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ABSTRACT 
Foundational development and derivations for a Representative-scalar, Gradient-
based, Vertical Mixing (RGVM) model are presented in detail.  The new model is 
formulated to address issues of vertical numerical diffusion (i.e. non-physical 
vertical transport and mixing) in three-dimensional models of environmental 
flows in lakes, rivers and estuaries.  The RGVM approach uses a translation 
between the average scalar and a representative scalar in a model grid cell along 
with use of top and bottom grid-cell gradients.  The methodology is presented in 
detail, but full implementation of the model has not yet been achieved.  The key 
difficulty appears to be an instability in a stratified flow when the gradient mixing 
length is transported. 

 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 4

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 5

TABLE OF CONTENTS 

1 Introduction............................................................................................................................. 11 

1.1    Goals and achievements................................................................................................... 11 

1.2 Overview of RGVM model ............................................................................................. 11 

1.3 Use of representative and mean concentrations............................................................... 12 

1.4 Components of new vertical mixing modeling approach ................................................ 13 

1.4.1 Mixing energies ........................................................................................................ 13 

1.4.2 Integration of surface thermodynamics and mixing ................................................. 13 

1.4.3 Dissipation rates........................................................................................................ 14 

1.4.4 Partial mixing of a cell.............................................................................................. 14 

1.4.5 Unstable density gradients ........................................................................................ 14 

1.4.6 Achieving time step and grid size independence...................................................... 14 

1.4.7 Standard notation ...................................................................................................... 15 

1.5 Open issues ...................................................................................................................... 15 

1.5.1 Large-scale overturns (i.e. fine grid resolution behavior)......................................... 15 

1.5.2 Instability of representative density in transport routine. ......................................... 15 

2 Relationships between representative and average scalars ..................................................... 16 

2.1 Introduction...................................................................................................................... 16 

2.2 Average density as a function of representative density.................................................. 17 

2.3 Obtaining representative density from average density................................................... 18 

2.4 Representative and average conservative scalars ............................................................ 18 

3 Interior shear mixing............................................................................................................... 20 

3.1 Introduction...................................................................................................................... 20 

3.2 Time-step and grid-size independent KH mixing............................................................ 20 

3.3 Single-step mixing ........................................................................................................... 22 

3.4 Multi-step mixing............................................................................................................. 22 

4 Surface and bottom mixing layers .......................................................................................... 27 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 6

4.1 Introduction...................................................................................................................... 27 

4.2 Integrating thermodynamics, convective mixing an surface mixed layer ....................... 27 

4.3 Layer definitions .............................................................................................................. 28 

4.4 Surface/bottom mixing layer equations ........................................................................... 28 

4.5 Surface/bottom mixing layer algorithm........................................................................... 31 

5    Evolution of Turbulent Kinetic Energy .................................................................................. 32 

5.1 Introduction...................................................................................................................... 32 

5.2 The basic energy balance ................................................................................................. 32 

5.3 TKE at an equilibrium condition ..................................................................................... 34 

5.4 Modeling the rate of change of TKE ............................................................................... 34 

5.5 Mixing for non-stratified system ..................................................................................... 36 

5.5.1 TKE at equilibrium for non-stratified system........................................................... 36 

5.5.2 Rate of change of TKE for non-stratified system ..................................................... 37 

6 Conclusions and Recommendations ....................................................................................... 38 

Appendix A Contract Scope of Work........................................................................................ 39 

Appendix B Volume-Based Derivations ................................................................................... 42 

B.1 Derivation of the average density in the upper (Top) gradient region of layer k............ 42 

B.2 Derivation of the average density in a grid cell .............................................................. 43 

B.3 Derivation of entrainment of a lower uniform region into an upper uniform region...... 44 

B.4 Derivation of entrainment of a lower gradient region into an upper uniform region...... 48 

B.5 Layer thickness for non-stratified system with boundary production............................. 51 

Appendix C Derivation of Entrainment Energy ........................................................................ 53 

C.1 Potential energy required for entrainment....................................................................... 53 

C.2 Entrainment layer thickening .......................................................................................... 57 

C.2.i Basic theory for entrainment layer thickening .......................................................... 57 

C.2.ii Application of entrainment layer thickening ........................................................... 58 

Appendix D Mixing by K-H billows ......................................................................................... 61 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 7

D.1 Shear mixing by Kelvin-Helmholtz billows using the ELCOM approach ..................... 61 

D.1.i Overview................................................................................................................... 61 

D.1.ii Kinetic energy change for arbitrary thickness layers in 1D..................................... 61 

D.1.iii Kinetic energy change for arbitrary thickness layers in 2D ................................... 62 

D.2 Rate of energy production using the K-H time scale for arbitrary thickness layers ....... 64 

D.3 K-H billows using a parameterization from Sherman et al. (1978) ................................ 65 

D.3.i Energy production using uniform layers and Sherman et al (1978) ......................... 65 

D.3.ii Energy production based on fully-mixed layer thickness for a given shear............ 67 

D.4 Thoughts on application of shear mixing for K-H billows ............................................. 68 

D.4.i General considerations.............................................................................................. 68 

D.4.ii Is the stuff in sections C.1 to C.3 useful or necessary? ........................................... 69 

D.4.iii Problems for shear mixing...................................................................................... 71 

D.5 K-H billows using a separately defined gradient regions at top and bottom of each grid 
cell 74 

D.5.i Obtaining the volume transfer for a change in the interface thickness..................... 80 

D.5.ii Summary of the K-H billow where the billow thickness is small compared to the 
grid cell ................................................................................................................................. 86 

D.6 K-H billows for small grid cells...................................................................................... 88 

Appendix E Derivation of gradient mixing ............................................................................... 96 

E.1 Introduction ..................................................................................................................... 96 

E.2 Summary of the derivation .............................................................................................. 96 

E.3 Potential energy in final state .......................................................................................... 96 

E.4 Kinetic energy in final state............................................................................................. 97 

E.5 Potential energy in initial state ........................................................................................ 99 

E.6 Change in potential energy............................................................................................ 104 

E.7 Kinetic energy at initial state......................................................................................... 106 

E.8 Change in kinetic energy............................................................................................... 111 

Appendix F Surface/bottom mixing layer entrainment .......................................................... 115 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 8

F.1 Equilibrium TKE ........................................................................................................... 115 

F.2 Neutral stability conditions............................................................................................ 116 

F.3 Scaling dissipation......................................................................................................... 118 

F.4 Mixed-layer under stratification conditions................................................................... 119 

F.5 Change in eB and H........................................................................................................ 120 

F.6 Implementation of changing mixed layer thickness ...................................................... 122 

Appendix G Convective mixing basics.................................................................................... 125 

G.1 Introduction................................................................................................................... 125 

G.2 Solar radiation ............................................................................................................... 125 

G.3 Evaporative mass loss ................................................................................................... 126 

G.4 Effects of precipitation.................................................................................................. 127 

G.5 Surface heat fluxes ........................................................................................................ 127 

G.6 Handling grid sizes in the near-surface region.............................................................. 128 

G.7 Mixing of scalars in the near-surface region................................................................. 133 

Appendix H Energy in the near-surface region ....................................................................... 135 

H.1 An energy rate approach ............................................................................................... 135 

H.2 Energy released/required for mixing in the near surface region................................... 138 

Appendix I Mixing in the solar penetration region ................................................................. 145 

Appendix J Stabilizing thermodynamics and wind mixing ..................................................... 147 

Appendix K Some scaling relationships .................................................................................. 150 

K.1 Time scales for billowing.............................................................................................. 150 

K.2 Time scale for shear mixing (without billows) ............................................................. 150 

K.3 Mixing energy from wind ............................................................................................. 151 

Appendix L Alternative approaches ........................................................................................ 152 

L.1 Alternative layer thickness approach............................................................................. 152 

L.2 Alternative approach for wind-mixing .......................................................................... 153 

L.3 Is it worthwhile using a linear density shear layer approximation? .............................. 154 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 9

L.4 Is it worthwhile using linear gradient approximations for both density and velocity in 
shear model? ........................................................................................................................... 157 

Appendix M Pseudo-code of Shear Mixing............................................................................. 161 

Appendix N References ........................................................................................................... 167 

 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 10

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 11

 

1 INTRODUCTION 
 

1.1 Goals and achievements 
The goal of this research project is development of a new approach to vertical mixing in three-
dimensional (3D) models of stratified waters (see Appendix A for contract Statement of Work).  
The standard approaches for vertical mixing and advective transport in existing models develops 
excessive numerical diffusion or requires excessively fine vertical grid spacing.  We proposed 
and investigated a new idea that had the potential to overcome numerical diffusion without fine 
grid resolution.  The new approach was founded on the concept of a “representative scalar,” 
which provides an alternative value to the “average scalar” value that is stored in a grid cell.  The 
representative scalar works in conjunction with definition of a linear gradient region at the 
vertical face between grid cells.   We call this a Representative-scalar, Gradient-based, Vertical 
Mixing (RGVM) model. 

 There were three interdependent products of this project:  

 1.  Development of the representative to average scalar conversion;  

 2.  Development of gradient-based vertical mixing model; 

 3.  Implementation of 1 and 2 as RGVM model in a 3D hydrostatic model. 

Products 1 and 2 have been completed as described in this report.  Product 3 was only partially 
completed due to instabilities that were discovered when testing the transport of gradient mixing 
regions.  Thus, the theory for RGVM is well developed within the project, but implementation 
was unsuccessful within the scope of the funding.  The key roadblock proved to be stability of 
the transport scheme when the combined representative and average scalar approach was used 
(see section 1.5.2).  As of completion of this contract, it is not clear whether the instabilities are 
the result of a bug in a fairly complex numerical algorithm, or associated with a fundamental 
instability that precludes this method from being practical.  

 

1.2 Overview of RGVM model 
The key difficulties for 3D numerical models of lakes and estuaries are the relationships between 
surface thermodynamics, density stratification, and vertical mixing. We unify these three features 
using an energy balance approach (e.g. Hodges et al 2000) with a subgrid-scale vertical gradient 
representation.  The use of the gradient between vertically adjacent cells required development of 
the new concept for representative scalars. 
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 The idea that sets the present model apart from standard diffusion-based or transport-
based approaches is the definition of a gradient region at the boundary between two vertically-
adjacent grid cells.  This boundary region is characterized by layer thicknesses.  Mixing 
increases the mixing layer thickness until the center of a grid cell is reached.  That is, mixing will 
transport fluid only into the gradient regions, which does not affect the representative scalar 
value at the cell center (although it does affect the average scalar value integrated over the cell). 

 The RGVM model is designed to work in a single step of any existing time-marching 3D 
model as follows: 

1.  Compute hydrodynamics from time ‘n’ to time ‘n+1’ using the existing 3D model 
approach. 

2.  Compute transport of cell-average concentrations for conservative scalars from time 
‘n’ to time ‘n+1’ using the existing model approach. 

3.  Compute RGVM 

a.  Compute transport of grid-cell top and bottom gradient thicknesses, T(k)h  and 

B(k)h , as discussed herein. 

b.  Compute the representative scalar fields from the average scalar fields and 
gradient region thicknesses. 

c.  Compute vertical mixing (changing gradient thicknesses and representative 
scalar fields) integrated with surface thermodynamics. 

d.  Compute new average scalar fields. 

4.  End time step 

The above method allows the RGVM to be adapted to any 3D model by including transport of 
the two gradient thickness variables and solution of the vertical mixing algorithm.  Note that the 
representative scalar values require only temporary storage (i.e. within the time step) as the 
values are created, used and discarded during the mixing.  Thus, the increased computational 
storage is only two additional scalars over the solution domain. 

 

1.3 Use of representative and mean concentrations  
We characterize every conserved scalar volume concentration (generally denoted by φ ) with 
both the mean value φ  and a representative value, Rφ . The representative value allows us to 
provide a better approximation of gradients between cells to help remove the grid-cell 
dependence of characterizing mixing by mean value gradients.  For each grid cell (k) in a water 
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column, there may be top and bottom mixing layers of thickness T(k)h  and B(k)h , respectively.  

 The mixing layer thicknesses must meet the requirement that 

 T(k) B(k) kh h z+ ≤ ∆  (1.1) 

so that there can be considered to exist a region of fluid with Rφ in the center of the cell.  When 
the inequality of eq. (1.1) is violated during the mixing process, the entire cell is considered well-
mixed and we set 

 T(k) B(k)h h 0= =  (1.2) 

and 

 (k) R(k)φ = φ  (1.3) 

In effect, this resetting as well-mixed implies that the processes are being adequately resolved on 
the model grid scale.  Where mixing results in eq. (1.1) being satisfied, an approach referred to 
as “thin-layer” mixing will be used (i.e. the mixing layer is thin compared to the grid cell).  
Where conditions of eq. (1.1) are not satisfied, a “thick-layer” mixing approach is used. 

 

1.4 Components of new vertical mixing modeling approach 

1.4.1 Mixing energies 

The modeling approach quantifies the rates at which different mixing energies are supplied.  In 
general, these are of the form E / t∂ ∂  where E is an energy per unit area (w/m2), so that  E / t∂ ∂  
has the units (kg m2/s2) / (m2 s), which reduces to (kg /s3).  In some derivations, we use the 
energy per unit volume, which reduces to (kg /s2 m), so that  e / t∂ ∂  has the units (kg /s3 m). The 
sources of mixing energy are: 1) wind stirring, 2) convective overturns, and 3) shear mixing by 
Kelvin-Helmholtz (K-H) billows, and 4) boundary mixing.  The following general approach is 
used for mixing in each water column:  shear mixing is a separate computation either prior to 
bottom and surface boundary mixing.  Bottom mixing uses a bottom-up sweep and surface 
mixing in a top-down sweep.  Where sweeps overlap, the region of overlap is computed 
separately. 

1.4.2 Integration of surface thermodynamics and mixing 

In contrast to the ELCOM approach (Hodges et al 2000), we integrate the surface 
thermodynamics directly in the mixing rather than developing separate algorithms.  That is, in 
ELCOM the surface thermodynamics creates a new density profile (due to heating, cooling, and 
evaporation), then the mixing routine mixes energy through the water column.  In the new 
approach, the surface thermodynamics provides the rate of energy supplied to the water column, 
which may be either stabilizing (increasing temperature so as to provide a larger negative density 
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gradient), or destabilizing through cooling that leads to overturns.  Note that this approach allows 
us to calculate the rate at which destabilizing energy is supplied (which should affect 
dissipation).  That is, we might imagine a case where the heating and cooling are exactly in 
balance so that the net rate of stabilizing energy exactly equals the net rate of destabilizing 
energy.  In the ELCOM approach, this would be considered a system with zero “available 
energy” for mixing.  Since the ELCOM dissipation rate was based solely on the net available 
energy for mixing, the parameterization has no ability to distinguish between zero 
heating/cooling (i.e. quiescence), or an active interplay between heating/cooling that leads to no 
available energy for mixing, but still engenders turbulence. 

1.4.3 Dissipation rates 

In Hodges et al (2000), dissipation is simply a function of available mixing energy.  We apply 
three concepts beyond the ELCOM approach: 1) dissipation is a function of the overall thickness 
of the mixing layer; 2) time-dependency of dissipation is allowed so that higher dissipation rates 
occur when the wind is just getting started and perhaps lower dissipation rates when it is 
dropping; and 3) dissipation is  a function of the overall level of turbulence, rather than just the 
available mixing energy.  Note that dissipation is considered principally in the surface and 
bottom boundary mixing layers.  For shear regions, the dissipation is built into the mixing 
efficiency of the K-H billows. 

