant operated for approximately 2000 hours at 75% recovery and 360 hours at 80% recovery for a total of 2,360 hours. During the first 2000 hours the membranes displayed no detrimental effects from exposure to the water, other than the operational problems discussed in the previous section. Premature replacement of the membrane elements due to deterioration or extensive fouling should not be a concern as long as the wells produce water free of suspended material. Membrane life of at least 5 years should be expected. Chemical cleaning of the membrane elements should be at intervals greater than 2000 hours, or four times a year.

4.4.3 Water Quality

The well field will be constructed in three phases each having a production capacity of approximately 3.5 mgd. The wells will be located along an eight mile stretch of the Rio Grande northeast of Brownsville. Since the ground water quality varies considerably in this area, a design feed water quality was established from historical and collected data during the geotechnical investigation as well as data collected during this pilot study. The design feed water analysis along with the Fluid Systems ROPRO6 computer program was used to determine the expected full scale water quality. This projection includes the feed, by-pass, permeate, concentrate and product flow streams. Table 4.3 summarizes the expected water quality for each of the flow streams.


Table 4.3 - Water Quality Summary

		Process Streams					
Constituent	Feed (mg/l)	Permeate (mg/l)	Concentrate (mg/l)	Bypass (mg/l)	Product (mg/l)		
Calcium	66.7	0.21	266.17	66.7	19.47		
Magnesium	19.5	0.06	77.82	19.5	5.69		
Sodium	754.2	13.68	2975.75	754.2	228.52		
Potassium							
Ammonia							
Strontium	0.3		1.2	0.3	0.09		
Barium	0.02		0.08	0.02	0.01		
Iron	0.1		0.4	0.1	0.03		
Manganese	0.1		0.4	0.1	0.03		
Carbonate			0.83				
Bicarbonate	424.7	14.44	1353.46	424.7	133.31		
Sulfate	617.6	2.42	2701.15	617.6	180.67		
Chloride	558.4	11.58	2198.87	558.4	170.02		
Nitrate							
Fluoride	1.4	0.01	5.56	1.4	0.42		
Silica	36.9	0.7	145.5	36.9	11.19		
Carbon Dioxide	34.08	88.39	88.55	34.08	16.98		
ΓDS	2500	43	9730	2500	750		

The product water goal for this plant is to have a TDS of less than 750 mg/l as the most cost effective means of producing a better quality water than is currently available while still meeting the secondary water standards. The plant can be designed to meet 500 mg/l TDS with out much difficulty. By increasing the goal to 750 mg/l, the maximum use of the available water source is achieved. The actual plant design would include the flexibility to maximize the quantity of water produced during drought conditions.

At the proposed goal of 750 mg/l, TDS, the addition of 23 mg/l of caustic is added for pH adjustment. As the blending ratio is decreased, the caustic dosage will increase. If blending is reduced significantly, additional post treatment, such as lime beds would be required for corrosion control. This would add approximately \$0.10 per 1,000 gallons of water produced. Rather than designing a plant that produces only permeate, setting a particular goal such as 750 or 500 mg/l, would produce a consistent and superior water quality most cost effectively.

To achieve a goal of 750, a product water blending rate of 71% permeate was required. This projection is based on a 75% recovery in the RO system, giving an overall system recovery of 80.8%. Assuming that each phase will produce 3.5 mgd in well field capacity, each phase of the RO system will be designed to produce 2.01 mgd of permeate and 0.67 mgd of concentrate. Figure 4.7 summarizes the flow streams and water quality of the system.

	RAW WATER R	RO FEED	BYPASS	RO PERMEATE	CONCENTRATE	RO PERMEATE CONCENTRATE PRODUCT WATER
PHASE I (MGD) 3.5 2.68	3.5	2.68	0.82	2.01	29.0	2.83
PHASE II (MGD)			1.64	4.02	1.34	5.66
PHASE III (MGD)	10.5	8.04	1.46	6.03	2.01	8.49
QUALITY (mg/l)	2,500	2,500	2,500	40	9,730	<750

FIGURE 4.7 BROWNSVILLE PUB RO FLOW SCHEMATIC

- NRS/BOYLE/HARDEN

br9503/fnlrpt/fig4-7.cdr

CHAPTER 5 - PROJECTED COSTS

5.1 Treatment Facility

For the purpose of this cost projection, basic assumptions were made and the best available information, including well water data, previous reports and actual pilot reverse osmosis operations, was used to determine the feasibility of treating brackish ground water in the Brownsville area. In comparing the capital cost of Electrodialysis Reversal (EDR) to Reverse Osmosis (RO), the EDR plants are usually 15% to 20% higher in capital costs for the type of water expected in the Brownsville area. The projected capital cost for each treatment system is shown in Table 5.1.

5.1.1 Capital Cost Factors

• LOCATION - The location of the proposed demineralization facility will attribute to the total cost of the project. The initial planned location of the plant would be located at Water Treatment Plant No. 1. This offers several apparent advantages regarding the capital cost of the facility. One major advantage is the utilization of the existing plant high service pump station to deliver water to the system. This would save the cost of an additional pumping facility. In addition, offices, land and other site facilities are already in existence at this site.

The major disadvantage to utilizing this site relates to the cost of the transmission system. As shown in Figure 5.1, the perceived project shows that all water is transported through a single pipeline to Plant No. 1. As it approaches Plant No. 1, the lines become larger in size. An alternative would be to locate the plant in a central location with respect to the well field and be served by smaller lines. The previously mentioned benefits would not be available. The cost savings utilizing the smaller lines would not be great enough to offset savings of capital and operation and maintenance costs at the Plant No. 1 location.

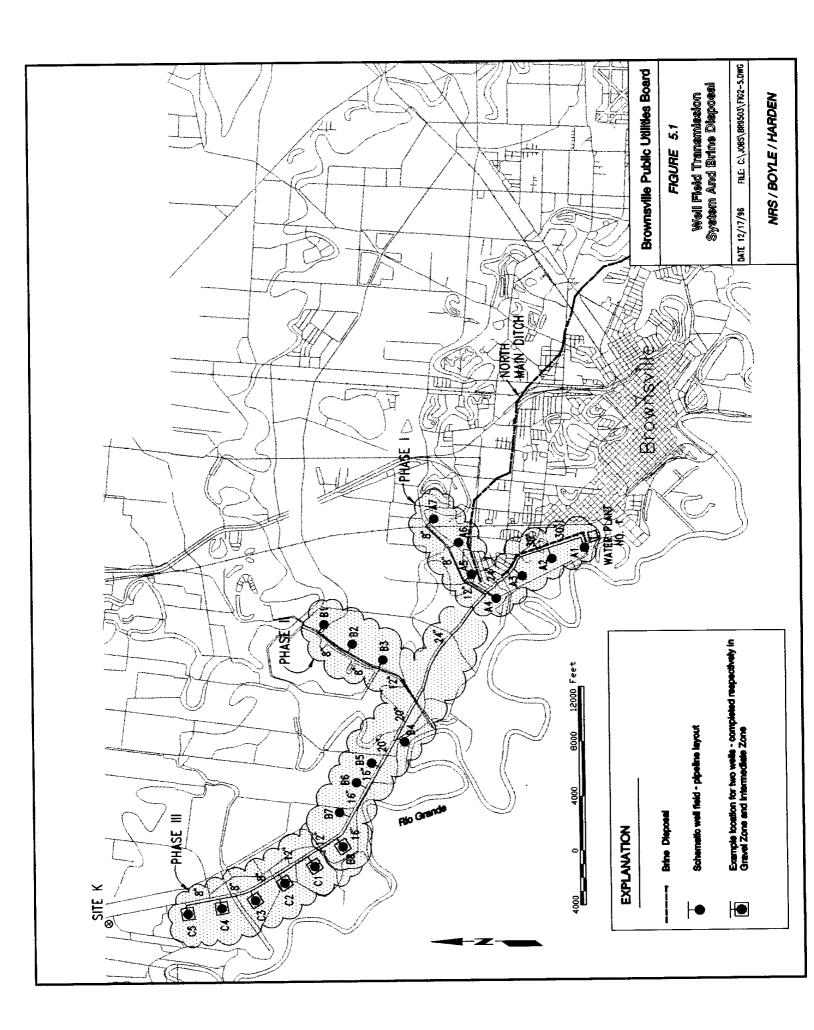

- SOURCE WATER QUALITY The quality of water is the most critical parameter with regard to membrane treatment processes. The key element in the ground water to be removed is the total dissolved solids (TDS). As the TDS increases, the pressure required increases, yielding higher capital and operation and maintenance costs. Blending of the feedwater to achieve a product water not exceeding 750 mg/l TDS can also be achieved if TDS of the feed water is generally less than 3,000 mg/l. With blending, it is projected that the recovery for this RO system would be 80.8%. The recovery for the EDR system is projected to be 85%. Estimated costs are projected with a recovery rate of 80.8% for the RO system and 85% for the EDR system.
- CONCENTRATE DISPOSAL The disposal of concentrate solution from the RO plant must be disposed of by means mentioned in the previous chapter. For the purposes of this analysis, it is expected that the concentrate discharge can be permitted to discharge into a drainage ditch and ultimately into the Brownsville Ship Channel, a saline water body. This is shown in Figure 5.1. The cost for the concentrate disposal pipeline can be minimized by the utilization of the same ditch as the pipeline for the well field supply. It is estimated that the capital cost for the construction of the disposal line in the same ditch would be an additional \$200,000.
- SIZE OF FACILITY With the size range of the treatment facility between approximately 2.5 mgd and 8 mgd, the economy of scale is favorable to achieve a capital cost of the treatment plant, site work, building, yard piping, electrical and instrumentation for a range of \$1.25 to \$2.20/gallon installed. A phased approach appears to be more costly in Phase I, however, this phase includes the over sizing of the facilities to accommodate subsequent phases.

Table 5.1 - Projected Capital and O&M Cost for Reverse Osmosis System

CAPITAL COSTS	PHASE I	PHASE II	PHASE III	TOTAL
PROCESS	\$1,064,000	\$926,000	\$926,000	\$2,916,000
PRETREATMENT (DESANDER)	\$100,000	\$100,000	\$100,000	\$300,000
PIPING	\$300,000	\$50,000	\$50,000	400000
CHEMICAL FEED	\$300,000	\$0	\$0	300000
INSTRUMENTATION & CONTROL	\$300,000	\$50,000	\$50,000	400000
CLEANING SYSTEM	\$125,000	\$0	\$0	125000
BUILDING	\$200,000	\$100,000	\$100,000	400000
ELECTRICAL	\$500,000	\$100,000	\$100,000	700000
STORAGE	\$750,000	\$0	\$0	750000
SITE CIVIL	\$150,000	\$0	\$0	150000
REVERSE OSMOSIS	\$3,789,000	\$1,326,000	\$1,326,000	6441000
Contr OH & Profit @25%	\$947,250	\$331,500	\$331,500	1610250
Engr. Fiscal, Legal Admin @20%	\$757,800	\$265,200	\$265,200	\$1,288,200
Contingency @2 0%	\$757,800	\$265,200	\$265,200	1,288,200
RO SYSTEM COSTS	\$6,251,850	\$2,187,900	\$2,187,900	\$10,627,650
OPERATION AND MAINTENANCE COSTS(C	CUMULATIVE)	h-		
POWER @ \$0.038/kWH	\$81,508	\$172,537	\$298,083	
MEMBRANE REPLACEMENT	\$70,000	\$140,000	\$210,000	
CHEMICAL	\$92,000	\$184,000	\$276,000	
LABOR	\$100,000	\$100,000	\$100,000	
MAINTENANCE	\$50,000	\$70,000	\$90,000	
CARTRIDGE FILTER REPLACEMENT	\$35,000	\$70,000	\$105,000	
WELL PUMP REPLACEMENT	\$20,000	\$40,000	\$60,000	
TOTAL \$\$ PER YEAR	\$448,508	\$776,537	\$1,139,083	

Table 5.2 - Projected Capital and O&M Cost for EDR System

CAPITAL COSTS	PHASE I	PHASE II	PHASE III	TOTAL
PROCESS	\$1,774,850	\$1,774,850	\$1,774,850	\$5,324,550
PRETREATMENT (DESANDER)	\$100,000	\$100,000	\$100,000	\$300,000
PIPING	\$300,000	\$25,000	\$25,000	\$350,000
CHEMICAL FEED	\$50,000	\$0	\$0	\$50,000
INSTRUMENTATION & CONTROL	\$150,000	INCL	INCL	\$150,000
CLEANING SYSTEM	INCL	INCL	INCL	\$0
BUILDING	\$250,000	\$100,000	\$100,000	\$450,000
ELECTRICAL	\$450,000	\$100,000	\$100,000	\$650,000
STORAGE	\$750,000	\$0	\$0	\$750,000
SITE CIVIL	\$150,000	\$0	\$0	\$150,000
EDR SYSTEM	\$3,974,850	\$2,099,850	\$2,099,850	\$8,174,550
Contr OH & Profit @25%	\$993,713	\$524,963	\$524,963	\$2,043,638
Engr. Fiscal, Legal Admin @20%	\$794,970	\$419,970	\$419,970	\$1,634,910
Contingency @2 0%	\$794,970	\$419,970	\$419,970	\$1,634,910
EDR SYSTEM COSTS	\$6,558,503	\$3,464,753	\$3,464,753	\$13,488,008
OPERATION AND MAINTENANCE COSTS	(CUMULATIVE)			
POWER @ \$0.038/kWH	\$230,500	\$458,000	\$657,000	
MEMBRANE REPLACEMENT	\$70,000	\$140,000	\$210,000	
CHEMICAL	\$37,000	\$74,000	\$111,000	
LABOR	\$100,000	\$100,000	\$100,000	
MAINTENANCE	\$50,000	\$80,000	\$100,000	
CARTRIDGE FILTER REPLACEMENT	\$17,000	\$34,000	\$51,000	
WELL PUMP REPLACEMENT	\$20,000	\$40,000	\$60,000	
TOTAL \$\$ PER YEAR	\$524,500	\$926,000	\$1,289,000	

• WATER RIGHTS - The PUB requires developers to transfer water rights in the amount of 1.5 acre-feet per acre of development. While the savings of water rights, by utilizing well water, does not directly affect the PUB's purchase of water rights, it will build up the available supply that the PUB maintains. At a value of \$850 per acre foot of Class "A" water rights, the capital cost associated with a projected 2.8 to 8.5 million gallons per day ranges from \$2.5 million to \$7.6 million.

5.1.2 Operational Cost Factors

- GROUND WATER QUALITY/BLENDING A major factor in the operational cost of membrane treatment is
 attributed with the quality of water. In this case, as the TDS increases, the pressure requirements increase to remove
 the dissolved solids in the feed water. If water quality is maintained at a level less than 3,000 mg/l, blending of the
 permeate with raw feed will reduce the size of the treatment system and the associated operational costs. Other
 constituents and properties in the feed water, that can attribute to higher operational costs include silt density, silica,
 organics, temperature and the hardness of the water.
- ENERGY COSTS Brownsville has an advantage over other areas with regard to power costs, since they generate
 their own power. With costs per kW-hour of less than \$0.04 for power, power costs are not as significant as with
 other areas of much higher costs.
- PRETREATMENT It is projected that pH will be adjusted before and after treatment and an antiscalant will be
 utilized to prevent premature fouling of the membranes. Based on field data collected, there could be a need for a
 desanding facility. This is included in the projected costs.
- LOCATION With respect to location, if the plant is located at Water Plant No. 1, operational personnel are currently located at this site. While additional personnel are anticipated, locating at Plant No. 1 would minimize the need for additional operators.

5.2 Transmission Costs

A major cost factor in the overall project is the cost to deliver the water to the plant site. For the projected project as shown in Figure 5.1, piping size would range from 8-inches to 30-inches in diameter for a total of 12.5 miles to deliver the 10.5 mgd feed water in three phases. It is not anticipated that there will be additional storage or repumping utilized for these options. The estimated cost for each system is shown in Table 5.3. Pipeline costs were developed using 1996 pipe prices and experience in the area for the installation and construction of pipeline facilities similar in nature.

To oversize the transmission system to allow for the future expansion of the well field, beyond the 10.5 mgd capacity, to 20 mgd, Table 5.3 also indicates what the estimated construction cost to oversize the pipeline. The pipeline size would range from 8-inches to 36-inches in diameter. For all three phases, it is estimated that the additional cost to oversize the transmission system would be approximately \$2.7 million.

Table 5.3 - Transmission Costs

	COST PRO	OJECTION I	FOR 10.5 MG	D WELL FII	ELD TRANSMI	SSION SYSTE	M
PIPE	PIPE	PHASE I	- 3.5 MGD	PHASE II	- 7.0 MGD	PHASE III -	10.5 MGD
SIZE, in.	PRICE/FT	FEET	COST	FEET	COST	FEET	COST
8	\$15	5,000	\$75,250	5,000	\$75,250	5,000	\$75,250
12	\$25	2,500	\$61,825	2,500	\$61,825	5,000	\$123,650
14	\$30	0	\$0	0	\$0	0	\$0
16	\$35	0	\$0	5,000	\$174,850	2,500	\$87,425
18	\$39	0	\$0	0	\$0	0	\$0
20	\$46	0	\$0	5,000	\$230,000	0	\$0
24	\$59	2,500	\$147,500	12,500	\$737,500	0	\$0
30	\$75	6,000	\$450,000	0	\$0	0	\$0
CONCEN	TRATE (In	same ditch as	s supply line)		. <u></u>		
16	\$18	7,500	\$134,775	0	\$0	0	\$0
SUBTOTA	AL	23,500	\$869,350	30,000	\$1,279,425	12,500	\$286,325
ENGR/ C	ONTINGEN	CY. @30%	\$260,805		\$383,828		\$85,898
TOTAL C	FFSITE CO	ST EACH	\$1,130,155		\$1,663,253		\$372,223
CUMULA	TIVE COST	rs	\$1,130,155		\$2,793,408		\$3,165,630

PROJECTED COST FOR OVERSIZING TRANSMISSION SYSTEM - 20 MGD PIPELINE CAPACITY. The following cost estimate represents the option of constructing a pipeline system capable of delivering 20 mgd to the proposed treatment plant. This will allow the extension of the transmission system to deliver water from an expanded well field in the future without constructing a second line to the proposed plant.

	· .r	and the second of the second		F F C			
PIPE	PRICE/FT		PHASE I		PHASE II		PHASE II
SIZE, in.		FEET	PRICE	FEET	PRICE	FEET	PRICE
8	\$15	5,000	\$75,250	5,000	\$75,250	0	\$0
12	\$25	2,500	\$61,825	2,500	\$61,825	0	\$0
14	\$30	0	\$0	0	\$0	0	\$0
16	\$35	0	\$0	0	\$0	0	\$0
18	\$39	0	\$0	0	\$0	0	\$0
20	\$46	0	\$0	0	\$0	0	\$0
24	\$59	0	\$0	0	\$0	0	\$0
30	\$75	0	\$0	0	\$0	12,500	\$937,500
36	\$90	8,500	\$765,000	22,500	\$2,025,000	2,500	\$225,000
CONCEN	TRATE (In	same ditch as	supply line)				
24	\$37	7,500	\$277,500	0	\$0	0	\$0
SUBTOTA	AL	23,500	\$1,179,575	30,000	\$2,162,075	15,000	\$1,162,500
ENGR/CO	ONTINGEN	CY @30%	\$353,873		\$648,623		\$348,750
TOTAL C	OFFSITE CO	OST	\$1,533,448		\$2,810,698		\$1,511,250
CUMULA	ATIVE COS	TS	\$1,533,448		\$4,344,145		\$5,855,395
COST DI	FFERENTIA	AL (CUM.)	\$403,293		\$1,550,738		\$2,689,765
1						ı	

5.3 Well Field Development Costs

For a supply of 3.5 mgd to 10.5 mgd brackish ground water, it is anticipated that 7 to 25 wells will be constructed. Capital cost shown in Table 5.4 include test drilling, property acquisition, wells, pumps and engineering. It is assumed that property options could be obtained and only the sites with favorable subsurface conditions for the construction of production wells be purchased. Costs to develop production wells include 21 gravel zone wells and 5 intermediate wells. The cost for Phase III well field development is higher due to the development of more wells and deeper wells to accomplish the capacity required.

Table 5.4 - Well Field Development Costs

WELL FIELD DEVELOPMENT FOR 3.5 MGD	SUPPLY - P	HASE I		CUMULATIVE COSTS
DESCRIPTION	QTY	UNIT COST	TOTAL	CO313
TEST DRILLING	14	\$30,000	\$420,000	
PROPERTY	7	\$15,000	\$105,000	
WELLS & PUMPS	7	\$135,000	\$945,000	
ENGINEERING/CONTINGENCY		L.S.	\$250,000	
		TOTAL COSTS	\$1,720,000	\$1,720,000
WELL FIELD DEVELOPMENT FOR 3.5 MGD	SUPPLY - P	PHASE II		
DESCRIPTION	QTY.	UNIT COST	TOTAL	
TEST DRILLING	16	\$30,000	\$480,000	
PROPERTY	8	\$15,000	\$120,000	
GRAVEL ZONE WELLS/PUMPS	8	\$135,000	\$1,080,000	
INTERMED. ZONE WELLS/PUMPS	1	\$180,000	\$180,000	
ENGINEERING/HYDROLOGY/CONTINGEN	CY	L.S.	\$250,000 \$2,110,000	
				\$3,830,000
WELL FIELD DEVELOPMENT FOR 3.5 M	GD SUPPLY	- PHASE III		
DESCRIPTION	QTY.	UNIT COST	TOTAL	
TEST DRILLING	10	\$30,000	\$300,000	
PROPERTY	5	\$15,000	\$75,000	
GRAVEL ZONE WELLS/PUMPS	5	\$135,000	\$675,000	
INTERMED. ZONE WELLS/PUMPS	5	\$180,000	\$900,000	
ENGINEERING/HYDROLOGY/CONTINGE	NCY	L.S.	\$250,000	
		TOTAL COSTS	\$2,200,000	\$6,030,000

5.4 Summary of Costs

A summary of costs for both the RO and EDR systems can be found in Tables 5.5 and 5.6. Costs include are for the construction of a treatment facility located at the PUB's Water Treatment Plant No. 1. Operational costs have been added to the previous plant operation and maintenance costs to allow for pumping, transmission, labor and pump replacement costs. An interest rate of 6% was used to arrive at an annual payment for capital costs for 20 years. For the first phase, the costs per 1000 gallons of treatment are comparable. For each additional phase, the RO system overall cost are less than that of the EDR system. Due to the cost factor, non proprietary nature, and flexibility of the RO system, it is the recommended process for the PUB for the development of the brackish groundwater resources in the Brownsville area

Table 5.5 - Summary of Costs RO System

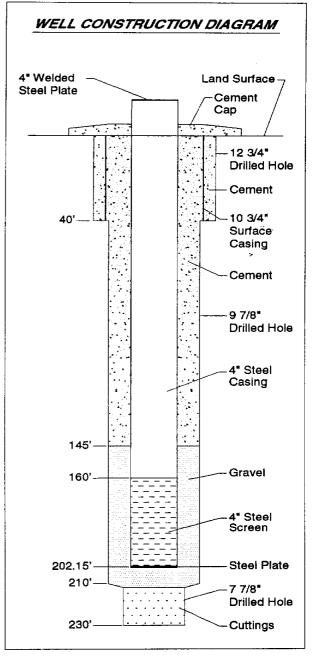

CAPITAL COST PROJECTIONS	PHASE I	PHASE II	PHASE III	TOTAL
REVERSE OSMOSIS	\$6,251,850	\$2,187,900	\$2,187,900	\$10,627,650
OFFSITE TRANSMISSION &	\$1,130,155	\$1,663,253	\$372,223	\$3,165,630
CONCENTRATE				
WELL FIELD DEVELOPMENT	\$1,720,000	\$2,110,000	\$2,200,000	\$6,030,000
TOTAL CAPITAL	\$9,102,005	\$5,961,153	\$4,760,123	\$19,823,280
PRODUCT WATER EA. PHASE, MGD	2,830,000	2,830,000	2,830,000	8,490,000
ANNUAL DEBT SERVICE @6%, 20 YRS.	\$793,554	\$519,720	\$415,009	\$1,728,284
DEBT SERVICE PER 1000 GALLONS	\$0.768	\$0.503	\$0.402	\$0.558
OPERATION AND MAINTENANCE PROJECT	TIONS (CUMUL	ATIVE TOTAL	<u>s)</u>	
TOTAL O&M PER YEAR	\$448,508	\$776,537	\$1,139,083	
OPERATIONAL COST/1000 GALLONS	\$0.434	\$0.376	\$0.368	
TOTAL ANNUAL COST COMPARISONS				
TOTAL \$\$ PER YEAR	\$1,242,062	\$2,089,812	\$2,867,367	
TOTAL \$\$/1,000 GALLONS	\$1.202	\$1.012	\$0.925	
TOTAL \$\$/ACRE FOOT	\$391.79	\$329.60	\$301.49	
COMPARISON TO 100% RO PRODUCT WAT	ER			
TOTAL \$\$/1,000 GALLONS	\$1.79	\$1.48	\$1.40	

