FINAL REPORT 2000-483-325 MAY 1 1 2001 TAIDB DAPE GRANTS MANAGEMENT # A GIS – TxRR Model for East Matagorda Bay By Jerome Perales, Venkatesh Merwade, and David R. Maidment Submitted to the Texas Water Development Board In fulfillment of Grant # 2000 483-325 Center for Research in Water Resources University of Texas at Austin May, 2001 #### **Abstract** The Texas Water Development Board uses a rainfall-runoff model called TxRR to simulate ungaged flows discharging directly into Texas bays and estuaries. In this report, a geospatial database of watersheds and soil parameters for TxRR is built for drainage into East Matagorda Bay. A systematic procedure is described by which data from the National Hydrography Dataset and the National Elevation Data set can be combined to define a set of watersheds for this coastal basin. This procedure includes processing of Statsgo soils data to determine Green and Ampt soil properties for these watersheds. Improvements are made to the execution of the TxRR model such that it is more tightly integrated into its Visual Basic interface. Additional Visual Basic code has been created so that TxRR can read and write data to the ArcGIS Hydro data model, a standardized representation of spatial and temporal data for water resources. By integrating TxRR and the ArcGIS Hydro data model, a system can be created for the operation of TxRR for any drainage area along the Texas coastline. ## **Table of Contents** | | | Page | |----|---|----------| | 1. | Introduction | 4 | | 2. | Defining Coastal Drainage Basins – East Matagorda Bay | 8 | | | 2.1 Creating an NHD Stream Network for the Region | 10 | | | 2.2 Editing the NHD Stream Network | 16 | | | 2.3 Eliminating Isolated Reaches from the Network | 19 | | | 2.4 Determining the Waterbody Reaches on the Network | | | | 2.5 Checking the NHD Network with Digital Raster Graphic Maps | 21 | | | 2.6 Building a Digital Elevation Model for the Region | 22 | | | 2.7 Using CRWR-PrePro to Process the DEM | 24 | | | 2.8 Defining the Sea/Ocean Region of the DEM | 27
30 | | | 2.9 Completing the Watershed Delineation with CRWR-PrePro | | | | 2.10 Merging Subwatersheds | 33 | | | 2.12 Clipping the Soils Data to the Area of Interest | 34 | | | 2.13 Determining the Green and Ampt Parameters | 42 | | | and order and ramper arameters | 44 | | 3. | Integrating TxRR and the ArcGIS Hydro Data Model | 47 | | | 3.1 Linking of TxRR to a DOS-Windows Interface | 47 | | | 3.2 ArcGIS Hydro data model | 49 | | | 3.3 Integration of TxRR with the ArcGIS Hydro data model | 50 | | | | 50 | | 4. | Summary and Conclusions | 51 | | 5. | References | 53 | #### 1. Introduction TxRR (Texas Rainfall-Runoff) is a rainfall-runoff simulation model designed to create sequences of daily flows for ungaged areas near Texas bays and estuaries. The Texas Water Development Board (TWDB) wishes to improve the implementation of TxRR by making it more closely tied to geospatial data from Geographic Information Systems. Benefits of better integration with GIS include improved methods for drainage area delineation, soil parameterization, and conversion of gage rainfall to rainfall over watersheds. Research on building a better GIS basis was initiated at the Center for Research in Water Resources (CRWR) by TWDB with an initial project on applying TxRR to Corpus Christi Bay (Perales et. al., 2000). At the time that study was initiated, TxRR was a Fortran program that did not have good capabilities for displaying graphs of precipitation and flow data, and also it had no mechanism for routing water through landscape. TxRR was, and is, a vertical water balance model applied to a particular watershed. At the beginning of the research, two approaches suggested themselves: - Method 1: Incorporate TxRR results into the HEC-HMS model from the US Army Corps of Engineers, and use the CRWR-PrePro preprocessor for HEC-HMS to do the spatial data processing - Method 2: Run TxRR as a standalone program which is linked to GIS for geospatial data processing and for storage and retrieval of spatial and temporal data In the Corpus Christi Bay study, conducted in 1999, Method 1 was adopted. This study focuses on drainage to East Matagorda Bay, and uses Method 2. In particular, it is demonstrated how the TxRR model can be linked to ArcInfo and ArcView version 8.1, due for release in May 2001, by using the ArcGIS Hydro data model as a connecting mechanism. #### Corpus Christi Bay Study In the Corpus Christi Bay study, Method 1 was adopted. The HEC Data Storage System (DSS) was used to store and manipulate time series files. TxRR was used to create runoff data for drainage areas, and the results were read into HEC-HMS. The ArcView program CRWR-PrePro was used to create a Basin file for HMS, which describes the landscape for hydrologic simulation. Method 1 was executed successfully but it proved to be difficult to use for several reasons: - The HEC-HMS model is a stand-alone hydrologic simulation model and is not designed as a shell into which other models can be readily inserted. In particular, import and export of time series data from DSS proved to be very tedious. There were many file manipulations involved, and it was obvious that some automated system for handling them was needed. - The process of defining drainage areas to coastal basins proved to be sufficiently different from that for inland drainage areas that the automated terrain processing method in CRWR-PrePro for generating the HMS Basin file was of limited value. A considerable amount of hand-editing was needed to connect the model drainage areas together, particularly for those draining directly into the bays. GIS and HEC-HMS representations of drainage into Nueces Bay and Corpus Christi Bay #### East Matagorda Bay Study In the study described here, a new bay and estuary system is examined, East Matagorda Bay. In addition, Method 2 for GIS-model integration has been adopted, namely TxRR has been run deriving its data directly from the GIS database. The following objectives have been accomplished in this study: - 1. A procedure is defined for selecting and editing the National Hydrography dataset so as to produce a stream network suitable for the delineation of coastal drainage and implemented to define the stream and coastline network for East Matagorda Bay. - 2. The stream network is combined with the National Elevation Dataset for land surface topography and used to define a set of elementary drainage areas. Selected drainage areas are combined into three watersheds draining to East Matagorda Bay watersheds - 3. A procedure for determining Green and Ampt soil parameters for these watersheds is applied to determine soil parameters for East Matagorda Bay - 4. The Visual Basic interface to TxRR has been streamlined so that the Fortran code is called without having to use a separate DOS window. - 5. Additional Visual Basic procedures have been written so that the time series files for TxRR can be read from and written to the Time Series database of the ArcGIS Hydro data model. ### **Background Information on the TxRR Model** TxRR is a rainfall-runoff model using daily time steps to simulate runoff over a long period of years. Within the model, a daily soil water balance is used to partition precipitation P on the land surface is partitioned into an initial abstraction I_a , infiltration F, and direct runoff QD. Some of the infiltrated water can return subsequently to the stream as base flow QB. The sum of direct runoff and baseflow forms stream flow. The model parameters are determined by calibration against observed streamflow at locations where stream gage data exist. Once calibrated, the model is applied with the same parameters to coastal drainage basins without stream gaging data. TxRR rainfall-runoff processes #### Visual Basic Interface for TxRR TxRR was originally developed by Dr Junji Matsumoto at the TWDB as a Fortran program. During 2000, Dr Barney Austin at TWDB built a Visual Basic Interface for TxRR to display precipitation and streamflow data. He also linked TxRR to a Genetic Algorithm for calibrating its parameters. There are thus two versions of TxRR: the version used when calibrating the model to known streamflow data, and a simpler version used when running the model to generate flows. Dr Austin's interface to TxRR created the input text files to run the model, required the user to open a separate DOS window to execute TxRR, then open the interface again to read TxRR's text output files and display them. The Visual Basic interface to TxRR is definitely a significant step forward in making the model more user friendly, and the Genetic Algorithm for determining model parameters is also a useful step forward. Dr Austin also applied a new unit hydrograph in TxRR using the Gamma function. In this report, the Visual Basic interface to TxRR is further improved, and linked to the ArcGIS Hydro data model to supply geospatial and temporal data for operation of TxRR. Visual Basic Interfaces for TxRR # 2. Defining Coastal Drainage Basins – East Matagorda Bay The domain of application of TxRR is the coastal basins of Texas, of which there are eight principal coastal basins, named for the rivers which drain to the coast between them: Nueces – Rio Grande, San Antonio – Nueces, Lavaca – Guadalupe, Colorado – Lavaca, Brazos – Colorado, San Jacinto – Brazos, Trinity – San Jacinto, and Neches – Trinity. These basins in turn encompass a number of bays and estuary areas considered as separate modeling units for application of TxRR. The subject area for this study is East Matagorda Bay, which is the main bay in the Colorado – Lavaca coastal basin. Coastal Basins of Texas East Matagorda Bay and the rivers draining into it (derived from the National Hydrography dataset) #### Goals The purpose of this chapter of the report is to develop a procedure to define coastal drainage basins. The following