1.4.4 Partial mixing of a cell 

Partial mixing in a grid cell is developed for all parts of the mixing scheme to obtain the 
maximum practical time and grid-spacing independence of the model.  The mixing layer 
thickness (bottom and surface mixing boundaries) is carried as a variable that will influence the 
dissipation rate and the rate of deepening.  This approach allows the mixing scheme to be used 
with a homogenous fluid, which was a problem for the Hodges et al (2000) approach. 

1.4.5 Unstable density gradients 

Unstable density gradient are expected to be physically developed in the surface mixing layer, 
where they will be removed in the mixing process.  Where unstable density gradients are 
developed in other parts of the flow through transport (e.g. where a gravity current flows over a 
step), the unstable gradient is resolved by flipping the fluid volumes. 

1.4.6 Achieving time step and grid size independence 
The model is characterized by a model time step Mt∆ , grid  layers of (k)z∆  for b b 1k k ,k ...k+ η=  

being the integers from the bottom layer to the surface in any water column.  There is no a priori 
requirement for a strictly uniform z-layer grid.  To make the scheme relatively independent of 
both z∆ and Mt∆  we need to invoke sub-time steps.  The process of mixing will occur in sub-
time steps across a grid face, so we keep track of the time remaining (or the time left) for mixing 
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on the k+1/2 face of a grid cell as L(k 1/ 2)t +∆ .  The subtime steps are applied separately in each 

part of the mixing routine. 

1.4.7 Standard notation 

In general we will put grid indexes such as (k) in parenthesis so that it is easier to distinguish 
from a necessary plethora of subscripts.   To avoid double subscripts, the ‘k’ index of the bottom 
will be represented as a subscript ‘(D)’.  The ‘k’ index of the free surface will be given as 
subscript (S).  The ‘k’ index of the partially-mixed cell at the bottom of the surface mixed layer 
will be subscript (P), while the ‘k’ index of the partially-mixed cell at the top of the lower layer 
will be (C).   Note that subscripts ‘T’ ‘B’ and ‘R without parenthesis are not ‘k’ indexes. 

 In many places in this paper, it is convenient to represent the difference between the 
scalar concentrations on the ‘k’ and ‘k+1’ grid layers by 

 (k 1/ 2) (k 1) (k)+ +∆φ = φ − φ  (1.4) 

Thus, when φ  represents the density, a stable density gradient always requires 0∆ρ ≤ . 

 

1.5 Open issues 

1.5.1 Large-scale overturns (i.e. fine grid resolution behavior) 

An issue that still needs resolution is the relationship between the large-scale overturn time in a 
mixing layer and the time step.  If we follow the ELCOM paradigm, a mixing layer is 
homogeneous in all properties.  However, one can readily imagine a model time step that is 
smaller than the vertical turbulent transport time through a mixing layer.  In such a case, 
introduction of a tracer at the base of the mixing layer will physically require a finite time to 
reach the surface, but the model would represent instantaneous mixing.  At the larger time and 
space scales that are typically desired this is unlikely to be a major issue. 

1.5.2 Instability of representative density in transport routine. 

The RGVM approach requires transport of the top and bottom gradient layer thicknesses (see 
Section 2) for each grid cell.  As our target 3D hydrodynamic models use an Arakawa C grid, the 
fluxes are defined in each direction only at the grid cell face.  We experimented with using 
simple conservative upwind transport through each face and with using an interpolation method 
to obtain all velocities co-located on top and bottom grid cell faces for transport.  In both cases, 
the transport of the gradient region thickness led to development of instability in the density 
field.  Within the scope of this project, we were unable to determine the direct cause of the 
instability or develop a method to address it.  Until this issue is solved, the RGVM model is 
cannot be adequately implemented.
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2 RELATIONSHIPS BETWEEN REPRESENTATIVE AND AVERAGE 
SCALARS 

 

2.1 Introduction 
In any finite-volume numerical model, the value of a scalar in a grid cell is taken as the average 
(arithmetic mean) of the unresolved, subgrid, scalar distribution across the cell.  It follows that 
any numerical diffusion through the bottom of the grid cell becomes available (on the next time 
step) for numerical diffusion through the top of the grid cell.  An approach to counter this 
problem is in the definition of “representative” scalars and gradient regions as sub-grid scale 
features of the vertical distribution in a grid cell.   Let us consider Figure 1 that represents a 
density profile in two grid layers wherein the representative density Rρ is the uniform density in 
the center of each grid layer.  Between the regions of uniform density are linear gradient regions 
specified thicknesses ‘h’.  The subscript on h indicates the ‘Top’ and ‘Bottom’ gradient region of 
a grid cell.  Subscripts in parentheses indicate the grid cell layer.   

 

grid layer 2 

grid layer 1 

z

ρ 

∆z2 

∆z1 

hB(1) 

hT(1) 

hB(2) 

hT(2) 

Figure 1.  Piecewise linear density profile in two grid layers. 
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2.2 Average density as a function of representative density 
 The average density in the ‘k’th cell can be computed by the weighted sum of the average 
densities in the top and bottom gradient regions and the uniform region as 

 
( )(k ) T(k) B(t) R (k) T(k) T(k) B(k) B(k)

(k)

z h h h h
z

∆ − − ρ + ρ + ρ
ρ =

∆
 (2.1) 

The average density in the upper (Top) gradient region is derived in Appendix A, and is given by 

 T(k) R (k 1) R(k)
T(k) R (k)

T(k) B(k 1)

h
2 h h

+

+

 ρ − ρ ρ = ρ +  +  
 (2.2) 

Similarly, the average density in the lower (Bottom) gradient region is 

    B(k) R (k) R (k 1)
B(k) R(k)

B(k) T(k 1)

h
2 h h

−

−

 ρ − ρ ρ = ρ −  +  
 (2.3) 

where eq. (2.3) receives a negative sign instead of the positive in eq. (2.2) to account for the 
gradient direction.  Substituting eqs. (2.2) and (2.3) into (2.1) provides  

 

( )(k ) (k) T(k) B(t ) R(k)
(k)

T(k) R (k 1) R (k)
T(k) R (k)

(k) T(k) B(k 1)

B(k) R (k) R (k 1)
B(k) R(k)

(k) B(k) T(k 1)

1 z h h
z

h1 h
z 2 h h

h1 h
z 2 h h

+

+

−

−

ρ = ∆ − − ρ
∆

  ρ − ρ  + ρ +  ∆ +    
  ρ − ρ  + ρ −  ∆ +    

 (2.4) 

which can be written as (see Appendix B.2) 

 
( ) ( )

( ) ( )

2 2
T(k) B(k)

(k) R (k)
(k) T(k) B(k 1) (k) B(k) T(k 1)

2 2
T(k) B(k)

R (k 1) R (k 1)
(k) T(k) B(k 1) (k) B(k) T(k 1)

h h
1

2 z h h 2 z h h

h h
2 z h h 2 z h h

+ −

+ −
+ −

 
 ρ = − − ρ
 ∆ + ∆ + 

+ ρ + ρ
∆ + ∆ +

 (2.5) 

Define coefficients as: 

 

2
T(k)

T(k)
k T(k) B(k 1)

2
B(k)

B(k)
(k) B(k) T(k 1)

h 1
2 z h h

h 1
z h h

+

−

  ψ ≡  ∆ +  
  ψ ≡  ∆ +  

 (2.6) 
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Note that T(k) 0ψ = for T(k)h 0=  and B(k 1)h 0+ > .  However, T(k) 0ψ →  in the limit as T(k)h 0→ , 
even if B(k 1)h 0+ = .  Thus, in general T(k) 0ψ = for T(k)h 0=  and B(k) 0ψ =  for B(k)h 0= . 

 Substituting eqs. (2.6) into eq. (2.5) we obtain the expression for the average density from 
the representative densities as 

 ( )(k) T(k) B(k) R (k) T(k) R (k 1) B(k) R (k 1)1 + −ρ = − ψ − ψ ρ + ψ ρ + ψ ρ  (2.7) 

 

2.3 Obtaining representative density from average density 
Defining the coefficients 

 
(k) T(k)

(k) T(k) B(k)

(k) B(k)

A

B 1

C

≡ ψ

≡ − ψ − ψ

≡ ψ

 (2.8) 

we can then write the matrix equation linking the grid cells in a water column from eq. (2.7) as 

 
(k max) (k max) R(k max)

(k max 1) (k max 1) (k max 1) R(k max 1)

(k max 2) (k max 2) (k max 2) R(k max 2)

(3) (3) (3) R(3)

(2) (2) (2) R(2)

(1) (1) R

B C 0 0 0 0 0

A B C 0 0 0 0

0 A B C 0 0 0

0 0 0 A B C 0

0 0 0 0 A B C

0 0 0 0 0 A B

− − − −

− − − −

 
ρ 

  ρ 
  ρ
 
 
  ρ 
  ρ 
  ρ 

% % % % % % % #

(k max)

(k max 1)

(k max 2)

(3)

(2)

(1) (1)

−

−

=   
ρ   

   ρ   
   ρ
   
   
   ρ   
   ρ   
   ρ   

#

 (2.9) 

 

Solution of eq. (2.9) provides reconstruction of the representative density from the mean density 
field and the thickness of the gradient region. 

 

2.4 Representative and average conservative scalars 
The above approach can be extended to any conservative scalar, φ  as 
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(k max) (k max) R(k max)

(k max 1) (k max 1) (k max 1) R(k max 1)

(k max 2) (k max 2) (k max 2) R(k max 2)
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  φ 
  φ
 
 
  φ 
  φ 
  φ 
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(k max)

(k max 1)

(k max 2)

(3)

(2)

(1) (1)

−

−

=   
φ   

   φ   
   φ   
   
   

φ   
   φ   
   φ   

#

 (2.10) 

with definitions of eq. (2.8) and (2.6).  The computation of the average scalar is similar to eq. 
(2.7) 

 ( )(k ) T(k) B(k) R (k) T(k) R (k 1) B(k) R (k 1)1 + −φ = − ψ − ψ φ + ψ φ + ψ φ  (2.11) 

 Thus, the transformation from representative scalars and gradient layer thickness to 
average scalars is given explicitly by eq. (2.11) for each grid cell; whereas the transformation 
from average scalars and gradient layer thicknesses is given by solution of the tridiagonal eq. 
(2.10) for each water column.   
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3 INTERIOR SHEAR MIXING 
 

3.1 Introduction 
Away from the boundary layers, we take the principal mixing mechanism in the stratified system 
to be Kelvin-Helmholtz (KH) billowing driven by vertical velocity shear. As a model process, 
billows are a means of changing the mixing layer thicknesses across the grid cell interface.   

 As long as the shear mixing does not take up more than 50% of a grid cell, it does not 
affect the representative scalar values in the cell (only the mean value is affected).  Thus, 
algorithms for shear mixing that involves more than 50% of a grid cell must be different from 
algorithms that involve less than 50% of a grid cell.  Similarly, a KH billow may either take 
more than a time step or less than a time step, again implying different algorithms are needed.  
More details of the derivation are provided in Appendix D.  A pseudo-code representation of the 
interior shear-mixing algorithm is provided in Appendix M  

 

3.2 Time-step and grid-size independent KH mixing 
We characterize shear mixing at the ‘k+1/2’ grid cell face by a billow thickness KH(k 1/ 2)+δ  and a 
time scale KH(k 1/ 2)T + , given as 

 ( ) ( ){ }2 20
KH(k 1/ 2) R(k 1/ 2) R(k 1/ 2)

R(k 1/ 2)

c U V
g

δ
+ + +

+

ρδ = − ∆ + ∆
∆ρ

 (3.1) 

 ( ) ( ) ( )2 2T 0
KH(k 1/ 2) R(k 1/ 2) R (k 1/ 2)

R (k 1/ 2)

cT U V
g+ + +

+

ρ= − ∆ + ∆
∆ρ

 (3.2) 

where Sherman et al. (1978) recommends c 0.3δ = , but this could arguably be set in the range as 
high as 0.6 or as low as 0.2 to represent “at least 70%, and sometimes more than 90% of the 
kinetic energy given up by the shear flow is simply lost to viscosity.” 

 With a model time step of Mt∆  and grid scale of (k 1/ 2)z +∆ , there are four possible 

conditions: 

1.  M KH(k 1/ 2) z (k 1/ 2) KH(k 1/ 2)t T and c z+ ∆ + +∆ ≥ ∆ > δ  

2.  M KH(k 1/ 2) z (k 1/ 2) m(k 1/ 2)t T and c z+ ∆ + +∆ < ∆ > δ   

3.  M KH(k 1/ 2) z (k 1/ 2) KH(k 1/ 2)t T and c z+ ∆ + +∆ ≥ ∆ ≤ δ  
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4.  M KH(k 1/ 2) z (k 1/ 2) m(k 1/ 2)t T and c z+ ∆ + +∆ < ∆ ≤ δ  

where m(k 1/ 2)+δ  is the partial mixing of a KH billow whose time scale is longer than the model 
time step, and zc∆ is a fractional coefficient in the range [0,1] to account for non-uniform grid 
spacing and ensure no more than 50% of the smallest grid cell is involved in a Case 1 or Case 2 
mixing event.  If the vertical grid spacing is uniform, then zc 1∆ =  is appropriate.  However, for a 
non-uniform grid, we define the grid cell thickness at the cell faces as 

 ( )(k 1/ 2) (k) (k 1)
1z z z
2+ +∆ = ∆ + ∆  (3.3) 

To ensure that a Case 1 or Case 2 mixing event does not involve more than 50% of a grid cell, 
we define 

 (k 1) (k)
z(k 1/ 2)

(k 1/ 2)

z z
c 1

2 z
+

∆ +
+

∆ − ∆
≡ −

∆
 (3.4) 

Using  zc∆  in the above definitions provides the cutoff between multi-step and single step mixing 
based on the smaller of two vertically-adjacent grid cells. 

 1.  For Case 1, we have a complete KH billow during the time step across the cell 
boundary that can be represented in only the two cells.  This case is the simplest thin-layer 
mixing as it does not affect the representative values, but only increases the gradient layer.  Note 
that the time used in mixing is less than the time step, so it is possible to have multiple Case 1 
billows in a time step through an interaction of processes. 

 2.  For Case 2, only a portion of the KH billow will actually occur during a time step as 
the billow time is longer than Mt∆ .  Because this occurs over the entire time step and is defined 
as a billow that will not move further than 50% of the cells above and below, it may only occur 
once in a time step. 

 3.  For Case 3, the entire KH billow occurs during the time step, but the result is felt over 
more than two grid cells, so it must be completed in stages.   

 4.  For Case 4, only a portion of the KH billow occurs during the time step, but the result 
is still felt over more than two grid cells, so it must be compledted in stages, with the mixing 
layer thickness given as in case 2. 

 The mixing cases can be simplified by defining the time used for KH mixing as 

 { }U M KHt min t ,T∆ = ∆  (3.5) 

and the billow mixing height over the mixing time as  
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 U
m KH

KH

t
T

∆δ = δ
∆

 (3.6) 

Single-step mixing will occur as long as 

 m(k 1/ 2)
(k 1/ 2)

z(k 1/ 2)

z
c

+
+

∆ +

δ
∆ >  (3.7) 

whereas multi-step mixing will occur for 

 m(k 1/ 2)
(k 1/ 2)

z(k 1/ 2)

z
c

+
+

∆ +

δ
∆ ≤  (3.8) 

 

3.3 Single-step mixing 
The single-step mixing is straightforward – the mixing layer thickness is the new gradient region 
on either side of the cell face, and is split equally between the top and bottom grid cells as 

 m(k 1/ 2)(new)
T(k)h

2
+δ

=  (3.9) 

 m(k 1/ 2)(new)
B(k)h

2
−δ

=  (3.10) 

The mean values of all scalars will be changed based on the mixing as   

 

2 2(new) (old)
T(k) T(k)(new) (old) (old)

(k) (k) R(k 1/ 2) (new) (new) (old) (old)
(k) T(k) B(k 1) T(k) B(k 1)

2(new) (o
T(k 1) T(k 1)(old)

R(k 1/ 2) (new) (new)
T(k 1) B(k)

h h1
2 z h h h h

h h

h h

+
+ +

− −
−

−

         φ = φ + ∆φ − ∆ + +   

  −∆φ −
+

2ld)

(old) (old)
T(k 1) B(k)h h−

      +   

 (3.11) 

At the end of single-step mixing, there will be cells that still have some potential mixing time 
left.  These may undergo further single-step mixing after the multi-step mixing. 