Table 5.6 - Summary of Costs EDR System

PHASE I	PHASE II	PHASE III	TOTAL
\$6,558,503	\$3,464,753	\$3,464,753	\$13,488,009
\$1,130,155	\$1,663,253	\$372,223	\$3,165,630
\$1,720,000	\$2,110,000	\$2,200,000	\$6,030,000
\$9,067,005	\$5,536,153	\$5,145,123	\$22,683,639
3,000,000	3,000,000	3,000,000	9,000,000
\$793,554	\$519,720	\$415,009	\$1,728,284
\$0.749	\$0.576	\$0.481	\$0.602
CTIONS (CUM	ULATIVE TOTA	<u>4LS)</u>	
\$524,500	\$926,000	\$1,289,000	
\$0.479	\$0.423	\$0.392	
\$1,344,790	\$2,377,332	\$3,266,663	
\$1.228	\$1.086	\$0.994	
\$400.16	\$353.70	\$324.01	
	\$6,558,503 \$1,130,155 \$1,720,000 \$9,067,005 3,000,000 \$793,554 \$0.749 CTIONS (CUM \$524,500 \$0.479 \$1,344,790 \$1,228	\$6,558,503 \$3,464,753 \$1,130,155 \$1,663,253 \$1,720,000 \$2,110,000 \$9,067,005 \$5,536,153 3,000,000 3,000,000 \$793,554 \$519,720 \$0.749 \$0.576 CTIONS (CUMULATIVE TOT) \$524,500 \$926,000 \$0.479 \$0.423 \$1,344,790 \$2,377,332 \$1,228 \$1.086	\$6,558,503 \$3,464,753 \$3,464,753 \$1,130,155 \$1,663,253 \$372,223 \$1,720,000 \$2,110,000 \$2,200,000 \$9,067,005 \$5,536,153 \$5,145,123 3,000,000 3,000,000 \$793,554 \$519,720 \$415,009 \$0.749 \$0.576 \$0.481 \$CTIONS (CUMULATIVE TOTALS)\$ \$524,500 \$926,000 \$1,289,000 \$0.479 \$0.423 \$0.392 \$1,344,790 \$2,377,332 \$3,266,663 \$1.228 \$1.086 \$0.994

APPENDIX I - GEOLOGIC DATA

SITE Designation W.P. 1 Owner Brownsville P.U.B. Inspector A. Bowen Company R.W. Harden & Associates, Inc. Location Brownsville, Tx - Water Treatment Plant Elevation: Ground Level ~ 35 Ft. (7 1/2 min topo) Measuring Point + 1.0 A.G.L. DRILLING/CONSTRUCTION Tour Length 10 Tours/Day 1 Task Start (Date/Time) Finish (Date/Time) 3-27-96/11:00AM 3-27-96/3:00PM Drilling Construction <u>4-1-96/11:00AM</u> <u>4-1-96/3:00PM</u> Drilling Company TWDB Driller Romeo Cano Drilling Method Mud Rotary Mud Type Natural Bit Size and Type 7 7/8"; reamed to 9 7/8" Depth Drilled 230 Ft. B.G.L. Casing Diameter and Type 4" ID Steel Casing Weight Schedule 40 Cased Interval +2' to 160' Screen Diameter and Type 4"ID/Steel, Mill Slotted Screen Gauge 0.002 Screened interval 160' to 202.15' Bottom Construction Steel Plate Gravel Volume and Type 30 Sk/Brady Silica Sand(8/16) Gravel Setting 145' to 210' Seal Type Cement Cement Volume and Type 75 Sacks/Portland Cement Setting 0' to 145' GEOPHYSICAL LOG Start (Date/Time) Finish (Date/Time) 3-28-96 3-28-96 Logging Company TWDB Logger Randy Williams Depth Logged 220' REMARKS 4'x4'x6" Concrete pad

DEVELOPMENT					
Start (Date/Time)	Finish (Date/Time)				
4-2-96/10:00AM	4-2-96/2:00PM				
Method(s) Pump Pumping Rate 60 (Water Level: Static_ Pumping_					

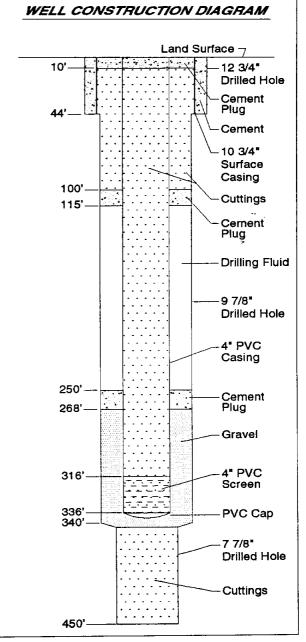
Geologic Log for Water Treatment Plant 1 (W.P.1)

Date Drilled: 3/17/96

Total Depth Drilled: 230 feet

Hole size: 7-7/8 inches

Driller: TWDB / Romeo Cano


Drilling Fluid: Water

Drilling Fluid Conductivity: 1275 umhos

Mud Viscosity (Secs): 36

Depth Interval (ft)	Sample Description
0-30	Top soil, silty sand
30-63	Clay, silty clay
63-95	Fine sand
95-153	Clay, sandy clay
153-160	Very fine sand
160-170	Very fine sand
170-180	Very fine sand
180-190	Very fine sand
190-200	Fine sand
200-210	Fine sand with minor amounts of gravel
210-220	Fine sand with minor amounts of gravel
220-230	Fine sand with minor amounts of gravel
	and a few clay lenses

SITE Designation Firefighter Owner Brownsville P.U.B. Inspector A. Bowen Company R.W. Harden & Associates, Inc. Location Brownsville, Tx Elevation: Ground Level ~ 35 Ft. (7 1/2 min topo) Measuring Point + 2.5 Ft. A.G.L. DRILLING/CONSTRUCTION Tours/Day_1_ Tour Length 10 Start (Date/Time) Finish (Date/Time) Task 5-26-96 5-26-96 Drilling 6-5-96/5:00PM Construction 6-5-96/11:00AM Drilling Company TWDB Driller Romeo Cano Drilling Method Mud Rotary Mud Type Natural Bit Size and Type 7 7/8"; reamed to 9 7/8" Depth Drilled 450 Ft. B.G.L. Casing Diameter and Type 4" ID PVC Casing Weight Schedule 40 Cased Interval 0' to 316' Screen Diameter and Type 4"ID/PVC, Mill Slotted Screen Gauge 0.0035 Screened Interval 316' to 336' Bottom Construction PVC Cap Gravel Volume and Type 20 Sk/Brady Silica Sand(8/16) Gravel Setting 268' to 340' Seal Type Cement Cement Volume and Type 17 Sacks/Portland Cement Setting 0' to 10', 100' to 115' and 250' to 268' GEOPHYSICAL LOG Finish (Date/Time) Start (Date/Time) 5-27-96 5-27-96 Logging Company TWDB Logger Randy Williams Depth Logged 450' REMARKS Well Plugged

DEVE	LOPMENT
Start (Date/Time)	Finish (Date/Time)
6-6-96	6-9-96
Method(s) Pump	
Pumping Rate 70 GPM	
Water Level: Static 17.	
Pumping 91.	7 (1 hr.) from M.P.
Pumping vi.	7 (1 111.) 110.11 111.1

Geologic Log for Fire Fighter Site

Date Drilled: 5/26/96

Total Depth Drilled: 450 feet

Hole size: 6-1/4 inches

Driller: TWDB / Romeo Cano

Drilling Fluid: Water

Drilling Fluid Conductivity: 1510 umhos

Mud Viscosity (Secs): 29

Depth	
Interval (ft)	Sample Description
0-45	No information available
45-65	Fine sand
65-70	Clay
70-89	Sand
89-109	Tan clay
109-129	Tan clay
145-149	Fine brown sand
149-159	Fine brown sand
159-169	Fine brown sand
169-179	Fine brown sand
179-189	Fine brown, gravel at 187'
189-198	Fine brown sand and 1/16" to 1/4" gravel
198-219	Tan, white, gray & red clay
219-308	Tan, white, gray & red clay
308-316	Sandy clay
316-335	Sand with clay streaks
335-349	Sandy clay
349-351	Sandy clay
351-367	Fine brown sand
367-450	Tan, white, clay

Firefighter Site Recovery Test

		Depth to Water	Pumping	
<u>Date</u>	<u>Time</u>	Below M.P. (ft.)	Rate (gpm)	<u>Remarks</u>
06/07/96	7:45 AM			Pump on
	8:20 AM		71	Conductivity = 14,500 umhos, water muddy, lots of fine sand
	8:25 AM	94.25	71	
	8:42 AM	94.15	71	
	8:58 AM	94.20	71	
	9:00 AM			Pump off
	9:01 AM		0	
	9:02 AM	35.13	0	• .
	9:03 AM	33.01	0	_
	9:04 AM	31.83	0	,
	9:05 AM	30.62	0	
	9:06 AM	29.10	0	
	9:07 AM	28.65	0	
	9:08 AM	27.97	0	
	9:09 AM	27.35	0	
	9:10 AM	26.78	0	
	9:15 AM	24.97	0	
	9:20 AM	23.68	0	
	9:25 AM	22.86	0	
	9:30 AM	22.22	0	
	9:40 AM	21.44	0	
	9:50 AM	21.02	0	
	10:00 AM	20.60	0	
	10:10 AM	20.21	0	
	10:20 AM	19.98	0	
	10:30 AM	19.81	0	End test, resume development of well

Geologic Log for River Bend Site

Date Drilled: 5/22/96-5/23/96
Total Double Drilled: 450 feet

Total Depth Drilled: 450 feet Hole size: 6-1/4 inches

Driller: TWDB / Romeo Cano

Drilling Fluid: Water

Drilling Fluid Conductivity: 1575 umhos

Mud Viscosity (Secs): 30

Depth	
Interval (ft)	Sample Description
0-46	No information available
46-92	Clay
92-113	Fine sand
113-130	Tan and gray clay
130-140	Tan and gray clay
140-145	Tan and gray clay
145-150	Sand with clay streaks
150-160	Sand, shell material and gravel
160-170	Sand with clay streaks
170-180	Sandy clay
180-210	Tan, white, gray and red clay
210-220	Tan, gray and red sandy clay
220-270	Tan, gray and red clay
270-290	Tan, gray and red sandy clay
290-313	Tan, gray and red clay
313-450	Tan and red clay, indurated

APPENDIX II - WATER QUALITY DATA

CHEMICAL ANALYSIS

(1) Location:

Water Treatment Plant No. 1 Well Site (R.O. Pilot Plant Location)

(2) Sampling Point:

Well Head

(3) Date:

4/4/96 (Filtered and Unfiltered)

7/1/96 (Unfiltered)

(4) Analysis:

Anions and Cations

Analytical Chemistry • Utility Operations

Page 1 of 17_,

TEST REPORT: k15160

Client: NRS

Markhaledelaldellaadd

NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris

Sample Identification: Well Water RR

Identificacion de Muestra Collected By: David Garza Jr.

Colectado Por

1415 Date & Time Taken: 08/15/96

Tiempo y Fecha Tomado

Bottle Data:

Datos de Recipientes:

#01 - Unpreserved Glass

#01 - Sin Preservativo Vidrio

#02 - Unpreserved Glass

#02 - Sin Preservativo Vidrio

#03 - Unpreserved Glass

#03 - Sin Preservativo Vidrio

#07 - 40 ml glass Vial for VOA (Zero Headspace)

#07 - Botellita de vidrio de 40 ml con una Tapadera de Teflon (Sin

#08 - 40 ml glass Vial for VOA (Zero Headspace)

#08 - Botellita de vidrio de 40 ml con una Tapadera de Teflon (Sin

#09 - 40 ml glass Vial for VOA (Zero Headspace)

#09 - Botellita de vidrio de 40 ml con una Tapadera de Teflon (Sin

#04 - 1+1 H2SO4 40 ml Glass Vial

#04 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#05 - 1+1 H2SO4 40 ml Glass Vial

#05 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#06 - 1+1 H2SO4 40 ml Glass Vial

#06 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#10 - 2 ml Autosampler Vial

Derived in lab from: 01 (740.000 ml)

Amount: 10.000 #11 - 2 ml Autosampler Vial

Derived in lab from: 01 (860.000 mls)

#12 - 2 ml Autosampler Vial Amount: 10.000

Derived in lab from: 02 (800.000 mls)

Amount: 5.000 #13 - 40 ML VIAL EXTRACT

Derived in lab from: 02 (100.000 mls)

Sample Matrix: Aqueous Liquid

Received: 08/15/96 Report Date: 09/06/96

Cliente Recibido No. de Muestra

Amount: 1.000

BY UNITS ANALYZED MAL METHOD RESULTS PARAMETER METODO PC ANALIZADO RESULTADOS UNIDADES PARAMETRO EPA Method 515.1 1741 09/04/96 ug/l Dalapon

> Continued Continuacion

P. O. BOX 9000 - KILGORE, TEXAS 75663-9000 - 903/984-0551 - FAX 903/984-5914

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 2 of 17

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Dinoseb	ND	ug/l	1741 09/04/96	7.0	EPA Method 515.1	KL:
Epichlorohydrin	ND	mg/l	1100 09/04/96	100		KL
Bromochloroacetic acid	ND	ug/l	1641 09/05/96	1.0	EPA Method 552	KLi
Dibromoacetic acid	ND	ug/l	1641 09/05/96	10	EPA Method 552	KLI
Dichloroacetic acid	ND	ug/l	1641 09/05/96	1.0	EPA Method 552	KLi
Bromoacetic acid	ND	ug/l	1641 09/05/96	1.0	EPA Method 552	KI.
Chloroacetic acid	ND	ug/l	1641 09/05/96	1.0	EPA Method 552	KT:
Trichloroacetic acid	ND	ug/l	1641 09/05/96	10	EPA Method 552	KL.
Total Organic Carbon	1.2	mg/l	0900 08/27/96	. 3	EPA 415.2	RS.
Total Organic Halogens, Liquid	0.06	mg/l	1430 08/22/96	0.01	EPA Method 9020A	JWI
1,2-Dibromoethane	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL:
Bromochloromethane	ND	ug/l	1436 08/23/96	5.0		KL
1,2,3-Trichloropropane 1,2,3-Tricloropropano	ND	ug/l	1436 08/23/96	5.0	EPA Method 624	KLī
Aldrin Aldrin	ND	ug/l	0310 0 9/06 /96	0.04	EPA Method 508	KLi
Alpha-BHC Alfa-BHC (Benceno Exacloruro	ND	ug/l	0310 09/06/96	0.041	EPA Method 508	KLi
Beta-BHC Beta-BHC	ND	ug/l	0310 09/06/96	0.027	EPA Method 508	KLi
Delta-BHC Delta-BHC	ND	ug/l	0310 09/06/96	0.058	EPA Method 508	KLű
Gamma-BHC (Lindane) Gamma-BHC	V NU-	→ ug/l	0310 09/06/96	0.047	EPA Method 508	KLi
Chlordane Clordano	ND	ug/l	0310 09/06/96	0.16	EPA Method 508	K L.:

Continued Continuacion

Analytical Chemistry • Utility Operations

R15160 Continued ... Continuacion

Page 3 of $\mathbf{1}_{I}^{\frac{1}{2}}$

				4,4 -	Numiton	
PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
FRAMERIC						
4,4-DDD	ND	ug/1	0310 09/06/96	0.12	EPA Method 508	KL
4,4 - DDD	ND	ug/1	0310 03,00,30			
4,4-DDE	÷	. /2	0310 09/06/96	0.047	EPA Method 508	KL
4,4 - DDE	ND ·	ug/1	0310 03700730	0.047	BITT TIBETION, 544	
4,4-DDT		42	2212 22/05/25	0 12	> EPA Method 508	KL
4,4 - DDT	ND	ug/l	0310 09/06/96	0.12	EFA MECHOO 300	KL
Dieldrin	ND	ug/l	0310 09/06/96	0.023	EPA Method 508	KL
Endosulfan I	ND	ug/1	0310 09/06/96	0.12	EPA Method 508	KL
Bildosullan 1		_			500 Weekerd 500	VI
Endosulfan II	ND	ug/l	0310 09/06/96	0.047	EPA Method 508	KL
Endosulfan sulfate	ND	ug/l	0310 09/06/96	0.12	EPA Method 508	KL.
- • •	ND	ug/l	0310 09/06/96	0.07	EPA Method 508	KL:
Endrin	ND	23, 2				
Endrin aldehyde	ND	ug/l	0310 09/06/96	0.12	EPA Method 508	KL
Heptachlor	ND	ug/l	0310 09/06/96	0.035	EPA Method 508	KL
•		ug/l	0310 09/06/96	0.037	EPA Method 508	KL
Heptachlor epoxide	ND	ug/1	0310 03,00,10			
PCB-1016	ND	ug/l	0310 09/06/96	1.0	EPA Method 508	KL
PCB-1221	ND	ug/1 .	0310 09/06/96	1.0	EPA Method 508	KL.
· · · · · · · · · · · · · · · · · · ·		/2	0310 09/06/96	1.0	EPA Method 508	KI.
PCB-1232	ND .	ug/l	0310 09/06/96	1.0	Bry Nection 100	
PCB-1242	ND	ug/l	0310 09/06/96	1.0	EPA Method 508	KL
PCB-1248	ND	ug/l	0310 09/06/96	1.0	EPA Method 508	KI.
FCD-1210			/25/25		EPA Method 508	KL
PCB-1254	ND	ug/l	0310 09/06/96	1.0	EFA NECTION 300	
PCB-1260	ND	ug/l	0310 09/06/96	1.0	EPA Method 508	KL
	ND	ug/l	0310 09/06/96	2.8	EPA Method 508	KT
Toxaphene	444				MM 10-11-3 FAF 4	יעי
2,4,5-TP (Silvex)	ND	ug/l	1741 09/04/96	1.7	EPA Method 515.1	ΚI
2,4 Dichlorophenoxyacetic acid						דע
Acido 2,4-Diclorofenoxiacetico	ND	ug/l	1741 09/04/96	12	EPA Method 515.1	KI

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 4 of 17

					3	
PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Methoxychlor		•				
Metoxicloro	ND	ug/l	0310 09/06/96	2.0	EPA Method 508	KL
Acenaphthene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Acenaphthylene	•				•• .,	
Acenaftileno	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLi
Acrolein						
Acroleina	ND	ug/l	1436 08/23/96	50	EPA Method 524	KLF
Acrylonitrile						
Acrilonitrilo	ND	ug/l	1436 08/23/96	20	EPA Method 524	KLI
Anthracene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL:
Benzene						
Benceno	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Benzidine						
Bencidina	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Benzo(a) anthracene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLF
Benzo(a)pyrene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
Benzo(b) fluoranthene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KIT
Benzo(ghi)perylene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLI
Benzo(k) fluoranthene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLi
Bis (2-chloroethyl) ether						
Eter Bis(2-Cloroetilico)	ND	ug/l	2308 09/05/96	14	EPA Method 525	KIŢ
Bis (2-chloroethoxy) methane						
Metano Bis(2-Cloroetoxio)	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
Bis(2-chloroisopropyl)ether	ND	ug/l	2308 09/05/96	14	EPA Method 525	KIJ
4-Bromophenyl phenyl ether	ND	ug/l	2308 09/05/96	14	RPA Method 525	KIT
Bis (2-ethylhexyl) phthalate	ND	ug/l	2308 09/05/96	14	BPA Method 525	KLE
may or a						

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 5 of 17

·					-	
PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Bromoform	NTD	ug/l	1436 08/23/96	10	EPA Method 524	KLE
Bromomethane	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL₽
4-Chlorophenyl phenyl ether	NTD	ug/l	2308 09/05/96	14	EPA Method 525	KLE
Benzyl butyl phthalate	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Carbon Tetrachloride	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL
4-Chloro-3-methylphenol	ND	ug/l	2308 09/05/96	27	EPA Method 525	KLL
Chlorobenzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Chloroethane	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KL
2-Chloroethylvinyl ether						
Eter 2-Cloroetilvinilo	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Chloroform	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Chloromethane						
Clorometano	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KLE
2-Chloronaphthalene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
2-Chlorophenol						
2-Clorofenol	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
Chrysene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLF
Dibenzo(a,h)anthracene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Dibromochloromethane	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,3-Dichlorobenzene		,,		• •	PD2 W-44-4 505	KLE
1,3-Diclorobenceno	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE.
1,2-Dichlorobenzene		4.5				***
1,2-Diclorobenceno	ND .	ug/l	2308 09/05/96	14	EPA Method 525	KLE
1,4-Dichlorobenzene	•					
1,4-Diclorobenceno	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
3,3'-Dichlorobenzidine			0300 00/07/05		EDB Washed 525	KLF
3,3'-Diclorobencidina	ND	ug/l	2308 09/05/96	27	EPA Method 525	KLE

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 6 of 1

PARAMETER	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
PARAMETRO	KESULIADOS	UNIDADES	MANITARDO		1101000	
Bromodichloromethane	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KL
1,1-Dichloroethane		ug/l	1436 08/23/96	5.0	EPA Method 525	KL
1,1-Dicloroetano	ND	ug/ I	1436 06/23/30	3.0	Tra recinda 323	
1,2-Dichloroethane					,	
1,2-Dicloroetano	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL.
1,1-Dichloroethene						
1,1-Dicloroeteno	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KL
trans-1,2-Dichloroethene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL.
2,4-Dichlorophenol						
2,4-Diclorofenol	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Dichlorodiflouromethane	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KL:
1,2-Dichloropropane						
1,2-Dicloropropano	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KI.
cis-1,3-Dichloropropene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL.
Diethyl phthalate	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL ä
2,4-Dimethylphenol						
2,4-Dimetilfenol	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL:
Dimethyl phthalate	ND	ug/1	2308 09/05/96	14	EPA Method 525	KL
Di-n-butylphthalate	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Di-n-octylphthalate	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
2-Methyl-4,6-dinitrophenol	NTD .	ug/l	2308 09/05/96	68	EPA Method 525	KL
2,4-Dinitrophenol						
2,4-Dinitrofenol	ND	ug/l	2308 09/05/96	68	EPA Method 525	KL
2,4-Dinitrotoluene						
2,4-Dinitrotolueno	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL:
2,6-Dinitrotoluene						
2,6-Dinitrotolueno	ND	ug/l	2308 09/05/96	. 14	EPA Method 525	KL:

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 7 of 1/

PARAMETER	RESULTS	UNITS	ANALYZED	MAL	METHOD	BY PC
PARAMETRO	RESULTADOS	UNIDADES	ANALIZADO		METODO	PC
1,2-DPH (as azobenzene)	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLi
Ethyl benzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL:
Fluoranthene	ND .	ug/l	2308 09/05/96	14	EPA Method 525	ΚΙĽ
Fluorene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLI
Hexachlorobenzene	ND	ug/l	2308 09/05/96	14	EPA Method 525	ΚΙΔ
Hexachlorobutadiene Hexaclorobutadieno	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
Hexactoropucadieno	ND	-3/ -				
Hexachlorocyclopentadiene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KIL
Hexachloroethane	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLi
Indeno(1,2,3-cd)pyrene	NTD	ug/l	2308 09/05/96	14	EPA Method 525	KL
Isophorone	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLI
Methylene Chloride	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLI
Naphthalene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLI
Nitrobenzene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLi
2-Nitrophenol 2-Nitrofenol	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL
4-Nitrophenol 4-Nitrofenol	ND	ug/l	2308 09/05/96	68	EPA Method 525	KLi
N-nitrosodimethylamine	ND	ug/1	2308 09/05/96	14	EPA Method 525	KL
N-Nitrosodi-n-propylamine	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLI
N-nitrosodiphenylamine (as DPA)	ND	ug/l	2308 09/05/96	14	EPA Method 525	KL:
Pentachlorophenol	ND	ug/l	2308 09/05/96	68	EPA Method 525	KL
Phenanthrene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLI
Phenol	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLī

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 8 of 17

					_	
PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PO
Pyrene	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
1,2,4-Trimethylbenzene 1,2,4-Trimetilbenceno	ND	ug/1	1436 08/23/96	5.0	EPA Method 624	KLF
1,1,2,2-Tetrachloroethane	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,1,2,2-Tetracloroetano Tetrachloroethene	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KLE
Toluene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,2,4-Trichlorobenzene 1,2,4-Triclorobenceno	ND	ug/1	2308 09/05/96	14	EPA Method 525	KLP
1,1,1-Trichloroethane 1,1,1-Tricloroetano	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,1,2-Trichloroethane 1,1,2-Tricloroetano	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLF
Trichloroethene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Trichlorofluoromethane	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLB
2,4,6-Trichlorophenol 2,4,6-Triclorofenol	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
Vinyl Chloride	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
trans-1,3-Dichloropropene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLF
1,1,1,2-Tetrachloroethane 1,1,1,2-Tetracloroetano	ND	ug/l	1436 08/23/96	5.0	EPA Method 624	KIÆ
2,4,5-Trichlorophenol 2,4,5-Triclorofenol	ND	ug/l	2308 09/05/96	14	EPA Method 625	KTÆ
2,2-Dichloropropane 2,2-Dicloropropano	ND	ug/1	1436 08/23/96	5.0	EPA Method 524	KTE
1,1-Dichloropropene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 9 of 17

PARAMETER	RESULTS	UNITS	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
PARAMETRO	RESULTADOS	UNIDADES	MARTITADO		METODO	10
1,3-Dichloropropane		/1	1436 08/23/96	5.0	EPA Method 524	KLE
1,3-Dicloropropano	ND	ug/l	1436 08/23/30	3.0	BER MECHOO 324	NA.
Styrene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Isopropyl Benzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL
n-Propylbenzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Bromobenzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,3,5-Trimethylbenzene		(2	1436 00/23/06	. 0	EPA Method 524	KLŁ
1,3,5-Trimetilbenceno	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	Ku
2-Chlorotoluene						w
2-Clorotolueno	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KL
4-Chlorotoluene		42	1436 08/23/96	5.0	EPA Method 524	KLE
4-Clorotolueno	ND	ug/l	1436 08/23/96	5.0	EFR Mechod 524	na.
tert-Butylbenzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLž
sec-Butylbenzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLI
p-Isopropyltoluene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLĖ
1,3-Dichlorobenzene					nn washad 504	KLE
1,3-Diclorobenceno	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
n-Butylbenzene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,2-Dichlorobenzene			(52/05	5.0	EPA Method 524	KLE
1,2-Diclorobenceno	ND	ug/l	1436 08/23/96	5.0	EFA MECHOO 341	
1,2-Dibromo-3-chloropropane	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLÆ
1,2,4-Trichlorobenzene						WI F
1,2,4-Triclorobenceno	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
Hexachlorobutadiene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLF
Naphthalene	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLE
1,2,3-Tichlorobenzene		(3	1436 08/23/96	5.0	EPA Method 524	KLE
1,2,3-Ticlorobenceno	ND	ug/l	1430 NS/43/30	5.0	BEE HELING JAT	

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 10 of 17

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Carbofuran	ND	ug/l	2308 09/05/96	14	EPA Method 525	KLE
Methyl Isobutyl Ketone	ND	ug/l	1436 08/23/96	5.0	EPA Method 624	KLE
Methyl Ethyl Ketone	ND	ug/l	1436 08/23/96	50	EPA Method 624	KL
1.4-Dichlorobenzene						
1,4-Diclorobenceno	ND	ug/l	1436 08/23/96	5.0	>	KLB
Xylenes	ND	ug/l	1436 08/23/96	5.0	EPA Method 524	KLS
1,2-Dibromo-3-chloropropane DBCP	ND	ug/l	1238 08/29/96	0.2	EPA Method 504	KLE
Alachlor	ND	ug/l	0310 09/06/96	2.0	EPA Method 507	KLE
Atrazine	ND	ug/l	0310 09/06/96	3.0	EPA Method 507	KL≅
Dibromomethane	ND	ug/l	1436 08/23/96	5.0		KLB
Cis-1,2-Dichloroethene	ND	ug/l	1436 08/23/96	5.0		KLE
Ethylene dibromide (EDB)	ND	ug/l	1238 08/29/96	0.05	EPA Method 504	KLE
Endothall	ND	ug/l	0811 09/06/96	100	EPA Method 548	KLB
Simazine	ND	ug/l	0310 09/06/96	4.0	EPA Method 507	KLB

Sample Preparation Steps for R15160

Total Polychlorinated Biphenyls	Verified	ppm	0310 09/06/96	EPA Method 508 KLE	ļ
Fax This Report AS Soon As DONE!	FAXED		16:2509/06/96		
Haloacetic Acids (HAAS)	Verified		1641 09/05/96	EPA Method 552 KLB	į
Haloacetic Acids Extraction	5/100	mls/mls	1400 09/03/96	BPA Method 552 LMB	J
BDB and DBCP Analysis by GC/ECD	Verified		1238 08/29/96	EPA Method 504 KLB	ţ
NP Pesticides Analysis	Verified		0310 09/06/96	EPA Method 507 KLB	j
Method 515 Herbicides	Verified		1741 09/04/96	BPA Method 515 KLB	ļ
Endothall Analysis by GC/ECD	Verified		0811 09/06/96	EPA Method 548 KLB	J
Esterification of Sample		· •			
Esterificacion del Exracto	10/800	mls/mls	1400 09/03/96	EPA Method 515.1 LMB)
Liquid-Liquid Extraction, BNA					
Extraccion de Liquido/Liquido	1/740	ml/ml	1700 08/26/96	EPA Method 3520 PCT	:
 Liquid-Liquid Extr. W/Hex Exch.					
Extraccion de L/L con cambio Hex	1/860	mls/mls	1000 08/28/96	EPA Method 508 LMB	J
			·~		

Analytical Chemistry • Utility Operations

R15160 Continued Continuacion

Page 17 of 17

PARAMETER	RESULTS	UNITS	ANALYZED	MAL	METHOD	ВУ
PARAMETRO	RESULTADOS	UNIDADES	ANALIZADO		METODO	PC

^{&#}x27; BPA Method 8270 internal standard recovery low due to matrix effects. Quantitative results are estimated.

MAL is our Minimum Analytical Level/Minimum Quantitation Level. The MAL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL).

Our analytical result must be above this MAL before we report a value in the "Results" column of our report. Otherwise, we report ND (Not Detected above MAL), because the result is "<" (less than) the number in the MAL column.

"MAL" es nuestro Nivel Minimo Analitico/Nivel Cuatitativo Minimo. El "MAL" tomo en consideracion el Limite Deteccion del Instrumento (Instrument Detection Limit-IDL), el Limite Deteccion de Metodo (Method Detection Limit-MDL), y el Limite Deteccion Practico (Pratical Detection Limit-PDL), y cualquier diluciones y/o concentrationes llevado a cabo durante la preparacion de la muestra.

Nuestro resultado analítico de las muestras tienen que ser mayor del "MAL" antes que entregamos un valor in la columna "Resultados" (Results) en nuestro reporte. Si no, se reportarara "ND" Nada Dectado mayor del "MAL" (Not detected above MAL), porque el resultado es menos que "<" (less than) el numero reportado bajo la columna "MAL".

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

. H. Whiteside. Ph.D.. President

Note: Pages 11,12,13,14,15,16 remain These pages are and ata only.

CHEMICAL ANALYSIS

(1)	Location:
	Water Treatment Plant No. 1 Well Site (R.O. Pilot Plant Location)
(2)	Sampling Point:

(3) Date:

7/1/96 (Unfiltered)

Well Head

(4) Analysis:

THM Formation Potential

TOX Formation Potential

HAA5 Formation Potential

Analytical Chemistry • Utility Operations

· Haallahaldahlahlaaddi

NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris

Sample Identification: WWTP1 Well Site1 WELL WATER

Identificacion de Muestra

Collected By: David Garza Jr.

Colectado Por

Date & Time Taken: 07/01/96 1600

Tiempo y Fecha Tomado

Other Data:

Otros Datos

After Superchlorination

Sample Matrix: Aqueous Liquid

Report Date: 07/18/96

No. de Muestra

Received: 07/02/96

Recibido

Client: NRS

Cliente

Page 1 of 2

TEST REPORT: R00001

DEPTIMED I

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Haloacetic Acid Formation Pot.	ND	ug/l	2251 07/16/96	1		КВ
TOX Formation Potential	0.11	mg/l	1906 07/16/96	.01		JWE
THM Formation Potential	26	ug/l	1416 07/11/96	1		КВ

MAL is our Minimum Analytical Level/Minimum Quantitation Level. The MAL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL).

Our analytical result must be above this MAL before we report a value in the "Results" column of our report. Otherwise, we report ND (Not Detected above MAL), because the result is "<" (less than) the number in the MAL column.

"MAL" es nuestro Nivel Minimo Analitico/Nivel Cuatitativo Minimo. El "MAL" tomo en consideracion el Limite Deteccion del Instrumento (Instrument Detection Limit-IDL), el Limite Deteccion de Metodo (Method Detection Limit-MDL), y el Limite Deteccion Practico (Pratical Detection Limit-PDL), y cualquier diluciones y/o concentrationes llevado a cabo durante la preparacion de la

Nuestro resultado analítico de las muestras tienen que ser mayor del "MAL" antes que entregamos un valor in la columna "Resultados" (Results) en nuestro reporte. Si no, se reportarara "ND" Nada Dectado mayor del "MAL" (Not detected above MAL), porque el resultado es menos que "<" (less than) el numero reportado bajo la columna "MAL".

Analytical Chemistry • Utility Operations

R00001 Continued Continuacion

Page 2 of 2

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval c Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

C. H. Whiteside, Ph.D., President

CHEMICAL ANALYSIS

Location:
Water Treatment Plant No. 1 Well Site (R.O. Pilot Plant Location)
Sampling Point:
Permeate (Product Water) from R.O. Pilot Plant
Date:
7/1/96
Analysis:

Anions and Cations

Analytical Chemistry • Utility Operations

Amount: 50

Amount: 50

Amount: 50

Amount: 338

Handbaledaladalalaandalal

NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris

Sample Identification: WWTP1 Well Site1 PERMEATE WTR.

Collected By: David Garza Jr.

Date & Time Taken: 07/01/96 1615

Bottle Data:

#03 - Unpreserved Glass

#04 - Unpreserved Glass

#05 - Unpreserved Glass

#06 - Unpreserved Glass

#07 - Unpreserved Glass

#08 - Unpreserved Glass

#09 - Unpreserved Glass

#10 - Unpreserved Glass

#11 - Unpreserved Glass

#12 - Unpreserved Glass

#13 - Unpreserved Glass

#01 - H2SO4 Preserved Glass with a Teflon Lid

#02 - H2SO4 Preserved Glass with a Teflon Lid

#12 - HNO3 Preserved Sample (Plastic or Glass)

#13 - HNO3 Preserved Sample (Plastic or Glass)

#14 - **HNO3** Preserved Sample (Plastic or Glass)

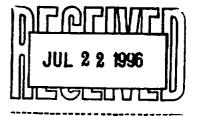
#15 - ICP Digestion

Derived in lab from: 13 (50 ml)

#16 - ICP Digestion

Derived in lab from: 13 (50 ml)

#17 - ICP Digestion


Derived in lab from: 13 (50 ml)

#18 - Glass Flask: NH3 Distillation

Derived in lab from: 02 (500 ml)

Sample Matrix: Aqueous Liquid

 Page 1 of 6
TEST REPORT: R14687

Client: NRS

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	ВУ
Chloride	17	mg/l	1600 07/03/96	0.10	EPA Method 325.2	SK.
Ammonia Nitrogen	ND	mg/L	1330 07/09/96	0.034	EPA 350.1	SK:
Nitrate - Nitrite	ND	mg/l	1300 07/08/96	0.20	EPA Method 353.1	SK.
Total Organic Carbon	0.46	mg/l	2300 07/12/96	.3	EPA 415.2	JW:

Analytical Chemistry • Utility Operations

R14687 Continued

Page 2 of 6

•						
PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
Alkalinity	16	mg/l	1600 07/05/96	2	EPA Method 310.1	BRE
Cation-Anion Balance	1.01 / 0.742	meq/meq	17:3107/08/96			WJI
Carbon Dioxide	22.4	ppm	1023 07/08/96	0.5	APHA Meth 4500-C02 D	NGT
Carbonate	ND	ppm	1023 07/08/96	0.5	APHA Meth 4500-CO2 D	NGT
Specific Conductance at 25 C	112	umho/cm	1635 07/01/96		EPA Method 120.1	DG.
Fluoride	ND	mg/l	0800 07/05/96	. 2	EPA Method 340.2	CWT
Bicarbonate	16 .0	ppm	1023 07/08/96	0.5	APHA Meth 4500-CO2 D	NGT
Hydroxide	ND	mg/l	1023 07/08/96	0.5	APHA 4500-CO2 D	NGT
Sulfate	ND	mg/l	1400 07/06/96	5	EPA Method 375.4	WM E
Total Dissolved Solids	110	mg/l	1600 07/13/96	10	EPA Method 160.1	BRE
emperature	28	degrees C	1640 07/01/96	.1	EPA Method 170.1	ÐGJ
pH (On Site)	5.3	SU	1640 07/01/96		EPA Method 150.1	DGJ
Total Barium	14	ug/l	1144 07/08/96	10	EPA Method 200.7	GD(
Total Calcium	0.66	mg/l	1242 07/05/96	0.05	EPA Method 200.7	GDG
Total Iron	0.062	mg/l	1242 07/05/96	0.05	EPA Method 200.7	GDG
Total Potassium	ND	mg/1 .	1242 07/05/96	2	EPA Method 258.1	GDG
Total Magnesium	0.16	mg/l	1242 07/05/96	0.1	EPA Method 6010	GD C
Total Manganese	ND	mg/l	1242 07/05/96	0.03	EPA Method 200.7	GD G
Total Sodium	22	mg/l	1242 07/05/96	1	EPA Method 6010	GD G
Silicon (as Silica, SiO2)	0.73	mg/l	0905 07/09/96	0.1	EPA Method 200.7	GDG
Total Strontium	ND	ug/l	1023 07/09/96	10	EPA Method 200.7	GDG
Total Coliform Plate Count	1	#/100 mls	1630 07/03/96	1	APHA Method 9222 B	LMP
Sulfide	ND	mg/l	1100 07/05/96	2	EPA Method 376.1	CWI

Continued

Analytical Chemistry • Utility Operations

R14687 Continued

Sample Preparation Steps for R14687

Page 3 of 6

Fax This Repo	ort AS Soon As DON	E! FAX	ED			17:4607/1	5/96			
Ammonia Dist			/500	m1/s	nl	1000 07/0	8/96	EPA I	Method 350.2	RSV
	tion - Liquid	50/	50 S/B/A	m1/t	n1	0600 07/0	3/96	EPA I	Method 200.7	KLC
	rm Plate Ct Starte	d STA	RTED			1745 07/0	2/96			LMF
	Qual	ity As	suranc	e for	the	SET with	Sample	R14687		
									• • • • • • •	
Sample #	Description	Result	Units		Value nlor:	Spk Conc. i de	Percent	Time	Date >	Ву
	Standard	28	ppm	25			112	1600	07/03/96	Si
	Standard	50	ppm	50			100	1600	07/03/96	SY
	Standard	50	ppm	50			100	1600	07/03/96	Sł
325901	Duplicate	34	mg/l	36			6	1600	07/03/96	SY
325901	Spike		8			20	85	1600	07/03/96	SF
				Ammon	ia N	itrogen				
	Blank	<0.05	ppm			-		1330	07/09/96	4S
	Blank	<0.05	ppm					1330	07/09/96	SE
	Standard	3.0	ppm	3.0			100	1330	07/09/96	SK
	Standard	3.0	ppm	3.0			100	1330	07/09/96	SF
	Standard	3.0	ppm	3.0			100	1330	07/09/96	SY
	Standard	3.0	ppm	3.0			100	1330	07/09/96	sk
R14686	Duplicate	ND	mg/L	ND			0	1330	07/09/96	SF
P9431	Spike		3. %			2.0	65	1330	07/09/96	Si
R14686	Spike		*			2.0	80	1330	07/09/96	SF
]	Nitrat	e -	Nitrite			- 4 /	
	Standard	1.9	ppm	2.0			95	1300	07/08/96	Sk
	Standard	2.0	ppm	2.0			100	1300	07/08/96	Sk
	Standard	2.0	ppm	2.0			100	1300	07/08/96	SI
	Standard	2.0	ppm	2.0			100	1300	07/08/96	SF
	Standard	2.0	ppm	2.0			100	1300	07/08/96	Sł
325840	Duplicate	0.68	mg/kg	0.68			0	1300	07/08/96	Si
325943	Duplicate	ND	mg/1	ND			0	1300	07/08/96	SI
P9537	Duplicate	1.0	mg/1	1.1			10	1300	07/08/96	Sř
R14687	Duplicate	ND	mg/l	ND			0	1300	07/08/96	SF
P9537	Spike		*			1.0	75	1300	07/08/96	SF
R14687	Spike		*			4.43	95	1300	07/08/96	Sł
			т	otal C	rgan	ic Carbon	1			
	Standard	10.0	mg/l	10.0			100	2300	07/12/96	J1
	Standard	10.0	mg/l	10.0			100	2300	07/12/96	Л.
R14687	Duplicate	0.50	mg/l	0.42			17	2300	07/12/96	Jŀ
R14687	Spike		mg/l			10.0	101	2300	07/12/96	JV.

Continued

Analytical Chemistry • Utility Operations

R14687 Continued

Page 6 of 6

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	 .		
R14687	Duplicate	1.0	mg/l	-	apk conc.		Time	Date	Ву
	-	1.0	3.	0.45		76	0905	07/09/96	GI.
R14687	Spike		ppm		5.0	90	0905	07/09/96	GI
				Total Str	ontium				•
	Blank	<0.010	ppm				1023	07/09/96	GI
	Standard	1.0	ppm	1.0		100	1023	07/09/96	GI
	Standard	0.52	ppm	0.50		104	1023	07/09/96	GI
	Standard	0.50	ppm	0.50		100	1023	07/09/96	GI
R14687	Duplicate	ND	ug/l	ND		0	1023	07/09/96	GL
R14687	Spike		ррm		0.50	113	1023	07/09/96	GL
			Tota:	l Coliform	Plate C	ount			
	Blank	<1	#/100 M	LS			1630	07/03/96	Lħ:
R14687	Duplicate	1	#/100 M	LS 1		0	1630	07/03/96	L
				Sulfic	de			, , , , ,	_
	Blank	<2	mg/l				1100	07/05/96	Cī.
R14686	Duplicate	ND	mg/1	ND		0	1100	07/05/96	Cř

is Estimated Quantitation Limit. The EQL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL). Our analytical result must be above our EQL before we report a value for any parameter. Otherwise, we report ND (Not Detected above EQL).

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

Note: Pages 4,5 removed.

These pages are QA data only.

C. H. Whiteside, Ph.D., President

usld L'Coole

CHEMICAL ANALYSIS

(1)	Location:		

Water Treatment Plant No. 1 Well Site (R.O. Pilot Plant Location)

(2) Sampling Point:

Permeate (Product Water) from R.O. Pilot Unit

(3) Date:

8/15/96

(4) Analysis:

Synthetic Organic Chemicals (SOC's)

Volatile Organic Chemicals (VOC's)

Total Organic Carbon (TOC's)

Analytical Chemistry • Utility Operations

Harifoldeldellandd

NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris Page 1 of 17 TEST REPORT: 215161

Client: NRS

Sample Identification: Permeate RR Identificacion de Muestra Collected By: David Garza Jr.

Colectado Por

Date & Time Taken: 08/15/96 1430

Tiempo y Fecha Tomado

Bottle Data:

Datos de Recipientes:

#01 - Unpreserved Glass

#01 - Sin Preservativo Vidrio

#02 - Unpreserved Glass

#02 - Sin Preservativo Vidrio

#03 - Unpreserved Glass

#03 - Sin Preservativo Vidrio

#07 - 40 ml glass Vial for VOA (Zero Headspace)

#07 - Botellita de vidrio de 40 ml con una Tapadera de Teflon (Sin

#08 - 40 ml glass Vial for VOA (Zero Headspace)

#08 - Botellita de vidrio de 40 ml con una Tapadera de Teflon (Sin

#09 - 40 ml glass Vial for VOA (Zero Headspace)

#09 - Botellita de vidrio de 40 ml con una Tapadera de Teflon (Sin

#04 - 1+1 H2SO4 40 ml Glass Vial

#04 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#05 - 1+1 H2SO4 40 ml Glass Vial

#05 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#06 - 1+1 H2SO4 40 ml Glass Vial

#06 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#10 - 2 ml Autosampler Vial Amount: 1.000

Derived in lab from: 01 (860.000 ml)

#11 - 2 ml Autosampler Vial Amount: 10.000

Derived in lab from: 01 (890.000 mls)

#12 - 2 ml Autosampler Vial Amount: 10.000

Derived in lab from: 02 (595.000 mls)

#13 - 40 ML VIAL EXTRACT Amount: 5.000

Derived in lab from: 02 (100.000 mls)

Sample Matrix: Aqueous Liquid

No. de Muestra Recibido Cliente

PARAMETER RESULTS UNITS ANALYZED MAL METHOD BY **PARAMETRO** RESULTADOS UNIDADES ANALIZADO **METODO** PC Dalapon ND ug/1 1816 09/04/96 58 EPA Method 515.1

REP 9 1936

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 2 of 17

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY POR
Dinoseb	ND	ug/l	1816 09/04/96	7.0	EPA Method 515.1	KLB
Bpichlorohydrin	ND	mg/l	1100 09/04/96	100		KLB
Bromochloroacetic acid	ND	ug/l	1715 09/05/96	1.0	EPA Method 552	KLB
Dibromoacetic acid	ND	ug/l	1715 09/05/96	10	EPA Method, 552	KLB
Dichloroacetic acid	ND	ug/l	1715 09/05/96	1.0	EPA Method 552	KLB
Bromoacetic acid	ND	ug/l	1715 09/05/96	1.0	BPA Method 552	KLB
Chloroacetic acid	ND	ug/l	1715 09/05/96	1.0	EPA Method 552	KLB
Trichloroacetic acid	ND	ug/l	1715 09/05/96	10	EPA Method 552	KLB
Total Organic Carbon	0.59	mg/l	2200 08/20/96	.3	EPA 415.2	JWB
Total Organic Halogens, Liquid	0.04	mg/l	1430 08/22/96	0.01	EPA Method 9020A	JWB
1,2-Dibromoethane	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLB
Bromochloromethane	ND	ug/l	1304 08/23/96	5.0		KLB
1,2,3-Trichloropropane 1,2,3-Tricloropropano	ND	ug/l	1304 08/23/96	5.0	EPA Method 624	KLB
Aldrin Aldrin	ND	ug/l	0340 09/06/96	0.034	EPA Method 508	KLB
Alpha-BHC Alfa-BHC (Benceno Exacloruro	ND	ug/l	0340 09/06/96	0.035	EPA Method 508	KLB
Beta-BHC Beta-BHC	ND	ug/l	0340 09/06/96	0.023	EPA Method 508	KLB
Delta-BHC Delta-BHC	ND	ug/l	0340 09/06/96	0.05	EPA Method 508	KLB
Gamma-BHC (Lindane) Gamma-BHC	ND	ug/1	0340 09/06/96	0.04	BPA Method 508	KLB
Chlordane Clordano	ND	ug/l	0340 09/06/96	0.14	BPA Method 508	KLB