exercise allows the user to develop drainage basins for any coastal area. Furthermore, the exercise also demonstrates a method to analyze the soils of the area of interest. The study area for this exercise is the watersheds draining to East Matagorda Bay, which can be seen to the right. ## Obtaining the National Hydrography Dataset The first step in defining a coastal drainage basin is to define its streams and waterbodies using the National Hydrography Dataset (NHD). Download the stream networks of interest from the website http://nhd.usgs.gov., the homepage for the National Hydrography Dataset. The data on this site can be downloaded by referencing the USGS Cataloging Unit, or a map can be used to determine the areas which are of interest. The file that is downloaded is a *.tgz file. This file must be uncompressed before it can be used. The programs needed for this purpose are Gzip.exe and Tar.exe, which can be downloaded from links attached to the NHD website. The NHD is in Geographic Coordinates. The Cataloging Units used to define East Matagorda Bay and surrounding drainage areas are: - East Matagorda Bay USGS Cataloging Unit: 12090402 http://www.epa.gov/surf3/hucs/12090402/ - Central Matagorda Bay USGS Cataloging Unit: 12100401 http://www.epa.gov/surf3/hucs/12100401/ - Navidad USGS Cataloging Unit: 12100102 http://www.epa.gov/surf3/hucs/12100102/ Lower Colorado USGS Cataloging Unit: 12090302 http://www.epa.gov/surf3/hucs/12090302/ Lower Brazos USGS Cataloging Unit: 12070104 http://www.epa.gov/surf3/hucs/12070104/ Austin-Oyster USGS Cataloging Unit: 12040205 http://www.epa.gov/surf3/hucs/12040205/ San Bernard USGS Cataloging Unit: 12090401 http://www.epa.gov/surf3/hucs/12090401/ Two other datasets are needed for defining the coastal drainage system: Digital Raster Graphic Maps and Digital Elevation Models of land surface terrain. Digital Raster Graphic Data. This data is available through the Texas Natural Resources Information System (TNRIS). The URL is: http://www.tnris.state.tx.us/DigitalData/drgs.htm Digital Elevation Models of the region of interest. This data is available through the Texas Natural Resources Information System (TNRIS). The URL is: http://www.tnris.state.tx.us/DigitalData/DEMs/dems.htm. Standard methods for defining drainage basins are described at: http://www.ce.utexas.edu/prof/olivera/prepro/ExerciseDelineate/delinex.htm. In this report, modifications to the existing exercise will be described in order to develop the most current method for defining coastal drainage basins. The basin of interest for this report is East Matagorda Bay. # 2.1 Creating an NHD Stream Network for the Region The following instructions describe how to develop a stream network for the region of interest. It is recommended to build a stream network larger than the area needing to be delineated. This over-sizing of the stream network reduces errors in the delineated drainage areas that would First the downloaded NHD files must be uncompressed using Gzip.exe and Tar.exe. The uncompressing can be completed with the commands below from a DOS command prompt. Be sure to specify the correct directory path to use the gzip.exe and tar.exe programs. To unzip: C:\ gzip -d 12090402.tgz To untar: C:\ tar xvf 12090402.tar After the files have been uncompressed, the necessary themes can be added in ArcView 3.2: To do this press the *Add Themes* button Select the directory where you uncompressed your file and will see a folder named with the CU number Click the folder labeled *nhd* you will see a list of themes. Add the theme *route.rch* and *route.drain* from the CUs. Each CU folder will have the same files and they will assign the same name to each file, so we must change the names of the themes to keep the files in order. To do this Go to the *Theme/Properties* drop down menu and change their names to USGS cataloging unit number with the distinction between drain and reach (they can't have the same theme name). #### **Processing the Reach Codes** The NHD uses a system of Reach Codes to index individual NHD reaches. Each code value is a text field with 14 characters, the first 8 representing the HUC unit the reach lies in, and the remaining 6 to specify which stream segment within that HUC unit the reach describes. This 14 character code is too long to be directly converted to an integer value. The following procedure describes how to define an integer value corresponding to the Reach Code. Turn the *route.rch* themes into individual shape files by selecting the theme and using *Convert to Shapefile* from the *Theme* drop down menu. To edit the attribute table of the shape file press the *Open Theme Table* button Next start editing the table by selecting Table/Start Editing. For each CU shape file, add a field to the table by selecting Edit/Add Field. When the Field Definition window opens, name the new field *RchCodeNo*, which is a number field, with 16 characters. With the new field selected, use the *Field/Calculate* option to calculate *RchCodeNo* as Rch_code.asNumber (asNumber is a choice on the right). Add another field to each attribute table named SegmentNo, again a number field with 16 characters. Use the field calculate option to calculate SegmentNo as RchCodeNo - CU#____ + last CU digit ____. See the figure below for an example. | Pich id | Com id | Rot code | Rot date | Love | Meters | Gnis id | | | | 1 | |---------|----------|----------------|----------|-------|--------------|--------------|------------------|----------------|-----------|---| | 2 | 1615990 | 12090402000500 | 19980704 | 21 | | | Nome | - Rahandena - | Seamentno | г | | 3i | 1615992 | | 19980784 | - 5 | 2288 | | ļ | 12090402000500 | 942500 | - | | 4 | 1615994 | 12090402000502 | 19980704 | - 3 | | | <u> </u> | 12090402000501 | 942501 | | | 5 | | | 19980704 | -9998 | 16480 | | | 12090402000502 | 942502 | | | 6 | 1615998 | 12090402000035 | 19970529 | 3330 | 3479 | 1 | | 12090402000503 | 942503 | ĺ | | 7 | 1616000 | 12090402000087 | 19970529 | | | 01354128 | Cedar Lake Creek | 12090402000035 | 942035 | ļ | | 8 | 1616002 | 12090402000280 | 19970529 | -9998 | | 01370907 | Water Hole Creek | 12090402000087 | 942087 | | | 9 | 1615004 | 12090402000298 | 19970529 | -9998 | 809 | | | 12090402000280 | 942280 | | | 10 | 1616006 | 12090402000305 | 19970529 | -9998 | 7413 | | | 12090402000298 | 942298 | | | 11 | 1616008 | 12090402000308 | 19970529 | -9998 | 989 | | | 12090402000305 | 942305 | | | 12 | 1616010 | 12090402000446 | 19970529 | 2000 | 4982
5340 | | | 12090402000308 | 942308 | | | 13 | 1616012 | 12090402000504 | 19980704 | - 31 | 505 | | | 12090402000446 | 942446 | | | 14 | 1616014 | 12090402000505 | 19980704 | -9998 | 19273 | | | 12090402000504 | 942504 | | | 15 | 1616016 | 12090402000506 | 19980704 | -9998 | 6517 | | | 12090402000505 | 942505 | | | 16 | 1615018 | 12090402000507 | 19980704 | -9998 | 1395 | | | 12090402000506 | 942506 | | | 17 | 1616020 | 12090402000013 | 19970529 | 11 | | 01354100 | | 12090402000507 | 942507 | | | 10 | 16160221 | | 10070520 | | 7524 | 01354128 | Cedar Lake Creek | 12090402000013 | 942013 | | In this example, a ReachCode of 12090402000500 is convert to a SegmentNo of 942500, which is functionally equivalent to the original value and short enough to be treated as an integer by ArcView (less than or equal to 2^{31}). This method works if there are less than 1000 segments within a HUC unit, which is the case in most such units. It is possible to develop a different coding system if more records are to be manipulated. This process of ReachCode conversion must be completed for each CU file. #### Merging the Reach Files Now it is possible to merge the reach files without losing data. To merge files, the Geoprocessing Wizard Extension must be turned on, (File/Extension: Geoprocessing). To use the wizard go to View/Geoprocessing Wizard. Follow the dialog boxes to merge the themes. Merge all the route.rch themes. Output is nhd_sjb. Merge all the route.drain themes. Output is drain_sjb. # Projecting the Reach Files to the Required Coordinate System Next, the stream networks must be projected into UTM coordinates so that they can be overlaid with Digital Raster Graphic maps for editing and checking the stream network. Using the ArcView Projector! Extension, (File/Extensions menu), project the two themes to the desired projection. This extension is available with ArcView 3.1. In ArcView 3.2, the Projection Utility Wizard can be used to achieve the same goal. To do this, make the theme to be projected active and click the *Projector* button. Follow the dialog boxes to produce the desired projection. The original NHD data is in geographic coordinates. The themes have been projected to UTM zone 15, with the output themes as *nhd_sjb_utm15* and *drain_sjb_utm15*. ArcInfo can also be used to project the stream networks The projection file for UTM 15 is: Projection UTM Zone 15 Datum NAD83 Zunits NO Units METERS Spheroid GRS1980 Xshift 0.0000000000 Yshift 0.00000000000 Finally, the canals are removed from the stream network. - Delete the themes drain_sjb and nhd_sjb from the view. Make the drain_sjb_utm15 theme active. - o In the *Theme* menu, query the active theme with the ftype field for ftype = stream/river, as a *New Set*. Do NOT unselect. Then query ftype = artificial path, and *Add To Set*. Again, do NOT unselect. Query ftype = connector and Add To Set. - o With the *drain_sjb_utm15* theme still active and all the queries still selected, convert to shapefile, with output as *Nocanals*. - O Make the nhd_sjb_utm15 theme active and go to the Theme menu. Select By Theme, all the features in the active theme that "Have their Center in" the Nocanals theme and press New Set. - o Go to the *Theme* menu, and convert