 

3.4 Multi-step mixing 
Multi-step mixing occurs when the vertical grid resolution is fine compared to the KH mixing 
heights.  As such, the representative velocities used in single-step mixing cannot be used.  We 
recompute the KH billow time scale and mixing layer thicknesses from mean cell values as  
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 ( ) ( ){ }2 20
KH(k 1/ 2) (k 1/ 2) (k 1/ 2)

(k 1/ 2)

0.3 U V
g+ + +

+

ρδ = − ∆ + ∆
∆ρ

 (3.12) 

 ( ) ( ) ( )2 20
KH(k 1/ 2) (k 1/ 2) (k 1/ 2)

(k 1/ 2)

20T U V
g+ + +

+

ρ= − ∆ + ∆
∆ρ

 (3.13) 

We consider that multi-step shear mixing will only occur if 

 KH(k 1/ 2) (k 1/ 2)z+ +δ > ∆  (3.14) 

otherwise,  the gradient is already at the “collapsed” size of Sherman et al (1978).  As multi-step 
mixing occurs separately from single-step mixing, the time-left billowing value must be defined.  
Initially this is 

 LKH(k 1/ 2) KH(k 1/ 2)T T+ +=  (3.15) 

Similarly, a “thickness left” value is defined as 

 LKH(k 1/ 2) KH(k 1/ 2)+ +δ = δ  (3.16) 

Finally, a “thickness accumulated” value is initialized as 

 c(k 1/ 2) 0+δ =  (3.17) 

 It is convenient to define a mixing height anomaly as the difference between the mixing 
height accumulated and the local grid cell as 

 a (k 1/ 2) c(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ + ∆ + +δ ≡ δ − ∆  (3.18) 

We can consider two possible cases:   

 a(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ ∆ + +δ ≤ ∆  (3.19) 

 a(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ ∆ + +δ > ∆  (3.20) 

As long as eq. (3.19) is satisfied, the multi-step mixing is working within the two grid cells on 
either side of the mixing cell face.  As soon as eq. (3.20) is satisfied, the mixing would be 
extending into addition grid cells.  Rather than trying to extend the mixing from the k+1/2 face 
above the k+3/2 face (which causes conceptual problems if the k+3/2 face was already mixing), 
we instead consider the condition  

 a(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ ∆ + +δ = ∆  (3.21) 

as a cutoff between an “inner loop” and an “outer loop” multi-step scheme. As long as the 
mixing is between two grid cells, then a(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ ∆ + +δ ≤ ∆  and we cycle the inner loop 
(discussed below).  Once a(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ ∆ + +δ = ∆ , the inner loop is complete and we conduct 

an “outer loop” that computes new KH billow characteristics at each grid cell face.  With these 
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new data, we then conduct additional inner loop mixing between grid cells.  Once the outer loop 
iterations are complete, if there are any grid cell faces with Lt 0∆ > , we continue with another 
single-step mixing algorithm and additional multi-step mixing until Lt 0∆ =  for all cell faces. 

 Multi-step mixing is required because the mixing possibly covers more than 50% of the 
grid cell, such that interaction between an upper mixing layer and and lower mixing layer may 
affect the same cell (and thus modify the representative values). To allow the upper and lower 
mixing layers to interact, we use subtime-steps that allow no more than ¼ of the upper grid cell 
volume to be transported into the lower cell  (and vice versa); i.e. ½ of each grid cell is mixed 
fluid around each cell face.  We consider this form of mixing an “inner loop” as we maintain a 
fixed set of KH billow characteristics (i.e. KH(k 1/ 2)T + , KH(k 1/ 2)+δ ) and conduct successive fractional 

mixing steps until the KH mixing time and thickness are exhausted.  Each mixing subtime-step 
will use some mixing time ( Ut∆ ), so that after mixing has occured there is some time left in the 
KH billow time scale ( LKHT ) and some time left in the time step ( Lt∆ ).  For multi-step mixing, 
we compute the time required to mix to some height ‘h’ by a KH billow as 

 ( ) ( ){ } 3/ 22 2(k 1/ 2)2
(k 1/ 2) (k 1/ 2)

C 0

gh U V
C

−
+

+ +

∆ρ
− ∆ + ∆

ρ
 

We are interested in an inner-loop step where mixing involves no more than ½ the grid cell, so 
the maximum mixing height across the ‘k+1/2’ cell face is z(k 1/ 2) (k 1/ 2)h c z∆ + += ∆ .   It follows that 

the mixing time required for this height in an inner loop fractional mixing step is 

 ( ) ( ) ( ){ } 3/ 22 2 2(k 1/ 2)
R (k 1/ 2) z(k 1/ 2) (k 1/ 2) (k 1/ 2) (k 1/ 2)

C 0

t g c z U V
C

−
+

+ ∆ + + + +

∆ρ
∆ = − ∆ ∆ + ∆

ρ
 (3.22) 

Thus, multi-step inner loop mixing occurs over mixing sub-time steps defined by the minimum 
of the time required to mix over ½ the grid cell, the time left in the KH billow time scale, or the 
time left in the model time step, i.e. 

 { }U(k 1/ 2) R(k 1/ 2) LKH(k 1/ 2) L(k 1/ 2)t min t ,T , t+ + + +∆ = ∆ ∆  (3.23) 

The fractional mixing layer thickness, fδ , over this time interval is computed from 

 ( ) ( ){ }3/ 22 2C 0 U(k 1/ 2)
f (k 1/ 2) (k 1/ 2) (k 1/ 2)

(k 1/ 2)

C t
U V

g
+

+ + +
+

− ρ ∆
δ = ∆ + ∆

∆ρ
 (3.24) 

The mean grid cell values of scalars are updated as 
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{ }
1/ 21/ 2 3/ 42 2U(k 1/ 2)(new) (old) (old) (old) (old)C 0

(k) (k) (k 1/ 2) (k 1/ 2) (k 1/ 2)(old)
(k) (k 1/ 2)

1/ 2

U(k 1/ 2)old (ol
k 1/ 2 (k 1/ 2)(old)

(k 1/ 2)

t1 C U V
2 z g

t
U

+
+ + +

+

−
− −

−

  ∆ ρ      φ = φ + ∆φ ∆ + ∆      ∆ −∆ρ    

 ∆ −∆φ ∆ −∆ρ  
{ }3/ 42 2d) (old)

(k 1/ 2)V −


   + ∆    


(3.25) 

The times left are updated 

 (new) (old)
L L Ut t t∆ = ∆ − ∆  (3.26) 

 (new) (old)
LKH LKH UT T t= − ∆  (3.27) 

The thickness left is updated as 

 (new ) (new )
LKH(k 1/ 2) LKH(k 1/ 2) f (k 1/ 2)+ + +δ = δ − δ  (3.28) 

The accumulated mixing thickness is updated 

 (new) (old)
c(k 1/ 2) c(k 1/ 2) f (k 1/ 2)+ + +δ = δ + δ  (3.29) 

The mixing thickness anomaly is computed as 

 (new ) (new )
a (k 1/ 2) c(k 1/ 2) z(k 1/ 2) (k 1/ 2)c z+ + ∆ + +δ ≡ δ − ∆  (3.30) 

The inner loop continues back at eq. (3.22) as long as  

 

L(k 1/ 2)

LKH(k 1/ 2)

LKH(k 1/ 2)

a (k 1/ 2) z(k 1/ 2) (k 1/ 2)

t 0

T 0

0

c z

+

+

+

+ ∆ + +

∆ >

>

δ >

δ < ∆

 (3.31) 

If any one of eq. (3.31) is not satisfied, then the inner loop must end. 

 If eq. (3.20) is satisfied, then the mixing layer extends into additional grid cells.  In this 
case, it is possible that at the start of the time step a cell only has a mixing layer at the k-1/2 face, 
but that the multi-step mixing must account for the k+1/2 face becoming involved.  In effect, eq. 
(3.20) implies the grid is small enough that multiple grid cells are involved in a KH billow.  To 
account for this in a simple manner, we provide an “outer loop”.  Once the inner loop exits, we 
compute new KH billow characteristics, i.e. eq. (3.12) and (3.13) and proceed back through the 
inner loop.  Note that although the LKHT , LKHδ , and cδ  counters are all reset, the Lt∆ counter 
must not be reset, as mixing must stop when Lt 0∆ = .  The outer loop stops when either of the 
following conditions are met 
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 L(k 1/ 2)

KH(k 1/ 2) (k 1/ 2)

t 0

z
+

+ +

∆ =

δ < ∆
 (3.32) 

 When a full set of single step and multi-step mixing is completed, we check to see if 
L(k 1/ 2)t 0+∆ >  anywhere in the system.  If mixing time is still available, we conduct another full 

set of single-step and multi-step mixing until L(k 1/ 2)t 0+∆ =  for all cell faces. 
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4 SURFACE AND BOTTOM MIXING LAYERS 
 

4.1 Introduction 
In contrast to interior shear mixing layers, the surface and bottom mixing layers are considered to 
have thicknesses (H and G) which typically exceed the model grid cell thickness.  The larger-
scale coherent motions in these layers are considered to be relatively persistent compared to the 
time step, so the thickness of the mixing layer must be tracked and changed with the time step.  
The surface mixing layer is more complex than the bottom mixing layer because it must include 
the effects of surface thermodynamics and unstable convective mixing. 

 

4.2 Integrating thermodynamics, convective mixing an surface mixed layer 
The surface thermodynamics can either stabilize or destabilize the surface mixing layer.  The 
first task of the vertical algorithm is to determine whether the near-surface layers are stabilized 
or destabilized by thermodynamics.  We define a thin layer eδ  such that e zη − δ ≤ ≤ η  where 
evaporative mass fluxes and sensible/evaporative heat transfer uniformly affect the water 
column.  A second thin layer rδ  is defined where r zη − δ ≤ ≤ η , where penetrative solar 
radiation is preferentially absorbed in the near surface region.  We assume that e rδ < δ .  It can be 
shown, see derivation of eq. (H.14) in Appendix H, that the rate that TKE is made available for 
mixing if the thermodynamics is convectively unstable in the near-surface region r zη − δ ≤ ≤ η  
is: 

 ( )p a
r e e h

p

E 1 g V S g Q
t 2 c

δ
η

 ∂ α = δ − δ βρ − ∂   
 (4.1) 

where ,α βare the thermal and salinity expansion coefficients, eV is the evaporative flux rate, 
Sη is the salinity at the free surface and hQ is the is the net heating/cooling due to 

sensible/evaporative sources (i.e. without solar radiation).  Note that solar radiation does not 
appear in the above as it is assumed to be linearly absorbed across the entire region  

r zη − δ ≤ ≤ η . 
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4.3 Layer definitions 
The surface and bottom mixing layers are somewhat more complex than the simple mixing layer 
shown in Figure 1.  In general, these mixing layers will extend over multiple grid cells and then 
will end in a gradient region where entrainment and billowing may occur. We will denote the 
surface and bottom mixing layer thicknesses by Hη  and BH respectively.  It is also useful to keep 

track of the number of complete cells in the mixing layers as N  and M . We will first look at 
only the surface mixing layer.  For simplicity in notation (and avoiding double superscripting), 
we define the ‘k’ index of the partially mixed cell at the base of the surface layer as  

 P S N= −  (4.2) 

From the above definitions, it follows that 

 
S

H(P) (q)
q P 1

H zη
= +

= δ + ∆∑  (4.3) 

where H(P)δ is the well-mixed upper portion of cell k P= that is only partially in the surface 

mixed layer.   Thus, it is required that 

 H(P) (P)zδ ≤ ∆  (4.4) 

We may then consider the existence of a gradient region below the surface-mixing layer that has 
a length scale of Gη .  There are three possible conditions for this gradient region: 

 
H(P) (P)

(P) H(P) (P) (P 1)

(P) (P 1) H(P)

G z : gradient in 1 cell
z G z z : gradient in 2 cells

z z G : gradient in more than 2 cells

η

η −

− η

+ δ ≤ ∆
∆ < + δ ≤ ∆ + ∆

∆ + ∆ < + δ

 (4.5) 

In the first case provided in eq. (4.5), the gradient region and any entrainment/billowing is 
entirely within the partial mixed-layer grid cell.  In the second case, the gradient region extends 
into the next grid layer, and so may be characterized by a mixing height regions of 

B(P)h and T(P 1)h − .  In the third case, the gradient region is considered “resolved” by the grid, 

resulting in the simplest treatment. 

 

4.4 Surface/bottom mixing layer equations 
The surface and bottom mixing layer algorithms provide the means of predicting the 
increase/decrease in the thicknesses of H and G.  At the most basic level, H remains constant 
when turbulent production is exactly balanced by dissipation. H increases when production is 
greater than dissipation, and decreases when production is less than dissipation. The thickness of 
G will depend on whether H is actively entraining, holding steady, or decreasing.  In the case of 
an entraining mixed layer, G will decrease as H increases until the shear is sufficient at the base 
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of the mixed layer to develop KH billows (which increases G).  When H is holding steady, KH 
billows may occasionally form and increase G.  When H is decreasing, G will increase and 
eventually become well-resolved by the model grid. 

 The approach will be to track the “background” TKE, designated (per unit volume) as 
Be .  This is the TKE that is sustained in the mixing layer.  Using scaling arguments, we derive an 

equilibrium TKE, ( Ee ) that represents the background TKE that would be expected if production 
and dissipation are in balance.  The extent to which they are out of balance and the time scale of 
overturns in the mixing layer leads to a rate at which the background TKE increases or 
decreases.  Using this rate of increase/decrease along with the dissipation rate and the rate of 
mixing energy supplied, we develop an energy balance that predicts the rate of increase/decrease 
of the mixing layer thickness. 

 We define the time used for mixing to equilibrium as 

 { }U T Ht min t, C T∆ = ∆  (4.6) 

where HT  is the eddy turnover time scale, given by  

 H
B

T H
2e
ρ=  (4.7) 

and TC  is the proportion of eddy turnover time scales required to mix the background TKE to 
equilibrium TKE.  The change in background TKE and depth of the mixing layer are given by 

 nM n B
B B U

ee e t
t

∂= + ∆
∂

 (4.8) 

 nM n
U

HH H t
t

∂= + ∆
∂

 (4.9) 

where the rate of change of the background TKE is found as 

 B E B B

T

e e e 2e
t C H

∂ −=
∂ ρ

 (4.10) 

which is obtained as eq. (F.39) in Appendix F.5.  The equilibrium TKE is computed from 

 ( ) 2/3
21/ 2 s

E
1

1 C1 Ee
2 C t

ε

ε

− ∂= ρ ∂ 
 (4.11) 

which is derived as eq. (F.10) in Appendix F.2, where SE / t∂ ∂  is the rate of water column 
production for stirring TKE from all sources.  The 1Cε  and 2Cε  are coefficients relating the 
dissipation rate due to the existing turbulence level and the dissipation rate due to the supply of 
mixing energy (respectively), see eq. (F.3) in Appendix F.1. 
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 The rate of change of the mixed layer depth is found as  

 
( ) ( ) ( )

( )

3/ 2 3/ 2 B
1 E B E B

T

2
B 3

e2 2C e e e e
CH

Ht e 1 2 C U g
2 2

ε

ε

   − − −  ρ∂   = ρ∂ + + ∆ − ∆ρ= = =
 (4.12) 

which is obtained as eq. (F.42) in Appendix F.5.  The ∆ρ is computed as in eq. (F.28) in 
Appendix F.4.  The coefficient 3Cε is introduced for dissipation that occurs in the entrainment 
process in eq. (F.24) in Appendix F.3.   In eq. (4.12), =  is a Heaviside step function, evaluated 
as 

 

( ) ( ) ( )

( ) ( ) ( )

3/ 2 3/ 2 B
1 E B E B

T

3/ 2 3/ 2 B
1 E B E B

T

e
1 : 2C e e e e

C

e
0 : 2C e e e e

C

ε

ε

≡ 
  − > −  



 − ≤ −  

=  (4.13) 

so that 1== only occurs with a positive value of H / t∂ ∂  (i.e. deepening of mixed layer).  Thus, 
eqs. (4.10) and (4.12) provide the prediction of the change in the background TKE and the 
change in the mixed layer thickness. 