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 3 of 17

PARAMETER	RESULTS	UNITS	ANALYZED	MAL	METHOD	B3
PARAMETRO	RESULTADOS	UNIDADES	ANALIZADO		METODO	PC
4,4-DDD		•				
4,4 - DDD	ND	ug/l	0340 09/06/96	0.1	EPA Method 508	KL
4,4-DD2						
4,4 - DDE	ND	ug/l	0340 09/06/96	0.04	EPA Method 508	KL
4,4-DDT 4,4 - DDT	NTD	ug/l	0340 09/06/96	0.1	FPA Method 508	KL
Dieldrin	ND	ug/l	0340 09/06/96	0.02	EPA Method 508	KL
Endosulfan I	ND	ug/l	0340 09/06/96	0.1	EPA Method 508	KL
Endosulfan II	ND	ug/l	0340 09/06/96	0.04	EPA Method 508	KL.
Endosulfan sulfate	ND	ug/l	0340 09/06/96	0.1	EPA Method 508	KL
The short on	ND.	ug /1	0340 09/06/96	0.06	DDA Mothed 500	9 7 :
Endrin	ND	ug/l	0340 09/06/96	0.06	EPA Method 508	KL
Endrin aldehyde	ND	ug/l	0340 09/06/96	0.1	EPA Method 508	KT:
Heptachlor	ND	ug/l	0340 09/06/96	0.03	EPA Method 508	KL
		- 3 , -				
Heptachlor epoxide	ND	ug/l	0340 09/06/96	0.032	EPA Method 508	KL
PCB-1016	ND	ug/l	0340 09/06/96	1.0	EPA Method 508	KL
PCB-1221	ND	ug/l	0340 09/06/96	1.0	EPA Method 508	KL:
PCB-1232	ND	ug/l	0340 09/06/96	1.0	EPA Method 508	KL.
			0340 00/05/05		DDS Marked Con	w. ·
PCB-1242	ND	ug/1	0340 09/06/96	1.0	EPA Method 508	KL:
PCB-1248	ND	ug/1	0340 09/06/96	1.0	EPA Method 508	KL:
PCB-1254	ND	ug/l	0340 09/06/96	1.0	EPA Method 508	KLi
FCD-1454		-3, -	0000 00,00,00		- '	
PCB-1260	ND	ug/l	0340 09/06/96	1.0	EPA Method 508	KL.
Toxaphene	ND	ug/l	0340 09/06/96	2.4	EPA Method 508	KL:
-						
2,4,5-TP (Silvex)	MD	ug/l	1816 09/04/96	1.7	BPA Method 515.1	KL:
2,4 Dichlorophenoxyacetic acid	and the second second	week and the second			•	
Acido 2,4-Diclorofenoxiacetico	ND	ug/l	1816 09/04/96	12	EPA Method 515.1	KL:

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 4 of 17

PARAMETER	RESULTS	UNITS	ANALYZED	MAL	METHOD	ВУ
PARAMETRO	RESULTADOS		ANALIZADO		METODO	PC
Methoxychlor						
Metoxicloro	ND	ug/l	0340 09/06/96	1.8	EPA Method 508	KLi
Acenaphthene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL:
Acenaphthylene					 .,	
Acenaftileno	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Acrolein			1304 08/23/96	50	EPA Method 524	KL:
Acroleina	ND	ug/l	1304 08/23/98	50	BFA MELNOG 324	ALL.
Acrylonitrile		(1)	1304 08/23/96	20	EPA Method 524	KI.:
Acrilonitrilo	ND	ug/l	1304 08/23/36	20	BIA NECHOO 521	****
Anthracene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Benzene		45	00/03/05	r 0	EPA Method 524	KLŀ
Benceno	ND	ug/l	1304 08/23/96	5.0	EPA MECINOG 524	KLA
Benzidine						
Bencidina	ND	ug/l	2348 09/05/96	12	EPA Method 525	KITī
Benzo(a)anthracene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLJ
Benzo(a) pyrene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Benzo(b) fluoranthene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLì
Benzo(ghi)perylene	ND	ug/l	2348 09/05/96	12	BPA Method 525	KLi
Benzo(k)fluoranthene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Bis(2-chloroethyl)ether						
Bter Bis(2-Cloroetilico)	. ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Bis(2-chloroethoxy)methane					a e	
Metano Bis (2-Cloroetoxio)	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Bis(2-chloroisopropyl)ether	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLī
4-Bromophenyl phenyl ether	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Bis(2-ethylhexyl)phthalate	ND	ug/l	2348 09/05/96	12	BPA Method 525	KL

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 5 of 17^{3}

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Bromoform	ND	ug/l	1304 08/23/96	10	EPA Method 524	KL
Bromomethane	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL.
4-Chlorophenyl phenyl ether	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL:
Benzyl butyl phthalate	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL.
Carbon Tetrachloride	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL:
4-Chloro-3-methylphenol	ND	ug/l	2348 09/05/96	23	EPA Method 525	KL:
Chlorobenzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL.
Chloroethane	ND	ug/1	1304 08/23/96	5.0	EPA Method 524	KL
2-Chloroethylvinyl ether		/1	1304 08/23/96	5.0	EPA Method 524	Kt.i
Eter 2-Cloroetilvinilo	ND	ug/l	1304 00/23/30	5.0	BEA MECHOU 524	М
Chloroform	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
Chloromethane						97 .
Clorometano	ND	ug/1	1304 08/23/96	5.0	EPA Method 524	KL:
2-Chloronaphthalene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLi
2-Chlorophenol						
2-Clorofenol	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLi
Chrysene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Dibenzo(a,h)anthracene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KT:
Dibromochloromethane	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
1,3-Dichlorobenzene		/3	2348 09/05/96	12	EPA Method 525	KLi
1,3-Diclorobenceno	ND	ug/l	2340 03/03/30	**	TEN INCHAR 383	
1,2-Dichlorobenzene						***
1,2-Diclorobenceno	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
1,4-Dichlorobenzene						4
1,4-Diclorobenceno	ND	ug/l	2348 09/05/96	12	BPA Method 525	XL.
3,3'-Dichlorobenzidine	i i i i i i i i i i i i i i i i i i i	7 46 () ()				_
3,3'-Diclorobencidina	ND	ug/l	2348 09/05/96	23	EPA Method 525	KL

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 6 of 17

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS ~UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Bromodichloromethane	ND	ug/1 .	1304 08/23/96	5.0	EPA Method 524	KLE
1,1-Dichloroethane				i.		
1,1-Dicloroetano	ND	ug/l	1304 08/23/96	5.0	EPA Method 525	KLI
1,2-Dichloroethane	·				•• ••	
1,2-Dicloroetano	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
1,1-Dichloroethene						
1,1-Dicloroeteno	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
trans-1,2-Dichloroethene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
2,4-Dichlorophenol						
2,4-Diclorofenol	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLI
Dichlorodiflouromethane	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
1,2-Dichloropropane						W7.5
1,2-Dicloropropano	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
cis-1,3-Dichloropropene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
Diethyl phthalate	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL₽
2,4-Dimethylphenol						***
2,4-Dimetilfenol	ND	ug/1	2348 09/05/96	12	EPA Method 525	KLE
Dimethyl phthalate	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLE
Di-n-butylphthalate	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLE
Di-n-octylphthalate	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLE
2-Methyl-4,6-dinitrophenol	ND	ug/l	2348 09/05/96	58	EPA Method 525	KLE
2,4-Dinitrophenol						
2,4-Dinitrofenol	ND	ug/l	2348 09/05/96	58	EPA Method 525	KLE
2,4-Dinitrotoluene		/3	2348 09/05/96	12	RPA Method 525	KLE
2,4-Dinitrotolueno	ND	ug/l	2340 U3/U3/36	14	BEN PECHON 383	•
2,6-Dinitrotoluene	ND ·	ug/l	2348 09/05/96	12	BPA Method 525	KLE
2,6-Dinitrotolueno	MD .	ug/ 1	2010 03,00,30	~		

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 7 of 17

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
1,2-DPH (as azobenzene)	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL.
Ethyl benzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KIL
Pluoranthene	ND ·	ug/l	2348 09/05/96	12	EPA Method 525	KL
Pluorene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Hexachlorobenzene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Hexachlorobutadiene Hexaclorobutadieno	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLI
Hexachlorocyclopentadiene	ND .	ug/l	2348 09/05/96	12	EPA Method 525	KL.
Hexachloroethane	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLi
Indeno (1,2,3-cd) pyrene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Isophorone	ND	ug/l	2348 09/05/96	12	EPA Method 525	KL
Methylene Chloride	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL.
Naphthalene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLi
Nitrobenzene	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLJ
2-Nitrophenol 2-Nitrofenol	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLI
4-Nitrophenol 4-Nitrofenol	ND	ug/l	2348 09/05/96	58	EPA Method 525	KL
N-nitrosodimethylamine	ND	ug/1	2348 09/05/96	12	EPA Method 525	KIT
N-Nitrosodi-n-propylamine	ND	ug/l	2348 09/05/96	. 12	- EPA Method 525	KLF
N-nitrosodiphenylamine (as DPA)	ND	ug/l	2348 09/05/96	12	EPA Method 525	KIT
Pentachlorophenol	ND	ug/l	2348 09/05/96	58	EPA Method 525	KLŁ
Phenanthrene	NTD	ug/l	2348 09/05/96	12	EPA Method 525	KLi
Phenol	ND	ug/l	2348 09/05/96	12	RPA Method 525	KIŦ

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 8 of 17

PARAMETER PARAMETRO	RESULTS RESULTADOS	UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PO.
Pyrene	ND	ug/l .	2348 09/05/96	12	EPA Method 525	KLE
1,2,4-Trimethylbenzene 1,2,4-Trimetilbenceno	ND	ug/l	1304 08/23/96	5.0	EPA Method 624	KLE
1,2,4-11111001100110	•	_			 .,	
1,1,2,2-Tetrachloroethane		/3	1704 00/07/06	F 0		KILE
1,1,2,2-Tetracloroetano	ND	ug/1	1304 08/23/96	5.0	EPA Method 524	KIE
Tetrachloroethene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
Toluene	ND	ug/1	1304 08/23/96	5.0	EPA Method 524	KLE
1,2,4-Trichlorobenzene						
1,2,4-Triclorobenceno	ND	ug/l	2348 09/05/96	12	EPA Method 525	KIÆ
1,1,1-Trichloroethane						
1,1,1-Tricloroetano	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
1,1,2-Trichloroethane						
1,1,2-Tricloroetano	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
Trichloroethene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLF
Trichlorofluoromethane	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
2,4,6-Trichlorophenol						
2,4,6-Triclorofenol	ND	ug/l	2348 09/05/96	12	EPA Method 525	KLE
Vinyl Chloride	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
trans-1,3-Dichloropropene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLF
1,1,1,2-Tetrachloroethane						
1,1,1,2-Tetracloroetano	. ND	ug/l	1304 08/23/96	5.0	EPA Method 624	KLF
2,4,5-Trichlorophenol						
2,4,5-Triclorofenol	ND	ug/l	2348 09/05/96	12	EPA Method 625	KLE
2,2-Dichloropropane						
2,2-Dicloropropano	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLJ
1,1-Dichloropropene						
1,1-Dicloropropeno	ND	ug/l	1304 08/23/96	5.0	BPA Method 524	KLE
			**.			

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 9 of 17

PARAMETER	RESULTS	UNITS	ANALYZED	MAL	METHOD	BY PC
PARAMETRO	RESULTADOS	UNIDADES	ANALIZADO		METODO	PC
1,3-Dichloropropane		,	1201 02/02/05		DDS Washad FOA	w.,
1,3-Dicloropropano	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLI
Styrene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLi
Isopropyl Benzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL .
n-Propylbenzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLI
Bromobenzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
1,3,5-Trimethylbenzene						
1,3,5-Trimetilbenceno	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLE
2-Chlorotoluene						
2-Clorotolueno	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
4-Chlorotoluene						
4-Clorotolueno	ND	ug/1	1304 08/23/96	5.0	EPA Method 524	KII
tert-Butylbenzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLI
sec-Butylbenzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL:
p-Isopropyltoluene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
1,3-Dichlorobenzene						
1,3-Diclorobenceno	ND	ug/1	1304 08/23/96	5.0	EPA Method 524	KLI
n-Butylbenzene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLi
1,2-Dichlorobenzene						
1,2-Diclorobenceno	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
1,2-Dibromo-3-chloropropane	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
1,2,4-Trichlorobenzene						_
1,2,4-Triclorobenceno	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
Hexachlorobutadiene	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL
Naphthalene	N D	ug/l	1304 08/23/96	5.0	BPA Method 524	KL
1,2,3-Tichlorobenzene	<u> </u>	t.				
1,2,3-Ticlorobenceno	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KL

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 10 of 17 "

PARAMETER PARAMETRO	RESULTS RESULTADOS	-UNITS UNIDADES	ANALYZED ANALIZADO	MAL	METHOD METODO	BY PC
Carbofuran	ND	ug/l .	2348 09/05/96	12	EPA Method 525	KL
Methyl Isobutyl Ketone	NTD	ug/l	1304 08/23/96	5.0	EPA Method 624	KLE
Methyl Bthyl Ketone	ND ·	ug/1	1304 08/23/96	50	EPA Method 624	KL
1,4-Dichlorobenzene 1,4-Diclorobenceno	ND	ug/l	1304 08/23/96	5.0	→	KLI
Xylenes	ND	ug/l	1304 08/23/96	5.0	EPA Method 524	KLI
1,2-Dibromo-3-chloropropane DBCP	ND	ug/l	1303 08/29/96	0.2	EPA Method 504	KITI
Alachlor	ND	ug/l	0340 09/06/96	2.0	EPA Method 507	KīLi
Atrazine	ND	ug/l	0340 09/06/96	3.0	EPA Method 507	KL
Dibromomethane	ND	ug/l	1304 08/23/96	5.0		KI
Cis-1,2-Dichloroethene	ND	ug/l	1304 08/23/96	5.0		KLI
Ethylene dibromide (EDB)	ND	ug/l	1303 08/29/96	0.05	EPA Method 504	KLi
Endothall	ND	ug/l	0841 09/06/96	100	EPA Method 548	KLI
Simazine	ND	ug/l	0340 09/06/96	4.0	EPA Method 507	KŢ

Sample Preparation Steps for R15161

				. 	
Total Polychlorinated Biphenyls	Verified	ppm	0340 09/06/96	EPA Method 508	KL
Fax This Report AS Soon As DONE!	PAXED		16:2609/06/96		
Haloacetic Acids (HAA5)	Verified		1715 09/05/96	EPA Method 552	KLI
Haloacetic Acids Extraction	5/100	mls/mls	1400 09/03/96	EPA Method 552	LM
EDB and DBCP Analysis by GC/ECD	Verified		1303 08/29/96	BPA Method 504	KL
NP Pesticides Analysis	Verified		0340 09/06/96	EPA Method 507	KLI
Method 515 Herbicides	Verified		1816 09/04/96	EPA Method 515	KLi
Endothall Analysis by GC/ECD	Verified		0841 09/06/96	EPA Method 548	KLi
Esterification of Sample Esterificacion del Exracto	10/595	mls/mls	1400 09/03/96	EPA Method 515.1	1M
Liquid-Liquid Extraction, BNA Extraccion de Liquido/Liquido	1/860	ml/ml	1700 08/26/96	BPA Method 3520	PC
Liquid-Liquid Extr. W/Hex Exch.	- 1	-1 - /ml a	1000 08/28/96	EPA Method 508	LM
Extraccion de L/L con cambio Hex	1/890	mls/mls	2000 00,20,30		

Analytical Chemistry • Utility Operations

R15161 Continued Continuacion

Page 17 of 17 --

MAL is our Minimum Analytical Level/Minimum Quantitation Level. The MAL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL).

Our analytical result must be above this MAL before we report a value in the "Results" column of our report. Otherwise, we report ND (Not Detected above MAL), because the result is "<" (less than) the number in the MAL column.

"MAL" es nuestro Nivel Minimo Analitico/Nivel Cuatitativo Minimo. El "MAL" tomo en consideracion el Limite Deteccion del Instrumento (Instrument Detection Limit-IDL), el Limite Deteccion de Metodo (Method Detection Limit-MDL), y el Limite Deteccion Practico (Pratical Detection Limit-PDL), y cualquier diluciones y/o concentrationes llevado a cabo durante la preparacion de la muestra.

Nuestro resultado analítico de las muestras tienen que ser mayor del "MAL" antes que entregamos un valor in la columna "Resultados" (Results) en nuestro reporte. Si no, se reportarara "ND" Nada Dectado mayor del "MAL" (Not detected above MAL), porque el resultado es menos que "<" (less than) el numero reportado bajo la columna "MAL".

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

C. H. Whiteside, Ph.D., President

Notes: Pages 11,12,13,14,15, + 16 remai

These pages are QA data

only.

CHEMICAL ANALYSIS

(1)	Location:			
	Water Treatment Plant No.	1	Well Site (R.O.	Pilot Plant Location)

(2) Sampling Point:

Permeate (Product Water) from R.O. Pilot Plant

(3) Date:

7/1/96

(4) Analysis:

THM Formation Potential

TOX Formation Potential

HAA5 Formation Potential

Analytical Chemistry • Utility Operations

Hudhalalalalalala NRS Consulting Engineers P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris TEST REPORT: R00002

Page 1 of 2

Sample Identification: WWTP1 Well Site1 PERMEATE WTR.
Identificacion de Muestra
Collected By: David Garza Jr.

Colectado Por

Date & Time Taken: 07/01/96 1615

Tiempo y Fecha Tomado

Other Data: Otros Datos

After Superchlorination

Sample Matrix: Aqueous Liquid

Report Date: 07/18/96

No. de Muestra

Received: 07/02/96

Recibido

Client: NRS Cliente

PARAMETER RESULTS UNITS ANALYZED MAL METHOD BY **PARAMETRO** RESULTADOS UNIDADES ANALIZADO METODO PO Haloacetic Acid Formation Pot. ua/1 2251 07/16/96 KR TOX Formation Potential 0.07 1906 07/16/96 mq/10 01 JWF THM Formation Potential NT) ug/l 1416 07/11/96 JWF

MAL is our Minimum Analytical Level/Minimum Quantitation Level. The MAL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL).

Our analytical result must be above this MAL before we report a value in the "Results" column of our report. Otherwise, we report ND (Not Detected above MAL), because the result is "<" (less than) the number in the MAL column.

"MAL" es nuestro Nivel Minimo Analitico/Nivel Cuatitativo Minimo. El "MAL" tomo en consideracion el Limite Deteccion del Instrumento (Instrument Detection Limit-IDL), el Limite Deteccion de Metodo (Method Detection Limit-MDL), y el Limite Deteccion Practico (Pratical Detection Limit-PDL), y cualquier diluciones y/o concentrationes llevado a cabo durante la preparacion de la muestra.

Nuestro resultado analítico de las muestras tienen que ser mayor del "MAL" antes que entregamos un valor in la columna "Resultados" (Results) en nuestro reporte. Si no, se reportarara "ND" Nada Dectado mayor del "MAL" (Not detected above MAL), porque el resultado es menos que "<" (less than) el numero reportado bajo la columna "MAL".

Analytical Chemistry • Utility Operations

R00002 Continued Continuacion

Page 2 of 2

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval c Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

C. H. Whiteside, Ph.D., President

CHEMICAL ANALYSIS

(1)	1) Location:	
	Water Treatment Plant No. 1 Well Site (R	O. Pilot Plant Location)

(2) Sampling Point:

Concentrate from R.O. Pilot Unit

(3) Date:

8/15/96

(4) Analysis:

Total Organic Carbon (TOC)

Analytical Chemistry • Utility Operations

Hudhalalalalalada NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris Page 1 of 2 TEST REPORT: 215162

AUG 2 6 1896

Sample Identification: Concentrate Identificacion de Muestra Collected By: David Garza Jr. Colectado Por Date & Time Taken: 08/15/96 1445 Tiempo y Fecha Tomado

Bottle Data: Datos de Recipientes:

#01 - 1+1 H2SO4 40 ml Glass Vial

#01 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#02 - 1+1 H2SO4 40 ml Glass Vial

#02 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

#03 - 1+1 H2SO4 40 ml Glass Vial

#03 - Botellita de Vidrio de 40 ml con una Tapadera de Teflon Pres

Sample Matrix: Aqueous Liquid

Report Date: 08/22/96

No. de Muestra Recibido

Received: 08/15/96 Client: NRS
Recibido Cliente

PARAMETER	RESULTS	UNITS	ANALYZED	MAL	METHOD	ВУ
PARAMETRO	RESULTADOS	UNIDADES	ANALIZADO		METODO	PC
Total Organic Carbon	0.82	mg/l	2200 08/20/96	.3	BPA 415.2	JW.

Sample Preparation Steps for R15162

Fax This Report AS Soon As DONE: FAXED 17:4508/21/96

Quality Assurance for the SET with Sample R15162 Certeza de Calidad por el Juego con el Numero R15162

Sam	ple #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	В
No.	de Muestra	Descripcion	Resultado	Unidades To	Dup/Std tal Organ:	Estandard LC Carbon	Por Ciento	Tiempo	Fecha	P
		Standard	9.8	mg/l	10.0		98	2200	08/20/96	J
		Standard	9.2	mg/l	10.0		92	2200	08/20/96	J
R15	164	Duplicate	ND	mg/l	ND		0	2200	08/20/96	J
R15	164	Spike		mg/l		10.0	90	2200	08/20/96	J

MAL is our Minimum Analytical Level/Minimum Quantitation Level. The MAL takes into account the Instrument Detection Limit (IDL),

Analytical Chemistry • Utility Operations

R15162 Continued Continuacion

Page 2 of 2

Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation.

Our analytical result must be above this MAL before we report a value in the "Results" column of our report. Otherwise, we report ND (Not Detected above MAL), because the result is "<" (less than) the number in the MAL column.

"MAL" es nuestro Nivel Minimo Analitico/Nivel Cuatitativo Minimo. El "MAL" tomo en consideracion el Limite Deteccion del Instrumento (Instrument Detection Limit-IDL), el Limite Deteccion de Metodo (Method Detection Limit-MDL), y el Limite Deteccion Practico (Pratical Detection Limit-PDL), y cualquier diluciones y/o concentrationes llevado a cabo durante la preparacion de la muestra.

Nuestro resultado analítico de las muestras tienen que ser mayor del "MAL" antes que entregamos un valor in la columna "Resultados" (Results) en nuestro reporte. Si no, se reportarara "ND" Nada Dectado mayor del "MAL" (Not detected above MAL), porque el resultado es menos que "<" (less than) el numero reportado bajo la columna "MAL".

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. MANG 26 1936

I certify that the results were generated using the above specified methods.