the selection to a shapefile, output is *Rchnocanal*. - o Go to ArcInfo, and turn the shapefile into a coverage and clean the coverage with the Arc commands: - 1. First a workspace must be created with the command: Arc: createworkspace y:\perales\twbd_exercise (<drive>:\directory) To check the workspace use the command: Arc: w - 2. To create the coverage use the command: Arc: shapearc rchnocanal rchnocanal (input shapefile, output coverage) - name) 3. To clean the coverage use the command: Arc: clean rchnocanal rchnocanal_cl 0.000001 0.000001 (input coverage name, output coverage name, tolerances which will be changed to the minimum automatically) - The output theme *rchnocanal_cl* has no gaps in it that were not intended to be there. In ArcView, add the theme *rchnocanal(ARC)* to the View. - o Make that theme active, and convert to shapefile, *Nhdnetwork*. You now have a natural stream network composed of transport and coastline reaches in the NHD. NHD Network of the Matagorda Bay System. Notice that the bay system includes a much greater extent than simply East Matagorda Bay, which is located in the center of the stream network ## 2.2 Editing the NHD Stream Network When editing the natural stream network, it is possible to include additional canals, already present in the NHD, which have been eliminated in the previous step. This procedure is an example of adding a canal to the natural network from the original NHD coverage that was needed, and how to retain all of its attribute fields when merging it to the network. The example also pertains to adding just portions of an additional reach, where the length is not what is in the meters field of NHD reaches. O With both the *Nhdnetwork* and *nhd_sjb_utm15* theme on the view, make the *nhd_sjb_utm15* theme active. Select any reaches that need to be included with the *Select Feature* button . Convert this selection to a shapefile, output *extracanal*. Do any splitting of lines/editing BEFORE making the selection. O Using the Geoprocessing Wizard from the View menu, merge the themes nhdnetwork and extracanal. In the box to specify which fields to use in the merged theme, specify the fields of nhdnetwork. The Output is nhdnet2. Go to ArcInfo, and turn the shapefile into a coverage and clean the coverage: Arc: shapearc nhdnet2 nhdnet2 (input shapefile, output coverage name) Arc: clean nhdnet2 nhdnet2_cl 0.000001 0.000001 (input coverage name, output coverage name, tolerances which will be changed to the minimum automatically) The output theme *nhdnet2_cl* will not have any gaps in it, and the correct lengths will be added to a length field. The *meters* field will have the length of the entire reach, if a reach was split before it was added, however the length field will be correct. In ArcView, add the theme *nhdnet2_cl(ARC)* to the View. Make that theme active, and convert to shapefile, *Nhdnetwork2*. This theme is now your edited stream network. (No canals were added to this Network, therefore, *nhdnetwork.shp* will be used in the following commands) It is wise to check the stream network manually for any loops. This process can be made easier with ArcInfo to locate any polygons in the stream network. To do this use the command: Arc: shapearc *nhdnetwork nhdcoverage* (input shapefile, output coverage name) Arc: build nhdcoverage poly (coverage name, subclass) Arc: clean nhdcoverage nhdpoly_cl 0.000001 0.000001 (input coverage name, output coverage name, tolerances which will be changed to the minimum automatically) Once the polygon coverage has been created in ArcInfo add the theme to the view in ArcView. If there are any polygons, go back to your stream network and edit the network to remove any loops. To edit the stream network, make the stream network the active stream. From the *Theme* menu select *Start Editing*, select a small portion of the stream which is causing a polygon to form, using the *Select Feature* button . Press delete. Once all polygons have been broken press *Stop Editing* from the *Theme* menu and save the edits when you are prompted. Go back to ArcInfo and repeat the steps until a polygon coverage is created that does not contain any polygons. ## 2.3 Eliminating Isolated Reaches from the Network Create Seaocean theme: Open all the region.wb themes for each CU. They must all be given individual names that include the CU number such as 12040205wb. From the View/GeoProcessing Wizard menu, merge these themes into one Seaocean theme. The themes can be merged all at once by holding the shift key when selecting the themes. From the Theme menu, Query the new theme for Ftype= SEA/OCEAN and push New Set. From the Theme menu, Convert selection to a shapefile. Using the Projector! Extension, press the projector button, , project the new theme into the appropriate projection. Here we are using UTM 15. - O Create a new theme, *coastrch*. To create this theme, make the network theme active, and have the *Seaocean* theme in the view. - o From the *Theme* menu, *Select By Theme* of the stream network, those features of the active theme which intersect the *Seaocean* theme and press *New Set*. Convert this selection into a shapefile, *coastrch*. These are the reaches which make up the coastline. Create another new theme, level9998. From the network theme, query for level = -9998. Convert that selection to a shapefile, level9998. O Turn on the coastrch theme. Make the level9998 theme active, and from the **Theme** menu, **Select By Theme**, the active features which "have their center in" the coastrch theme and press **New Set**. - o From the *Theme* menu *Start Editing* the *level9998* theme, and delete. The selected arcs (those which make up a coastline) will no longer be included with the level –9998 reaches. - O Make the *Nhdnetwork* theme active. From the *Theme* menu, *Select By Theme* that which "have their center in" the level9998 theme. From the *Theme* menu, *Start Editing* the *Nhdnetwork* theme and delete the selection and *Stop Editing*. Now the *Nhdnetwork* theme has no isolated streams in it, and still contains the coastlines. ## 2.4 Determining the Waterbody Reaches on the Network The NHD contains a waterbody reach theme which includes all the waterbodies in the HUC. Many of these waterbodies are isolated ponds, and do not need to be included in any network procedures. This procedure outlines a method of determining which waterbodies actually lie along a path, and eliminates the isolated waterbodies. O After adding, merging and projecting the waterbody reach theme (*region.rch*) in the view (similar to method described to create the Seaocean theme), your output waterbody reach theme is *wbrch_sjb_utm15* as seen below. - O With the *nhdnetwork* theme added to the view, make the *wbrch_sjb_utm15* theme active. Go to the *Theme* menu, *Select By Theme*, choosing "contains the center of" the *nhdnetwork* theme. - o This captures all the waterbodies which surround an NHD artificial path that are considered "significant". - O Convert this selection to a shapefile from the *Theme* menu. Output wbrchnet_sjb_utm15. This theme has the waterbodies which lie on the network. (The term significance and insignificant are mentioned in Appendix E of The NHD Concepts and Contents.) For "insignificant" lake/pond features, those less than 10 acres in area, no separate transport reach was delineated. This is an exception to the Underlying Feature Rule of Transport Reach Delineation. Therefore, this method also ignores "insignificant" waterbodies as having a large effect on watershed delineation and does not include them as on the network. # 2.5. Checking the NHD Network with Digital Raster Graphic Maps With raster graphic images of topography made available through the Texas Natural Recourses Information System (TNRIS), it is possible to check the Nhdnetwork that has been built. These DRGs can be called with the Hot Link b - These DRGs can be called with the Hot Link button that has been included with this project. When starting ArcView the Hot Link button is dimmed, to be able to use it the right theme has to be active. Press the add theme button . And add the Txmesh_utm15 and the Nhdnetwork files. This