 The following behaviors may be noted for the coefficients in eqs. (4.10) through (4.12) 
that will control their values:  

 1.  1Cε  principally affects the equilibrium TKE level.  Increasing  1Cε  will 
increase the dissipation rate of the background TKE and so reduces the equilibrium level 
of TKE. The value of this coefficient may be able to be set from prior work and 
arguments, but unity should be a good starting place.  

 2.  2Cε  affects the dissipation rate associated with the production rate.  Note that 
if 2C 1ε = , then all energy production is dissipated before it can cause any stirring, so it 
will cause Ee 0= .  In contrast, when 2C 0ε = , none of the stirring energy is dissipated, so 
the dissipation rate is only dependent on the background TKE and not the production 
rate, which leads to the  minimum dissipation and the maximum value for Ee .  It is not 
clear how to best set this coefficient, but 0.5 would probably be a good place to start. 

 3.  3Cε  may be fairly important in entrainment under neutral stability in reducing 
the rate of deepening.  Increasing 3Cε  will reduce the rate of deepening by increasing the 
dissipation rate in the entrainment process. It is not clear how to best set this coefficient, 
but probably should start from unity. 
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 4.  TC  will increase the time it takes to mix to equilibrium, so will make more 
energy available for deepening.  Arguably this should be set to unity. 

 

4.5 Surface/bottom mixing layer algorithm 
The solution of the surface mixing layer proceeds after solution of the convective mixing 
algorithm so that the convective mixing energy can be included with wind stirring or bottom 
shear energy in obtaining the value for production,  
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5 EVOLUTION OF TURBULENT KINETIC ENERGY  
 

5.1 Introduction 
Over long time-scales, turbulence tends to a balance between production and dissipation.  
However, enforcing this equilibrium over a model time step is generally unrealistic.  Instead, we 
track the increase in the local TKE based on scaling of production and dissipation along with the 
energy consumed in mixing.   

 

5.2 The basic energy balance 
The TKE per unit mass is ke .  The dissipation rate per unit mass is ε .  The production rate per 
unit mass is P .  The characteristic TKE at an equilibrium condition is ce .  The increase in 
background potential energy for mixing of thickness δ into a layer of thickness h is given by 

bde / dh .  An energy balance is then given by 

 k bde de dh
dt dh dt

= − ε −P  (5.1) 

The dissipation to scales as 

 
3/ 2

kc e
2 L

ε

ε

ε =  (5.2) 

The turbulent velocity scale is given by 

 1/ 2u ~ e′  (5.3) 

A time scale of the turbulence can be defined by 

 k 1/ 2
k

L L~
u e

τ =
′

 (5.4) 

However, where turbulence is being produced, we might also consider a time scale of 

 
1/32

P
L~

 
τ  

 P
 (5.5) 

 

 

 If we consider equilibrium to be where kde / dt 0= , then we have 
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 bde dh 0
dh dt

− ε − =P  (5.6) 

Over some small time interval, the mixing energy available is ke t+ ∆P  the energy dissipated is 
tε∆ .  The increase in the background potential energy is be∆  and the increase in the TKE is 

ke∆ .  The mixing efficiency is given by the ratio of the change in the BPE and the energy used 
for mixing: 

 b
f

k

eR
t e
∆=

∆ − ∆P
 (5.7) 

or, on a rate basis 

 
b

f
k

de
dtR de

dt

=
−P

 (5.8) 

or, as a differential equation: 

 b k
f

de de R
dt dt

 = − 
 
P  (5.9) 

 We can also write eq. (5.6) for a discrete change of δ as 

 be 0
t

∆ δ− ε − =
δ ∆

P  (5.10) 

which could be written as 

 bde 0
dt

− ε − =P  (5.11) 

or, using eq. (5.9) 

 k
f

de R 0
dt

 − ε − − = 
 

P P  (5.12) 

which is rearranged as 

 ( ) k
f f

de1 R R 0
dt

− − ε + =P  (5.13) 

 

Using eq. (5.2), the basic energy balance then becomes 

 ( )
3/ 2

k k
f f

c e de1 R R 0
2 L dt

ε

ε

− − + =P  (5.14) 
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The above gives is an equation for the rate of change of turbulent kinetic energy as a function of 
the stratification and the existing TKE. 

 

5.3 TKE at an equilibrium condition 
For equilibrium, we have kde / dt 0=  and k ce e=  and f fcR R= , which allows eq. (5.14) to be 
written as 

 ( )3/ 2 c
c fc

2Le 1 R
c

ε

ε

= − P  (5.15) 

or 

 ( )
2/3

c
c fc

2Le 1 R
c

ε

ε

 
= − 
 

P  (5.16) 

Writing the equilibrium turbulent time scale, from eq. (5.4) as 

 c
c 1/ 2

c

L~
e

ετ  (5.17) 

We have 

 1/ 2
c c cL ~ eε τ  (5.18) 

So eq. (5.15) is also written as  

 ( )
3/ 2

c c
fc1/ 2

c

e 2 1 R
e cε

τ= − P  (5.19) 

so that the characteristic TKE scale at equilibrium is given by 

 ( )c
c fc

2e 1 R
cε

 τ= − 
 

P  (5.20) 

 

5.4 Modeling the rate of change of TKE 
Our model is based on the idea that TKE is tending toward equilibrium.  Thus, the difference 
between the TKE stored and the characteristic equilibrium TKE affects the rate of change of 
TKE.  We can write this as 

 ( )k
c k

de c e e
dt

τ= −
τ

 (5.21) 
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where cτ is an empirical coefficient and τ is the shortest time scale of either production or TKE, 
defined as 

 ( )P kmin , : L 0τ = τ τ >  (5.22) 

or 

 
1/32

1/ 2
k

L Lmin , : L 0
e

  
 τ = >    P

 (5.23) 

Note that as 0→P , Pτ → ∞  and as ke 0→ , kτ → ∞ , so this formulation ensures a finite time 
scale.  For a layer of thickness ‘h’, the time scale is 

 
1/32

1/ 2
k

h hmin , : h 0
e

  
 τ = >    P

 (5.24) 

Substituting eq. (5.20) into eq. (5.21) provides 

 ( )k
fc c k

de c 2 1 R e
dt c

τ

ε

 
= − τ − τ  

P  (5.25) 

which can be rearranged as 

 ( )k c k
fc

de 2c e1 R c
dt c

τ
τ

ε

τ= − −
τ τ

P  (5.26) 

Using eq. (5.17) for the turbulent time scale provides 

 ( )k c k
fc 1/ 2

c

de 2c L e1 R c
dt c e

τ ε
τ

ε

= − −
τ τ

P  (5.27) 

Note that eq. (5.15) can be written as 

 ( )
1/3

1/ 2 c
c fc

2Le 1 R
c

ε

ε

 
= − 
 

P  (5.28) 

so substituting eq. (5.28) int eq. (5.27) provides 

 ( )
( )

k c k
fc 1/3

c
fc

de 2c 1 L c e1 R
dt c 2L 1 R

c

τ ε τ

ε ε

ε

= − −
τ τ 

− 
 

P

P

 (5.29) 

Rearranging results in 
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 ( )
2/3

k c k
fc

de 2L c c e1 R
dt c

ε τ τ

ε

 
= − −  τ τ 

P  (5.30) 

or 

 ( )
2/3

k c
fc k

de c 2L 1 R e
dt c

τ ε

ε

   = − −  τ    
P  (5.31) 

 For entrainment into a layer of thickness ‘h’, we approximate  

 cL ~ hε  (5.32) 

In contrast to eq. (5.32), we might actually expect that for initiation of turbulence, cL hε > , i.e. 
the equilibrium length scale is larger than the existing layer thickness.  In decaying turbulence, 
we might expect that cL hε < .  However, the subtleties would require developing a model that 
makes c c kL L (de / dt)ε ε= , which would require an unknown coefficient.  Thus, we will make the 
simple approximation in eq. (5.32), and note that performance of the model for initiation and 
decay of turbulence remains a question for investigation. 

 From the above, the rate of change of TKE is given by 

 ( )
2/3

k
fc k

de c 2h 1 R e
dt c

τ

ε

   = − −  τ    
P  (5.33) 

where τ  is given by eq. (5.24).   Eq. (5.33) provides for both increases in ke  and decreases in 

ke , depending on the relationship between the production rate (P ) and the stored TKE ( ke ).  
Note that the mixing efficiency is at an equilibrium condition ( fcR ), so can generally be specified 
as ~ 0.2.  The dissipation coefficient can be set as c ~ 1.15ε  (Spigel et al. 1986).  Thus, given the 
stored TKE ( ke ), layer thickness (h) and production rate (P ), we can readily compute the rate of 
change of TKE.  

 

5.5 Mixing for non-stratified system  

5.5.1 TKE at equilibrium for non-stratified system 

For a non-stratified system, the energy balance is 

 kde
dt

= − εP  (5.34) 

For an equilibrium condition we have 

 = εP  (5.35) 
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using eq. (5.2) with the equilibrium TKE 

 3/ 2
c

c

c e
2L

ε

ε

=P  (5.36) 

which is manipulated into 

 3/ 2 c
c

2Le
c

ε

ε

 
=  
 

P  (5.37) 

Using eq. (5.18) we find 

 
1/ 2

3/ 2 c c
c

2ee
cε

τ= P  (5.38) 

which becomes 

 c
c

2e
cε

τ= P  (5.39) 

We can compare eq. (5.20) to (5.39) and note the only difference is the factor fc1 R−  in the 
former.  Thus, the characteristic TKE for non-stratified is consistent with the stratified system 
using a mixing efficiency of zero. 

 

5.5.2 Rate of change of TKE for non-stratified system 

We use eq. (5.21), so that 

 k c
k

de c 2 e
dt c

τ

ε

 τ= − τ  
P  (5.40) 

We follow the same pattern as eq. (5.25) through (5.33), but obtain a result without the mixing 
efficiency 

 
2/3

k
k

de c 2h e
dt c

τ

ε

   = −  τ    
P  (5.41) 

Thus, eq. (5.33), is viable for a non-stratified system by setting fcR 0=  
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6 CONCLUSIONS AND RECOMMENDATIONS 
 

The fundamental difficulty for large-scale modeling of Texas estuaries is in episodically 
developing, maintaining and destroying the localized vertical stratification that leads to hypoxia.   
Although this research project was not as successful as envisioned in the Statement of Work (see 
Appendix A), we have layed the foundations for a new approach that may yet prove valuable in 
developing 3D models of estuaries and lakes.  The underlying idea appears to be viable; i.e. use 
of representative scalars and energy scaling to prevent unphysical vertical mixing.  For 
completeness, the mathematics in this report are fairly dense; however the actual implementation 
is not beyond the typical complexity of existing hydrodynamic models (see Appendix M).   

 The principal roadblock encountered in this project was developing a transport algorithm 
for the cell gradient thickness that does not destabilize the system (see section 1.5.2 ).  We 
believe that this is not an insurmountable problem.  For follow-on work, we recommend 
considering a research effort that is focused solely on the relationship between the representative 
scalar and the gradient transport.  Our working hypothesis is that the instability arises from one 
of three sources: 1) the interpolation of velocities to the cell faces for gradient transport, 2) non-
conservative (face-based) transport of gradients, or 3) a bug in the code.  We believe that 
isolating the source of the instability can be done by a careful examination of local changes in 
the representative scalars during the inversion from the transported gradients and average scalars.  
It is likely that an inconsistency in the numerical formulation will be apparent upon closer 
examination of this issue.  Once the gradient transport issue is solved, the energy scaling and 
mixing methods developed herein can be readily applied using the algorithm developed in 
Appendix M.
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Appendix A CONTRACT SCOPE OF WORK 
 

Numerical Implementation of an Advanced Vertical Mixing Model 
Project Summary: 

As part of work recently funded by TWDB and USACE on desalination brine discharge 
modeling, Dr. Ben Hodges of UT-CRWR developed a new, theoretical vertical mixing model for 
distributing energy over water-column depths within 3D-hydrodynamic models. This new 
mixing model attempts to better represent vertical mixing processes that distribute dissolved 
oxygen, nutrients, and contaminants throughout the water column. Existing vertical mixing 
algorithms treat individual grid cells as well mixed units, thereby producing potential “stair-
stepped” profiles of scalars (salinity, temperature, etc) in the water column. The new vertical 
mixing theory attempts to smooth such stair-stepped profiles through the allowance of mixing 
layers between individual grid cells, while at the same time retains mean-value information 
required for mass-conservation in the hydrodynamic model solution procedure. Hydrodynamic 
modeling using this new vertical mixing model should provide the following model 
improvements: 

• More accurate representation of the surface mixed layer and benthic boundary 
layer, including entrainment processes and Kelvin-Helmholtz billows, 

• More accurate distribution of wind energy in the water column, thereby 
producing a more accurate velocity field and scalar transport pathways than 
achieved using other vertical mixing models, 

• More accurate representation of salinity/temperature stratification that may lead 
to hypoxia. This is critical to properly model the effects of potential (and 
existing) desalination brine discharges on the benthos.  

 

The recent modeling work performed by Dr. Hodges indicates that all of these improvements 
may be obtained using the standard Mellor-Yamada vertical mixing model currently employed 
within models such as EFDC, TX-ELCIRC, and UTBEST3D. However to achieve such 
improvements, the vertical grid resolution must be increased to levels impractical for typical 
modeling applications/computers available to TWDB.  The vertical mixing model developed and 
implemented in this project will allow for these above improvements without the needed high-
resolution vertical grid, thereby making the modeling practical for TWDB purposes.   
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Project Tasks: 

Task #1: Vertical Mixing Model Theory Development & Refinement 

Dr. Hodges will refine the vertical mixing model theory as included in the final report for 
TWDB contract 2005-001-059. Refinements will be made for clarity and consistency, and 
additional theoretical development of “meeting processes” between benthic and surface layer 
mixing processes will be made. TWDB will review and approve the refined model before 
numerical algorithm development is completed. Dr. Hodges will also select an appropriate name 
for the new vertical mixing model. 

Task #2: Vertical Mixing Model Implementation  

Dr. Hodges will implement the new mixing model into TX-ELCIRC (a version of the 
ELCIRC model already modified by TWDB staff). The mixing module will be developed as a 
“portable” module, thus providing the ability of implementing the algorithm into other 
hydrodynamic models with only slight code revision. 

