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1 Introduction

During project vear 2001, a turbulence closure model was added to the three-dimensional
circulation model TxBLEND, developed by the Texas Water Development Board. This
turbulence model involves the solution of transport equations for the turbulent kinetic
energy and mixing length, as given in [1]. These quantities are then used to compute
vertical turbulent mixing coefficients. Preliminary numerical testing of the modified code
has been performed for data from Corpus Christi Bay, provided by Dr. Junji Matsumoto.
Below we outline the mathematical equations describing the turbulence model, discuss
briefly its implementation within TxBLEND, and present some numerical results.

2 Mathematical Model

The turbulence closure model follows the work of Mellor and Yamada, Galperin et al [2]
and Blumberg et af [3].

Defining
d d
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where v is the three-dimensional velocity vector and
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the model consists of equations for the the turbulent kinetic energy ¢ and mixing length
{:

d¢* 0 dq? Ju v, adp q
— — —(N,—/) = 2|N — N —| -2 1
e Chl e [ ((Bz) +(5;) )+ (e (1)
dg®t 8, dg¥l Ou,,  Ov, dp g
S (N2 = IEY N (= —-—~N — W= 2
The verticular turbulent mixing coefficients are given by
Ny = qlsy, (3)
N, = qlsp, - (4)
N, = ¢qls,, (5}
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By =101 | g3 =34, 4,[(B, — 34,) g5 — 3C1¢1] | g2 = 3.0858
Ci= .08 | gs=3As0 g1 = 34.676
E, =18 |g,=94,4, gs = 6.1272
E2 =1.33 gJs = Aggg ge = 49393
Eg =.25

k=4

Table 1: Summary of constants used in the vertical turbulence closure model. Column I
contains the Mellor-Yamada [1] experimental constants, and Ej from Blumberg et al [3]
and von Karman’s constant x. Column IT contains the formulas from Galerpin et al 2]
used in determining s,, and s,. Column IIT gives their actual numerical values.

where s,,,, s), are algebraic functions of the local stratification Gy = %;%-gf and s, is a
constant. N, is the vertical diffusion coefficient used in the momentum equations, NV, is
used in the temperature and salinity transport equations, and Ny is the vertical diffusion
coefficient in the equations for ¢ and ¢2I.

In these equations

g2 — g3Gy
m y 6
’ (1 = gaGr)(1 — g5G)) (6)
Js
8, = —I° 7
sg = 0.2, (8)

where g;-g¢ are given in Table 1.
As in Galerpin et al, an upper bound on the mixing length is enforced:
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and G, is modified if necessary so that G, < 0.0233. This prevents negative diffusivities
from being computed in (3)-(5).
The boundary conditions on the bottom of the domain are Dirichlet conditions

I <

¢* = B (10}

*x?

where u? = Cglvs|®, where Cy is the bottom stress drag coefficient and v, the bottom
velocity, and

[l = .‘igb. (11)




At the free surface, no-flux conditions are prescribed on ¢* and /.
The wall proximity function W in (2) is taken from Blumberg et al [3):

l 2 l 2
W= 1rk [N(Z—Zb+€b)] T [n(c—z+£s)] ’ (12)

where &, and &, have been set equal to 1 (ft).
Initial conditions must also be prescribed for ¢* and I. These have been taken to be
constant. Also, minimum values of N,,, N}, and N, should be chosen.

3 Modifications to the code

Only a few modifications/additions to the code were required. The same discretization
strategy used in TxBLEND for temperature and salinity transport were mimicked for the
solution of ¢ and ¢?I. An additional variable ‘MYCLOSURE’ has been added to the
code to indicate the type of closure model. If ‘MYCLOSURE=CONSTANT,’ then the
turbulence closure model is skipped and constant values are assigned to Ny, and N, as
determined in the subroutine NzKz3. If ‘MYCLOSURE=25,” then the turbulence model
is used. MYCLOSURE is hardwired in MAIN.