√Jr., M.S., Lab Manager

CHEMICAL ANALYSIS

(1)	Location:
	Central Drive Well Site (Drilled by CH2M-Hill/TWDB as part of ASR Project)

(2) Sampling Point:

Well Head

(3) Date:

3/29/96 (Filtered and Unfiltered)

(4) Analysis:

Anions and Cations

Analytical Chemistry • Utility Operations

Handladadaldaldandd

NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris Page 1 of 6

TEST REPORT: R14187

Sample Identification: Unfiltered Groundwater Sample

Collected By: CecilioBaÊuelos

Date & Time Taken: 03/29/96 1345

Other Data:

Central Drive Well Site

Bottle Data:

#06 - Unpreserved Glass

#07 - Unpreserved Glass

#08 - Unpreserved Glass

#09 - Unpreserved Glass

#10 - Unpreserved Glass

#11 - Unpreserved Glass

#04 - H2SO4 Preserved Glass with a Teflon Lid

#05 - H2SO4 Preserved Glass with a Teflon Lid

#01 - HNO3 Preserved Sample (Plastic or Glass)

#01 - HNO3 Preserved Sample (Plastic or Glass)

#02 - HNO3 Preserved Sample (Plastic or Glass)

#02 - HNO3 Preserved Sample (Plastic or Glass)

#03 - HNO3 Preserved Sample (Plastic or Glass) #03 - HNO3 Preserved Sample (Plastic or Glass)

#12 - Sterilized Glass Bottle with .008% Na2S203

#13 - Sterilized Glass Bottle with .008% Na2S2O3

#14 - 1+1 H2SO4 40 ml Glass Vial

#15 - ICP Digestion

Derived in lab from: 02 (50 ml)

#16 - ICP Digestion

Derived in lab from: 02 (50 ml)

#17 - ICP Digestion

Derived in lab from: 02 (50 ml)

#18 - Glass Flask: NH3 Distillation
 Derived in lab from: 04 (500 ml)

Sample Matrix: Aqueous Liquid

Report Date: 04/05/96

Received: 03/29/96

Client: NRS

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
Total Barium	30	ug/l	1133 04/04/96	10	EPA Method 200.7	GD X
Total Calcium	99	mg/l	1021 04/04/96	0.05	EPA Method 200.7	GDC

Analytical Chemistry • Utility Operations

R14187 Continued

Page 2 of 6

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	ВУ
Total Iron	0.30	mg/l	1006 04/03/96	0.05	EPA Method 200.7	MCF
Total Potassium	7.6	mg/l	1021 04/04/96	2	EPA Method 258.1	GDC
Total Magnesium	60	mg/l	1021 04/04/96	0.1	EPA Method 6010	GDC
Total Manganese	0.19	mg/l	1431 04/04/96	0.03	EPA Method 6010	GD(
Total Sodium	980	mg/l	1021 04/04/96	20	EPA Method 6010	GDX.
Silicon (as Silica, SiO2)	34000	ug/l	1517 04/04/96	1100	EPA Method 200.7	GD(
Total Strontium	3500	ug/l	1615 04/04/96	100	EPA Method 200.7	GDC
Carbonate	ND	ppm	0928 04/05/96	0.5	APHA Meth 4500-CO2 D	HŢ
Chloride	930	mg/l	1500 04/02/96	20	EPA 325.2	RS'
Specific Conductance at 25 C	4810	umho/cm	1410 03/29/96		EPA Method 120.1	ĊME
issolved Oxygen	1.6	mg/l	1405 03/29/96	.1	EPA Method 360.1	CME
Fluoride	0.95	mg/l	0830 04/04/96	. 25	EPA Method 340.2	CWI
Sulfide as Hydrogen Sulfide	ND	mg/l	1230 04/03/96	2	EPA 376.1	CM.
Bicarbonate	429	ppm	0928 04/05/96	0.5	APHA Meth 4500-CO2 D	W JI
Ammonia Nitrogen	.06	mg/L	1200 04/04/96	. 05	EPA 350.1	rsn
Nitrate-Nitrite	ND	mg/1 .	1200 04/03/96	. 2	EPA 353.1	RS\
Sulfate	1000	mg/l	1615 04/04/96	50	EPA Method 375.4	WMI
Total Coliform Plate Count	ND	#/100 mls	2145 04/03/96	1	APHA Method 9222 B	LM
Total Dissolved Solids	2700	mg/l	2300 04/01/96	10	EPA Method 160.1	BRI
Total Organic Carbon	27.0	mg/l	0900 04/05/96	. 3	EPA Method 415.2	RS\
Turbidity	1.8	NTU	1645 04/04/96	1	EPA Method 180.1	WM1
Temperature	27	degrees C	1400 03/29/96	.1	EPA Method 170.1	CM
pH (On Site)	7.3	su	1400 03/29/96		EPA Method 150.1	CME
lkalinity	430	mg/l	1628 04/04/96	4	EPA Method 310.1	JW

Continued

Analytical Chemistry • Utility Operations

R14187 Continued

Page 3 of 6

PARAMETEI	R	RES	ULTS	UNIT	S ANAL	YZED	EQL	MET	THOD	BY
Cation-Anion	Balance	52.	5 / 58.3	meq/m	eq 09:2804	/05/96				WJ
Carbon Dioxio	ie	ND		ppm	0928 04	/05/96	0.5	АРНА	Meth 4500-C02 D	WJ:
Hydroxide		ND		mg/l	0928 04	/05/96	0.5	АРНА	4500-CO2 D	₩J
		Samp	le Pr	eparatio	n Steps fo	r R141	87			
							• • • • •			
=	ort AS Soon As DON				13:2104				>	
Ammonia Disti			/500	ml/ml	1430 04				Method 350.2	KB
-	ion - Liquid		50 S/B/A	ml/ml	0800 04			EPA	Method 200.7	KL
	rm Plate Ct Starte		RTED		1030 04					SK
Total Colifor	cm Plate Ct Starte	ed STA	RTED		2255 04	/02/96				LM.
	Qual	lity As	suran	ce for t	he SET wit	h Samp	le R1	4187		
	• • • • • • • • • • • • • • • • • • •									
Sample #	Description	Result	Units		alue Spk Conc. Barium	Percent		Time	Date	
	Blank	<0.010	ppm				;	1133	04/04/96	G
	Standard	9.8	ppm	10		98	:	1133	04/04/96	G
	Standard	5.0	ppm	5.0		100	:	1133	04/04/96	G
R14187	Duplicate	30	ug/l	30		0	:	1133	04/04/96	G
R14187	Spike		ppm		5.0	96	:	1133	04/04/96	G
				Total	Calcium					
	Blank	<0.050	ppm				;	1021	04/04/96	G
	Standard	99	ppm	100		99	:	1021	04/04/96	G.
	Standard	49	ppm	50		98	:	1021	04/04/96	G
R14187	Duplicate	98	mg/1	100		2	;	1021	04/04/96	G
R14187	Spike		ppm		. 20	82		1021	04/04/96	G.
				Tota	al Iron					
	Blank	0.052	ppm					1006	04/03/96	M
								1006	04/03/96	M
	Blank	<0.050	ppm							
	Blank Standard	<0.050 9.7		10		97		1006	04/03/96	М
			ppm ppm	10 5.0		97 102		1006 1006	04/03/96 04/03/96	M
	Standard	9.7	ppm							
	Standard Standard	9.7 5.1	ppm	5.0		102		1006	04/03/96	М
319912	Standard Standard Standard	9.7 5.1 5.0	ppm ppm	5.0 5.0		102 100		1006 1006	04/03/96 04/03/96	M
319912 R14187	Standard Standard Standard Standard	9.7 5.1 5.0 5.0	ppm ppm ppm	5.0 5.0 5.0		102 100 100		1006 1006 1006	04/03/96 04/03/96 04/03/96	м м м
	Standard Standard Standard Standard Duplicate	9.7 5.1 5.0 5.0 0.055	ppm ppm ppm ppm mg/1	5.0 5.0 5.0 0.053	5.0	102 100 100 4		1006 1006 1006 1006	04/03/96 04/03/96 04/03/96 04/03/96	M M M
R14187	Standard Standard Standard Standard Duplicate Duplicate	9.7 5.1 5.0 5.0 0.055	ppm ppm ppm ppm mg/1 mg/1	5.0 5.0 5.0 0.053	5.0 5.0	102 100 100 4 0		1006 1006 1006 1006 1006	04/03/96 04/03/96 04/03/96 04/03/96 04/03/96	м м м м
R14187 319913	Standard Standard Standard Standard Duplicate Duplicate Spike	9.7 5.1 5.0 5.0 0.055	ppm ppm ppm mg/1 mg/1 ppm	5.0 5.0 5.0 0.053 0.30		102 100 100 4 0		1006 1006 1006 1006 1006	04/03/96 04/03/96 04/03/96 04/03/96 04/03/96	M M M M M

Continued

Analytical Chemistry • Utility Operations

R14187 Continued

Page 6 of 6

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
R14187	Spike		mg/l		100	84	1615	04/04/96	WM
	•		Total	l Coliform	Plate C	ount			
	Blank	<1	#/100 MI	LS			2145	04/03/96	LM
R14187	Duplicate	ND	#/100 MI			0	2145	04/03/96	LM
	-		Tot	tal Dissol [,]	ved Soli	ds			
	Blank	0.0000	g `				2300	04/01/96	BR
	Standard	90	mg/L	100		90	2300	04/01/96	BR
319881	Duplicate	200	mg/L	210		5	2300	04/01/96	BR
			T	otal Organ	ic Carbo	n			
	Standard	10.0	mg/l	10.0		100	0900	04/05/96	RS
	Standard	10.4	mg/l	10.0		104	0900	04/05/96	RS
R14188	Duplicate	22.9	mg/l	22.0		4	0900	04/05/96	RS
				Turbid	ity				
	Standard	Calibrate	NTU	.10		0	1645	04/04/96	Mi
R14188	Duplicate	0.60	NTU	0.60		0	1645	04/04/96	W
	-			Alkali	nity				
	Blank	<1	mg/l				1628	04/04/96	JV
	Standard	2300	mg/l	2400		96	1628	04/04/96	J
R14188	Duplicate	460	mg/l	460		0	1628	04/04/96	JV
R14188	Spike		mg/l		1200	100	1628	04/04/96	JV

CAS is Chemical Abstract Service Registry Number.

EQL is Estimated Quantitation Limit. The EQL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL). Our analytical result must be above our EQL before we report a value for any parameter.

Otherwise, we report ND (Not Detected above EQL).

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp.

I certify that the results were generated using the above specified methods. Note: Pages 4+5 Yemoved.

These are QA Pages

only.

C.H. Whiteside, Ph.D., President

Analytical Chemistry • Utility Operations

Page 1 of 6

TEST REPORT: R14188

Client: NRS

Harlfoldsdaldmidd

NRS Consulting Engineers

P.O. Box 2544

TX 78550-Harlingen, Attention: Bill Norris

Sample Identification: Filtered Groundwater Sample

Collected By: CecilioBaÊuelos

Date & Time Taken:03/29/96

Other Data:

Filtered in lab @1530 by CMB

Central Drive Well Site

Bottle Data:

#06 - Unpreserved Glass

#07 - Unpreserved Glass

#08 - Unpreserved Glass

#09 - Unpreserved Glass

#04 - H2SO4 Preserved Glass with a Teflon Lid

#05 - H2SO4 Preserved Glass with a Teflon Lid

#01 - HNO3 Preserved Sample (Plastic or Glass)

#02 - HNO3 Preserved Sample (Plastic or Glass)

#03 - HNO3 Preserved Sample (Plastic or Glass)

#10 - Sterilized Glass Bottle with .008% Na2S2O3

#11 - Sterilized Glass Bottle with .008% Na2S2O3

#12 - 1+1 H2SO4 40 ml Glass Vial

#13 - ICP Digestion

Derived in lab from: 02 (50 ml)

#14 - Glass Flask: NH3 Distillation

Derived in lab from: 04 (500 ml)

Sample Matrix: Aqueous Liquid

Report Date: 04/05/96

Received: 03/29/96

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
Total Barium	30	ug/l	1133 04/04/96	10	EPA Method 200.7	GD
Total Calcium	94	mg/l	1021 04/04/96	0.05	EPA Method 200.7	GD∙
Total Iron	0.060	mg/l	1006 04/03/96	0.05	EPA Method 200.7	MC
Total Potassium	8.1	mg/l	1021 04/04/96	2	EPA Method 258.1	GD
Total Magnesium	60	mg/l	1021 04/04/96	0.1	EPA Method 6010	GD
Total Manganese	0.18	mg/1	1431 04/04/96	0.03	EPA Method 6010	GD

Continued

Analytical Chemistry • Utility Operations

R14188 Continued

Page 2 of 6

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
Total Sodium	920	mg/l	1021 04/04/96	20	EPA Method 6010	GDG
Silicon (as Silica, SiO2)	33000	ug/l	1517 04/04/96	1100	EPA Method 200.7	GDG
Total Strontium	3300	ug/l	1615 04/04/96	100	EPA Method 200.7	GD G
Carbonate	ND	рфш	0923 04/05/96	0.5	APHA Meth 4500-CO2 D	WJF
Chloride	920	mg/l	1500 04/02/96	20	EPA 325.2	RSV
Specific Conductance at 25 C	4810	umho/cm	1410 03/29/96		> EPA Method 120.1	CME
Dissolved Oxygen	1.6	mg/l	1405 03/29/96	. 1	EPA Method 360.1	CME
Fluoride	0.92	mg/l	0830 04/04/96	. 25	EPA Method 340.2	CMI
Sulfide as Hydrogen Sulfide	ND	mg/l	1230 04/03/96	2	EPA 376.1	CWI
Bicarbonate	459	ppm	0923 04/05/96	0.5	APHA Meth 4500-CO2 D	Aſ
mmonia Nitrogen	. 05	mg/L	1200 04/04/96	.05	EPA 350.1	RSV
Nitrate-Nitrite	ND	mg/l	1200 04/03/96	. 2	EPA 353.1	RSV
Sulfate	870	mg/l	1615 04/04/96	20	EPA Method 375.4	WME
Total Coliform Plate Count	4	#/100 mls	1630 04/02/96	1	APHA Method 9222 B	LMK
Total Dissolved Solids	2700	mg/l	2300 04/01/96	10	EPA Method 160.1	BRE
Total Organic Carbon	22.4	ung/l	0900 04/05/96	. 3	EPA Method 415.2	RSV
Turbidity	0.60	NTU	1645 04/04/96	.1	EPA Method 180.1	WME
Temperatur e	27	degrees C	1400 03/29/96	.1	EPA Method 170.1	CME
pH (On Site)	7.3	SU	1400 03/29/96		EPA Method 150.1	CME
Alkalinity	460	mg/l	1628 04/04/96	4	EPA Method 310.1	JWP
Cation-Anion Balance	52.3 / 55.3	meq/m e q	09:3004/05/96			WJF
Carbon Dioxide	ND	ppm	0923 04/05/96	0.5	APHA Meth 4500-C02 D	WJI
Hydroxide	ND	mg/l	0923 04/05/96	0.5	АРНА 4500-CO2 D	WJI
				•		

Continued

Analytical Chemistry • Utility Operations

R14188 Continued

Sample Preparation Steps for R14188

Page 3 of 6

Fay This Penor	t AS Soon As DONI	E! F	AXED			13:2104/09	5/96			
Ammonia Distil			24/500	ml/r	nl	1430 04/03	3/96	EPA M	Method 350.2	KBW
Metals Digesti		5	0/50	ml/t	nl	0800 04/02	2/96	EPA N	Method 200.7	KLC
	Plate Ct Starte	d S	TARTED			1030 04/03	1/96			SKL
	Qual	ity 1	Assurance	for	the	SET with	Sample	R14188		
									• • • • • • • • • • • • • • • • • • • •	
Sample #	Description	Result	Units			Spk Conc.	Percent	Time	Date	Ву
				TOT	TT R	arium		1177	> 04/04/96	GC
	Blank	<0.010) ppm				0.0	1133	04/04/96	GE
	Standard	9.8	ppm	10			98	1133	04/04/96	GE GE
	Standard	5.0	ppm	5.0			100	1133 1133	04/04/96	GI
R14187	Duplicate	30	ug/l	30			0	1133	04/04/96	GE GE
R14187	Spike		ppm			5.0	96	1133	04/04/50	32
				Tota	l Ca	lcium				
	Blank	<0.050	mqq 0					1021	04/04/96	GI
	Standard	99	ppm	100			99	1021	04/04/96	GI
	Standard	49	ppm	50			98	1021	04/04/96	GT:
14187	Duplicate	98	mg/l	100			2	1021	04/04/96	GL
~ ⊀14187	Spike		ppm			20	82	1021	04/04/96	G£
				ΤО	tal	Iron				
				10				1006	04/03/96	MC
	Blank	0.052	_					1006	04/03/96	MC
	Blank	<0.05	-	10			97	1006	04/03/96	MC
	Standard	9.7	ppm	10 5.0			102	1006	04/03/96	MC
	Standard	5.1	ppm	5.0			100	1006	04/03/96	MC
	Standard	5.0	ppm	5.0			100	1006	04/03/96	MC
	Standard	5.0	ppm mg/l	0.053			4	1006	04/03/96	MC
319912	Duplicate	0.055		0.30			0	1006	04/03/96	MC
R14187	Duplicate	0.30	mg/l	0.50		5.0	102	1006	04/03/96	MC
319913	Spike		ppm			5.0	102	1006	04/03/96	MC
R14187	Spike		PP							
			•	Total	. Pot	assium				
	Blank	<2.0	ppm					1021	04/04/96	GI
	Standard	104	ppm	100			104	1021	04/04/96	GE
	Standard	50	ppm	50			100	1021	04/04/96	GI
R14187	Duplicate	7.6	mg/l	7.7			1	1021	04/04/96	Œ
R14187	Spike		ppm			20	113	1021	04/04/96	GI
RI410,	- Parit			makal	. Was	gnesium				
				TOCAL	r Mai	areo r mr		1021	04/04/96	CII.
	Blank	<0.1		100			98	1021	04/04/96	Œ
	Standard	98	ppm	100			98	1021	04/04/96	Œ
	Standard	49	ppm	50						

Analytical Chemistry • Utility Operations

R14188 Continued

Page 6 of 6

Sample #	Description	Result	Units	Dup/Std Valu	ue Spk Conc.	Percent	Time	Date	Ву
		_		-	mic carbo		0000	04/05/96	RS
	Standard	10.0	mg/l	10.0		100	0900		
	Standard	10.4	mg/l	10.0		104	0900	04/05/96	RS
R14188	Duplicate	22.9	mg/l	22.0		4	0900	04/05/96	RS
				Turbi	.dity				
	Standard	Calibrate	NTU	.10		0	1645	04/04/96	Wh.
R14188	Duplicate	0.60	NTU	0.60		0	1645	04/04/96	WM
K11100				Alkal	inity			>	
	Blank	<1	mg/1				1628	04/04/96	WL
	Standard	2300	mg/l	2400		96	1628	04/04/96	JW
R14188	Duplicate	460	mg/1	460		0	1628	04/04/96	JW
R14188	Spike		mg/l		1200	100	1628	04/04/96	J₩

CAS is Chemical Abstract Service Registry Number.

EQL is Estimated Quantitation Limit. The EQL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), Practical Quantitation Limit (PQL). Our analytical result must be above our EQL before we report a value for any parameter. Uncrwise, we report ND (Not Detected above EQL).

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

Notes: Pages 4+5 removed
These pages are Qu
data only.

CHEMICAL ANALYSIS

(1)	Location:
	Brownsville Firefighters Association Well site
(2)	Sampling Point:
	Well Head

(3) Date:

6/10/96 (Filtered and Unfiltered)

(4) Analysis:

Anions and Cations

Analytical Chemistry • Utility Operations

Amount: 50

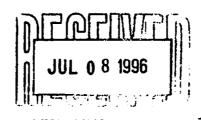
Amount: 50

Amount: 50

Amount: 50

Amount: 50

Amount: 50


Amount: 360

Amount: 315

Hudhalalalalalalalalal NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris

Page 1 of 7
TEST REPORT: R14594

UNFILTERED SAMPLE

Sample Identification: Well-B'ville Firefighter Asso. Collected By: David Garza Jr. Date & Time Taken: 06/10/96 1115

Bottle Data:

#03 - Unpreserved Glass

#04 - Unpreserved Glass

#05 - Unpreserved Glass

#06 - Unpreserved Glass

#07 - Unpreserved Glass

#14 - H2SO4 Preserved Glass with a Teflon Lid

#01 - HNO3 Preserved Sample (Plastic or Glass)

#02 - HNO3 Preserved Sample (Plastic or Glass)

#08 - HNO3 Preserved Sample (Plastic or Glass)

#09 - HN03 Preserved Sample (Plastic or Glass)
#10 - Sterilized Glass Bottle with .008% Na2S2O3

#15 - Preserved with NaOH and Zinc Acetate (Plastic or G

#11 - 1+1 H2SO4 40 ml Glass Vial

#12 - 1+1 H2SO4 40 ml Glass Vial

#13 - 1+1 H2SO4 40 ml Glass Vial

Derived in lab from: 01 (50 ml)

#17 - ICP Digestion

Derived in lab from: 01 (50 ml)

#18 - ICP Digestion

#16 - ICP Digestion

Derived in lab from: 01 (50 ml)

#20 - ICP Digestion

Derived in lab from: 01 (50 ml)

#21 - ICP Digestion

Derived in lab from: 01 (50 ml)

#22 - ICP Digestion

Report Date:

Derived in lab from: 01 (50 ml)

#19 - Glass Flask: NH3 Distillation

Derived in lab from: 14 (500 ml)

#23 - Glass Flask: NH3 Distillation

Derived in lab from: 04 (500 mls)

Sample Matrix: Aqueous Liquid

Received: 06/10/96

Client: NRS

PARAMETER RESULTS UNITS ANALYZED EQL METHOD BY

Analytical Chemistry • Utility Operations

R14594 Continued

Page 2 of 7

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	ВУ
Total Calcium	580	mg/l	1741 06/21/96	1	EPA Method 200.7	GD⊄
Total Iron	3.8	mg/l	1741 06/21/96	0.05	EPA Method 200.7	GD
Total Potassium	40	mg/l	1741 06/21/96	2	EPA Method 258.1	GD
Total Magnesium	260	mg/l	1741 06/21/96	2	EPA Method 6010	GD [,]
Total Manganese	0.54	mg/l	1741 06/21/96	0.03	EPA Method 6010	GDt
Total Sodium	3200	mg/l	1741 06/21/96	200	EPA Method 6010	GD:
Silicon (as Silica, SiO2)	54	mg/l	1342 07/01/96	1	EPA Method 200.7	GD∷
Total Strontium	17000	ug/l	1511 07/01/96	500	EPA Method 200.7	GD∕
Carbonate	ND	ppm	1201 06/18/96	0.5	APHA Meth 4500-CO2 D	WJ:
Chloride	4000	mg/l	1500 06/13/96	10	EPA Method 325.2	SKI
pecific Conductance at 25 C	16000	umbo/cm	1120 06/10/96		EPA Method 120.1	DGC
Fluoride	0.90	mg/l	0800 06/17/96	. 2	EPA Method 340.2	CM
Sulfide as Hydrogen Sulfide	ND	mg/l	1200 06/13/96	2	EPA 376.1	CWT
Bicarbonate	190	ppm	1201 06/18/96	0.5	APHA Meth 4500-CO2 D	ILW
Ammonia Nitrogen	ND	mg/L	1600 06/19/96	0.036	EPA 350.1	RS
Nitrate Nitrogen	ND	mg/1	1000 06/19/96	0.050	EPA Method 353.1	RS'
Sulfate	1600	mg/l	1315 06/24/96	100	EPA Method 375.4	IMW
Total Coliform Plate Count	ND	#/100 mls	2205 06/12/96	1	APHA Method 9222 B	LMF
Total Organic Carbon	0.93	mg/l	1600 07/01/96	. 3	EPA 415.2	JWI
Temperature	29	degrees C	1125 06/10/96	.1	EPA Method 170.1	DG.
pH (On Site)	7.3	SU	1125 06/10/96		EPA Method 150.1	DG.
Alkalinity	190	mg/l	1800 06/13/96	4	EPA Method 310.1	BR
Cation-Anion Balance	190 / 156	meq/meq	09:5307/02/96	į		WJI

Continued

PARAMETER

P. O. BOX 9000 - KILGORE, TEXAS 75663-9000 - 903/984-0551 - FAX 903/984-5914

Analytical Chemistry • Utility Operations

ANALYZED

			_		_				•				٦.
R1	л,	_	J /	1 1	٠.	\sim	n	+	٦.	m	11	_	$\boldsymbol{\sim}$
$\Gamma \Gamma \Gamma$. . .	J.	, .	T '	<u> </u>	v	11	_	_	11	u	_	u

UNITS

RESULTS

Page 3 of 7

METHOD

BY

EQL

LWKWIPTEI	r.	KIN	OTITO	011770	121/121		727	1111111010		
Carbon Dioxid	ie	ND		ppm	1201 0	6/18/96	0.5	APHA Meth 450	0-C02 D	WJI
Hydroxide		ND		mg/l	1201 0	6/18/96	0.5	APHA 4500-CO2	D	WJI
Turbidity		34		NTU	1110 0	6/12/96	10	EPA Method 18	0.1	WME
		Samp	le Pro	eparation	Steps fo	r R145	594			
	<i></i>							• • • • • • • • • • • • • • • • • • • •		
	ort AS Soon As DON					7/03/96				
	tion - Liquid		50 S/B/A	ml/ml		6/18/96		EPA Method 30 EPA Method 20		PJI
-	tion - Liquid		50 S/B/A RTED	ml/ml		6/17/96 6/12/96		EPA Mechod 20	0.7	PJI LMI
Total Collion	rm Plate Ct Starte	ea 51A	KIED		0010 0	0/12/90				LPIT
	Qual	lity As	suran	ce for the	SET wit	h Samp	ole R1	4594		
			• • • • •		Cala Cana			Pina Data		
Sample #	Description	Result	Units	Dup/Std Value Total B		Percen	it i	Time Date		Вż
	Blank	<0.010	ppm				1	1241 06/18/	96	GĨ
	Standard	9.8	ppm	10		98	1	1241 06/18/	96	GE
	Standard	5.0	ppm	5.0		100	3	1241 06/18/	96	GĽ
	Standard	4.9	ppm	5.0		98	1	1241 06/18/		GI
J24377	Duplicate	10000	ug/l	10000		0		1241 06/18/		GI
R14594	Duplicate	56	ppm	56		0		1241 06/18/		GI
324377	Spike		ppm		5.0	104		1241 06/18/		GE
R14594	Spike		ppm		5.0	93	1	1241 06/18/	96	GĽ
				Total Ca	lcium					
	Blank	0.80	ppm				1	1741 06/21/	96	GI.
	Blank	0.42	ppm				1	1741 06/21/		GI
	Standard	98	ppm	100		98		1741 06/21/		GI
	Standard	50	ppm	50		100		1741 06/21/		GI
	Standard	49	bbw	50		98		1741 06/21/		GI
	Standard	48	ppm	50		96		1741 06/21/		GI
	Standard	101	ppm	100		101		1741 06/21/		GI
	Standard	51	ppm	50		102		1741 06/21/		GL
	Standard	50	ppm	50		100		1741 06/21/		GE GE
	Standard	50	ppm	50		100 3		1741 06/21/ 1741 06/21/		GE:
324969	Duplicate	37	mg/1	36		5		1741 06/21/ 1741 06/21/		GE GE
R14594	Duplicate	560	mg/l	590	20	104		1741 06/21/ 1741 06/21/		GE GE
324969	Spike		ppm		20	105		1741 06/21/ 1741 06/21/		GI
R14594	Spike		ppm		20	103		1/41 00/21/	50	
				Total	Tron					
				IOCAL	T T O 7 7					
	Blank	0.074	ррт	ICCAI	11011			1741 06/21/	96	GI
	Blank Blank	0.074 0.15	ppm ppm	Iocal	11011			1741 06/21/ 1741 06/21/		GI.