Task #3: Algorithm Testing 

Dr. Hodges will conduct extensive initial algorithm tests on model test cases developed in 
consultation with TWDB. Upon achieving satisfactory algorithm performance on the simple test 
cases, a final test case will be developed incorporating Corpus Christi Bay and the outflow from 
Oso Bay, TX where thin-layer density stratification has been observed (see figures below). The 
model setup will be similar to that used in running the EFDC model of the Corpus Christi 
Bay/Oso Bay system as discussed in the final report for TWDB contract 2005-001-059. The 
effectiveness of the vertical mixing model will be assessed in comparing results and code 
performance when TX-ELCIRC is implemented using the Mellor-Yamada vertical mixing 
model. Comparisons between model simulations using the Mellor-Yamada and new mixing 
model will be both quantifiable and qualitative. Time and resource permitting, comparisons with 
output from the EFDC model of the Corpus Christi Bay/Oso Bay system (as discussed in the 
final report for TWDB contract 2005-001-059) will also be made. 

Task #4: Report Development 

Dr. Hodges will provide a detailed report of all activities conducted to satisfy tasks #1-#3 
listed above. In consultation with TWDB staff, the report will be formatted per TWDB 
requirements and for publication in a peer-reviewed journal. 

Project Timeframe: 1 year  (September 1, 2007-August 31, 2007) 
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Figure 1 – Field Data from Corpus Christi Bay collected July, 2006. The sharp benthic 
stratification is not modelable using the Mellor-Yamada vertical mixing model without a 
prohibitively expensive vertical grid resolution. The vertical mixing model proposed herein 
should produce better representations of this observed stratification and much coarser (and 
more practical) vertical grid resolutions. (Figures from Dr. Ben Hodges) 
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Appendix B VOLUME-BASED DERIVATIONS 
 

B.1 Derivation of the average density in the upper (Top) gradient 
region of layer k 

The average density in an upper (Top) gradient region is analytically defined as 

 
T ( k )

T(k) T(k)
T(k) h

1 dz
h

ρ = ρ∫  (B.1) 

For a linear gradient, this is 

 
T ( k )h

T(k) R (k) T(k)
T(k) 0

1 dz dz
h dz

 ρ = ρ + ρ 
 ∫  (B.2) 

or 

 
T ( k )h

R(k 1) R(k)
T(k) R (k)

T(k) T(k) B(k 1)0

1 z dz
h h h

+

+

 ρ − ρ ρ = ρ +  +  ∫  (B.3) 

or 

 
T ( k )h2

R (k 1) R(k)
T(k) R (k)

T(k) T(k) B(k 1) 0

1 z
h h h 2

+

+

 ρ − ρ   ρ = ρ +   +   
 (B.4) 

or 

 T(k) R (k 1) R(k)
T(k) R (k)

T(k) B(k 1)

h
2 h h

+

+

 ρ − ρ ρ = ρ +  +  
 (B.5) 
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B.2 Derivation of the average density in a grid cell 

Substituting eqs. (2.2) and (2.3) into (2.1) provides  

 

( )(k ) (k) T(k) B(t ) R(k)
(k)

T(k) R (k 1) R (k)
T(k) R (k)

(k) T(k) B(k 1)

B(k) R (k) R (k 1)
B(k) R(k)

(k) B(k) T(k 1)

1 z h h
z

h1 h
z 2 h h

h1 h
z 2 h h

+

+

−

−

ρ = ∆ − − ρ
∆

  ρ − ρ  + ρ +  ∆ +    
  ρ − ρ  + ρ −  ∆ +    

 (B.6) 

Regroup the above as 

 

( )

( ){ }

( ){ }

(k) (k) (k) T(k) B(t ) R (k)

2
T(k)

T(k) R (k) R (k 1) R (k)
T(k) B(k 1)

2
B(k)

B(k) R(k) R (k) R (k 1)
B(k) T(k 1)

z z h h

h
h

2 h h

h
h

2 h h

+
+

−
−

∆ ρ = ∆ − − ρ

+ ρ + ρ − ρ
+

+ ρ − ρ − ρ
+

 (B.7) 

Continue regrouping 

 

( )

( ) ( )

( ) ( )

(k) (k) (k) T(k) B(t ) R(k)

2 2
T(k) T(k)

T(k) R (k) R (k 1) R (k)
T(k) B(k 1) T(k) B(k 1)

2 2
B(k) B(k)

B(k) R (k) R (k) R (k 1)
B(k) T(k 1) B(k) T(k 1)

z z h h

h h
h

2 h h 2 h h

h h
h

2 h h 2 h h

+
+ +

−
− −

∆ ρ = ∆ − − ρ

+ ρ + ρ − ρ
+ +

+ ρ − ρ + ρ
+ +

 (B.8) 

or 

 
(k) (k) (k) T(k)z z h∆ ρ = ∆ − B(t )h− T(k)h+ ( )

2
T(k)

B(k)
T(k) B(k 1)

h
h

2 h h +

− +
+ ( )

( ) ( )

2
B(k)

R (k)
B(k) T(k 1)

2 2
T(k) B(k)

R (k 1) R (k 1)
T(k) B(k 1) B(k) T(k 1)

h
2 h h

h h
2 h h 2 h h

−

+ −
+ −

 
 − ρ
 + 

+ ρ + ρ
+ +

(B.9) 
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or 

 
( ) ( )

( ) ( )

2 2
T(k) B(k)

(k) R (k)
(k) T(k) B(k 1) (k) B(k) T(k 1)

2 2
T(k) B(k)

R (k 1) R (k 1)
(k) T(k) B(k 1) (k) B(k) T(k 1)

h h
1

2 z h h 2 z h h

h h
2 z h h 2 z h h

+ −

+ −
+ −

 
 ρ = − − ρ
 ∆ + ∆ + 

+ ρ + ρ
∆ + ∆ +

 (B.10) 

which is the average density in grid cell ‘k’ based on the representative densities and layer 
thicknesses. 

 

B.3 Derivation of entrainment of a lower uniform region into an upper 
uniform region 

We begin with an upper uniform property region of thickness ‘h’ and an entraining region of  
uniform properties and thickness δ .  The elevation of the bottom of the δ  level is z b= .  The 
potential energy before mixing is 

 
b b h

(0) (0) h(0)

b b

E g zdz g zdz
+δ +δ+

δ

+δ

= ρ + ρ∫ ∫  (B.11) 

or 

 
b b h2 2

(0) (0) h(0)
b b

z zE g g
2 2

+δ +δ+

δ
+δ

   
= ρ + ρ   

   
 (B.12) 

or 

 ( ) ( ) ( )2 2 2(0) 2
(0) h(0)

2E
b b b h b

g δ
   = ρ + δ − + ρ + δ + − + δ     (B.13) 

or 

 ( )2(0) 2
(0) h(0)

2E
2b b

g δ  = ρ δ + δ + ρ + δ  ( ) ( )222 b h h b+ + δ + − + δ 
  

 (B.14) 

or 

 (0) 2 2
(0) h(0)

2E
2b 2bh 2 h h

g δ    = ρ δ + δ + ρ + δ +     (B.15) 

or 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 45

 (0) 2 2
(0) (0) h(0) h(0) h(0)

2E
2b 2bh 2 h h

g δ δ= ρ δ + ρ δ + ρ + ρ δ + ρ  (B.16) 

or 

 ( )(0) 2 2
(0) h(0) h(0) h(0) (0)

2E
2b h h 2 h

g δ δ= ρ δ + ρ + ρ + ρ δ + ρ δ  (B.17) 

Define  

 h(0) (0)δ∆ρ ≡ ρ − ρ  (B.18) 

which provides 

 (0) h(0)δρ ≡ ρ − ∆ρ  (B.19) 

so that eq. (B.17) can be expanded as 

 ( )(0) 2 2
h(0) h(0) h(0) h(0) h(0)

2E
2b h h 2 h

g
   = ρ − ∆ρ δ + ρ + ρ + ρ δ + ρ − ∆ρ δ     (B.20) 

which can be written as 

 ( ) ( )(0) 2 2 2
h(0) h(0) h(0) h(0) h(0)

2E
2b h h 2 h 2b

g
= ρ δ + ρ + ρ + ρ δ + ρ δ − ∆ρδ − ∆ρδ  (B.21) 

or 

 ( ) ( ) ( )(0) 2 2
h(0) h(0)

2E
2b h h 2 h 2b

g
= ρ δ + + ρ + δ + δ − ∆ρδ δ +  (B.22) 

or 

 ( ) ( ) ( )2(0)
h(0) h(0)

2E
2b h h 2b

g
= ρ + δ + ρ + δ − ∆ρδ δ +  (B.23) 

 The potential energy after mixing is given by 

 
b h

(1) h(1)

b

E g zdz
+δ+

= ρ ∫  (B.24) 

or 

 
b h2

(1) h(1)
b

zE g
2

+δ+
 

= ρ  
 

 (B.25) 

or 
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 ( ) ( )2 2(1)
h(1)

2E
b h b

g
 = ρ + δ + −   (B.26) 

or 

 (1) 2
h(1)

2E
b

g
= ρ ( ) ( )2 22b h h b+ + δ + + δ − 

   (B.27) 

or 

 ( ) ( )2(1)
h(1)

2E
2b h h

g
 = ρ + δ + + δ   (B.28) 

For conservation, we require 

 ( )h(1) h(0) (0)h h δρ + δ = ρ + ρ δ  (B.29) 

or 

 
( )

h(0) (0)
h(1)

h
h

δρ + ρ δ
ρ =

+ δ
 (B.30) 

or 

 
( )

h(0) h(0)
h(1)

h
h

 ρ + ρ − ∆ρ δ ρ =
+ δ

 (B.31) 

or 

 
( )

h(0) h(0)
h(1)

h
h

ρ + ρ δ − ∆ρδ
ρ =

+ δ
 (B.32) 

or 

 
( )
( )

h(0)
h(1)

h
h

ρ + δ − ∆ρδ
ρ =

+ δ
 (B.33) 

or 

 
( )h(1) h(0) h

δρ = ρ − ∆ρ
+ δ

 (B.34) 

So eq. (B.28) is expanded as 

 
( ) ( ) ( )2(1)

h(0)

2E
2b h h

g h
 δ  = ρ − ∆ρ + δ + + δ   + δ  

 (B.35) 

or 
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 ( ) ( ) ( ) ( ) ( )2 2(1)
h(0)

2E
2b h h 2b h h

g h
δ   = ρ + δ + + δ − ∆ρ + δ + + δ   + δ

 (B.36) 

or 

 ( ) ( )
( )

2(1)
h(0) h(0)

2E
2b h h

g h
δ= ρ + δ + ρ + δ − ∆ρ
+ δ

( )2b h + δ
( )h

δ− ∆ρ
+ δ

( ) 2h + δ  (B.37) 

or 

 ( ) ( ) ( )2(1)
h(0) h(0)

2E
2b h h 2b h

g
= ρ + δ + ρ + δ − ∆ρ δ − ∆ρδ + δ  (B.38) 

So the increase in potential energy is given by subtracting eq. (B.38) from eq. (B.28), resulting in 

 ( )

(1) (0)

h(0)

2E 2E
g g

2b h

−

= ρ + δ ( )2
h(0) h+ ρ + δ ( )

( )h(0)

2b h

2b h

− ∆ρ δ − ∆ρδ + δ

− ρ + δ ( )2
h(0) h− ρ + δ ( )2b+ ∆ρδ δ +

 (B.39) 

or 

 (1) (0)2E 2E
2b

g g
− = − ∆ρ δ 2h− ∆ρδ − ∆ρδ 2+ ∆ρδ 2b+ ∆ρ δ  (B.40) 

or 

 (1) (0)2E 2E
h

g g
− = −∆ρδ  (B.41) 

or 

 ( )B h
1E g h
2 δ∆ = − ρ − ρ δ  (B.42) 

Units are 

 2
B 2 3 2

L M ME L
T L T

 ∆ = = 
 

 (B.43) 

which is the increase in BPE per unit area (i.e. 2 2 2ML T / L− ).  To get a change per unit mass per 
unit volume, we divide by the density and the mixing layer thickness 

 ( )h
B

1e g
2 h

δρ − ρ
∆ = −

ρ
hδ  (B.44) 
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where ρ can reasonably be any of the densities.  Units are 

 
2

2
B 2 2

L Le L
T L T

∆ = =  (B.45) 

which is ( )2 2ML T / M− . 

 The rate of change with increasing thickness is given by 

 ( ) ( )hB

h

de 1 dg
d 2 d

δρ − ρ
= − δ

δ ρ δ
 (B.46) 

In a more general sense, we can write 

 B h

h

de 1 g
dh 2

δ ρ − ρ= −  ρ 
 (B.47) 

 

B.4 Derivation of entrainment of a lower gradient region into an upper 
uniform region 

We begin with an upper uniform property region of thickness ‘h’ and an entraining region of  
linear gradient properties and thickness δ .  The elevation of the bottom of the δ  level is z b= .  
The potential energy before mixing is 

 
b b h

(0) h(0)

b b

E g (z)zdz g zdz
+δ +δ+

δ

+δ

= ρ + ρ∫ ∫  (B.48) 

Without a loss of generality, we can take b=0 and write 

 
h

(0) h(0)

0

E g (z)zdz g zdz
δ δ+

δ

δ

= ρ + ρ∫ ∫  (B.49) 

If the lower gradient region is continuous with the uniform region, then we can write 

 ( )h(0)
d(z) z
dz

δ
δ

ρρ = ρ − δ −  (B.50) 

Thus we have 

 2
h(0)

0 0 0 0

d d(z)zdz dz zdz z dz
dz dz

δ δ δ δ

δ δ
δ

ρ ρρ = ρ − δ +∫ ∫ ∫ ∫  (B.51) 

so that eq. (B.49) can be written as 
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h

2
(0) h(0) h(0)

0 0 0

d dE g zdz g dz g zdz g z dz
dz dz

δ+ δ δ δ

δ δ

δ

ρ ρ= ρ + ρ − δ +∫ ∫ ∫ ∫  (B.52) 

or 

 
h

2
(0) h(0)

0 0 0

d dE g zdz g zdz g z dz
dz dz

δ+ δ δ

δ δρ ρ= ρ − δ +∫ ∫ ∫  (B.53) 

or 

 
h2 2 3

(0) h(0)
0 0 0

z d z d zE g g g
2 dz 2 dz 3

δ+ δ δ

δ δ     ρ ρ= ρ − δ +     
     

 (B.54) 

or 

 ( )2 3 3
(0) h(0)

1 1 d 1 dE g h g g
2 2 dz 3 dz

δ δρ ρ= ρ + δ − δ + δ  (B.55) 

or 

 ( )2 3
(0) h(0)

1 1 dE g h g
2 6 dz

δρ= ρ + δ − δ  (B.56) 

The potential energy after mixing is given by  

 
h

(1) h(1)E g zdz
δ+

= ρ ∫  (B.57) 

or 

 ( )2
(1) h(1)

1E g h
2

= ρ + δ  (B.58) 

The density after mixing is given by 

 h(1) h(0)

0

1 h (z)dz
h

δ

δ

   ρ = ρ + ρ  + δ   
∫  (B.59) 

using eq. (B.51), we obtain 

 h(1) h(0) h(0)

0 0 0

1 d dh dz dz z dz
h dz dz

δ δ δ

δ δ
 ρ ρ  ρ = ρ + ρ − δ +  + δ   

∫ ∫ ∫  (B.60) 

or 
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 h(1) h(0) h(0)

0 0

1 d dh dz zdz
h dz dz

δ δ

δ δ
 ρ ρ  ρ = ρ + ρ δ − δ +  + δ   

∫ ∫  (B.61) 

or 

 ( )
2

2
h(1) h(0)

1 d dh
h dz dz 2

δ δ ρ ρ δ ρ = ρ + δ − δ +  + δ  
 (B.62) 

or 

 ( ) 2
h(1) h(0)

1 1 dh
h 2 dz

δρ  ρ = ρ + δ − δ  + δ  
 (B.63) 

or 

 
( )

2

h(1) h(0)
d

2 h dz
δδ ρρ = ρ −

+ δ
 (B.64) 

Substituting eq. (B.64) into eq. (B.58) provides 

 
( ) ( )

2
2

(1) h(0)
1 dE g h
2 2 h dz

δ
 δ ρ= ρ − + δ + δ  

 (B.65) 

or 

 ( ) ( )2 2
(1) h(0)

1 1 dE g h g h
2 4 dz

δρ= ρ + δ − δ + δ  (B.66) 

To get the change in energy, we subtract the initial from the final, i.e. eq. (B.56) is subtracted 
from eq. (B.66) to obtain  

 
( )2

(1) (0) h(0)
1E E g h
2

− = ρ + δ ( )

( )

2

2
h(0)

1 dg h
4 dz

1 g h
2

δρ− δ + δ

− ρ + δ 31 dg
6 dz

δρ+ δ
 (B.67) 

or 

 2 3 3
(1) (0)

1 d 1 d 1 dE E g h g g
4 dz 4 dz 6 dz

δ δ δρ ρ ρ− = − δ − δ + δ  (B.68) 

or 

 2 3
(1) (0)

1 d 1 dE E g h g
4 dz 12 dz

δ δρ ρ− = − δ − δ  (B.69) 

or 
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 2
B

1 d 1E g h
4 dz 3

δρ  ∆ = − δ + δ 
 

 (B.70) 

Units are: 

 
32

B 2 2

M
L MLE L L
T L T

∆ = − =  (B.71) 

On a per unit mass basis, we divide by (h / 3)ρ + δ .  Note that we are assuming δ  is small 
compared to h 

 2
B

1 d 1e g h
1 dz 34 h
3

δρ  ∆ = − δ + δ 
   ρ + δ 
 

 (B.72) 

 2
B

1 de g
4 dz

δρ∆ = − δ
ρ

 (B.73) 

where ρ can reasonably be any of the densities.  Units are 

 
2

2
B 2 2

L Le L
T L T

∆ = =  (B.74) 

which is ( )2 2ML T / M− . 