will add grid to the view along with the previously construction. - O Make the Txmesh_utm15 the active theme. - o Then the Theme/Properties has to be selected. In the dialog box Hot Link has to be selected. In the Field cell the Code should be chosen. In the Predefined Action cell, Link to User Script is selected if you want to use you own script. Finally select the script addtopo in the Script cell and push the OK button. - Now the Hot Link button is available. To use it click the icon and then select the desired grid. This will call for a data CD which contains the correct topographical map. These CDs can be created by downloading the data from TNRIS at: http://www.tnris.state.tx.us/DigitalData/drgs.htm - o With the *Txmesh_utm15* theme active press the attribute table button o Now push the Hot Link button and click the desired grid. A dialog box will appear which data CD is needed. For instance a grid is select calling the dialog box below. o After inserting the Houston-w CD the OK button is pushed and a digital raster topographic map will appear in the appropriate grid. By comparing the topographic map with the *Nhdnetwork* that has been constructed it is possible to find errors. Be sure that the *Nhdnetwork* is the top theme. Although very helpful, this script cannot always identify the appropriate CD. Furthermore, it is possible the CD drive letter must be entered into the script so as to access the data files. To edit the script follow the directions below. o In the project window click the Script icon and double click addtopo. - When the script appears look for the line: theVal2 = "e:/data/O" + TheVal + ".tif".AsString - O The drive is e. If this is not the letter of the CD drive on the computer processing the data it must be changed to the appropriate
letter and the compile button must be pushed. Once the script has been compiled, then it can be closed and the Hot Link button can be used. # 2.6. Building a Digital Elevation Model for the Region Once the stream network has been constructed, the Digital Elevation Model (DEM) has to be developed. These DEMs can be downloaded from TNRIS. - The DEMs have a grid covering a full one degree by one degree region, therefore for large areas several DEMs need to be merged to create one large model. Merging DEMs can be done in ArcInfo with the following commands: - 1. First a workspace must be named with the command: Arc: w y:\perales\twbd_exercise (<drive>:\directory) To check the workspace use the command: Arc: w 2. Then we must be in the grid format with the command: Arc: grid 3. Finally, merge the DEMs: Grid: emmerge = merge (grid1,...,grid2) (output grid = merge (input grids to merge separated by commas)) ``` Copyright (C) 1982-2000 Environmental Systems Research Institute. Inc. All rights reserved. ARC 8.1 Beta II (Mon Aug 14 22:41:22 PDT 2000) This software is provided with RESTRICTED AND LIMITED RIGHTS. duplication, and disclosure by the U.S. Government are subject to restrictions as set forth in FAR Section 52.227-14 Alternate III (g)(3) (JUN 1987), FAR Section 52.227-19 (JUN 1987), and/or FAR Section 12.211/12.212 [Commercial Technical Data/Computer Software] and DFARS Section 253, 232-2015 (MOM 1985), Tachnical Data/Computer Software] Section 252.227-7015 (NOU 1995) [Technical Data] and/or DFARS Section 227.7202 [Computer Software], as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100, USA. Arc: w y:\perales\twdb_exercise Current location: y:\perales\twdb_exercise Arc: grid Copyright (C) 1982-2000 Environmental Systems Research Institute, Inc. All rights reserved. GRID 8.1 Beta II (Mon Aug 14 22:41:22 PDT 2000) Grid: emmerge = merge (int9830, int9731, int9730, int9729, int9631, int9630, int 9629) Running ``` For this particular model seven DEMs were combined to form one large model shown below. Next the DEM must be projected to match the stream network. For this project we have used UTM The themes have been projected to UTM zone 15, with the output themes as em_u15_grid . ArcInfo is used to project the DEM grids The projection file for UTM 15 is: Projection UTM Zone 15 Datum NAD83 Zunits NO Units METERS Spheroid GRS1980 Xshift 0.00000000000 Yshift 0.000000000000 - Next, this projected DEM must be clipped to only include the area of interest. To do this the CU outlines can be used. These CU should have been determined when building the stream network. - 1. Be sure the geoprocessing extension is checked under the File\Extensions menu. Using the Geoprocessing Wizard from the View menu, clip the DEM with the CU outline. The resulting the DEM is shown below: # 2.7. Using CRWR-PrePro to Process the DEM From the Analysis\Properties menu set the Analysis Extent and Analysis Cell size to be the same as your clipped DEM. With the use of CRWR-PrePro, the stream network that has been developed must be burned into the clipped DEM. To do this, both the NHD stream network and the clipped DEM must be in the view and are the active themes. From the CRWR-PrePro drop down menu select Burn Streams. In the Elevation Rise dialog box, type in 1000 as the arbitrary elevation rise. Click **OK**. Then click **OK** for the Burn Streams dialog box to save the grid permanently. Turn on the *Burned_Dem grid*. Since this is the temporary grid, you will save the grid in your work\tmp directory, so in case the ArcView crashes, you can rebuild the project easily. Choose **Theme/Save Data** Set and save the grid as burned_mb_u15 in your tmp directory. If highlight the Burned_Dem theme, zoom in near the streams, and use the Identify tool , you can see that the stream cell elevations remain as they were on the original DEM surface but the land surface elevations have been raised 1000m higher. This is obviously an artificial terrain surface but you can see that the effect of burning in the streams is to make them distinct in the DEM landscape. Normally, before you burn in the streams you have to ensure that the stream network is continuous and doesn't have gaps between each stream segment. Next, the sinks in the DEM must be filled. Most of the DEM data are accurate, however, aberrations do occur in the DEM which cause pits to form in the terrain. These pits need to be filled, otherwise they will cause the wrong flow direction. The Fill sinks function raises pit cell elevations so as to level the pits with the surrounding terrain. Only tiny sinks will be filled, since large sinks, such as lakes, are real sinks which we do not wish to remove from the DEM. Choose menu **CRWR-Prepro/Fill Sinks**. In the prompted diolog box, choose **Burned_DEM** for the Input Theme, click **OK**. The available burned DEM (Burned_Dem) is automatically populated in the Input Theme 1 field. Specify the Output Theme 1 as **filled_mb_u15**. Click **OK** to run the function. You will see the blue bar running across the bottom of the View window to indicate that processing is occurring. When it is completed, the new grid filled_mb_u15 will be added to the View window. This process is the most time consuming of all the functions that you will use in this exercise and may take some time to execute on a slower computer. Make the *filled_mb_u15* active, choose **Theme/Save Data Set** and save the grid as *filled_mb_u15* in your working directory. Once the stream network has been burned into the DEM and the sinks have been filled, the DEM can now be formatted for coastal delineation. # 2.8. Defining the Sea/Ocean Region of the DEM - With a CU outline of your basin, clip the **SeaOcean** theme, created in Step 3: Eliminating Isolated Reaches from the Network, using the **Geoprocessing Wizard**. (Add Extension Geoprocessing, then under **View Menu**, **Geoprocessing Wizard**) The product is **clip1**. - Open the *clip1* attribute table by pressing the *Open Theme Table* button From the *Table* menu select *Start Editing*, and add a field called Value, type number, width 16 and 0 decimal places, by using the *Edit/Add Field* menu. - O Do not fill the field. Under the *Table* menu *Stop/Save* edits, and the records will automatically fill with zero. - O Go to the *Analysis/Properties* menu. Make sure to set the Analysis Extent to same as your Filled DEM. Convert *clip1* to a grid with the Value Field as the cell value. This grid is *nwgrd1*. This grid has 0 values where you want no data values and no data values where you want 1 values. - Go to ArcInfo, go to Grid with the command: Arc: Grid. - At the Grid prompt: #### **Grid:** Seagrid = isnull (nwgrd1) Where **Seagrid** is an output grid, is null places a value of 1 in a cell where the input grid cell is No Data and a 0 where the input grid cell is not No Data. Now you have 0 values where you want No Data and 1 values where you want 1 values. o Go back to ArcView. In the *Analysis/Properties*, set the Analysis Extent to same as *Seagrid*, and the Cell Size same as *Seagrid*. O Using the *Map Calculator* under the *Analysis* menu, do the calculation: *Seagrid / Seagrid* and press *Evaluate*. Now you have 1 values where you want 1 values and No Data values where you want No Data values. The output is *Mapcalc1*. O Under Analysis/Properties, set the Analysis Extent same as filled_mb_u15, and the Analysis Cell Size same as filled_mb_u15. In map calculator, do the calculation: Mapcalc1 * filled_mb_u15. Now the DEM will have no data cells where the sea/oceans are and the rest of the DEM values are maintained. This output is your final product. Convert to a grid, and save it to your directory (f_mbsea_u15). This grid will now be the filled DEM to be used in the subsequent steps CRWR-PrePro. # 2.9 Completing the Watershed Delineation with CRWR-PrePro With the DEM grid filled, the flow direction grid can be calculated. Choose menu **CRWR-Prepro/Flow Direction**, The Input Theme1 is automatically populated with the FilledDem in this case the *f_mbsea_u15* should be used. Type in *fdr_mbsea_u15* for the Output Theme. Click OK. After a short period, a flow direction grid will be added to the View. Turn on the theme. Make the fdr_mbsea_u15 theme active, choose Theme/Save Data Set, and save the grid as fdr_mbsea_u15 in your working directory. To avoid having a lot of legends cluttering up your view window, you can highlight the corresponding themes and use Theme/Hide Legend to minimize their display in the window. Once you finished the flow direction grid, the flow accumulation grid can be calculated. Choose menu **CRWR-Prepro /Flow Accumulation**, The Input Theme is automatically populated with the flow direction grid, in this case, *fdr_mbsea_u15*. Type in Fac_mbsea_u15 (Matagorda Bay Flow Accumulation Grid) for the Output Theme. Click **OK**. After a short period, a flow accumulation grid will be added to the View. You should notice some faint streams moving off to the lower-right corner of View1. Keep in mind that the darker the color of an individual grid cell, the more grid cells drain into that particular cell. Click on the Zoom in tool and zoom into a spot in the lower right corner where the two streams join in the grid network. Use the Identify tool to check individual cell values and understand how flow accumulation function counts the number of cells upstream of a particular cell. Follow a particular stream going downstream and see how the flow accumulation value increases as more drainage area is picked up. Focus on a junction and see how the flow accumulation downstream of the junction is the sum of the flow accumulations in the two upstream tributaries. Next the basic stream network must be constructed. Before you start to construct the stream network, you have to define the cell threshold or minimum stream drainage area. Choose menu
CRWR-Prepro /Stream Definition (**Threshold**). The Input Theme is automatically populated with the flow accumulation grid, in this case, **fac_mbsea_u15**. Type in **str_mbsea_u15** (Matagorda Bay Stream Grid) for the Output Theme. In the prompt dialog box, change the stream threshold from default **10000** to **25000**. Click **OK**. After a short period, the stream grid guastr will be added to the View. The stream grid has a value of 1 in each cell with a flow accumulation value larger than 25000, and NODATA on all other cells. Make the str_mbsea_u15 active, choose Theme/Save Data Set and save the grid as str_mbsea_u15 in your working directory. Now, the each stream is given a unique ID with the Stream Link function. Choose CRWR-Prepro /Stream Segmentation (Links). In the pop up dialog box, choose StreamGrid to create Link. Click OK. The two Input Themes are should be populated with the flow direction grid (fdr_mbsea_u15) and the stream grid (str_mbsea_u15). Give the output grid name as lnk_mbsea_u15. Click OK. You see the stream link grid Ink_mbsea_u15 added in the view. To better view the stream link grid, double click on the legend bar to open the Legend Editor. In the Legend Editor, choose Unique Value for Legend Type, Value for Values Field, and Fruit & Vegetables for Color Scheme. Click Apply, and you see the stream grid is segmented to stream links, with each link having its own unique color and value as shown in the legend bar. Choose **Theme/Hide/Show Legend** to hide the legend of theme gualnk. Make the **lnk_mbsea_u15** active, choose **Theme/Save Data Set** and save the grid as **lnk_mbsea_u15** in your working directory. The outlet cell is the cell in each link that has the largest flow accumulation value. All of the cells upstream of the outlet cell flow into the outlet cell. Choose menu CRWR-Prepro / Outlets from Links. Choose LinkGrid to create the outlet grids. Click OK. The two Input Themes are automatically populated with the flow accumulation grid (fac_mbsea_u15) and stream links grid (lnk_mbsea_u15). Give the output grid name as out_mbsea_u15. Click **OK**. The resulting grid is a scattered set of single cells, each the farthest downstream cell of a stream link. To better view the outlets grid, double click on the legend of out_mbsea_u15 theme to open the **Legend Editor**. In the Legend Editor, double-click on the first color square under symbol and choose black in the Color Palette. Go back to the Legend Editor and double-click on the last color square above the No Data, and choose the black again in the Color Palette. Then click on the Color Ramp button. You see all of the symbols become black. Click Apply. Zoom into a spot with many branches, you see the black outlet cells at the farthest downstream cells of stream links. Notice from the legend, the outlets grid has 426 outlets. Choose menu Theme/Hide/show Legend to hide the legend, then the Zoom to Previous extent to see the whole region. Make the out_mbsea_u15 theme active, choose Theme/Save Data Set and save the grid as out_mbsea_u15 in your working directory. With the links and outlets finalized, you can delineate the watersheds now. Choose menu CRWR-Prepro / Sub-Watershed Delineation. In the prompted dialog box, choose OutletsGrid. Click OK. In the next dialog box, the two Input Themes are automatically populated with flow direction grid fdr_mbsea_u15 and modified outlets grid out_mbsea_u15. Give wshdgr as the name for the output watershed grid Click **OK**. After a short while, the watershed grid **wshdgr** is added to the view. A subwatershed is a zone of cells with the same cell value as the first outlet cell they drain through. There are a total of 137 watersheds. Make the **wshdgr** active, choose **Theme/Save Data Set** and save the grid as wshdgr in your tmp directory. Drag the stream link grid Ink_mbsea_u15 to the top layer in the legend so it can be drawn on the top of the watershed. Double click on the legend of wshdgr grid. In the Legend Editor, choose Unique Value for Legend Type, Value for Values Field. Use the default Color Schemes Bountiful Harvest. Click Apply. Notice that each of the stream segment has a watershed associated with it. Drag the m_out theme to the top of the legend bar. You'll see an outlet at the end of each stream segment. Highlight the wshgr theme and use the Identify tool to see some of the watershed value numbers. Highlight the Ink_mbsea_u15 theme and similar see the stream link numbers in each watershed are the same. Finally highlight the out_mbsea_u15 theme and see that the outlet grid cell for a give stream link has the same number as the link and the surrounding drainage area. This number, later called the Gridcode, plays an important role in connecting watersheds, streams and outlets. Double-click on the legend of lnk_mbsea_u15. In the Legend Editor, similarly symbolize it with the Unique Value on the Value field using Bountiful Harvest Color Schemes. Click Apply. The lnk_mbsea_u15 grid magically disappears. This is because each of the links has the same value as its associated watershed. Since you used the same color scheme, each link is assigned the same color as its watershed, so it "dissolves" into the watershed. Choose menu **Theme/Hide/show Legend** to hide the legend. Click on the Open Table Button to open the Attribute of wshdgr. Click on the field name Count so it seems indented. Choose menu **Field/Statistics** to see the statistics of the watershed grid wshdgr. Up to this point, you have been working with grids. Grid is excellent for cell based analysis, however, vector data are easier to use and store. Therefore, grids are usually employed to develop a data set, and the final product is then converted to vector format. Since a vector polygon does not necessarily have a square shaped border like the grid, when ArcView converts a grid to a polygon, a **dangling polygon** may be created on the edge of an existing polygon. This dangling polygon is a tiny watershed that does not exist, and should be dissolved into the parent watershed polygon to which that drainage area really belongs. Choose menu CRWR-Prepro /Vectorize Streams and Watersheds. In the prompted dialog box, the Input theme has automatically been populated with the watershed grid wshdgr. Give wshdply as the output theme name. Click OK. After a short while, you will be prompt with the Vectorize Streams dialog box, choose LinksGrid, and then click OK. The two input themes have already been populated. Give mbriv.shp as the Output Theme name, click OK. After a short while, you will be prompted a Yes/No dialog box for backing up the **wshdply.shp**. choose **No**. You should be informed that dangling polygon has been merged. Click **OK**. You will see the blue status bar running. It will stay at 100% for a while, and will seem to be providing no response. Don't worry, it is busy