Continued

Analytical Chemistry • Utility Operations

D14E04	C	_7
K14594	Continue	α.

Page 7 of 7

Sample #	Description	Result	Units	Dup/Std Va	lue Spk Conc.	Percent	Time	Date	В
	Blank	<1	#/100 M	LS			2205	06/12/96	L.
R14594	Duplicate	ND	#/100 M	LS ND		0	2205	06/12/96	L.
			T	otal Org	anic Carbo	n			
	Standard	10.0	mg/l	10.0	. •	100	1600	07/01/96	J¥
	Standard	10.2	mg/l	10.0		102	1600	07/01/96	J۴
	Standard	10.1	mg/l	10.0		101	1600	07/01/96	J¥
325220	Duplicate	34.0	mg/l	33.2		2	1600	07/01/96	JF
R14629	Duplicate	5.7	mg/l	5.7		0	1600	07/01/96	J¥
325220	Spike		mg/1		10.0	122	1600	0,7/01/96	J1.
R14629	Spike		mg/1		10.0	86	1600	07/01/96	JI,
				Alka	linity				
	Blank	<1	mg/L				1800	06/13/96	BF
	Standard	2500	mg/L	2400		104	1800	06/13/96	BF
324434	Duplicate	74	mg/L	76		3	1800	06/13/96	BF
R14594	Duplicate	180	mg/L	200		11	1800	06/13/96	BF
324434	Spike		mg/L		2400	106	1800	06/13/96	Bŧ
R14594	Spike		mg/L		2400	106	1800	06/13/96	BF
				Turb	idity				
	Standard	Calibrat	e NTU	.10		0	1110	06/12/96	WI-
.14594	Duplicate	34	NTU	34		0	1110	06/12/96	WI-

EQL is Estimated Quantitation Limit. The EQL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL). Our analytical result must be above our EQL before we report a value for any parameter. Otherwise, we report ND (Not Detected above EQL).

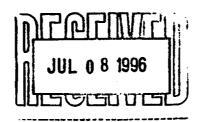
These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

Note: Pages 4,5,+6 removed.

These pages are QA

data only.



Analytical Chemistry • Utility Operations

Hallahahahahahah NRS Consulting Engineers

P.O. Box 2544

Harlingen, TX 78550-Attention: Bill Norris

Page 1 of 5
TEST REPORT: R14621

FILTERED SAMPLE

Sample Identification: B'ville Firefighter Assoc. Collected By: David Garza Jr.

Date & Time Taken: 06/10/96 1115

Other Data:

Filtered

Bottle Data:

#03 - Unpreserved Glass

#04 - Unpreserved Glass

#05 - Unpreserved Glass

#06 - Unpreserved Glass

#07 - Unpreserved Glass

#14 - H2SO4 Preserved Glass with a Teflon Lid

#01 - HNO3 Preserved Sample (Plastic or Glass)

#02 - HNO3 Preserved Sample (Plastic or Glass)

#08 - HNO3 Preserved Sample (Plastic or Glass)

#09 - HNO3 Preserved Sample (Plastic or Glass)

#10 - Sterilized Glass Bottle with .008% Na2S2O3

#15 - Preserved with NaOH and Zinc Acetate (Plastic or G

#11 - 1+1 H2SO4 40 ml Glass Vial

#12 - 1+1 H2SO4 40 ml Glass Vial

#13 - 1+1 H2SO4 40 ml Glass Vial

#16 - ICP Digestion

#17 - ICP Digestion

#18 - ICP Digestion

#20 - ICP Digestion

#21 - ICP Digestion

#22 - ICP Digestion

Report Date: 07/03/96

Sample Matrix: Aqueous Liquid

#19 - Glass Flask: NH3 Distillation

#23 - Glass Flask: NH3 Distillation

Received: 06/19/96 Client: NRS

50

Amount:

Amount:

Amount:

Amount:

Amount:

Amount: 50

Amount: 360

Amount: 315

PARAMETER RESULTS UNITS **ANALYZED** EOL METHOD BY Dissolved Barium 55 ug/l 1130 07/01/96 10 EPA Method 200.7 GD(mg/11741 06/21/96 0.05 EPA Method 200.7 GD(Dissolved Iron 1741 06/21/96 0.03 EPA Method 200.7 Dissolved Manganese 0.58 mg/1GD(Dissolved Silicon mg/11342 07/01/96 EPA Method 200.7 GD(

Analytical Chemistry • Utility Operations

R14621 Continued

Page 2 of 5

	·				rage 2 Or 5	
PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	В.
Dissolved Strontium	15000	ug/1	1511 07/01/96	200	EPA Method 200.7	Gi
Dissolved Carbonate	ND	MG/L	0800 07/02/96	. 5		WJ
Dissolved Chloride	3900		1000 06/18/96	10		R.S
Dissolved Oxygen	.,8	mg/l	1130 06/10/96	.1	EPA Method 360.1	DC
Dissolved Fluoride	0.90		0800 06/17/96	. 2	- .	CW
Dissolved Bicarbonate	190	MG/L	0800 07/02/96	. 5	>	UW
Dissolved Ammonia Nitrogen	. 09	mg/1	1500 06/27/96	.032		RS
Dissolved Nitrate Nitrogen	ND	mg/l	1000 06/19/96	. 05		RS
Total Dissolved Solids	9900	mg/l	1500 06/18/96	10	EPA Method 160.1	BR
Organic Carbon, Dissolved	0.28	mg/l	1050 07/02/96	. 2	EPA Method 415.2	WĹ
issolved Calcium	590	mg/l	1741 06/21/96	1	EPA Method 200.7	GD
Dissolved Potassium	26	mg/l	1741 06/21/96	2	EPA Method 258.1	G D
Dissolved Magnesium	270	mg/l	1741 06/21/96	2	EPA Method 200.7	GD
Dissolved Sodium	3200	mg/l	1741 06/21/96	200	EPA Method 6010	GD
		paration St	eps for R146	21		
Fax This Report AS Soon As DONE:			16:3206/19/96	• • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •
Dissolved Ammonia N Distillation	315/500	mls/mls	1010 06/26/96		EPA 350.2	кв
Dissolved Metals Filtering	filtered	.45 micron	1400 06/10/96		АРНА 3030 В	DG.
Ammonia Distillation	360/500	ml/ml	1200 06/18/96		EPA Method 350.2	КВ
Quali	ty Assuranc	e for the S	ET with Samp	le R14	1621	٠
Sample # Description)	Result Units	Dup/Std Value Sp		т	'ime Date	By
Blank	c0 010 ppm	PTSSOTAEG D	at timi	_	***	

Sample #	Description	Result	Units	Dup/Std Value Dissolved	•	Percent	Time	Date	В
	Blank	<0.010	ppm				1130	07/01/96	Gi
	Standard	10	ppm	10		100	1130	07/01/96	G I
	Standard	5.2	ppm	5.0		104	1130	07/01/96	G:
	Standard	5.0	ppm	5.0		100	1130	07/01/96	G:
R14594	Duplicate	53	ug/l	57		7	1130	07/01/96	G:
R14594	Spike	•	ppm		5.0	86	1130	07/01/96	Gi

Dissolved Iron

Continued

Analytical Chemistry • Utility Operations

07/03/96			R1	4621 Conti	nued		Page	5 of 5 .	
Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	B·
	Standard	49	ppm	50		98	1741	06/21/96	G:
	Standard	48	ppm	50		96	1741	06/21/96	G.
	Standard	51	ppm	50		102	1741	06/21/96	G:
	Standard	50	ppm	50		100	1741	06/21/96	G:
R14594	Duplicate	270	mg/l	270		0	1741	06/21/96	Gi.
R14594	Spike		ppm	Dissolved	20 Sodium	86	1741	06/21/96	G.
	Blank	1.7	ppm				1741	06/21/96	G:
	Standard	95	ppm	100		95	1741	06/21/96	G;
	Standard	49	ppm	50		98	1741	06/21/96	G:
	Standard	48	ppm	50		96	1741	06/21/96	G.
R14594	Duplicate	3600	mg/l	2900		22	1741	06/21/96	G.
R14594	Snike		ppm		10	119	1741	06/21/96	G.

EQL is Estimated Quantitation Limit. The EQL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL) and Practical Quantitation Limit (PQL). Our analytical result must be above our EQL before we report a value for any parameter. Otherwise, we report ND (Not Detected above EQL).

1. se analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval o Ana-Lab Corp.

I certify that the results were generated using the above specified methods.

Note: Pages 3+4 remove These pages are QAdata only.

APPENDIX III - OPERATIONAL DATA

2014

<u>ಗ್ರಹೀ ಇತ್ಯಾಕ</u>

٠,,

5	1		7				4.000.00										_	
		Penneate	Concentrate	Recycle	Feed	Internitage	Concentrate	Permeste	3 Th	<u>.</u> "	Feed Perm	Permente	¥	date	7-	4	Š	
5-9 9	9:30 A	74	4.7	0	مدد	0/L	201	لل	37	الا لا	2040	79		26.3	26.3 32.433.7		0.26	
	4.00 P	14	4.4	0	225	<u>0</u>	100	ンス	37	33	26 OHOS	95		26.5				
	W00:21	14	1, 5)	0	(C)	210	V . 1	22	1. 2.	7 4	5030	93		26.2				
												,						
5-10 8	8:00 A.	14	4.7	0	225	210	201	22	37	33	5030	91	6.7	26.8 28		30 0.	0.44	
· C	1.00 P	14	にト	0	225	218	205	22	37		5050	93		26.4				
	W00:21	Ξ,	16.4	0	077	218	201	22	37	\sim	15060 9 2	92		263				
		-																
5-11-8	8:001	Ā	4.7	0	222		205	22	37	S S S	5060	89		26.3			`	
,	4:∞P.	14	47		222	218	203	2	37	W	5070	90	:	26.4				
,	12:0014	14	4.7	0	222	210	202	22	37	33	5030	88		24.7				
5.12	8:00A	14	4.7	O	221	218	202	22	37	ひろ	5010	99		26.20				
	4:00 p.	14	47	0	122	210		22	7	\vdash	503 C	ı		27/			-	
	12:00M	٤	7		77.0	210	202	72	27	73	5050	87		26:3				
			,						-	,		-		,				
5-13 8	8:00 A	Ī	4.4	0	225	218	205	%	22	8	5030	87	6.5	26.3 28.		29.5 0.32	.32	
7	4:00 P	4	4.7	0	225	218	305	2			5050			26.4		-	_	
	12:00M	14	4.7	0		218	202	22	37	0.	505086	86		26.3				
		·															3 1	
8 41-5	8:00 A	14	4.7	0	225	218	205	22	37	33	5050	28		5.2	30	31.20	0.26	
L I	Jao.H	h	4.7	0	225	218	205	22	37		5050	Ů	6.54	26.5				
	12:00/2	14	47	0	225	2/8	205	22	37	\ \ \ \	5060	86		26.6			_	
																	_	

COMMENTS:			5-20-96			5-19-96			5-18-96			5-17-96			5-16-96			5-15-76		Date
O.M	12:00 M N	4:00 PM	8:00AM	12:00MN	4:00 PM	8:00AM	12:00MIN	4:00 PM	8:00AM	12:00MN	4:00 PM	8:00AM	12:00MN	4:00 PM	MA00:8	12:00MN	4:00 PM	WA00:8		Time
RMENTE	12	14	4	ıc	14)	14	14	14	14	ス <mark>火</mark>	14	14	14	14	14	1/4	14	14	Permente	
ste flow	۲. ۲.	4.7	4.7	1.1	4.7	47	4.7	47	4.7	4.7	4.7	4.7	4.7	4.2	4.7	4.7	4.7	4.7	Concentrate	FLOWS
	0	9	a	0	0	0	Ó	0	Q	0	0	0	0	0	0	0	0	0	Recycle	
Carralistes	225 2	\rightarrow	220	Λ.	-	220 6	225 2	220 2	220	9		25.5	250	225	225	225	225	225	Feed	
	265	205	205	27	201	205	200	51	208	205	2/8	816	Ь—	218	218	2/8	218	218	Interstage	
AT 0:	198	200	200	200	198	200	200	200	700	205	205	205	205	205	205	205	205	205	Concentrate	PRESSURES
0:45 A)u	22	2	ک	22	22	22	22	7	32	22	22	2	&	2	22	22	22	22	Permeate	URES
0	}7	37	37.5	₹7, <	37.5	37,5	37.5	38	38	37	37	37	37	37	37	37	37	37	F (tn)	
14 6	32_	32	32.5	32.5	א גנ	32.5	33	33	33	23	33	33		33	EE	33	33	33	F (out)	
ery D.	5040	5050	5050	5050	5060	5040	5070	5050	5050	5060	5060	5050	5040	5050	5050	5040	5050	5040	Feed	CONDUCTIVITY
D.P.S.	96	100	\boldsymbol{n}	756	93	92	92	97	96	96		86	86		86	RE	28	78	Permeate	CTIVITY
5-18-96	6.65	6.51	6.85	88.9	6.9	6.9	6.81	16.9	6.73	14.0	6.70	6.79	6.22	6.63	6.68	6.70 26.	6.67	6.66	PH	FE
96	24.2	26.5	26.2	26.8	264	26.4	2416	56.5	26.3	26.8	4.32	26.2	26.7	26.4	26.3	26, 2	6.67 26.4	26.2	Temp	FEED
			30.5									30.5			31.7			29.4	T_c	
			31.4 0.20									31.1						31.3	$T_{\mathtt{F}}$	SDI
			0.20									0.13			0.34			0.40	SDI	
			Westive.											1	33.4 0.34 Aboutive			Nessive	MMO-MUG	BACT.

		5-22			525-26			5-24-%			5-23-76			5-22%			5-21-96		Date
12:00MN	Md 00 1	M N 00 8	12:00MN	4.00 PM	# 00AM	12:00MN	4:00 PM	8:00AM	12:00MN	4:00 PM	\$:00AM	12.00MN	4:00 PM	#:00AM	12:00MN	1:00 PM	1:00AM		Time
14	۱4	M	14	1-1	A	14	14	14	101	14	14	4	I	14	1.	14	111	Permeate	
4.7	47	1.7	4.7	1,7	4.7	4.7	4.7	4.7	۲,)	47	ጎት	イン	4.7	4,7		4.7	4.7	Concentrate	FLOWS
0	0	0	0	0	9	0	<u>ی</u>	0	0	0	0	0	0	0	<u>ي</u>	0	0	Rocyde	
225 2		220 2	225 2	2202	220 2	220 /	220	220		220 3	220,	226	-	220	??o	220	220	<u> </u>	
205	205	05	205	205	205	205	205	205	205	205	205	265	205	205	~3 .7	205	205	Interstage	
200	105	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	Concentrate	PRES
22	77	とい	22	22	22	22	22	2	2 2	શ્ર	22	1.5	2	رډ	(1)	22	2	Permeate	PRESSURES
37	137 	37	37	37	37	37	37	37	3-)	37	37	77	37	37	75	37	37	F (m)	
30.5	2	3/	3/	31	3)	3/	31,5	31.5	3.5	32	32	72	32	ري	77	32	32	F (out)	
	6060	5020	5070	5060	5060	2060	060	5060	5070	5060	5070	5680	5650	5050	2020	5050	5060	Feed	CONDU
97	2	86	ı		100	•		102			107	110	///2	46	h P	96	97	Permente	CONDUCTIVITY
6.62 24.2	664	6.54	1.47	6.53	6.52	6.47	643	6.38	12.34	(5.37	6.35	6.16	6.24	136.7	17.7	6.74	6.67	PH	Ξ
26.2	26.4	18	1.25	26.7	26.9	26,2	643 26.5	26.3 53.6 53.6	15.34 26.8	_	6.35 26.4		4.26	496	1.96	6.74 26.5	6.67 26.3	Temp	FEED
								53.6			66.1			8.44			30.9	Tc	
								53.6			67,3			45.2			32.1	$T_{\rm f}$	SDI
								Ø			0.12			0.06			23.0	SDI	
											Neading			45.20.06 Neartine			Nocativo	MMO-MUG	BACT.

COMMENTS

		6-1-2				5-3-22			5.30%				52196			5-28%				5-27-96		Date
12:00MN	1:00 PM	#.00AM		12:00MN	4:00 PM	\$:00AM	12:00 M N	4:00 PM	8.00AM		12:00MN	1:00 PM	8:00AM	12:00MU	1:00 PM	8:00AM		12:00MN	4:00 PM	\$:00AM		Time
14	3	14		14	14	14	/FI	14	14		14	14	14) 2.[7	Ŧ		14	14	三	Permeate	
4.7	4.7	47		4.7	4.7	4.5	4.7	4.7	4.7		4.7	4.7	1.7	ム・コ	4.7	4.7		4.7	4.7	(1.)	Concentrate	FLOWS
0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	Recycle	
220 205	υ γ	220 205	Westerner.	2201		220	220	220	220		220	220	امدد	220	220	220		220	220	22.0	ē.	
705	205	201		205	205	205	205	205	205	,	500	205	205	205	205	205		205	205	205	Interstage	
200	000	195		105	195	195	195	195	195		195	195	195	195	195	195		175	195	195	Concentrate	PRES
22	بر م	22		22		2	ココ	22	22		りひ	22	22	υ S	22	22		22	22	ر. ر.	Permente	PRESSURES
3.7	37	37		37	37	37	37	36.5	37		37	37	37	39	37	37		37	37	7.	F (fi)	
27.5	27.5	273		275	28	28		285	29		29	29	29	ပ ်	30	30		30	30	30	F (out)	
5280	5070	5080		2090	5080	5080	58080	5070	5070		5080	50%	5050	3060	5050	5060		5050	5050	5060	Feed	CONDU
115	108	10		- 1		108	<i>11</i> a		105		108	111	99	99	101	103		96	66	96	Pemede	CONDUCTIVITY
6.37 26.2	6.45	6.51		1,48	16.9	6.53	45.0	6.42	6.59		6.52	6.47 26.4	6.68	6.65	6.79	6.5	ŧ.		79.9	1.42	РН	FE
26.2	26.3	126.3		26.1	16.4	6.53 26.3 43.6 50.00.85	26.7	K36 74 7	26.2 29.2		26.7		26.3	36.7	26.5	26.4		26.3	26.4	2.70	Temp	FEED
						436			29.2				48.5			51.9					\mathbf{T}_{c}	
	į					50.0			33.5				54.4			54.4					T_{F}	SDI
						28.0			0.86				0.72			6.31					SDI	
									Nessive				Newline			Neontive					ммо-мид	BACT.

COMMENTS: POWER FAILURE ON 5-28-96 at 8:30 A.M. to 8:45 A.M. N

٣

Date	Time		FLOWS				PRESS	PRESSURES			CONDU	CONDUCTIVITY	丑	FEED		SDI		BACT.
		Permente	Concentrate	Recyde	Food	laterstage	Concentrate	Pemente	F _(iii)	F (out)	Food	Permente	ЬН	Temp	T_c	Ţ	SDI	MMO-MUG
6-2-9/	\$:00AM	11	47	0	220	205	200	ر ز	37	1,6	5050	104	85.7	26.4				
	4:00 PM	7.4	4.7	0	220	205	200	22	37	27	5010	601	6.77	4 7 27.2				
	12:00MN	14	イ.カ	0	220	205	200	42	37	Le	5080	901	6.52 26.8	26.8				
6-3-26	1:00AM	ħ	4.51	0	225	210	205	77	37	77	5070	105	6.58	26.2	49.6	1:55	41	Neartive
	4:00 PM	14	4.3	٥	225	210	205	22	37	27	5100	129	6.20	5.70				
	12:00MN	14	イ・コ	0	225	225/205	200	22	37	7.4	0805	911	6.38	26.32				
76-4-7	8:00AM	۱4	4.7	٥	220	205	200	22	37	26.5	26.5 5090	1)/	6.45	26.3	47.9	50.9	0.39	Vendire
	4:00 PM	#	7,7	0	220	205	200	22	37	26.5	5080	811	64.9	26.4				
	12:00MN	14	4.7	0	220	220 205	900	66	37			511	6.45	0,				
						ı												
6.5-96	#:00AM	14	ا بل.ح	0	220	220 205	200	22	32	26.5	50%	401	6.51	26.2 49.6	49.6	51.1	0,20	1 Jourhing
	4:00 PM	14	5.4	0	220	305	202	22	37	26.5	0205	107	6.66	20.5				
	12:00MIN	14	ر الم الم	0	Ro o	205	700	25	31	26.5		107	6.53	36.5				
76-7-7	1:00AM	1	ر ۲	0	220	205	200	22	37	26	5050	163	6.62	26.2 48.2		53.1	79.0	Degative
	4:00 PM	14	4.7	0	220	205	200	22	37	77	5080	125	16.19	26.5				
	12:00MIN	14	イ・ブ	Q	220	305	200	22	3,	5.98	0805	44						
6-7-96	8:00AM	14	4.7	0	220	205	200	22	37	26	5070	216	19.9	26.3 43.5	43.5	56.6	1.54	
	4:00 PM	14	4.7	0	220	205	200	22	37	25.5	2100	711	6.17	26.2		:	•	
	12:00MN	14	4.7	0	270	205		22	37	24.5	5090	801	6.33	26.1				
	<		•		•			:	1	<u>.</u>		. د						

COMMENTS. R.D. System Thipped on 6-2-96 at 1:00 A.M. FOR 5 minutes. A.H.

R.D. System Shitzdown For Testing Well on 6-6-96 at 3:30 P.M. to 4:15 P.M. m.

R.D. System Shut-down For Repair on drain Line 6-7-96 at 8:40 A.M. to 8:55 A.M. w.

Date	Time		FLOWS				PRESSU	SURES			CONDUCTIVITY	STIVITY	FE	FEED		SDI		BACT.
		Permeate	Concentrate	Recycle	78	Interstage	Concentrate	Pomente	F (m)	F (out)	Jan	Permente	PH	Temp	T	Ţ	Ids	MMO-MUG
76-8-7	#:00AM	14	4.7	0	270	205	200	22	37	24	5070	hol	6.56	263				
	1:00 PM	>	۲. ۷	0	ر م	205	200	25	48	ኃሊ	Soxo	66	6.62	263				
	12:00MDN	1	4.7	0	32	215	205	23	37	24	5070	98	16.7	26.1				
16-6-9	1:00AM	14	47	0	225	205	200	77	3.7	12.5	5080	96	11/9	76.2				
,	4:00 PM	ול	んり	0	220	305	200	72	37	70	5070	20	T_	1.70				
	12:00MN	14	6.4	0	220	_	70.0	3.5	20	72	50%	176	8.9	26.2				
6-10-96	#:00:#	14	ረ'h	0	225	378	205	Z	37	Z	5070	46	6.62	26.2	884	58.3	1.09	a Lock
	4:00 PM	14	4.7	O	225	210	205	22	37	22	2060	46		1	_		┪	7
	12:00MN	14	4.7	0	225	210	208	22	3.7		0700	46	4.7	26.2				,
					ľ													
76-11-9	8:00AM	14	4.7	0	225	210	205	2	37	27	2/60	70/	6.35	26.2 49.5	3.	55.6	0.72	4/0-4
	1:00 PM	hl	4.7	0	225	210	205	22	37	33	5090	1	7.44	26.5	1			- Carrier
	12:00MN	/:/	4.7	٥	225	210	205	< 6	3.9	33	5090		6.56 26.3	26.3				
4-12-96	E:00AM	14	4.7	0	225	210	205	22	37	33	5080	76	45.7	26,24	1.8/	52.9	0.60	Aboutive
	4:00 PM	Ŧ	4.7	Q	225	210	205	22	37	33	2905		6.50	26.4			}	
	12:00MN	14	4.7	a	335	210	305	4	57	33	0805	-0	6.54 26.2	26.3				
12-13-26	1 00 AM	14	4.7	0	225	210	205	22	37	33	5060	96	6.55	26.2 49.3		50.5	7770	1 Posetile
	4:00 PM	14	4.7	0	225	210	205	22	32		0805		\	26.5		 		4
	12:00MN	<u> </u>	4.7	a	325	71012	205	4	37	33	5080	94	15.0	28.3				
		•	•	•		·	•	,	•				1					

COMMENTS. System Shut-down to Replace Cartrible Filters on 6-11-96 at 1:30 P.M. to 2:00 P.M.