 

 We can write eq. (B.73) as 

 ( )Bde 1 dg 2
d 4 dz

δρ= − δ
δ ρ

 (B.75) 

or 

 Bde 1 dg
d 2 dz

δρ= − δ
δ ρ

 (B.76) 

 

B.5 Layer thickness for non-stratified system with boundary 
production 

For a non-stratified system, eq. (L.5) becomes infinite.  Thus, we need a simple scaling for the 
rate in which it can entrain 

 1/ 2
k

dh e
dt

∝  (B.77) 
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We might otherwise consider 

 ? kde dh de
dh dt dt

= − ε −P  (B.78) 

where ?de / dh is the energy loss associated with entraining fluid over the distance dh.  This issue 
requires further investigation. 
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Appendix C DERIVATION OF ENTRAINMENT ENERGY 
 
C.1 Potential energy required for entrainment 
Let us consider the general case of some energy available form mixing mE∆ per unit area that is 
entraining fluid of thickness δ with stable density gradient (z) / z 0∂ρ ∂ < .  The entrained fluid 
will be completely mixed in a layer of initial thickness h(t) with density m (t)ρ   and will form a 
layer of thickness h + δ  with density m (t t)ρ + ∆ .  Note that much of the following is not used in 
the method proposed above.  The approach below appears to complicated for simple 
implementation with the surface mixed-layer approach.  However, the fundamentals here are 
useful to document for future development. 

 How much energy is required to mix this system at 100% efficiency?  For this 
computation, let us consider z=0 is where the mixing stops.  It follows that the potential energy 
before mixing is 

 
h

p m

0

E (t) g (t) zdz g z zdz
2 z

+δ δ

δ

 δ ∂ρ = ρ + ρ − −   ∂  ∫ ∫  (C.1) 

where ρ  is the average density in the linear region.  This could be written as 

 
h

2
p m

0 0 0

E (t) g (t) zdz g zdz g zdz g z dz
2 z z

+δ δ δ δ

δ

δ ∂ρ ∂ρ= ρ + ρ − +
∂ ∂∫ ∫ ∫ ∫  (C.2) 

or 

 
h

2
p m

0 0

E (t) g (t) zdz g g zdz g z dz
2 z z

+δ δ δ

δ

δ ∂ρ ∂ρ = ρ + ρ − + ∂ ∂ ∫ ∫ ∫  (C.3) 

After mixing, the potential energy is 

 
h

p m

0

E (t t) g (t t) zdz
+δ

+ ∆ = ρ + ∆ ∫  (C.4) 

The density after mixing is found from 

 ( ) m
m

h (t)t t
h

δρ + ρρ + ∆ =
+ δ

 (C.5) 
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So eq. (C.4) becomes 

 
h

m
p

0

h (t)E (t t) g zdz
h

+δ
δρ + ρ+ ∆ =

+ δ ∫  (C.6) 

The energy required for mixing is given by 

 m p pE E (t t) E (t)∆ = + ∆ −  (C.7) 

or 

 
h h

2m
m m

0 0 0

h (t)E g zdz g (t) zdz g zdz g z dz
h 2 z z

+δ +δ δ δ

δ

 δρ + ρ δ ∂ρ ∂ρ ∆ = − ρ + ρ − +  + δ ∂ ∂   
∫ ∫ ∫ ∫  (C.8) 

Which can be written 

 

h
m m

m

0
h

2
m

0 0

h (t) h (t)E g zdz g zdz
h h

g (t) zdz g zdz g z dz
2 z z

+δ δ

δ

+δ δ δ

δ

δρ + ρ δρ + ρ∆ = +
+ δ + δ

δ ∂ρ ∂ρ − ρ − ρ − − ∂ ∂ 

∫ ∫

∫ ∫ ∫
 (C.9) 

combining terms gives 

 

h
m m

m m

0

2

0

h (t) h (t)E g (t) zdz g zdz
h h 2 z

g z dz
z

+δ δ

δ

δ

δρ + ρ δρ + ρ δ ∂ρ   ∆ = − ρ + − ρ +   + δ + δ ∂   

∂ρ−
∂

∫ ∫

∫
 (C.10) 

or 

 

m
m

h (t)
E g

δρ + ρ
∆ = mh (t)− ρ h

m (t)
zdz

h

g

+δ

δ

 − δρ 
 + δ  

δρ
+

∫
mh (t)+ ρ − δρ 2

0 0

h
zdz g z dz

h 2 z z

δ δ − ρ δ ∂ρ ∂ρ + − + δ ∂ ∂  
∫ ∫

 (C.11) 

or 

 

{ }

[ ]

h

m m

2
m

0 0

E g (t) zdz
h

hg (t) zdz g z dz
h 2 z z

+δ

δ

δ δ

δ∆ = ρ − ρ
+ δ

δ ∂ρ ∂ρ + ρ − ρ + − + δ ∂ ∂ 

∫

∫ ∫
 (C.12) 
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We evaluate the integrals as 

 
{ }

[ ]

h2

m m

2 3

m
0 0

zE g (t)
h 2

h z zg (t) g
h 2 z 2 z 3

+δ

δ

δ δ

 δ∆ = ρ − ρ  + δ  

   δ ∂ρ ∂ρ + ρ − ρ + −    + δ ∂ ∂    

 (C.13) 

Using 

 ( ) ( )2 2 2 2 2 hh h 2h 2h
2

 + δ − δ = + δ + δ − δ = + δ 
 

 (C.14) 

 
{ }

[ ]

m m

2 3

m

hE g (t) h
h 2

hg (t) g
h 2 z 2 z 3

δ  ∆ = ρ − ρ + δ + δ  
δ ∂ρ δ ∂ρ δ + ρ − ρ + − + δ ∂ ∂ 

 (C.15) 

or 

 
[ ]

[ ]

m m

2 3 3

m

h hE g (t)
h 2

hg (t) g g
2 h 4 z z 3

δ  ∆ = + δ ρ − ρ + δ  
δ δ ∂ρ ∂ρ δ − ρ − ρ + − + δ ∂ ∂ 

 (C.16) 

or 

 
[ ]

2

m m

3 3

h h hE g (t)
h 2 2 h

g
z 4 3

 δ δ   ∆ = + δ − ρ − ρ    + δ + δ    
 ∂ρ δ δ+ − ∂  

 (C.17) 

or 

 [ ]
2 2 2 3 3

m m
1 h h 1 h 3 4E g (t) g
2 h h 2 h z 12 12

   δ δ δ ∂ρ δ δ∆ = + − ρ − ρ + −   + δ + δ + δ ∂   
 (C.18) 

or 

 tδ∆  (C.19) 

or the mixing energy required to entrain a density gradient into an existing mixing layer is 

 AE / t∂ ∂  (C.20) 

It follows that mixing energy must be available at the rate 
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 [ ]
3

m
m

E h gg (t)
t 2 t 12 t z

∆ δ δ ∂ρ= ρ − ρ −
∆ ∆ ∆ ∂

 (C.21) 

We could write this as the mixing energy rate that will entrain the gradient layer 

 [ ]
2

m
m

E h gg (t)
t 2 t 12 z t

∂ ∂δ δ ∂ρ ∂δ= ρ − ρ −
∂ ∂ ∂ ∂

 (C.22) 

Noting that 

 ( )2 31
t 3 t

∂δ ∂δ = δ
∂ ∂

 (C.23) 

We could write 

 [ ] ( )3m
m

E h gg (t)
t 2 t 36 z t

∂ ∂δ ∂ρ ∂= ρ − ρ − δ
∂ ∂ ∂ ∂

 (C.24) 

 As a check, let us compare to the energy that would be required if there the entraining 
region did not have a density gradient.  In which case, the potential energy after mixing is the 
same, but the potential energy before mixing is 

 ( ) k( z)
r0 r

p

1
(z) Q k e : z

t c
− η−α − γ∂ ρ = − − ∞ < ≤ η − δ

∂
 (C.25) 

or 

 

h2 2

p m
0
2

m

z zE (t) g (t) g
2 2

hg (t)h g
2 2

+δ δ

δ

   
= ρ + ρ   

   
δ = ρ + δ + ρ 

 

 (C.26) 

It follows that the energy required to mix is 

 ( )
2

2m
m m

h (t) 1 hE g h g (t)h g
h 2 2 2

 δρ + ρ δ   ∆ = + δ − ρ + δ + ρ    + δ    
 (C.27) 

or 

 [ ]( )
2 2

m m m m
1 hE g h (t) h g (t) g (t) h g
2 2 2

δ∆ = δρ + ρ + δ − ρ + − ρ δ − ρ  (C.28) 

or 

 { }2 2 2 2
m m m m m

1E g h h (t) h (t) h (t) 2 (t) h
2

∆ = δ ρ + δ ρ + ρ + δρ − ρ − ρ δ − ρδ  (C.29) 

or 
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 2
m

1E g h
2

∆ = ρ δ + δ 2− δ 2
m (t) h  + ρ  h+ δ 2h− 2−{ }h δ   (C.30) 

or, the energy required to entrain a uniform density layer is 

 { }m m
hE g (t)
2

δ∆ = ρ − ρ  (C.31) 

which is only different from eq. (C.20) by the 3δ  term. So we have confidence in the derivation 
for the mixing energy required to entrain a density gradient.  

 

C.2 Entrainment layer thickening 

C.2.i Basic theory for entrainment layer thickening 

Note that the above requires mixing energy to be supplied at the rate 

 { }m
m

E hg (t)
t 2 t

∂ ∂δ= ρ − ρ
∂ ∂

 (C.32) 

Which can be written as 

 
{ }

m

m

2 E
t gh (t) t

∂δ ∂=
∂ ρ − ρ ∂

 (C.33) 

We consider a mixing layer at time (t) with a thickness (h).  The deepening of the mixing layer is 
given by eq. (C.33).  Thus we step successively through the grid cells.  For example, let us 
consider a model grid with uniform kz∆  values except for the free surface (which is k maxz∆ ).  At 
time ‘t’, the mixing layer thickness is h(t), which puts the entrainment in grid layer ‘n’, where 

 
k max k max

i i
i n i n 1

z h(t) z
= = −

∆ < < ∆∑ ∑  (C.34) 

So the fraction of the entraining grid cell occupied by the mixing layer is  

 
k max

m i
i n

h(t) z
=

δ = − ∆∑  (C.35) 

For mass balance consistency, the average density in the entraining grid cell is given by the 
nρ value that is carried as the grid cell density.  If we consider the grid cell partially full of the 

mixed layer fluid, it follows that 

 [ ]{ }n n n m m m
n

1 z
z

ρ = ρ ∆ − δ + ρ δ
∆

�  (C.36) 

where nρ� is the fluid in cell ‘n’ that may still be entrained.  Solving for this we have 
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 n n m m
n

n m

z
z

ρ ∆ − ρ δρ =
∆ − δ

�  (C.37) 

We then represent the rate of entrainment as 

 
{ }

m

n m

2 E
t gh (t) t

∂δ ∂=
∂ ρ − ρ ∂�

 (C.38) 

or  

 m

n n m m
m

n m

2 E
t tzgh

z

∂δ ∂=
∂ ∂ ρ ∆ − ρ δ − ρ ∆ − δ 

 (C.39) 

or 

 m

n n m n

n m

2 E
t tz zgh

z

∂δ ∂=
∂ ∂ ρ ∆ − ρ ∆

 ∆ − δ 

 (C.40) 

or 

 ( )
( )
n m m

n n m

2 z E
t gh z t

∆ − δ∂δ ∂=
∂ ∆ ρ − ρ ∂

 (C.41) 

 

C.2.ii Application of entrainment layer thickening 

As demonstrated above the rate at which a mixing layer (h) that is entraining in grid layer ‘n’, 
deepens for the grid cell of average density nρ  and a mixing layer density of mρ , can be found 
from the with the rate of supply of mixing energy (per unit area),  mE / t∂ ∂ as 

 ( )
( )
n m m

n n m

2 z E
t gh z t

∆ − δ∂δ ∂=
∂ ∆ ρ − ρ ∂

 (C.42) 

where the mixing layer thickness is h(t), which puts the entrainment in grid layer ‘n’, where 

 
k max k max

i i
i n i n 1

z h(t) z
= = −

∆ < < ∆∑ ∑  (C.43) 

So the fraction of the entraining grid cell occupied by the mixing layer is  

 
k max

m i
i n

h(t) z
=

δ = − ∆∑  (C.44) 
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The above forms the basis for deepening the surface mixing layer.  Assuming that 
mE / t 0∂ ∂ > we can write 

 ( )
( )

n m m

n n m

2 t z Eh(t t) h(t)
gh z t

∆ ∆ − δ ∂δ = + ∆ − =
∆ ρ − ρ ∂

 (C.45) 

It is required that 

 n mzδ ≤ ∆ − δ  (C.46) 

If the above condition is not met, we set 

 n mzδ = ∆ − δ  (C.47) 

and consider that only a portion of the time step was used in this mixing, ut∆ , so the mixing 
behavior is obtained by substituting eq. (C.47) into the LHS of (C.45) and recognizing that the 

t∆ is replaced by ut∆  when only a portion of the time step is required to mix the grid cell: 

 ( )( )
( )

u n m m
n m

n n m

2 t z Ez
gh z t

∆ ∆ − δ ∂∆ − δ =
∆ ρ − ρ ∂

 (C.48) 

so 

 ( )
1

m
u n n m

g Et h z
2 t

−∂ ∆ = ∆ ρ − ρ  ∂ 
 (C.49) 

We can then define the time remaining as 

 r ut t t∆ = ∆ − ∆  (C.50) 

The new density will be 

 ( ) m
m u

ht t
h

δρ + ρρ + ∆ =
+ δ

�
 (C.51) 

where nρ� is the density of the fluid in cell ‘n’ that was entrained, and is required to meet the 
average density of that cell when partitioned with the mixing layer, i.e. 

 n n m m
n

n m

z
z

ρ ∆ − ρ δρ =
∆ − δ

�  (C.52) 

from which it follows that 

 ( )
n n m m

m
n m

m u

z h
z

t t
h

 ρ ∆ − ρ δδ + ρ ∆ − δ ρ + ∆ =
+ δ

 (C.53) 

or 
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 ( ) ( )n n m m
m u m

n m

z1t t h
h z

δ ρ ∆ − ρ δ 
ρ + ∆ = ρ + + δ ∆ − δ 

 (C.54) 

If the entire grid layer entrains and still has time remaining (i.e. rt 0∆ > ), we then increment to 
the next grid cell down (n-1) and compute a δ from a modification of eq. (C.45) 

 ( )( )
( )

r n 1 m m

n 1 n 1 m

2 t z E
gh z t

−

− −

′∆ ∆ − δ ∂δ =
′ ′∆ ρ − ρ ∂

 (C.55) 

where rt∆  is used in place of t∆  and the primes indicate that the terms are updated to ut t+ ∆ . 
Using this approach, we can sweep down through the domain until all the time is used. 
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Appendix D MIXING BY K-H BILLOWS 
 

D.1 Shear mixing by Kelvin-Helmholtz billows using the ELCOM 
approach 

D.1.i Overview 

The maximum amount of mixing energy released by shear can be computed by the difference 
between the kinetic energy of the shear layer before mixing and the kinetic energy of the shear 
layer after mixing.  That is, if you take two layers of different velocities and mix them together, 
the mixed velocity will have a lower kinetic energy than in the original two layers.  This process 
is generally seen in free shear flows through K-H billows.  It is typically argued that only about 
20% of the energy available through the mixing of momentum is typically effective at mixing 
density.  