calculating. After it has finished, you will see the watershed polygon **Wshdply.shp** and the river line **mbriv.shp** were added into the view. ## 2.10. Merging Subwatersheds In this study the large region just delineated is broader than is needed just for Matagorda bay. To distinguish the region of interest from the larger region, the required subwatersheds are selected from **Wshdply.shp** and the river lines from **mbriv.shp** and copied to a new pair of shapefiles **Mbwsh.shp** and **Mbrivers.shp**. Use the resulting Mbwsh.shp to clip the watersheds grid produced in the previous step to the required area, and call it FinalMbWsh. Final Watershed grid and stream network This watershed can be further processed by combining subwatersheds. To do this the map calculator is used to create three subbasins as shown below. First, with the open FinalMbwsh grid, determine the extent of each subbasin with the legend. O Now from the Analysis menu select Map Calculator. When the dialog box opens double click the *Final_mbwsh* grid and then the less than or equal to button and enter 195. Then push evaluate. After a short while a new grid will be created called *Map Calculation 1*. This grid will be used in the next map calculation which is Map Calculation 1 / Map Calculation 1. O Again a new grid will be added to the view. This new grid will be given a new watershed value with the calculation: ([Map Calculation2] * 3) as shown in the graphic below. - O This new grid must be saved. Use the **Theme\Save Data Set** to save the new calculation as Upper_basin. - O The remaining basins are created similarly. The calculation for the middle basin is ([Final_mbwsh]>195) and ([Final_mbwsh]<=321) as shown in the graphic below. The lower basin is defined as ([Final_mbwsh]>321). o The watershed value for the lower basin is one therefore it is not necessary to multiply the calculation by a number. However the middle basin should be given a value of 2. Once all the subbasins have been completed, they must be merged. A process has been previously defined to merge grids using Arc/Info. The following steps will show a method of combining grids within ArcView. o From the File menu select Extensions. When the dialog box opens select CRWR Raster and click OK. Now a new drop down menu is available. - o Make the lower_basin the active theme by clicking on the legend. From the CRWR Raster menu select Merge Grids. - O After a short while a new grid will appear in the view. This grid should be saved using the Theme/Save Data Set menu. The final basin and stream network can be seen to the right. # 2.11. Clipping the Soils Data to the Area of Interest The following files are needed for this portion of the procedure: Statsgotx.shp - a shape file of Statsgo map units for Texas. This file can be downloaded from the NRCS website for Statsgo given below. Database
files called *mapunit.dbf*, *comp.dbf* and *layer.dbf* supplied by the National STATSGO database. The *mapunit* table holds the key to relating soil attributes to polygons on the map. One record exists in the *mapunit* table for each *mapunit*. A single record in the *mapunit* table relates to one or more components in the *comp* table and the *layer* table. The data tables are available through the National STATSGO database at ftp://ftp.ftw.nrcs.usda.gov/pub/statsgo/dos/arc/data/. Lookuptable.dbf - a table used to assign Green and Ampt infiltration parameters based on the 12 USDA textures. This table is presented as Table A.1 in Appendix A. Textconv.dbf - a table used to convert the 719 USGS soil textures to the 12 USDA textures. This table is presented as Table A.2 in Appendix A. The following steps allow the user to analyze the watershed of interest for soil characteristics. Open a new view and add the themes Statsgotx.shp and your watershed shapefile (wshpoly.shp, This file was created by the step Vectorizing Streams and Watersheds under the drop down menu CRWR-PrePro and can either be the entire watershed or the watershed that has been focused upon in the previous step. Remember that if the focused watershed is used it must first be vectorized.). o Next add the tables mapunit.dbf, comp.dbf, layer.dbf, textconv.dbf and lookuptable.dbf. To use the clipping tool the geoprocessing extension must be loaded. This can be done from the **File** menu under **Extensions.** Once the Extensions dialog box has opened, scroll down and select geoprocessing. Then with the view the active window, under the **View** menu select **GeoProcessing Wizard**. With the GeoProcessing Wizard open, select *clip one theme based on another* and push the next button. The input theme is the Statsgotx.shp file and the overlay theme is the watershed of interest. Then press the finish button and a clipped theme will be put into your view. You should give the clipped soils theme a name you will recognize. Here the clipped soils region is called *Mbsoil.shp*. ## 2.12. Determining the Green and Ampt Parameters To use the script go to the **CRWR-PrePro** menu and select **Green_Ampt**. There will be a series of dialog boxes that require input themes and tables. Follow the instructions on the dialog boxes. The final dialog box will ask for the *Effective Saturation* of the watershed. The default value is 20% but can be changed. The program will run for a few minutes. When it is finished a table called USDA.dbf will have been added to the list of tables and then you will be prompted to add a new theme to the view. This new theme that is to be added will automatically be called Soilintersect.shp. Open the attribute table for the soilintersect shapefile. To do this make sure the appropriate theme is active and then push the open theme table button Notice that for each mapunit the soils are divided into thirteen (13) categories, the twelve (12) USDA soil types and water. Furthermore, the Green and Ampt parameters of hydraulic conductivity, suction head, change in moisture content, and initial loss have been added to the table. All of these values have been reduced from the *USDA.dbf* table. Open the *USDA.dbf* table. In this table you will notice that each mapunit is made-up of different components. Moreover, each component is made-up of layers. This table is used to assign Green and Ampt parameters to each component. This table acts as a modified component table and is the source of all further calculations. The values for conductivity, suction head and effective porosity are pulled directly from the look-up table. The value of the holding capacity is calculated from the layers table from the expression: Holding Capacity = sum over its layers of (awcl + awch)/2 * (laydeph - laydepl). #### where: - Laydepl- the depth of the top of the layer in inches. - Laydeph- the depth of the bottom of the layer in inches. - Awcl- a lower limit on the estimated water holding capacity in inches of water per inch depth of soil (e.g. a value of 0.16 in/in means that 16 per cent of the soil volume is void space that could be occupied by water). - Awch an upper limit on the estimate water holding capacity. These parameters are further reduced in the soils attribute table by using an area weighted average. In the *USDA.dbf* table the parameter *comppct* represents an area weighted percentage of each component that makes- up a mapunit. The area weighted hydraulic conductivity and the wetting front suction head values are calculated from the expressions below: Conductivity = $$\sum_{\text{component}}$$ Conductivity * $\frac{\text{comppet}}{100}$ Suction Head = $$\sum_{\text{component}}$$ Suction Head * $\frac{\text{comppct}}{100}$ The Change in Moisture Content $(\Delta\theta)$ and the Initial Loss values are estimated from a user input Effective Saturation (S_e) value and are area weighted. $$\Delta\theta = \sum_{\text{component}} (1 - S_e) * \text{Effective Porosity } * \frac{\text{comppct}}{100}$$ Initial Loss = $$\sum_{\text{component}} (1-S_e) * \text{Holding Capacity} * \frac{\text{comppet}}{100} * 0.2$$ These weighted parameters are assigned to the mapunits of the soil attributes table. Scroll through the clipped soils attribute table and notice there is only one value for each mapunit. Also included in the *soil attributes table*, is the percentage of each of the soil types and the percentage of water located within each mapunit. Now, with the soilintersect attributes table in view, select the field labeled gridcode and press the sort ascending button. Hold the shift button down and select all rows with the same gridcode. In the view the subwatershed with this gridcode will be highlighted in yellow. Notice that the soilintersect attributes table contains both mapunits and gridcodes. This table provides the connection needed to assign soil parameters to a watershed. Notice that this table has two area values. The first area value is of the individual polygon of the mapunit and the second area is the area of the entire subwatershed that the mapunit is a part of. The first area value is used to further reduce the data so that each gridcode has only one set of parameters. This set of parameters are then entered into the watershed attributes table. Open the watershed attribute table and select the gridcode field and press the sort ascending button. Notice that there