Date	Time		FLOWS				PRESSU	SURES			CONDUCTIVITY	TIVITY	FE	FEED		SDI		BACT.
		Permoste	Concentrate	Recycle	. Food	Interstage	Concentrate	Permeate	F (m)	F (out)	<u>18</u>	Permeate	Ha	Temp	Tc	Ţ	SDI	MMO-MUG
76-41-97	1:00AM	14	4.7	0	225	210	205	22	37	33	5070	92	64.9	26,2	47.0	52,5	0.70	
	4:00 PM	Ŧ	4.7	0	225	1210	205	22	37	33	5080	401	6.51	7.92				
	12:00MN	14	4.7	0	125	210	203	77	7 %	33	5080	96	20:0)	165				
76-51-7	#:00A.M	14	47	0	378	210	205	11	57	33	5090	8	O3 : 9	263				
	4:00 PM	14	4.7	0	225	210	205	26	33	33	0805	9.8	18.9	26.7	ţ			
	12:00MN	14	4.7	0	225	210	105	22	37	25	J.040	4	6.71	26.2				
f																		
76-71-07	\$:00AM	11	L.H	Ð	228	210	205	22	7.5	$\sum_{i=1}^{n}$	0605	90	08.9	76.2				
	4:00 PM	14	4.1	0	225	012	208	25	37	33	3080	90	N X	26.8				
	12:00MN	14	4.7	0	325	1	305	re	18	3.3	UK0%	43	56.9	26.2				
																		•
16-11-3	8:00AM	#	۲٬ þ	0	225	210	502	22	37	33	20%	16	6.70	26,3	53.6	54.9	0.6	Vendive
	4:00 PM	#	4.7	0	225	210	205	77	35	33	50%	96	6.45/26.5	26.5				
	12:00MN	14	4.9	ဂ	225	210	305	10	39	5.0	०१० ९	90	6.42	1.92				
76-81-7	I.00AM	X	4.7	0	225	210	205	22	37	33	2090	26	6.52	26.2	44,3	50.2	0.78	Neathir
	4:00 PM	14	47	0	225	210	Sas	22	32	33	5090	93	859	76.4				
	12:00MN	14	4.7	0	335	210	205	44	37	33	0805	68		26.3				
16-18-31	\$:00AM	14	4.7	0	225	210	205	77	37	33	5100	16	6.60	4.60 5.50 49.6 57.7 0.94	49.6	52.7	0.94	Mentive
	1:00 PM,	4	4.7	0	225	210	305	22	37	33	2110	107	40	26.6	,			
	12:00MIN	Į	4.7	G	225	210		22	3.9	35	5130		55.9	26.3				

COMMENTS:

BACT	MMO-MUG		40.4 0.73 Alegative																	Nesana			502 539 0.46 1.11	000 - Nav	TO THE WAY
	S		0,13				0 63												\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2). U		
SDI	 -	6	4 0.4				51.10 0 63												20 / 12	9			7 6 2 3	 	
	Ţ.	_	7000				14.7												7 45	9			50.2		
g.	Temp	21 2	77	10,7	26.2		26.3	2/2.4	0,00	X Z	7 76	100	1/0	1.01	26.0	36	30,0	0	26:2	26.3	26.8		76.3	26.4	7.7
FEED	PH	1. 26		17.0	الاه. ا		ر و	45%	11.2%		11 7			()	5 693	6.0			6,22,26.2	10.9	6.17		6.28		u N
IIVITY	Permente	17.7			011		110	111	011		211	2 2	+-		J. C.			3333	1 601			3333	107		+
CONDUCTIVITY	Food	R120	2/12		150		5/30	5/20	5/30		5110	0//6	+	- 100	0/	2/2/	107/7	,	011/5	1			2415		
	F (out)	228	╁╌	丁	5.5	XXX	33 5	33 5			(; (*)	7.22			32 51		 	- 20000	32.5 5	32,55	2 51		32 51	32 5	1.5 5
	F(m) F	27 2	-	+	57 5		37		7		۲.	1	╁╌		7		30 5 32		37.5 3	37.5 3				37.5 3	5 3
URES	Permeate F	22	-	+		-	\dashv	2	2			7 22	 	1		7	+-		1	 			2 37.5		2 37.5
PRESSUR		1		\top	-	331 1	5 22	5 22	22) 	7			200	-			5 22		- 7		1 22	•	77
P P	Concentrate	205	<u> </u>	}_	-		205	205	200		705	205	205		1205	2008	205		205	205	205		205	205	205
	bientige	210		1	710		210	210	210		2 10	210	210		210	210	2/0		210	210	210		210	200	210
	Food	225	225	226	447	Ì	225	225	225		225	225	275		225	225			225	225	225		725	225	225
	Recycle	Q	0			(0	0	0		0	0	0		0	0	0		٥	0	0		0	a	0
FLOWS	Concentrate	7,4	4.7	40) v /	- -	7	4.7	4.7		47	7	47		4.7	ゲッ	4.7		۲. ۲	4.7	4.7		4.7	4.7	4.7
	Permeste	hl	티	771	,	7		7	14		7-	14	P		14	7.6	14		<u>+</u>	포	/+/		H	#	14
Time		\$:00AM	4:00 PM	12:00MN			WYOD	4:00 PM	12:00MN		\$:00AM	4:00 PM	12:00MIN		\$:00AM	4:00 PM	12:00MN		#:00AM	7:00 PM	12:00MN		1:00AM	4:00 PM	12:00MIN
Date		76027				70.10-/	9)-170				26-25-9				6-23-16				16-54-21			ļ	7527	+	

COMMENTS:

COMMENTS						630-11			629.91				628-91				627				626		Date
ZIS (D nowly	Md 00 t	MV00 8	12 90MN	1 00 PM	MV00 8 7	'	12.00MN	M.1 06 1	MV00 8		12 00MN	M.1 00 I	WVOUS 7/2	·	12 00MN	1.00 PM	96 100AM		Time
				1	1.6	74	111		714		\ \ \	14	14		74	11/1	+		74	1/4	14/4	Permeate	<u></u>
				1.7	۲.	4.	4		47	9	ij	4.	14-1		7	4	4.		4.	1 4.	1	Me Conomitate	FLOWS
				0	U.	7 0)	ij	5		7 0	70	70		0	7 0	70		7 6	70	70	trate Rocycle	VS
				22 <	77.5	225	225		S & 33		77.3	225	225		225	226	225		225	225	225	de Faal	
				210	310	2010	210	IJ	370		210	210	210		90	010	210		210	2/0	2/10	laterstage	-
				205	205	50C	205	205	2005		205	205	Sak		205	205	205		205	205	205	Concentrate	PRE
				22	22) り	22		い 2)		22	22	\$		22	2	SS.		2	22	2	e Parmaie	PRESSURES
			(37.5	, s;	37	37		27		57	35	37		37	37	37		37	37	37.5	F (m)	
		, .		20	<i>1</i> 2≪	38	29	Ş.	200		30	36	30		30	3/	15		31	31.5	31.5	F (out)	
				5130	0,0	5 120	5150	- 40	2140		5120	5/30	5/20		5120	5/40	5110		5/40	5/30	5110	Food	COND
				99	100	102	102	15	106				H	*****	103	100	109		110	110	97	Permente	ONDUCTIVITY
			9	64.1		5 N.J	1642		6-33		647	6.42	6.48		6.44	6.22	6.25		6.19	6.26	6.61	PH	
			1	u		ವ 6.3	1.9%		27.0			. 1			126.8	6.22 26,3	26.3			26.4	6.60 26,3	Temp	FEED
													26.3 49.8				55.6				49.8	T	
													55.0				620				57.1	=	SDI
									į				0.63				0.69				0.85	SDI	
															9	PERM-NEG	well-tos		0	Perm-Nes	well-fos	MMO-MUG	BACT.

COMMENTS

Date	Time		FLOWS				PRESS	PRESSURES			CONDU	CONDUCTIVITY	<u>E</u>	FEED		SDI		BACT	T
		Permeste	Concentrate	Recycle	Food	interstage	Concentrate	Permente	F (a)	F (out)	Feed	Permonte	PH	Тетр	Tc	Ë	SDI	MMO	MUG
MONDAY																			
7-1-26	T:00AM	14	4.7	0	230	215	205	2	37.5	36	5/30	103	92 /	7, 7	5.09	69 2	115 4	į	F/12
	4:00 PM	Ы	4.7	0	1	215	1	22		22	5/50		T^{-}	Y`	_	200			
	12:00NCN	14	4.7	0	230	215	205	22	37.5	26.5	5140	102	J .\					2	SE S
TUESDAY														-					
7-2-36	1:04AM	7	4.7	0	230	215	205	22	37.5	265	0115	86	16.50	2/2.2	50.5	58.5	19.7	j	70
	4:00 P.K	14	4.7	a	30	215	205	22		26.5	21/15	1/3	6.71	26.3		T		1	200
	12:00MIN	<i> </i>	4.7	S		215	205	22	37.5	25.5	5140	103		26.				+	3
WEDNESDAY																			
7-3-92		7,7	4.7	0	230 6	215	205	22	37.5	25.5	0615	86	56,2	26.2	49.8	58.1	0.95	j	9
	4:00 PM	7	4.7		- 1	215	205	2	37.5	25	5110	-56	6.48	76.4		1			
	12:00MN	7	4.7	ာ	230	775	302	55	37.5	25	5/50	401	629	125	-				
THURSDAY																			
7-4-10	NV00:8		4.9	0	230 2	5-	20g	44	39.6	ÞC	0915	103	1,31	26.3				į	Fa
	4:00 PM	1	4.7		2302	215	205	72	512	77	5/40	401	0	26.4				-	
	12:00MN	14	4-7	0 -7	230 2	2/5	205	22	37.5	スト	5/50	105	Paro	26.1					
FIEDAY					***														
1.5.71		***	4,7		230	215	205	77	37.5	77	2160	105	149	26,1				Į	#
	4:00 PM	#	777	0	- 1				37.5	<u> </u>	5130	101	19.45	24.3					
	12:00NCN	1.4	4.7		230 2	2/5	205		375	23	0415	44	642	262					
15-1 2-	7.100.	7			8823	-	١												
777			. h.	9 (+	h	40	\top	7	5150	.)	: ز	36.4			-	3	441
	W. 04	+ //			230 2			7	m		100/1		15.0	26.3					
No.	NO.00.51	7	4:	C	230 21	2	205	77	/ /	~ ~ ~	05 <u>1</u> 9	10	6.53	05					
448			3/,		3522	₩,													
71-12	E.OO.AM			0	_	5	١,	23	57	-	5130	4	655	264			14.	Proceed	뛲 ;*
	4:00 PM	10/	4.7	П	7	5	205	22	7		2/60	101	656	26.3			-		
	12:00NDN	14	5		230 2	5	205	22	37.5	20	0419	36	6.52	26.0	_			-	

WATER TREATMENT PLANT No. 1 SITE P. U. B. BROWNSVILLE

Date	Time	-	FLOWS				PRES	PRESSURES			ICINO	CTIVITY		,					
		Permeate	Concentrate	Recycle	Foot.	Interstage	Concentrate	Permeate	7	;		COMPOCITATI	2	TEED .		SDI		BACT.	ļ :-i
MONTAV					₩	> 6		A WALL CARRY	H (m)	F (out)	Ž	Permente	PH	Temp	Tc	T	SDI	MMO	DOW
MONDAL	2000	-	- 7																
1-8-76	┿	, [4. /	C	235	220	210	22	37.5	8	5130	75	6.48	26.1				Permeta	Wdl
	17-00000			+	\downarrow		ファ											Nea	20
TUESDAY		-	()		(5	י ד	8	2		2.00	1. M						0	
7-9-96	MY00:8		PL_it	7	H 44	1	f. 0	2.	かいセン					_					
_	4:00 PM	1	4 4				227	ے ا	7.7	3 \	3	2						Page	ě.
	12:00 M N	14	1,7		24	7 7 7	700	3 2	10/	1 6	0200		6.21	76.4				'	<u> </u>
WEDNESDAY					000000			13		134	0910	7/	6.75	24.8					
7-10-96	\$:00AM	14	1.h	0	250	235	225	22	27	34	2/2		/ 1/0			· ·	- 100	_	
	4:00 PM	14	7.4	0	_	235	225	22	200	24	2/22	20			11,10	10.0	126	+	₩ a
	12:00MN	14	4.4			275	225	22	700	707			6.70	イタン				100 J	Nes
THURSDAY										ر ر ر	0/80	/ / / /	(6,01	イケ・ブ				•	7
7-11-16	MY00:	1	4,4	0	250	235	225	22	37	33,5	0415	68	100	26.2	a	143	^ ::		W.
	4:00 PM	2	4.1	0	250	235	225	22	37	33.5	5150			-			_	١٥٥	
FRIDAY	NW00:77	14	4.7	0	250 %	235	どとい	22	37	33,5	5140			26.2				- 1	9
7-12-7%	MA00:8	Ī	4 2	3	70,	7266) (1	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1 1 1								
	4:00 PM	고	4.7			2	200	2 /	2	1000	2/70		15.0		52.2	56.1	0.46	Permeta	Š
	12:00MN) V	4.4	\Box	~	ر د 1	277		~ (C	27.7	ス ス ろ り り	22	6.24	16.5					
SATURDAY								/ {					2,5,5 D, 0,5	700				_	L
7-13-96	8:00AM	1	۲.)	0	235 2	2 3 0	マスマ	りら	37	34	~//w	タタ	1.35 1.35	76.7					
	4:00 PM	Z	11	C	マかい		225	ίζ V	37	ند ا	4/50		(2)	2/2	1		1	+	į
	12:00MN	14	4.7	0 2	2007	\ 0	225	22	77	33.5		27	2,15	シアン				-	<u></u>
SUNDAY								ľ		`		_	-))			_	_	
7-44-96	MA00:\$	3	7.7	0	245	30	225	70	37	5. 2. 2.	\$/50	78	7 42	22.3	_				
	4:00 PM	À	4.7	C 77	7	35	225	ソン	زر ،	2,3	クラウ		in l	200				-	
	12:00MN	14	4.7	0 2	250 2	235	225	22	37	33.5	ピ, 1	77	~	26.8			\downarrow	\downarrow	
COMMENTS		Plant:	shut	at down due	o d	6	et.	Low Pressure	74553	,	0x) >-	7-8-9%	+	me asic ta		1,	1	ρ_{∞}	1
				:				,		l l'				100			inkin laye	12/2	10

France Commute Food Fo	Date	Time		FLOWS				PRESS	PRESSURES			CONDUCTIVITY	TIVITY	FEED	Ð.		SDI		BACT.	T.
1			Permente	Concentrate	Recycle	Feed	Interstage	Concentrate	Penneste	F (in)	F (out)	Feed	Permente	PH Hd	Temp	Tc	T	SDI	MMO	MUG
14 4.7 0 250 235 225 22 37 33.5 5760 916 6.26.2 5441 620	MONDAY																			
H H, T O	77-51-6		H	-	Q	250	235	225	77	37	33.5	5/50				54.4	0.001	27.0	Permedie	Well
14 47 6 256 235 2.55 2.5 37 375 570 77 6.94 26.2 24.4 57.5 150000			7	۲.۲	0	250	235	225	22	37	3	5160	4		~				Nos	اعم ل
		12:00MIN	14	4.7	0	250	i i	21	71.		3.3.5	0 < 1 >	2	•	26.8					
	TUESDAY													E0000000						
H H H O SSO 235 225 22 37 335 5160 82 6.44 26.3 Colorello	7-11-96	\$:00AM	H 1	4.7	0	250	235	225			33.5	27/40			1	54.9	57.5	0,30	Permente	IPA
Hard H, T O		4:00 PM	Ĭ,	4.7	0	350	235	225			33.5	5/60							Neg	1)00
### 14 4.7 0 250 235 225 22 37 33.5 5/60 84 6.46 26.2 52.9 57.6		12:00MIN	14		0		ا ہا	_		1	73.4		7	1	1.					
**************************************	WEDNESDAY										1000000									
H H,7 O 250 235 225 22 37 33.5 5170 79 6.44 26.4 26.4 Embro	17-17-96	F:00'F	14		0	250	235	225				5/50		9/2	_	-			Parmede	Well
######################################		4:00 PM	7	-	0	250	235	225		37	_ 1	5170	8	_		-			Nea	20
## #17 0 250 235 22 37 33.5 5160 84 6.34 26.2 48.5 52.9 ### #4.7 0 256 235 22 37 33.5 5160 84 6.43 76.3 #### ### ###########################	` ·	12:00MIN	14	4.7	0	250	235	225		27	33.5	i . '			26.2					
## ## ## ## ## ## ## ## ## ## ## ## ##	THURSDAY													100000000						
### 14 4.7 0 256 225 22 37 33.5 5160 84 6.43 76.3 ENAM 14 4.7 0 256 235 225 22 37 33 5150 89 6.25 26.2 26.2 40 20 20 235 225 22 37 33 5150 89 6.25 26.2 26.2 40 20 20 235 225 22 37 33 5150 78 6.59 16.1 40 20 256 235 225 22 37 37 575 5150 78 6.57 12.4 40 20 256 235 225 22 37 37 5750 74 6.73 26.4 40 20 256 235 225 22 5760 77 6.01 26.1 40 20 256 235 225 22 5750 74 6.73 26.4 40 20 256 235 225 22 5750 74 6.73 26.4 40 20 256 235 225 22 5750 74 6.73 26.7 40 20 256 235 225 22 5750 77 6.70 20 256 235 225 22 5750 77 6.70 20 256 235 225 22 5750 77 6.70 20 256 235 225 22 5750 77 6.70 20 256 235 225 22 5750 77 6.70 20 256 235 225 22 5750 77 6.73 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.	7-18:17	E:00AM	14	4.7	0	250	235	225	22	37	33.5	5160		,	7	18.5		2,55	Perment	Well
1300M 14 4-7 0 250 235 225 22 37 33 5150 89 6.75 1500M 14 4.7 0 150 235 125 12 17 375 5150 79 6.57 1500M 14 4.7 0 250 235 225 22 37 325 5150 79 6.57 1500M 14 4.7 0 250 235 225 22 37 32 5150 79 6.73 1500M 14 4.7 0 250 235 225 22 37 32 5150 74 6.73 1500M 14 4.7 0 250 235 225 22 37 32 5150 77 6.70 1500M 14 4.7 0 250 235 225 22 37 32 5150 77 6.70 1500M 14 4.7 0 250 235 225 22 37 32 5150 77 6.72 1500M 14 4.7 0 250 235 225 22 37 32 5150 77 6.72 1500M 14 4.7 0 250 235 225 22 37 32 5150 77 6.73 1500M 14 4.7 0 250 235 225 22 22 22 22 22		4:00 PM	14	4.7	0	250	235	225	77	37	33.5	5160		15.43	N				1) P 4	Vea
## 14 4.7 0 156 235 22 22 37 33 5160 78 6.59 ### 14 4.7 0 250 235 225 22 37 325 5150 78 6.59 ####################################		12:00MIN	14	. 1	0	250		V			33	5150		6.25						1
### 14 4.7 0 156 235 125 22 37 33 5160 78 6.59 ###################################	FRIDAY																			
## 14 4.7 0 250 235 225 22 37 375 5130 79 6.57 ### 14 4.7 0 250 235 225 22 37 32 5160 77 6.01 #### 14 4.7 0 250 235 225 22 57 32 5160 77 6.01 ###################################	7-19-1	#POOR	14		9	250		225		37		5160		6.59					Permente	¶°A
EMANN 14 4.7 0 250 235 225 22 37 32.5 5150 78 6.59 EMANN 14 4.7 0 250 235 225 22 37 32 5160 77 6.09 EMANN 14 4.7 6 250 235 225 22 37 32 5150 75 6.70 EMANN 14 4.7 6 250 235 225 22 37 32 5150 75 6.70 EMANN 14 4.7 6 250 235 225 22 37 32 5150 77 6.72 EMANN 14 4.7 6 250 235 225 22 37 32 5150 77 6.72		4:00 PM	7	4.7	_1	250	- 1	225		17	32.5	5130		6.57	γ.					į
## 14 4.7 0 250 235 225 32 37 32 5760 77 6.64 ### 14 4.7 6 250 235 225 22 57 32 5760 77 6.64 ##################################		12:00MN	11/	4.7		130		01	7	37		15		, 6	16.1					
## 14 47 0 250 235 225 32 37 32 5/60 77 6.04 ### 14 47 0 250 235 225 22 37 32 5/60 77 6.73 ###################################	SATURDAY																			
4:00 PM 14 47 6 250 235 225 22 37 32 5/50 74 6.73 13:00 AM 14 47 6 250 235 225 22 37 32 5/50 75 6.70 13:00 AM 14 4.7 6 250 235 225 22 37 32 5/56 73 6.74 13:00 AM 14 4.7 6 250 235 225 22 37 32 5/56 73 6.74	7-20-92	1:00AM		4.7		250	1	225		37		5/60	7	6.61	26.1				Permente	Well
# 14 47 6 250 235 225 22 5 32 31 610 75 610 400 10 10 10 10 10 10 10 10 10 10 10 10 1		4:00 PM	7	- 1		250	3	225	22	57		5150		186.9	497					
#:00AM 14 4.7 0 250 235 225 24 57 32 5/50 74 6.72 13:00M 14 4.7 0 250 235 225 22 37 32 5/50 79 6.72		12:00MN	14	7 7	٥	250	215		22	3 >	32	5/60	12	. OC . 3	1.97					
## 14 4.7 6 250 235 225 24 37 32 5150 74 6.72 12:00w/ 14 4.7 6 550 235 2057 24 37 32 5156 73 6.74	SUNDAY																			
14 4.7 6 250 235 225 22 37 32 5156 73 6.74 3	7-71-91	\$:00AM	<u>></u>	۲۰۶	0	286	235	225	22		32	\neg	ン	7	26.3				Permente	Well
14 4.7 6 259 235 225 22 37 32 32 4,50 74 6.75		4:00 PM	Ā	4.7	T		14	325	22	37	8	5756			76.0					
		12:00MN	71	4.7	٥	239	- 1		22	33	32	2150	7	6.75	212	i				

Date	Time		FLOWS				PRESSUR	URES			CONDUCTIVITY	TIVITY	田	FEED		SDI		BACT.	T.
		Permente	Concentrate	Recycle	Feed	Interstage	Concentrate	Permeste	F (m)	F (out)	Feed	Permeate	PH	Temp	$\mathbf{T}_{\mathbf{c}}$	$\mathrm{T_{F}}$	SDI	MMO	MUG
MONDAY																			
7-22-96	\$:00AM	14	4.7	0	250	235	225	22	37	32	5170	87	6.33	26.2	21.8	6.75	09.0	Permegta	Well
	4:00 PM	14	4.7	0	250	235	225	22	37	32	5170	96	6.30	76.4				Neg	Sea
	12:00MIN	1	4.7	0	38	235	325	22	37	31.5	5170	84	643	262					0
TUESDAY																			
7-23-92	1:00AM	7/	4.7	0	250	235	225	22	37	31.5	5170	83	17.7	76.1	51.9	57.5	59.0	Permente	Well
	4:00 PM	7	4.7	0	250	235	225	22	37	31.5	5170	84	6.43	26.4				Nes	Neo
	12:00MN	/4	4.7	0	250	235	225	22	37	31.5	5170	85		26.7					
WEDNESDAY																			
7-24-96	\$:00AM	1	۲.۲	٥	250	235	225	22	37	31.5	5160		6.40	26,2	51.7	55.8	64.0	Perme #10	Well
	4:00 PM	14	4.7	0	250	235	225	22	37	31.5	2160	48	6.42	3				Nea	1)00
	12:00MDN	14	V.A	0	250	235	225		37	572	0815	96	6.28	1.96				Ι.	1
THURSDAY																			
12-52-21	1:00AM	7-1	4.7	0	250	235	725	77	37	31.5	0215	84	6.39	26.2	52,3	56.6	15.0	Person	W.E.
	4:00 PM	14	4.7	0		235	225	22	37	31.5	5160	83	24.9	4.01				11)64	Nes
	12:00MN	14	4.7	0	250	235	225	22	37	31.5	5180	87	6.31	260					
FREDAY																			
7-77-1	8:00AM	1	4.7	٥	250	235	225	22	37	31.5	5170	85	6,39	26.1	52.2	54.2	0.25	Permente	Well
	4:00 PM	14	4.7	9	250	235	225	77	37	31.5	5190	85	6.20	26.3					
	12:00MN	14	4.7	0	250	23.5	325	22	37	11.5	5180	85	6.37	26.1					
SATURDAY																			
7-27-96	8:00AM	14	1.7	0	250	235	225	77	37	315	0815	25%	0h 9	26.2				Permente	No.
	4:00 PM	14	4.7	0	250	235	225	е <i>с</i>	37	34.5	5190	∞ N	6.54	26.3					
	12:00MN	14	4.7	۵	350	235	335	22	57	578	110	85	6:59	36,1					
SUNDAY																			
7-28-72	\$:00AM	7	77	٥	250	235	225	22	37	15	2 160	76	299	76.0				Permenta	Well
	4:00 PM	14	4.7	٥	250	235	225	22	37	31.5	0875	760	6.70	27.0					
	12:00MDN	14	グン	o	1×0	835	225	23	37	31.5	5/70	74	67	26.3					

REVERSE OSMOSIS PILOT PLANT DATA * 1000 Changes AT 11:50 A M. WATER TREATMENT PLANT No. 1 SITE CONCENTRATE 3.5 G.FM 7-31-96
P. U. B. BROWNSVILLE
RECYCLE 1.2 G.P.M.