D.1.ii Kinetic energy change for arbitrary thickness layers in 1D 

We will derive the shear term based on two arbitrary thickness layers, (1) and (2) with uniform 
velocities.  For simplicity, let us consider only the kinetic energy in the ‘x’ direction. For an 
unmixed system  

 ( ) ( )2 2
ku 1 1 1 2 2 2

1 1E h U h U
2 2

= ρ + ρ  (D.1) 

For the mixed system we have 

 ( )2
km m m m

1E h U
2

= ρ  (D.2) 

The change in Ek is 

 ( ) ( ) ( )2 2 2
km ku m m m 1 1 1 2 2 2

1 1 1E E h U h U h U
2 2 2

− = ρ − ρ − ρ  (D.3) 

We note that conservation of mass between the mixed and the unmixed systems requires 

 m m 1 1 2 2h h hρ = ρ + ρ  (D.4) 

Furthermore, conservation of momentum requires that 

 m m m 1 1 1 2 2 2h U h U h Uρ = ρ + ρ  (D.5) 

It follows that 
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 ( ) ( ) ( )2 2
1 1 1 2 2 22 1 1 1 2 2 2

m m m 1 1 2 2
1 1 2 2 1 1 2 2

h U h Uh U h Uh U h h
h h h h

ρ + ρ ρ + ρρ = ρ + ρ = ρ + ρ ρ + ρ 
 (D.6) 

So eq. (D.3) could be written over a common denominator as 

 ( )
( ) ( ) ( ) ( ){ }

( )

2 2 2
1 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2

km ku
1 1 2 2

h U h U h h h U h U
E E

2 h h

ρ + ρ − ρ + ρ ρ + ρ
− =

ρ + ρ
 (D.7) 

Expanding the numerator 

 

( ) ( ) ( ) ( ){ }
( )

2 2 2
1 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2

2
1 1 1

h U h U h h h U h U

h U

ρ + ρ − ρ + ρ ρ + ρ

= ρ ( )2
1 1 1 2 2 2 2 2 22 h U h U h U+ ρ ρ + ρ ( )2

1 1 1h U− ρ

( ) ( ) ( )22 2
2 2 1 1 1 1 1 2 2 2 2 2 2h h U h h U h U− ρ ρ − ρ ρ − ρ

( ) ( )
( ){ }

2 2
1 1 2 2 1 2 2 2 1 1 1 1 1 2 2 2

2 2
1 2 1 2 1 1 2 2

2 h h U U h h U h h U

h h U 2U U U

= + ρ ρ − ρ ρ − ρ ρ

= − ρ ρ − +

 (D.8) 

So eq. (D.7) can be written as 

 ( ) ( )( )
( )

2
1 2 1 2 1 2

km ku
1 1 2 2

h h U U
E E

2 h h
− ρ ρ −

− =
ρ + ρ

 (D.9) 

 

D.1.iii Kinetic energy change for arbitrary thickness layers in 2D 

Now consider the more general 

 ( ) ( )2 2 2 2
ku 1 1 1 1 2 2 2 2

1 1E h U V h U V
2 2

= ρ + + ρ +  (D.10) 

 ( )2 2
km m m m m

1E h U V
2

= ρ +  (D.11) 

The change in Ek is 

 ( ) ( ) ( )2 2 2 2 2 2
km k1 m m m m 1 1 1 1 2 2 2 2

1 1 1E E h U V h U V h U V
2 2 2

− = ρ + − ρ + − ρ +  (D.12) 

Conservation of mass still requires 

 m m 1 1 2 2h h hρ = ρ + ρ  (D.13) 

Momentum must be conserved separately in each direction 

 m m m 1 1 1 2 2 2h U h U h Uρ = ρ + ρ  (D.14) 
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 m m m 1 1 1 2 2 2h V h V h Vρ = ρ + ρ  (D.15) 

So we obtain both 

 ( ) ( ) ( )2 2
1 1 1 2 2 22 1 1 1 2 2 2

m m m 1 1 2 2
1 1 2 2 1 1 2 2

h U h Uh U h Uh U h h
h h h h

ρ + ρ ρ + ρρ = ρ + ρ = ρ + ρ ρ + ρ 
 (D.16) 

 ( ) ( ) ( )2 2
1 1 1 2 2 22 1 1 1 2 2 2

m m m 1 1 2 2
1 1 2 2 1 1 2 2

h V h Vh V h Vh V h h
h h h h

ρ + ρ ρ + ρρ = ρ + ρ = ρ + ρ ρ + ρ 
 (D.17) 

So eq. (D.12) 

 

( ) ( ) ( )

( ) ( ) ( ){ }
( )

( ) ( ) ( ){ }

2
km ku 1 1 1 2 2 2

1 1 2 2

2 2
1 1 2 2 1 1 1 2 2 2

2
1 1 1 2 2 2

2 2
1 1 2 2 1 1 1 2 2 2

1E E h U h U
2 h h

h h h U h U

h V h V

h h h V h V

− = ρ + ρρ + ρ

− ρ + ρ ρ + ρ

ρ + ρ

− ρ + ρ ρ + ρ 

 (D.18) 

The pieces must expand just the same, so without further messing around we can simply write 

 ( ) ( )( )
( )

( )( )
( )

2 2
1 2 1 2 1 2 1 2 1 2 1 2

km ku
1 1 2 2 1 1 2 2

h h U U h h V V
E E

2 h h 2 h h
ρ ρ − ρ ρ −

− = − −
ρ + ρ ρ + ρ

 (D.19) 

or 

 ( ) ( ) ( ) ( ){ }2 21 2 1 2
km ku 1 2 1 2

1 1 2 2

h hE E U U V V
2 h h

ρ ρ− = − − + −
ρ + ρ

 (D.20) 

or, more simply 

 ( ) ( ){ }2 21 2 1 2
km ku

1 1 2 2

h hE E U V
2 h h

ρ ρ− = − ∆ + ∆
ρ + ρ

 (D.21) 

This could be written as 
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( ) 11 1 2 2

1 2 1 2

hh h
h h

ρρ + ρ
=

ρ ρ
1

1ρ 2 1hρ
2 2

2

h
h

ρ
+

1 2ρ ρ 1 2h h

( )

( )

2 2 1 1

1 2

1 11

1 1

2

1 2 1 1

21 2

1 1 2

1 1
h h
1

1h
h

1 1
h h

h h
h h

= +
ρ ρ

ρ= +
ρ ρ ∆ρ+ ρ ρ 

= + + ∆ρ
ρ ρ

+≈ + ∆ρ
ρ

O

O

 (D.22) 

So we can write eq. (D.21) as 

 ( ) ( ){ }2 21 1 2
km ku

1 2

h hE E U V
2 h h

ρ− = − ∆ + ∆
+

 (D.23) 

Note that if 1 2h h 2 z= = ∆  We arrive at 

 ( ) { }2 21
km ku

zE E U V
2

ρ ∆− = − ∆ + ∆  (D.24) 

which is the basis of the shear parameterization in Hodges et al (2000) and prior work. 

 

D.2 Rate of energy production using the K-H time scale for arbitrary 
thickness layers 

As a total rate of energy production, we can write 

 ( )
( ){ }km ku 2 2k 1 1 2

kh kh 1 2

E EE h h U V
t T 2T h h

−∂ ρ= − = ∆ + ∆
∂ +

 (D.25) 

 

where Tkh is the time-scale of shear production and we have applied eq. (D.23) for the energy 
change based on complete mixing of two layers.  We use the time-scale for K-H billows (Thorpe, 
1973, as used by Laval et al. 2003). 

 2 2
kh

20T U V
g

= ∆ + ∆
′

 (D.26) 

where 
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 2 1

1

g g ρ − ρ′ =
ρ

 (D.27) 

Thus, 

 
( )2 1 1k

gE
t

ρ − ρ ρ∂ =
∂

1 2

1

h h
2(20) ρ ( )

2 2

1 2

U V
h h

∆ + ∆
+

 (D.28) 

Note that we could write this as 

 
( )

2 2k 1 2

1 2

E 1 g h h U V
t 2 20 h h

 ∂ ∆ρ= ∆ + ∆  ∂ + 
 (D.29) 

 If we use a coefficient CS to represent the efficiency of shear production, we can write the 
linear rate that energy is made available for mixing through shear associated with two layers over 
the time 0 0 kht t t T< < +  

 
( )

2 2S S 1 2

1 2

E 1 C g h h U V
t 2 20 h h

 ∂ ∆ρ= ∆ + ∆  ∂ + 
 (D.30) 

 

Note that if kht T∆ ≥ , then the shear production from a single billow collapse is  

 
( )

2 2S S 1 2
kh

1 2

E 1 C g h ht T U V
t 2 20 h h

 ∂ ∆ρ∆ = ∆ + ∆  ∂ + 
 (D.31) 

However, if kht T∆ <  

 
( )

2 2S S 1 2

1 2

E 1 C g h ht t U V
t 2 20 h h

 ∂ ∆ρ∆ = ∆ ∆ + ∆  ∂ + 
 (D.32) 

 

 

D.3 K-H billows using a parameterization from Sherman et al. (1978) 

D.3.i Energy production using uniform layers and Sherman et al (1978)  

Unfortunately, simple implementation of eq. (D.30) the above makes the mixing fundamentally 
dependent on the definition of the h1 and h2 thicknesses.  If we use the grid cells for these, then 
the mixing will inherently be grid-dependent.  Instead, let consider that Sherman et al. (1978) 
gave a length scale for the interface after billowing of  
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2

b
0.3 U

g
∆δ =
′

 (D.33) 

If we let  

 b
1 2h h

2
δ= =  (D.34) 

Then eq. (D.30) becomes 

 ( )
( )

2
b 2 2S S

b

gE 1 C U V
t 2 20 4

 ∆ρ δ∂ = ∆ + ∆ 
∂ δ  

 (D.35) 

or 

 2 2S S
b

E 1 C g U V
t 2 80

∂  = ∆ρδ ∆ + ∆ ∂  
 (D.36) 

or 

 ( )3/ 22 2S SE 1 C 0.3g U V
t 2 80 g

 ∂ = ∆ρ ∆ + ∆ ′∂  
 (D.37) 

or 

 ( )3/ 22 2S S 0E 1 C 0.3g U V
t 2 80 g

 ∂ ρ= ∆ρ ∆ + ∆ ∂ ∆ρ 
 (D.38) 

or 

 ( )3/ 22 2S S
0

E 1 3C U V
t 2 800

∂  = ρ ∆ + ∆ ∂  
 (D.39) 

Note that if kht T∆ ≥ , then the shear production for collapse of a single billow is 

 ( )3/ 22 2S S
kh 0

E 1 3Ct T U V
t 2 800

∂∆ = ρ ∆ + ∆
∂

 (D.40) 

However, if kht T∆ <  then a full billow is not collapsed, and linear approximation is 

 ( )3/ 22 2S S
0

E 1 3Ct t U V
t 2 800

∂∆ = ∆ ρ ∆ + ∆
∂

 (D.41) 

 

The above equation could be a basic approximation of the rate that energy is made available for 
mixing due to shear.  To generalize this approach, let us write this as 
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 ( )3/ 22 2S
T S 0 kh

E 1 C C U V : t T
t 2

∂ = ρ ∆ + ∆ ≤
∂

 (D.42) 

where CT is the coefficient that results from use of the Thorpe time scale and the Sherman 
approximation of interface thickness  

 3
TC ~ 3.75 10−×  (D.43) 

 

D.3.ii Energy production based on fully-mixed layer thickness for a given shear 

As another approach, let us go back to eq. (D.25), but write for 1 2h h h / 2= = and then include 
the mixing efficiency to write 

 { }2 2S 1
S

kh

E 1 hC U V
t 2 4T

∂ ρ= ∆ + ∆
∂

 (D.44) 

In notes for CE380S (need to put into appendix), I demonstrate that 

 2
S

1h C U
2g

≤ ∆
′

 (D.45) 

This is based upon matching the energy produced by mixing (i.e. the fraction CS) with the 
potential energy required to mix when starting from two layers with different velocities and 
densities and mixing into a single layer of uniform density and viscosity.  If we use the 
maximum possible thickness from eq. (D.45), we can write 

 { }22 2 2S 1
S

kh

E 1 C U V
t 2 8g T

∂ ρ= ∆ + ∆
′∂

 (D.46) 

Using 

 2 2
kh

20T U V
g

= ∆ + ∆
′

 (D.47) 

 

we obtain 

 
{ }22 2

2S 1
S 2 2

U VE 1 C
t 2 160 U V

∆ + ∆∂ ρ =  ∂   ∆ + ∆
 (D.48) 

or 

 { }3/ 22 2 2S 1
S

E 1 C U V
t 2 160

∂ ρ = ∆ + ∆ ∂  
 (D.49) 
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If we use SC ~ 1 / 5  we obtain 

 { }3/ 22 2S 1
S

E 1 C U V
t 2 800

∂ ρ = ∆ + ∆ ∂  
 (D.50) 

which is 1/3 of  

 ( )3/ 22 2S 0
S

E 1 3 C U V
t 2 800

∂ ρ = ∆ + ∆ ∂  
 (D.51) 

obtained using Sherman’s approximation in eq. (D.41).  Thus both approaches obtain energy 
approximations of similar magnitude.  It is reasonable that Sherman’s approach predicts more 
energy released because the final state is a linear profile of density rather than a uniform density.  
Producing the uniform density, i.e. eq. (D.50) requires more mixing energy than producing the 
linear profile, i.e. eq. (D.51).  Thus, it might be reasonable to write the general case as 

 { }3/ 22 2 3 3S
T S kh T

E 1 C C U V : t T and 1.25 10 C 3.75 10
t 2

− −∂ = ∆ + ∆ < × ≤ ≤ ×
∂

 (D.52) 

Alternatively, we might take eq. (D.49) as the key equation and write 

 ( )3/ 22 2 2 3S
H S 0 kh H

E 1 C C U V : t T and C ~ 6.25 10
t 2

−∂ = ρ ∆ + ∆ < ×
∂

 (D.53) 

 Note that eq. (D.51) may overstate the energy available for mixing since it is based on an 
Ek that is calculated from complete mixing of momentum to a uniform value across the mixing 
layer rather than to a gradient.  In appendices, sections L.3 and 0, I look at what it requires to 
parameterize shear mixing from two uniform velocity layers into a linear velocity distribution, 
but the derivation is a mess and doesn’t seem usable.  Thus, it would seem like either eq. (D.53) 
is preferred, or eq. (D.52) with a low value for CT. 