is only one value for each gridcode. Again, this reduction was done by taking the sum of the area weighted mapunit values. ## 3. Integrating GIS and TxRR The original Fortran version of TxRR was developed by Dr Junji Matsumoto, and was subsequently modified by Dr Barney Austin. Although the TxRR code modified by Dr Austin had a Visual Basic interface, it was incomplete in the sense that the Visual Basic interface designed for the Fortran code was completely independent and thus the Visual Basic interface and the original FORTRAN code were working independently in different environments i.e. the input interface was in Windows and to run the Fortran TxRR code, we had to open the DOS window and run the TxRR.exe program. The flow chart for this version can be represented as Original Structure of TxRR Model Operation #### **Objectives of GIS-TxRR Integration** Following are the objectives for the GIS-TxRR Integration: - Due to lack of interconnection between different interfaces and also due to different working environments, using of TxRR is somewhat clumsy. So the first objective is to link all the interfaces into one interface and run the model in the Windows environment. - Integrate the TxRR model with ArcGIS Hydro Data Model. # 3.1 Linking of TxRR and a DOS-Windows Interface The user interface for TxRR is in Visual Basic. Since Visual Basic is a window-based application it does not support DOS based applications. In other words, it is difficult to run a FORTRAN program from Visual Basic. However it is possible to create a shell in Visual Basic, which can allow a DOS program to run and pause the Visual Basic program unitl the DOS program does its job, and then proceed forward by closing the shell. A Visual Basic code was developed to perform the shelling and TxRR program was made to run in windows environment. Then finally all the interfaces were combined into a single Visual Basic form so that the user now has to run only one program and he/she can perform all the tasks in one interface. The current mode of operations of TxRR is illustrated in the following diagrams. There is also a possibility of making the program DOS independent by converting the TxRR.exe into a DLL (Dynamic Link Library). This possibility has been tested by working on a small fortran code but the possibility of converting TxRR.exe into a DLL file has not been fully explored. Structure of TxRR Model after linking #### 3.2 ArcGIS Hydro Data Model The Geographic Information System software used by the TWDB, ArcInfo and ArcView, is produced by the Environmental Systems Research Institute (ESRI) of Redlands, CA. ESRI is about to release ArcGIS version 8.1, which is a new style of GIS software, more powerful than the ArcInfo version 7 and ArcView version 3 that are currently in use. ArcGIS version 8.1, which includes ArcInfo 8.1 and ArcView 8.1, is built using a Visual Basic interface and object oriented software, which is COM compliant, that is, it adheres to the Microsoft Component Object Model standard, thus permitting the sharing of objects among several programs. This change makes it significantly easier to integrate GIS and hydrologic models than was the case earlier. CRWR and ESRI have together created a Consortium for GIS in Water Resources to design an ArcGIS Hydro data model for implementation in ArcInfo 8 and ArcView 8. This data model is a set of water resources object classes with links between them, which systematize how geospatial and temporal water
resources data can be stored in a GIS. This design has been undertaken through the Consortium in consultation with a wide range of individuals from federal, state and local agencies, consulting firms, and academia. In particular, the design has been closely coordinated with the National Hydrography Dataset group at the USGS and EPA, who have produced the digital version of the stream hydrography of the United States. This is a critical data source now available for delineating coastal drainage areas that was not available at the time of the Corpus Christi Bay study. NHD data for East Matagorda Bay and its drainage systems are used extensively in this report. Components of the ArcGIS Hydro data mode # 3.3 Integration of TxRR with the ArcGIS Hydro Data Model The purpose of linking TxRR with ArcGIS Hydro Data Model is to produce a GIS integrated software that can extract time series data from ArcGIS, process it and store the output in ArcGIS Hydro Data Model, which can then be displayed in GIS interface. In other words, the ArcGIS Hydro data model will act as a data support structure and the TxRR model read and write to this structure. The integration of TxRR with ArcGIS is still under development. However, significant progress has already been made in this regard. All the data in ArcGIS Hydro Data model is stored in MS Access format. In order to run TxRR, the time series data from ArcGIS Hydro Data Model has to be converted into an appropriate format that is recognized by the TxRR code. The TxRR Model requires a time series input of precipitation data and gaged runoff data and the two files required have different formats. A code has been written in Visual Basic, which converts the time series data in ArcGIS Hydro Data Model (which is in MS Access form) to the TxRR input format. This is now working successfully, and this code will be modified to convert the precipitation data from Hydro Data Model into TxRR input format. The final step will be to develop a tool in Visual Basic, which will combine all these codes and since ArcGIS HydroData Model supports Visual Basic. The final version of this Visual Basic code can be accommodated into ArcGIS Hydro Data Model as an important tool that can be used for rainfall-runoff modeling. Integration of Visual Basic Interfaces to ArcGIS and to the TxRR Model # 4. Summary and Conclusions The original goal of the research is to construct an improved TxRR model by closer integration with GIS and by better storage and handling of time series. The following objectives have been achieved in this study: - 1. A procedure is defined for selecting and editing the National Hydrography dataset so as to produce a stream network suitable for the delineation of coastal drainage and implemented to define the stream and coastline network for East Matagorda Bay. - 2. The stream network is combined with the National Elevation Dataset for land surface topography and used to define a set of elementary drainage areas. Selected drainage areas are combined into three watersheds draining to East Matagorda Bay - 3. A procedure for determining Green and Ampt soil parameters for these watersheds is applied to determine soil parameters for East Matagorda Bay - 4. The use of the Visual Basic interface to TxRR has been streamlined so that the Fortran code is called without having to use a separate DOS window. - 5. Additional Visual Basic procedures have been written so that the time series files for TxRR can be read from and written to the Time Series database of the ArcGIS Hydro data model. Some additional work is needed to completely integrate TxRR with the ArcGIS Hydro data model so that it TxRR can use geospatial and temporal data from the database. However, to achieve a complete integration requires some greater experience in integrating water resources models with the ArcGIS Hydro data model. What has been accomplished so far, and described here, is at the limit of what is possible with the GIS software and tools available at this time. The drainage areas constructed here for East Matagorda Bay are worked out in a manner consistent with related projects being conducted by the Center for Research in Water Resources. In particular, a similar set of 55 drainage areas in the Houston-Galveston area has been developed to support the Total Maximum Daily Load program of TNRCC, and a related processing of drainage networks for all coastal basins is being done to support the Water Availability Modeling program of TNRCC. If the results of these various projects are all put into the ArcGIS Hydro data model format, and if TxRR is further developed so that it can operate by drawing data from that data model, a framework can be created for a systematic and consistent means of analysis of coastal drainage systems in Texas, both within the Texas Water Development Board, and between the TWDB and related State and Federal agencies. ### 5. References - Chow, V.T., D.R.Maidment, and L.W.Mays, Applied Hydrology, McGraw-Hill, 1988 - Reed, S.M., and D.R.Maidment, Use of Digital Soil Maps in a Rainfall-Runoff Model, CRWR Online Report 98-8, Center for Research in Water Resources, University of Texas at Austin, 1988 http://www.crwr.utexas.edu/reports/1998/rpt98-8.shtml - Perales, J.M., R. Gu, and D.R. Maidment, Developing a GIS TxRR Model, Report submitted to Texas Water Development Board, 25 pp., July 2000 # Appendix A. Soil Parameter Tables Table A.1 Green-Ampt Parameters for USDA Soil Classes Source: Chow, Maidment and Mays (1988), Table 4.3.1 | USDA Soil Class
Sand | | Effective Porosity | Wetting Front
Suction Head
(mm) | Hydraulic
Conductivity