	MUG		e N	100	K		¶.	Noc			Vol	7000	X		75	Nec			Ħ				,	Τ	T		_	T	Т
BACT.	MIMO N			100	} —			-	1 -		-	Jec A)			₽A	Nes W			Mel.				TPA		-		₽^	\vdash	-
<u> </u>	=		J. Permet	5	N >			7) 66	7		Permeter 6	-			2	13	1		Į.				Perme	_	-		1	igg	_
Ī	IDS		79.0	+			Š				1.59				0.7				0,33										
SDI	Ë		587				53.6				55.7	4			57.8				54.3										
	Te	_	52.10				7	_			50,3	1			51.6				201.										
-	+		SE	. F			1 52	7				7	(7)		3 5,	7	3		351		3			S					
FEED	Temp		76.7				76.1	2			26.	10	900		26.	26.	26		26.	26.	.97		11,17	36.	707	10000000	7.00	26.3	21.2
	PH		4.74	9,10	6.46		15.9	81.9	6.32		6.43	04.9	45.24	500000	6.45	6.39	6.30		88'3	6.33	6 ~		. ` ` •	0	6.83		31:	6.73	7
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	cate	_	5	_			~	,							9 6		0 6		8		9		~ €	7	12			e.	
CTIVI	Permeate		9	S	α		0%		88		18		711		91	110]		10	11.4	1112		<u>-</u> د	93	0		5	ઝ 5	001
CONDUCTIVITY	Feed		0815	5/90	5/30		5190	190	006		5200	6990	130		0951	7340	360		2510	0044	530		K3.0	0161	7370		SIN.	3.0	OXCL
	8		2	Ι.	λ 8		1	5 5	5 5		5 5,		~			57	5 7		25	57	5 7		N X	11.	7		7.5	. 7	7
	F (out)		31.	3/.	3		31.5	3/,	3).		36.	32	32		532	31.	31,		3,	3	31		<u>\$</u> 1	31.	31.5		5.1	31,	3)'8
i	F (m)		37	37	37		37	37	37		37	37	37.5		375	37	37.5		37.5	37	37.5		3-1.5	37.5	37.5		3-1-5	37.5	37.5
RES	Permeste		22	22			22	2	7		22	22	22		22	77	Z.		7	77	7		22	22)_		₹ 2	د د	
PRESSURE				\vdash	5		\Box	abla	1		7					ᄀ			\dashv	0	``				7 7				22
H H	Concentrate		225	225	23		725	225	225		225	235	240		240	240	240		240	7	2 40		0), 8	240	240		240	340	240
	Interstage		235	335	235		235	235	135		235	340	245		245	250	250		250	250	250		250	250	250		250		250
	Food		250	Y	150 6		, 052	250	2507		250	255	-		2602	265	26513		265		26572		2652	265 3			345 24	265 2	,
	Recycle 1		0 2	0	0		0 2	20			0	22	.230		1.2.2		K K		22	2 7		_	7		72	00000	17		2 265
S			7	7	7 0			_	7		-	7			.]	7	_		70			_	=	\exists			-1	1.2,	\dashv
FLOWS	Concentrate		7	4.	4		4.7	4.7	4.7		4.7	3.5	3,5		3,5		<i>ي</i> ۲		`\	2,5	ار ا		7	3 5	٠ س		4	75	2 ارم
	Permoste		H	T.	I		五	7	14		크	1	14		Ħ	1	14		M	1	7		크	¥	7		코	<u>工</u>	4
Time			#:00AM	4:00 PM	12:00MN		8:00AM	4:00 PM	12:00MIN		\$:00AM	4:00 PM	12:00MN		1:00/M	4:00 PM	12:00MN		\$:00AM	4:00 PM	12:00MIN		8:00AM	4:00 PM	12:00MN		\$:00VPK	4:00 PM	12:00MN
		Y		4	13	Y		4		XV		4	12	γ¥Χ		¥ 				#	1000			\$	ĝ			6.7	ä
Date		MONDAY	7-29-96			TUESDAY	7-30 94			WEDNESDAY	7-31-96			THURSDAY	8-1-36			FREDAY	8-2-96			SATURDAY	8-3-16			SUNDAY	8-4-36		

H	MUG		Well	Ve9			Well	rles			Well	Nec			Ve!	Nec			Well				Well				Well		
BACT.	MMO		Permente	Nes	0		Permente	Nes	1		Permete	N^{e_6}			Permedie	Neg	0		Permette				Permente				Perments		
	SDI		0.39				0.50				60.49				24.0				0.37										
SDI	TF		54.4				59.8				58.6				59.0				57.le									;	ļ
	Тс		51.2				55.3				54.3				55.3				54.4										
D	Temp		26.3	26.5	26.3		26.2	26.5	262		26.2	26.5	26.2		26.2	26.5	26.1		26.2	26.4	26.1		70.3	26.3	16.2		20.5	S.36	26.7
FEED	ЬН		6.30	6.48	6.10		6.47	6.49	6.34		6.43	6.28			6.52	6.39	6.35		6.32	6.39	7.9.9		131.7	6.63	17:9		15,50	10 C.	6.5 5
LIVITY	Permeste		112	601	118		106	801	110		107	116	113		105	///	110		113	108	102		044	103	_		105	40	104
CONDUCTIVITY	Feed		7550	25.20	7490		2510	7650	15:0		2857	7510	75-80		7310	1580	7630		24.5%	7580	7530		7570	15€~	7410		(57.10)	7500	1410
	F (out)		31.5	31.5	32		31.5	31.5	31.5		31.5	31.5	7		31.5	31.5	315		31.5		31.5		<u> </u>	51.5	31.5		12 1 A		3).5
	F. (ii)		37.5	37	37.5		37.5	37.5	37.5		37.5	37.5	378		37.5	37.5	37.5		37.5	37.5	37.5		377.5	375	37.5		51.5	157.1	37.5
URES	Permeate		22	22	33		22	22	2.2		22	22	23		22	22	77		22	22	22		4	44	2.2		2.5	2	22
PRESSURES	Concentrate		240	240	240		240	240	240		240	240	240		240	240	340		240	240	240		3.410	0/10	240		011	340	240
	Interstage		352	250	250		250	250	250		250	250	T		252	250	350		250	250	250		250	250	250		6.16	250	250
	Feed		765	265			265	265	392		577	265			265	265			592	265	265		7.65	265	592		18	365	265
	Recycle		1,2	1,2	1.2		1,2	1,2	7.		71	1,2	1		1,2	1,2	21		1,2	1,2	1.2		1.2	1.3	1.7		2.1	1.3	7:3
FLOWS	Concentrate		3.5	3.5	י ען		3.5		7		3.5	3.5			3.5	r)	1.5		3.5	3.5	5.8		515	3,5	3.8		ς'}.	3.5	
	Permonto		<u>h</u> (٦,	14		ħĺ	<u>∓</u>	721		14	14	14		h(Į	14		Ы	61	hl		14	7.1	<i>h</i> 1		ヹ	14	14
Time			8:00AM	4:00 PM	12:00MON		E:00AM	4:00 PM	12:00MN		8:00AM	4:00 PM	12:00MIN		8:00AM	4:00 PM	12:00MN		\$:00AM	4:00 PM	12:00MIN		F:00AM	4:00 PM	12:00MIN		MA00:8	4:00 PM	12:00MIN
Date		MONDAY	76-5-8			TUESDAY	8-6-96			WEINERDAY	3-7-91			THURSDAY	P-8-8			FRIDAY	8-9-96			SATURDAY	26-01-8			SUNDAY	8-11-8		

	MUG		Well	Neg	/		Meli Meli	28			Well	selv			₩.	200			Vel	T			Well	$\overline{}$			Weil		
BACT.	MMO N		Perments	Neg	0		Permete	1587	7		Permente	Nech		-	Permente	Ueg K			Permedie				Permette				Permente		
	SDI		0.50				32		`		0.54	_	200000000000000000000000000000000000000		0.75												1		
SDI	T,		न				2.5 0.		200000000000000000000000000000000000000	888888	58.10				3		900												
S			H 59	_			7 57								52.6 59.								+						
	Γ_{c}		2 55.4				54.7	1	_		53.4	P				<u>.</u> ;	~(_	_	_			_						
FEED	Temp		26,2	26,5	26.2		26.2	26.5	26.0		26,2	26.5	76.1		26.2	ف	76.7			;									
FE	ЬН		6.52	6.23	6.15		6.48	6.49	633		227	6,29	95.9		6.52	6.39	011												
VITY	Permente		63	7	61			\mathcal{L}	112		107	125	801	*******	103	123													
CONDUCTIVITY	Feed P		7560 1	7660 1	1970		7650	2/40	1440 1		7410	19492	1, 0781		23.10	1252	1000								-			1	
00			\leftarrow	, 			~	57			, 				, 	—					_								_
	F (out)		3.5	31.5	31.5		31.5	31.5	31.5		31.5	31,5			31.5	3/5													
	F (in)		37.5	37.5	37.5		37.5	37.5	37.5		37.5	37.5	$\dot{\wedge}$		37.5	32.5	17.5			į									
URES	Permeate		22	22	23		22	22	ع ي		22	22			22	22									i				
PRESSURE	Concentrate		240	240	340		240	240	240		240	240	240		240	235	235												
	Interstage		250	250		60000000 60000000	250	250			250	250			250	240	2 40												
:	Feed		265	265			265	205	265		245	265			265	260	260												
	Recycle		1.2		1.3		1.2	1.2	1.2		1,2		-		1,2	1,2	1.7												
FLOWS	Concentrate		3.5	3.5	3.5		3.5	3.5	3.5		3.5	3.5			3.5	3,5	3.5												
	Permesto		h/	14	14		ነዓ	Ы	14		hl	1	14		14	14	h												
Time	•		\$:00AM	4:00 PM	12:00MON		8:00AM	4:00 PM	12:00MIN		\$:00AM	4:00 PM	12:00MDN		P(V00:8	4:00 PM	12:00MN		B:00AM	4:00 PM	12:00MN		\$:00AM	4:00 PM	12:00MN		\$:00AM	4:00 PM	12:00MN
Date		MONDAY	8-12-96			TUESDAY	8-13-96			WEDNESDAY	36-11-8			THURSDAY	76-51-8			FLDAY	8-16-96			SATURDAY				SUNDAY			

Date	Time	Wellwater		Feed			Permeate		Concentrate	trate	Pi	P2	P3	P4
		Chlorides	Conductivity	HH	Turbidity	Conductivity	ЫН	Turbidity	Conductivity	PH	Conductivity	Conductivity	Conductivity	Conductivity
5-10-96	5-10-96 10:30 A.	018	5100	86.9	D, 24	223	5.09	0.11	15,000	2.50	119	18	001	280
2-13-96	5-13-96 11:30 A.	810	2100	2.17	0.22	ahe	5.61	0.20	16.000	7.74	47	6//	175	320
5-14-96	5-14-96 9:30 A.	810	5100	7.24	0.14	138	5.79	80.0	16,200	7.85	52	82	162	300
5-15-96	5-15-9611530 A.	820	5100	6.98 0.34	0.34	122	5.43	0.11	16,000	2.51	90	92	182	330
5-16-96	5-16-9610:00 A.	099	5700	7.29 0.12	0.12	150	5.40	0.22	16,100	7.77	51	82	169	3/9
5-17-36	5-17-96 9:00 A.	270	5100	7.26 0.14	0.14	109	5.63	0.09	16,100	7.78	09	75	165	300
5-20-2	5-20-9 8:45 A.	730	5100	215	215 0.13	001	5.78	0.0%	16,000	2.67	51	90	180	300
2-11-56	5-21-96 8:45 A	018	2100	710 0.09	0.09	105	574	0.07	16,000	7.64	75	90	172	3%0
5-22-16	5-22-1 8:45 A.	760	5100	7.05 0.13	0.13	011	5.93	0.08	16,100	7.72	20	88	177	362
5-23-96	5-23-96 8:45 A		5100 6.76 0.08	4.76	0.08	11/6	5.62	0.09	16,000	7.46	63	93	081	364
5-24-96	5-24-96 8:45 A	280	5,000 6,64 0.09	6.64	600	///	5.55	0.11	15,500	743	65	16	179	320
5-28-26	5-28-768:45 A	790	5,000 6.78 0.10	82.9	0.10	138	5.59	0.11	000')/	7.42	22	95	122	350
5-29-96 8:45A	8:454	730	5,100 6.83	6.83	0.10	130	558	Ø.11	16,000	7.49	100	105	175	375
5-30:96	5-30-96 8:45A	220	5100	6.64	0.09	122	5.59	0.12	16,000	7.32	62	100	185	350
5-31-96	5-31-96 11:00 A.	730	5100 6.57	6.57	60.0	265	3,59	0.11	14,000	2.18	85	115	195	400
6-3-96	6-3-96 8:45 A.	810	5100 6.64	49.0	0.11	132	5.42	01.0	16,000	7.25	89	00/	190	405
96-4-9	6-4-9610:45A 720	720	5,000 6.47 0.11	6.47	0.11	145	5.42	01.0	16,000	2.10	80	113	210	450

Date	Time	Wellwater		Feed			Permeate		Concentrate	ıtrate	I-d	P2	P3	P4
		Chlorides	Conductivity	РН	Turbidity	Conductivity	PH	Turbidity	Conductivity	PH	Conductivity	Conductivity	Conductivity	Conductivity
96-2-98	6-5-96 8:45Am	016	2100	6.55	11.0	155	5.42	60.0	15500	7.24	72	102	06/	9/1/
96-9-9	6-6-96 8:45M	270	5100 6.75		0.11	130	5.57	0.10	16,000	240	72	001	180	405
96-2-9	6-7-96 10:00 AM	270	5100 6.45 0.12	6.45	0.12	140	5.35	0.09	16.500	7.35	68	95	08/	911
%-01-9	6-10-96 8:45 AM	210	5100		7.070.13	110	5.67	0.08	16,000	7.56	09	90	185	400
%-11-9	M 10:00 96-11-9	230	5100 6.60 0.12	6.60	0.12	130	5.48	0.11	16,000	7.20	78	105	190	380
%-17-9	6-12-96 10:00A M	280	5100 6.85 0.11	6.85	0.11	122	5,75	0.10	16,500	7.43	74	86	190	385
78-51-07	6-13-96 9:00 AM.	730	5100 6.90 0.13	06.9	0.13	120	5.68	0.11	16,500	761	105	56	081	375
14-14-2	6-14-91-9130 A.M.	750	110 88 011	86.9	0.11	0//	5.70	0.09	16,000 7.58	2.58	07	96	175	370
6-17-96	6-17-96 8:45AM	210	11:0 18:01 0015	16.91	0.11	120	5.35	010	16.500	45%	09	06	175	362
76-18-57	4-18-96 10:00AM	730	5100 6.89	680	0,11	0//	5.60 0.09	0.09	16,500	757	09	90	175	370
16-19-21	10:00 JE-91-01	750	2100	46.94	01.0	0//	5.60 0.09	0.09	16,500	7.61	58	06	541	380
6-20-36	6-20-368:45AM	710	5100 6.31	6.31	0.11	115	5.51	0.09	16,500	2.10	70	102	185	380
96-11-9	6-21-96 8:4544	730	5100 6.33 0.10	6.33	01:0	138	5.40	0.10	16,500	6.92	78	501	961	385
6-24-96	6:24-96 8:45 AM	240	5100 6.43		0.1(130	5.32	60.0	16,500	16.9	78	105	581	380
76-52-7	6-25-96 10:00 AM	7110	5000 6.55	6,55	0.11	011	5.24	80.0	15,500	7.16	75	92	881	395
6-26-96	6-26-96 10:00 A.M.	210	5100 7.01		2.12	020	5.63	0.11	16,500	7.37	68	86	08/	375
6-27-96	16-27-96 10:00A.M. 730	730	2100	6.62 0.11	1110	•	5.52	60.0	16,500	7//	722	0//	180	395

	Feed			Permeate		Concentrate	trate	PI	P2	P3	P4
Conductivity	PH	Turbidity	Conductivity	PH	Turbidity	Conductivity	РН	Conductivity	Conductivity	Conductivity	Conductivity
5100 6.94	6.9	4 0.09	8//	562	0.07	16,500	7.42	70	93	172	385
5100 6.56	3	01.0 9	811	5.36	0.07	16,000	7.15	70	86	165	360
20 6	7	5100 6.75 0.09	128	5,53	20.0	16,500	7.38	68	22	165	375
5100 6.55	5.	5 0.07	124	5.47	5.47 0.07	15,500	7.09	62	90	162	365
5100 6.70	7	0 0.11	120	4.98	4.98 0.09	16,500	7.31	(ale	92	170	380
0 7	7	5/00 7.43 0.09	125	8,35	8.350.06	16,500 6.81	18.9	48	90	155	348
5100 6.53	7	3 0,10	150	4.80	4.80 0.06	16,500	7.23	62	84	144	220
20 6.1	-0	5100 6.60 0.09	125	5.44	5.44 0.06	16,000 7.26	7.26	09	82	140	212
1.9 00	له ۔	5100 6.62 0.11	5.7	5.28	10.09	16,000 7.23	7.23	00)	79	132	210
5100 6.73	\sim 1	3 0.10	92	5.54	0.07	16,500	7.31	60	75	132	210
5100 6.71	2	11.011	501	5.58	0.07	16,500	7.21	65	80	04/	225
5100 6.53	N	3 0.09	95	5.52	0.07	16,500	7.21	67	82	135	215
901	1	5100 6.71 0.08	110	5.51	- 1		7.31	62	72	130	222
2 00	7	5100 6,10 0.10	115	5.30	5.30 0.07 16,000		205	28	90	841	240
900	1	5100 49.9 0015	86	5,30	5.30 0.08	16,000 742	7.42	80	B	138	238
700	7	5100 676 0.08	001	5.42	20.0	16,500	2.37	28	90	140	242
00	V	5100 6.53 0.10	98	5.30	5.30 0.06	16500	7,26	20	8	142	340

Date	Time	Wellwater		Feed			Permeate		Concentrate	trate	P1	P2	P3	P4
		Chlorides	Conductivitý	ЬН	Turbidity	Conductivity	ЬH	Turbidity	Conductivity	PH	Conductivity	Conductivity	Conductivity	Conductivity
7-26-96 10:30 AM	D:30AM	[750 SIDO 6.52	6.52	0.08	001	5.44	D.de	16.500	7,26	22	26	140	240
7-29-96 10:30 AM	D:30AM	290	2100	5100 6.24 0.08	30.0	7/10	5.04	900	5.04 0.06 16,500	7.13	80	86	152	258
7-30% 11:30AM	1:30AM	270	5100 6.39 0.09	6.39	60.0	801	5.37	0.05	5.37 0.05 16,500	7.11	72	46	150	258
7-31-96 10:30AM	P:30AK	710	5100 6.56 0.06	6.56	O.Dle	100	5.42	0.06		7.28	20	96	144	250
8-1-96 11:00 A.M.	FOOTM.	760	60.0 hh/9 0015	444	60.0	125	5.41	0.0 le	5.41 0.06 20,000 7.28	7.28	72	105	195	375
8-2-96 10:30AM	D:30AM	210	5100 6.44 0.09	44.9	60.0	128	5.41	20.0	5.41 0.06 20,000 7.28	7.28	72	011	195	370
8-5-9611:00AM	1:00AM	089	5100 6.31 0.09	6.3	60.0	130	5.34	0.06	0.06 20,000 7.21	7.21	84	115	861	360
8-6-96 10:30AM	D:30AM	2110	5100 6.31 0.08	6.31	80.0	130	5.28	0.06	5.28 0.06 20,000 7.31	7.31	72	801	861	372
8-7-96 11:00A.M.	L'DOAM	080	2100	64.9	0.09	127	5:35	5.35 C.O.C.	19,000	7.35	72	801	192	362
8-8-96 11:00AM	1:00AM	240	5100 6.41	(6.4)	60.0	135	5.25	20.06	20,000	7.2/	49	801	861	370
8-9-76 10:00 AM	D:00 A M	760	5100 6.48 0.10	6.48	01.0	10.2	5.3	5.31 0.0le	17,500	7.26	84	112	170	3/6
8-12-96 10:30 A.M	0:30 A.M	740	9100 fe.st 0.09	6.54	60'0	130	5.32	5.32 0.06	19,500	7.39	89	102	06/	350
8-13-96 10:30 AM	7.30AM	7/00	5100 6.49 0.09	6,49	0.09	130	5.25	000	5.25 0.06 20,000	7.39	72	0//	861	380
8-14-96 11:00 A.M	MY DOG:	760	5100 6.51	6.5	0.09	130		5.29 0.06	20,000 7,36	7,36	72	011	202	380
8-15-96 10:30 A.M	7:30 A.M	730	5100 6.36 0.09	6.36	0.09	135	5.17	5.17 0.06	20,000 7.15	7.15	2%	120	01/2	390
8-11-31														
										2				
						•				,			,	

7-31-96 Concentrate Flow was changed FROM 4.7 GPM to 3.5 GPM 11:50 A.M. Recycle Flow was opened FROM O GPM to 1.2 GPM

DEVELOPMENT OF BRACKISH GROUNDWATER RESOURCES IN THE BROWNSVILLE AREA

APPENDIX IV - TWDB COMMENTS

Final Report December 16, 1996

TEXAS WATER DEVELOPMENT BOARD

FILE : BGWT STUDY

Noé Fernández, Vice-Chairman Elaine M. Barrón, M.D., Member Charles L. Geren, Member

William B. Madden, Chairman Charles W. Jenness, Member Dynwood Sanders, Member

October 28, 1996

Mr. Don Ouchley General Manager and CEC **Public Utilities Board** 1425 Robinhood Drive

P.O. Box 3270 Brownsville, Texas

78620-3270

NOTED
NOV 5 1996
NOV A. OUCHLE

Re:

Review Comments for a Draft Report on Regional Water Supply Contract Between the Brownsville Public Utilities Board (PUB) and the Texas Water Development Board (Board), TWDB Contract No. 95-483-141

Craig D. Pedersen

cutive Administrator

Dear Mr. Ouchley:

Staff members of the Texas Water Development Board have completed a review of the draft final report submitted for TWDB Contract No. 95-483-141 and have determined that the report is acceptable.

The Board looks forward to receiving the one (1) unbound camera ready original and nine (9) bound double-sided copies of the final report.

If you have any questions concerning the project, please contact Mr. J.D. Beffort, the Board's designated Contract Manager, at (512) 463-7989.

Sincerely,

Tommy Knewles

Deputy Executive Administrator

for Planning

CC:

J.D. Beffort

v:rpp\draft\95483141.ltr

Our Mission

Exercise leadership in the conservation and responsible development of water resources for the benefit of the citizens, economy, and environment of Texas.

H.,