The turbulence variables and minimum values are initialized in a new subroutine,
initTurb. The coefficients V,,, N}, and N, are computed in the new subroutine Galperin.
Subroutines COEFQ2 and COEFQ2L were also added for the implicit solution of ¢
and ¢! in the vertical direction.

Existing subroutines which were modified include MAIN and COEFGEN10. All
changes to existing code are clearly marked and delineated by comment cards starting
with

c**cnd .

4 Results

A 30 day simulation was performed using data from Corpus Christ Bay obtained from
Junji Matsumoto. The finite element mesh contains 6786 nodes and 11992 elements, with
up to 6 layers in the vertical direction. The start date of the simulation was May 1, 1987.
A time step of 100 seconds was chosen, which was about the largest time step allowed
without one or more solution variables blowing up after a few steps. Initial values of ¢2
and g%l were both chosen to be .001. Minimum values of N,,, N}, and N, were set to .001,
0005 and .001 f#?/s, respectively.

The preliminary results obtained with the new turbulence model indicate a larger
variation in the vertical direction, especially in the velocity solution, than in the previous
version of TxBLEND where the vertical diffusion coefficient was assumed constant with
z, at least in this 30 day window. Variations of salinity with depth were less pronounced.
Contour plots of salinity at days 17.4, 19.7, 22.6, 25.5 and 28.9 days in the top layer and
in layer 3 are given in Figures 1-10.
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Figure 1: Salinity profile, day 17.4, top layer
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Figure 2: Salinity profile, day 17.4, layer 3
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Figure 3: Salinity profile, day 19.7, top layer
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Figure 4: Salinity profile, day 19.7, layer 3
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Figure 5: Salinity profile, day 22.6, top layer
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Figure 6: Salinity profile, day 22.6, layer 3
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Figure 7: Salinity profile, day 25.5, top layer

s
36
34.8571
- 33,7143
o 325714
3.12E+06 |- 31,4285
[ 30.2857
N 20.1429
3.11E+06 28
" 26.8571
N 257143
B 24,5714
3.1E+06 _— 23.4286
A 22.2857
- 21,1429
3.0%E+06 - 20
3.08E08 >
3.07E+06 |-
3.06E+06 |-
L | IR SN T IS ST N oA
640000 660000 680000 700000
X

Figure 8: Salinity profile, day 25.5, layer 3
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Figure 9: Salinity profile, day 28.9, top laver
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Figure 10: Salinity profile, day 28.9, layer 3
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Figure 11: Locations 1-5 indicate where velocities and salinity are plotted below

Next, we show vertical profiles of velocity and salinity at 5 locations within the domain:
(1) near the entrance to the ship channel, (2) midway through the ship channel, (3) near
the harbor bridge, (4) the southern part of Corpus Christi Bay, and the (5) western part of
Nueces Bay. These locations are shown on the finite element mesh in Figure 11. Profiles
at 25 days through 26 days were plotted at 3-hour intervals. Each plot consists of the
magnitude of the velocity, multiplied by 1 or -1 depending on the direction (1 if direction
is SW or NW, -1 otherwise). Velocities are in feet/sec. Figure 12 is for the location near
the entrance to the ship channel, Figure 13 for the midway point of the ship channel,
Figure 14 for the harbor bridge, Figure 15 for the southern part of Corpus Christi Bay,
and Figure 16 for the western part of Nueces Bay.

Vertical profiles of salinity at each of the 5 locations above are given in Figures 17-21.
In some locations, in particular location 1, the salinity is constrained to its maximum
allowable value of 38 ppt.

5 Conclusions

A turbulence model has been added to the TxBLEND code developed by the TWDB.
Preliminary testing on Corpus Christi Bay data has been performed. Further testing and
verification of the model is needed.
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Figure 15: Vertical profiles of velocities at days 25, 25.125, 25.25, 25.375, 25.5, 25.625,
25.75 and 25.875 at Corpus Christi Bay (location 4)
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