(mm/day) | |-------------------------|------|--------------------|---------------------------------------|---------------------------------------| | | S | 0.417 | 49.5 | 117.8 | | Loamy Sand | LS | 0.401 | 61.3 | 29.9 | | Sandy Loam | SL | 0.412 | 110.1 | 10.9 | | Loam | Ĺ | 0.434 | 88.9 | 3.4 | | Silt Loam | SIL | 0.486 | 166.8 | 6.5 | | Sandy Clay Loam | SCL | 0.330 | 218.5 | | | Clay Loam | CL | 0.309 | 208.8 | 1.5 | | Silty Clay Loam | SICL | 0.432 | | 1.0 | | Sandy Clay | SC | 0.321 | 273.0 | 1.0 | | Silty Clay | | | 239.0 | 0.6 | | · • | SIC | 0.423 | 292.2 | 0.5 | | Clay | С | 0.385 | 316.3 | 0.3 | | Silt | SI | 0.486 | 166.8 | 6.5 | Table A.3 Relationship between Statsgo and USDA Soil Classes Source: Reed and Maidment (1998), Appendix D | USDA Soil Class | |-----------------| | С | | CL | | S | | SL | | S | | SL | | L | | LS | | LS | | LS | | S | | SC | | SCL | | SI | | SIC | | SICL | | SIL | | SL | | S | | SL | | С | | CL | | | | BYV-COS BYV-COSL BYV-FS BYV-FSL BYV-LCOS BYV-LFS BYV-LS BYV-LS BYV-LVFS BYV-SC BYV-SC BYV-SIC BYV-SICL BYV-SIL | S
SL
S
LS
LS
LS
SC
SCL
SIC
SICL | |--|--| | BYV-SL | SIL
SL | | BYV-VFS | s | | BYV-VFSL | SL | | BYV-SL | SL | | BYX-C | С | | BYX-CL | CL | | BYX-COS
BYX-COSL | S | | BYX-FS | SL | | BYX-FSL | S | | BYX-L | SL
' | | BYX-LCOS | L
LS | | BYX-LFS | LS | | BYX-LS | LS | | BYX-LVFS | LS | | BYX-S | S | | BYX-SC | SC | | BYX-SCL | SCL | | BYX-SI | SI | | BYX-SIC | SIC | | BYX-SICL | SICL | | BYX-SIL | SIL | | BYX-SL | SL | | BYX-VFS | S | | BYX-VFSL | SL | | C | С | | CB-C | C | | CB-CL | CL | | CB-COS | S | | CB-COSL | SL | | CB-FS
CB-FSL | S | | OD-F9L | SL | | CBV-SC
CBV-SIC
CBV-SIC
CBV-SIL
CBV-SIL
CBV-VFSL
CBX-C
CBX-COS
CBX-COS
CBX-FS
CBX-FS
CBX-LCOS
CBX-LFS
CBX-LS
CBX-LVFS
CBX-SC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-SIC
CBX-COS
CN-COS
CN-COS
CN-COS
CN-COS
CN-LCOS
CN-LS
CN-LS
CN-LS
CN-LS
CN-LS
CN-S
CN-S
CN-S
CN-S
CN-S
CN-S
CN-S
CN- | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ |
---|--| | CN-S | | | | | | CN-SICL | 0101 | |----------|------| | CN-SIL | SICL | | | SIL | | CN-SL | SL | | CN-VFS | S | | CN-VFSL | SL | | CNV-C | С | | CNV-CL | CL | | CNV-COS | S | | CNV-COSL | SL | | CNV-FS | | | CNV-FSL | S | | CNV-L | SL | | CNV-LCOS | L | | | LS | | CNV-LFS | LS | | CNV-LS | LS | | CNV-LVFS | LS | | CNV-S | S | | CNV-SC | SC | | CNV-SCL | SCL | | CNV-SI | SI | | CNV-SIC | SIC | | CNV-SICL | SICL | | CNV-SIL | | | CNV-SL | SIL | | CNV-VFS | SL | | | S | | CNV-VFSL | SL | | CNX-C | С | | CNX-CL | CL | | CNX-COS | S | | CNX-COSL | SL | | CNX-FS | S | | CNX-FSL | SL | | CNX-L | L | | CNX-LCOS | LS | | CNX-LS | LS | | CNX-LVFS | LS | | CNX-S | | | CNX-SC | S | | CNX-SCL | SC | | • | SCL | | CNX-SI | SI | | CNX-SIC | SIC | | CNX-SICL | SICL | | CNX-SIL | SIL | | CNX-SL | SL | | CNX-VFS | S | | CNX-VFSL | SL | | COS | S | | COSL | SL | | | OL. | | CRV-LS | LS | |----------|------| | CRV-LVFS | LS | | CRV-S | S | | CRV-SC | SC | | CRV-SCL | SCL | | CRV-SI | SI | | CRV-SIC | SIC | | CRV-SICL | SICL | | CRV-SIL | SIL | | CRV-SL | SL. | | CRV-VFS | S | | CRV-VFSL | SL | | CRX-C | C | | CRX-CL | CL | | CRX-COS | S | | CRX-COSL | SL | | CRX-FS | S | | CRX-FSL | SL | | CRX-L | L | | CRX-LCOS | LS | | CRX-LS | LS | | CRX-LVFS | LS | | CRX-S | S | | CRX-SC | | | CRX-SCL | SC | | CRX-SI | SCL | | CRX-SIC | SI | | CRX-SICL | SIC | | CRX-SIL | SICL | | | SIL | | CRX-SL | SL | | CRX-VFS | S | | CRX-VFSL | SL | | DE | 0 | | FB | 0 | | FL-C | С | | FL-CL | CL | | FL-COS | S | | FL-COSL | SL | | FL-FS | S | | FL-FSL | SL | | FL-L | L | | FL-LCOS | LS | | FL-LS | LS | | FL-LVFS | LS | | FL-S | S | | FL-SC | SC | | FL-SCL | SCL | | FL-SI | SI | | FL-SIC
FL-SICL
FL-SIL | SIC
SICL | |-----------------------------|-------------| | FL-SL | SIL | | FL-VFS | SL | | FL-VFSL | S | | FLV-C | SL | | FLV-CL | С | | FLV-COS | CL | | FLV-COSL | S | | FLV-FS | SL | | FLV-FSL | S
SL | | FLV-L | SL
L | | FLV-LCOS | LS | | FLV-LS | LS | | FLV-LVFS | LS | | FLV-S | S | | FLV-SC | SC | | FLV-SCL | SCL | | FLV-SI | SI | | FLV-SIC | SIC | | FLV-SICL | SICL | | FLV-SIL | SIL | | FLV-SL | SL | | FLV-VFS | S | | FLV-VFSL | SL | | FLX-C | C | | FLX-CL | CL | | FLX-COS | S | | FLX-COSL | SL | | FLX-FS | S | | FLX-FSL | SL | | FLX-L | L | | FLX-LCOS | LS | | FLX-LS | LS | | FLX-LVFS | LS | | FLX-S | S | | FLX-SC | SC | | FLX-SCL | SCL | | FLX-SI | SI | | FLX-SIC | SIC | | FLX-SICL | SICL | | FLX-SIL | SIL | | FLX-SL | SL | | FLX-VFS | S | | FLX-VFSL | SL | | FRAG | 0 | | FS | S | | FSL
G
GR
GR-C | SL
O
O
C | |------------------------|-------------------| | GR-CL | CL | | GR-COS | S | | GR-COSL | SL | | GR-FS | S | | GR-FSL | SL | | GR-L | L | | GR-LCOS | LS | | GR-LFS | LS | | GR-LS | LS | | GR-LVFS | LS | | GR-MARL | 0 | | GR-MUCK | 0 | | GR-S | S | | GR-SC | SC | | GR-SCL | SCL | | GR-SI | SI | | GR-SIC | SIC | | GR-SICL | SICL | | GR-SIL | SIL | | GR-SL | SL | | GR-VAR | · O | | GR-VFS | S | | GR-VFSL | SL | | GRC-C | С | | GRC-CL | CL | | GRC-COS | S | | GRC-COSL | SL | | GRC-FS | S | | GRC-L | L | | GRC-LCOS | LS | | GRC-LS | LS | | GRC-LVFS | LS | | GRC-S | S | | GRC-SC | SC | | GRC-SCL | SCL | | GRC-SI | SI | | GRC-SIC | SIC | | GRC-SICL | SICL | | GRC-SIL | SIL | | GRC-SL | SL | | GRC-VFS | S | | GRC-VFSL | SL | | GRF-C | C | | GRF-CL | CL | | GRX-LFS GRX-LVFS GRX-S GRX-SC GRX-SCL GRX-SIC GRX-SICL GRX-SIL GRX-SIL GRX-VFS GRX-VFS GRX-VFSL GYP HM | LS LS LS S SC SCL SI SIC SIL SL S C O | |--|---------------------------------------| | ICE | Ö | | IND | Ö | | L | L | | LCOS
LCOS | LS | | LFS | LS | | LS | LS
LS | | LVFS | LS | | MARL | 0 | | MI-SIL | SIL | | MK-C | С | | MK-CL | CL | | MK-COS | S | | MK-COSL | SL | | MK-FS
MK-FSL | S | | MK-L | SL | | MK-LCOS | L
LS | | MK-LFS | LS | | MK-LS | LS | | MK-LVFS | LS | | MK-MARL | 0 | | MK-PEAT | Ο | | MK-S | S | | MK-SC | SC | | MK-SCL
MK-SI | SCL | | MK-SIC | SI
SIC | | MK-SICL | SICL | | MK-SIL | SIL | | MK-SL | SL | | MK-VFS | S | | MK-VFSL | SL | | MPT | _ | |---------|------| | | 0 | | MUCK | 0 | | NONE | 0 | | PEAT | Ö | | PT-SIC | | | | SIC | | PT-SIL | SIL | | RB-C | С | | RB-CL | CL | | RB-COS | | | | S | | RB-COSL | SL | | RB-F\$ | S | | RB-FSL | SL | | RB-L | L | | RB-LCOS | | | | LS | | RB-L\$ | LS | | RB-LVFS | LS | | RB-S | S | | RB-SC | | | | SC | | RB-SCL | SCL | | RB-SI | SI | | RB-SIC | SIC | | RB-SICL | | | RB-SIL | SICL | | | SIL | | RB-SL | SL | | RB-VFS | S | | RB-VFSL | SL | | S | | | SC | S | | | SC | | SCL | SCL | | SG | 0 | | SH-C | Č | | SH-CL | | | | CL | | SH-COS | S | | SH-COSL | SL | | SH-FS | s | | SH-FSL | SL | | SH-L | | | | L | | SH-LCOS | LS | | SH-LS | LS | | SH-LVFS | LS | | SH-S | S | | SH-SC | | | | SC | | SH-SCL | SCL | | SH-SI | SI | | SH-SIC | SIC | | SH-SICL | SICL | | SH-SIL | | | | SIL | | SH-SL | SL | | | | | SH-VFS
SH-VFSL
SHV-C
SHV-COS
SHV-COSL
SHV-FS
SHV-FSL
SHV-L | S
SL
C
CL
S
SL
S
L | |---|---| | SHV-LCOS
SHV-LS | LS
LS | | SHV-LVFS
SHV-S | LS
S | | SHV-SC | SC | | SHV-SCL | SCL | | SHV-SI | SI | | SHV-SIC | SIC | | SHV-SICL | SICL | | SHV-SIL | SIL | | SHV-SL | SL | | SHV-VFS
SHV-VFSL | S | | SHX-CL | SL | | SHX-L | CL
L | | SI | SI | | SIC | SIC | | SICL | SICL | | SIL | SIL | | SL | SL | | SP | 0 | | SR | 0 | | SR- | 0 | | SR-SIL | SIL | | ST-SIL | SIL | | ST-C
ST-CL | C | | ST-COS | CL
S | | ST-COSL | S
SL | | ST-FS | S | | ST-FSL | SL | | ST-L | Ĺ | | ST-LCOS | LS | | ST-LFS | LS | | ST-LS | LS | | ST-LVFS | LS | | ST-MUCK | 0 | | ST-S | S | | ST-SC | SC | | ST-SCL | SCL | |----------|------| | ST-SI | SI | | ST-SIC | SIC | | ST-SICL | SICI | | ST-SIL | SIL | | ST-SIL- | SIL | | ST-SL | SL | | ST-VFS | S | | ST-VFSL | SL | | STV-C | С | | STV-CL | CL | | STV-COS | S | | STV-COSL | SL | | STV-FS | S | | STV-FSL | SL | | STV-L | L | | STV-LCOS | LS | | STV-LFS | LS | | STV-LS | LS | | STV-LVFS | LS | | STV-MPT | 0 | | STV-MUCK | 0 | | STV-S | S | | STV-SC | SC | | STV-SCL | SCL | | STV-SI | SI | | STV-SIC | SIC | | STV-SICL | SICL | | STV-SIL | SIL | | STV-SL | SL | | STV-VFS | s | | STV-VFSL | SL | | STX-C | С | | STX-CL | CL | | STX-COS | S | | STX-COSL | SL | | STX-FS | S | | STX-FSL | SL | | STX-L | L | | STX-LCOS | LS | | STX-LFS | LS | | STX-LS | LS | | STX-LVFS | LS | | STX-MUCK | 0 | | STX-PEAT | 0 | | STX-S | S | | STX-SC | SC | | STX-SCL | SCL | | | | | STX-SI | SI | |---------------|------| | STX-SIC | SIC | | STX-SICL | SICI | | STX-SIL | SIL | | STX-SŁ | SL | | STX-VFS | S | | STX-VFSL | SL | | SY-C | C | | SY-CL | CL | | SY-COS | S | | SY-COSL | SL | | SY-FS | | | SY-FSL | S | | SY-L | SL. | | SY-LCOS | L | | SY-LS | LS | | SY-LVFS | LS | | | LS | | SY-S | S | | SY-SC | SC | | SY-SCL | SCL | | SY-SI | Si | | SY-SIC | SIC | | SY-SICL | SICL | | SY-SIL | SIL | | SY-SL | SL | | SY-VFS | S | | SY-VFSL | SL | | SYV-C | С | | SYV-CL | CL | | SYV-COS | S | | SYV-COSL | SL | | SYV-FS | S | | SYV-FSL | SL | | SYV-L | L | | SYV-LCOS | LS | | SYV-LS | LS | | SYV-LVFS | LS | | SYV-S | S | | SYV-SC | SC | | SYV-SCL | SCL | | SYV-SI | SI | | SYV-SIC | SIC | | SYV-SICL | SICL | | SYV-SIL | SIL | | SYV-SL | SL | | SYV-VFS | S | | SYV-VFSL | SL | | SYX-C | C | | - · · · · · · | C | | SYX-CL | CL | |----------|------| | SYX-COS | S | | SYX-COSL | SL | | SYX-FS | s | | SYX-FSL | SL | | SYX-L | L | | SYX-LCOS | LS | | SYX-LS | LS | | SYX-LVFS | LS | | SYX-S | S | | SYX-SC | SC | | SYX-SCL | SCL | | SYX-SI | SI | | SYX-SIC | SIC | | SYX-SICL | SICL | | SYX-SIL | SIL | | SYX-SL | SL | | SYX-VFS | S | | SYX-VFSL | SL | | UWB | 0 | | VAR | 0 | | VFS | S | | VFSL | SL | | WB | 0 |