 

D.4 Thoughts on application of shear mixing for K-H billows 

D.4.i General considerations 

The basic approach to shear will be to look at the boundary between each layer in a water 
column and separately compute the energy available, using eq. (D.41) or (D.40), depending on 
the time scale.  

 

 Note that if kht T∆ < , then we may need to do multiple sweeps.  That is, one can imagine 
the case where there exists multiple K-H billow layers, e.g., a mixing layer at the boundary k-1/2 
and another mixing layer between k+3/2.  After the mixing across these two boundaries, 
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occurring over time ( )1 kh(k 1/ 2) kh(k 3/ 2)T Max T ,T+ += , there now may be sufficient shear across 

boundary k+1/2 to cause mixing.  We would now need to apply eq. (D.40) to boundary k+1/2 if 

 1 2(k 1/ 2)t T T +∆ ≥ +  (D.54) 

or we would apply eq. (D.41) if inequality (D.54) is not met.  An alternative way of writing this 
would be to consider 

 r2(k 1/ 2) 1t t T+∆ = ∆ −  (D.55) 

and the equivalent criterion is then 

 r 2(k 1/ 2)t T +∆ ≥  (D.56) 

 The sweeps through the domain for K-H billow mixing should be done separately from 
other mixing routines and should be based upon the Tkh at the individual grid cell boundaries.  
That is, rather than sweeping surface down through the domain, and adding the K-H billow 
mixing energy to the other mixing energy (as in Hodges et al. 2000, or Laval et al., 2003), we 
compute the Tkh at each grid cell boundary and start mixing from the shortest Tkh and move to 
successively longer Tkh.  All short Tkh (i.e. kht T∆ ≥ ) should be done before any long Tkh (i.e. 

kht T∆ < ) is completed. 

 

D.4.ii Is the stuff in sections D.1 to D.3 useful or necessary? 

Note the above does seem to have a bit of a circular argument.  That is, we compute the kinetic 
energy released by shear mixing using an approximation developed by Sherman, then we use 
that energy to vertically mix fluid.  Why not simply use the Sherman approach directly?  That is, 
let us begin from two ideas the time scale of billowing  

 2 2
kh

20T U V
g

= ∆ + ∆
′

 (D.57) 

and the thickness of the linear layer after collapse.  

 
2

b
0.3 U

g
∆δ =
′

 (D.58) 

Both khT and bδ are directly calculable at the interface between any two grid cells.   

 We assume that in layer ‘2’ (below) and layer ‘1’ above, the velocity is uniform with 
values of 2U and 1U .  Similarly, we presume uniform densities of 2ρ  and 1ρ , or for that matter, 
any species φ . If Sherman et al. (1978) is deemed to hold, then the mixing of species over the 
distance bδ is required to meet 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 70

 ( ) ( )i1 2
1 2

b

z z
(z)

2
−φ + φφ = + φ − φ
δ

 (D.59) 

where zi is the z value of the original interface between the layers.  Thus, when i bz z / 2= + δ  we 
obtain i b 1(z / 2)φ + δ = φ .  Similarly, when i bz z / 2= − δ  we obtain i b 2(z / 2)φ − δ = φ . For 
simplicity, let us consider a local coordinate system where iz (0) z′ = , so that 

 ( )1 2
1 2

b

z(z )
2

′φ + φ′φ = + φ − φ
δ

 (D.60) 

or 

 
b

z(z )
′′φ = φ + ∆φ

δ
 (D.61) 

where 

 ( )1 2
1
2

φ = φ + φ  (D.62) 

and 

 ( )1 2∆φ = φ − φ  (D.63) 

 If layer thickness’ are given as z∆ , and we meet the condition that b 2 zδ ≤ ∆  then the 
value of φ  in the upper layer after mixing is 

 ( ) b
1 1m 1 1 1 2

1z z
2 2

δ∆ φ = ∆ φ − φ − φ  (D.64) 

or 

 b
1m 1

14 z
∆φδφ = φ −

∆
 (D.65) 

In the same way we find that for the lower layer 
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−
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 
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 (D.66) 

or 

 Tk Bk
k Rk Tk Bk Rk 1 Tk Rk 1 Bk

k k

h h1
z z + −

    
ρ = ρ − + ψ − − ψ + ρ ψ − ρ ψ    ∆ ∆    

 (D.67) 
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 Let us consider what is required when 

k Tk

Tk Bk
k Tk Bk

k k

k Bk
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h hB 1
z z
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≡ +ψ

   
≡ − + ψ − − ψ   ∆ ∆   
≡ −ψ

.  In such a 

case, only a fraction of the thickness will mix, which we parameterize as 
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 (D.68) 

Thus, for any scalar we have 

 
2

KH
0.3 U

g
∆δ =
′

 (D.69) 

where the above is only correct for 
( ) ( ) ( ){ }2 20

KHk 1/ 2 Rk 1 Rk Rk 1 Rk
Rk Rk 1

0.3 U U V V
g+ + +

+

ρδ = − + −
ρ − ρ

. 

 Thus, the above approach provides direct estimation of the mixing caused by K-H billows 
using the approach of Sherman et al. (1978) and the K-H time scales of Thorpe (1973).   

 

D.4.iii Problems for shear mixing 

The principle problem for shear mixing is that we are actually mixing a small region (assuming 
Rk 1/ 2 Rk 1 RkU U U+ +∆ ≡ − ) near the grid boundary to a linear profile.  However, this affects the 

overall density (or other species) throughout the cell.  We might consider what happens if we try 
to store a value ‘h’ on each cell interface that characterizes the mixing between the cells.  This 
mixing ‘h’ could be considered a transportable variable (but is not cell-centered, which could 
cause problems).  It might be possible to consider a cell to have a “representative” density as rρ .  
At the start, let us consider a simple layered system where rρ  is the actual density throughout the 
cell, i.e. (z)ρ , as well as the average density ρ  in the cell.  We then have K-H billows on both 
the upper and lower faces of the cell, such that mass is transferred upwards in both cases.  Across 
the upper face, we have loss mass such that there is a mass deficit (per unit area) of 

 k 1/ 2 b(k 1/ 2)
k 1/ 2m

4
+ +

+

∆ρ δ
∆ = −  (D.70) 
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where bδ  is given by eq. (D.68) and   

 k 1/ 2 r(k) r(k 1)+ +∆ρ = ρ − ρ  (D.71) 

 In the same way, we have a mass gain through the lower boundary as 

 k 1/ 2 b(k 1/ 2)
k 1/ 2m

4
− −

−

∆ρ δ
∆ = +  (D.72) 

Thus, the average density is given by 

 k r k 1/ 2 k 1/ 2
k

k

z m m
z
+ −∆ ρ + ∆ + ∆ρ =

∆
 (D.73) 

or 

 k 1/ 2 b(k 1/ 2) k 1/ 2 b(k 1/ 2)
k r

k k4 z 4 z
+ + − −∆ρ δ ∆ρ δ

ρ = ρ − +
∆ ∆

 (D.74) 

If we use a more general mixing height ‘h’ to represent the gradient, we have 
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 (D.75) 

As long as we meet the requirement 
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 (D.76) 

it can be argued that 
( )
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   

  δ − +
  + ∆ >
   

 is a better 

representative of the density at the center of the cell than is the average density kρ .  This concept 
can be extended to other scalars as well.  However, transport of scalars must use the average 
value rather than the representative value to maintain conservation.  If we apply eq. (D.71) in eq. 
(D.74) we obtain 
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 ( )k 1/ 2 k 1/ 2
k r(k) r(k) r(k 1) r(k 1) r(k)

k k

h h
4 z 4 z

+ −
+ −ρ = ρ − ρ − ρ + ρ − ρ

∆ ∆
 (D.77) 

which could be written as 

 k 1/ 2 k 1/ 2 k 1/ 2 k 1/ 2
r(k 1) r(k) r(k 1) k

k k k k

h h h h1
4 z 4 z 4 z 4 z

+ + − −
+ −

     
+ ρ + − − ρ + ρ = ρ     ∆ ∆ ∆ ∆     

 (D.78) 

or 

 k r(k 1) k r(k) k r(k 1) kA B C+ −+ ρ + ρ + ρ = ρ  (D.79) 

so that we have the matrix equation 

 
1 1 r(1) 1

2 2 2 r(2) 2

k max k max r(k max) k max

B C 0 0
A B C 0
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0 0 A B

=     
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     ρ ρ
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     
     ρ ρ    

" " #

 (D.80) 

which can be solved by a tridiagonal inversion.  The above can be extended to any scalar. 

 If we use this approach, we consider ‘h’ initially to be zero at all cell faces at time t=0.  
As such all variables satisfy rφ = φ at any grid cell. We then conduct shear mixing to compute ‘h’ 

at each interface as ( ) ( ){ }2 20
KHk 1/ 2 Rk 1/ 2 Rk 1/ 2

Rk 1/ 2

0.3 U V
g+ + +

+

ρδ = − ∆ + ∆
∆ρ

according to eq. (D.58).  

The new average densities are computed using eq. (D.77) and the mixing layer thickness.  We 
then check for mixing layers that are large compared to the local grid cell thickness.  That is, 
where 

 ( ) ( )2 20
KHk 1/ 2 Rk 1/ 2 Rk 1/ 2

Rk 1/ 2

20T U V
g+ + +

+

ρ= − ∆ + ∆
∆ρ

 (D.81) 

we set a new value for the representative density on either side of the interface using 

 k 1/ 2 k 1/ 2
r(k) r(k)

k

h
4 z
+ +∆ρρ = ρ −
∆

 (D.82) 

 k 1/ 2 k 1/ 2
r(k 1) r(k 1)

k 1

h
4 z

+ +
+ +

+

∆ρρ = ρ +
∆

 (D.83) 

and then set k 1/ 2h 0+ = .  Note that if both the upper and lower mixing layers of a grid cell have 
large ‘h’, then the density will satisfy r(k) kρ = ρ .  For the moment, let us ignore other parts of the 

mixing routine.  Using the above scheme we have mixing that produces the average density 
(which is conservative) and a representative density, which is not conservative but provides a 
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better characterization of the gradients.  We then transport all scalars and ‘h’.  Note that only the 
average density is transportable, since the representative density is not conservative.  Once 
transport is finished, we use solution of eq. (D.80) to update the reference densities.  We use a 
similar solution to update reference values for all the scalars.  We then begin a new time step 
where we have a field that has average and reference values for all scalars.  We now consider the 
computation of the K-H billow thickness that scales as  

 
2

b
0.3 U

g
∆δ =
′

 (D.84) 

can be computed for each cell interface as 

 ( ) ( ) ( ){ }2 20
b(k 1/ 2) r(k) r(k 1) r(k) r(k 1)

r(k) r(k 1)

0.3 U U V V
g+ + +

+

ρδ = − + −
ρ − ρ

 (D.85) 

We then check if  

 b(k 1/ 2) k 1/ 2h+ +δ ≤  (D.86) 

then no further billowing will occur at that time step.  Where 

 b(k 1/ 2) k 1/ 2h+ +δ >  (D.87) 

we consider billowing to occur so that there is an increase in the mixing layer thickness by an 
upward transport of mass.  We model this process as changing the gradient between the 
representative densities.  

  

D.5 K-H billows using a separately defined gradient regions at top 
and bottom of each grid cell 

Let us consider the diagram shown below.  Note that the nomenclature is somewhat different 
than above to try to keep the derivation as simple as possible.  Let Rρ be the representative 
density of each layer, which corresponds to the uniform density in the middle of the layer.  It 
follows that the average density, ρ  is given by 

 ( )k Tk Bk Rk 1 Rk Tk Rk Rk 1 Bk
k Rk

k Tk Bk 1 k Bk Tk 1 k

z h h h h
z h h z h h z

+ −

+ −

∆ − −    ρ − ρ ρ − ρρ = ρ + +   ∆ + ∆ + ∆   
 (D.88) 

 The average density along with hTk and hBk will be transported scalars, so we will need an 
equation that can reconstruct the representative densities from the layer thicknesses and the 
average densities.  We can write the above as 

 ( ) ( ) ( )Tk Bk
k k k Tk Bk Rk Rk 1 Rk Rk Rk 1

Tk Bk 1 Bk Tk 1

h hz z h h
h h h h+ −

+ −

 
∆ ρ = ∆ − − ρ + ρ − ρ + ρ − ρ + + 

(D.89) 
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which regroups as 
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   
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 (D.90) 

or 
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 (D.91) 
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 (D.92) 

 

then we have 
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Define 
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 (D.94) 

We can then write the matrix equation 
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 (D.95) 

which allows us to reconstruct the representative density from the mean density field and the 
thickness of the gradient region. 

 Let us examine how the figure above will provide for a K-H billow mixing scheme. We 
go back to the Sherman et al (1978) approximation for the thickness of the layer after billowing: 
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 (D.96) 

Which we will model in 3D as 
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So that we will always define differences such as 

 Rk 1/ 2 Rk 1 RkU U U+ +∆ ≡ −  (D.98) 

it follows that eq. (D.97) should be written as 

 ( ) ( ){ }2 20
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0.3 U V
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 (D.99) 

Billowing will not occur at interface k 1 / 2+  if 

 KHk 1/ 2 Tk Bk 1h h+ +δ ≤ +  (D.100) 

In the case that KHk 1/ 2 Tk Bk 1h h+ +δ > + , it follows that billowing should occur.  If the billowing 
continues to completion, we would then require 

 n 1 n 1
Tk Bk 1 KHk 1/ 2h h+ +

+ ++ = δ  (D.101) 

it follows that 
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 (D.102) 

where the limitation is that the rate of change only applies for times less that KHT , where 

 2 2
KH

20T U V
g

= ∆ + ∆
′

 (D.103) 

so that 
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 (D.104) 

We will assume that the thickening of the interface occurs symmetrically, so that at time n+1, the 
new interface thicknesses are 
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Thus, using eq. (D.102) and eq. (D.105) we have 
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or 
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 (D.112) 

 

Note that the above is not substantially easier to deal with, so it seems best to stick with eq. 
(D.99), (D.104) and (D.108) defining the change in the thickness.  It will be convenient to repeat 
these here as 

 ( ) ( ){ }2 20
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 (D.113) 
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 (D.114) 
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 (D.115) 

where it is convenient to write the latter in terms of the change in the thickness.  We note that the 
assumption of symmetry in the mixing allows only one value of k 1/ 2h +∆ , so it follows that 

 n 1 n n 1 n
Tk Tk Bk 1 Bk 1h h h h+ +

+ +− = −  (D.116) 

and there it is not necessary to solve eq. (D.106). 

 

D.5.i Obtaining the volume transfer for a change in the interface thickness 

We consider the change in the gradient region k 1/ 2h +∆ as shown in the figure below for k=1.  We 
are interested in the mass exchange between the cells. We assume a conservation of volume such 
that the volume of fluid of density R1ρ  that moves into grid layer 2 is exactly the same as the 
volume of fluid of density R 2ρ that moves into layer 1. If we consider only the upper half of grid 
layer 1, we can say that before mixing it has the average density T1ρ so that the total mass can be 
written by the average density in the upper half or by the gradients of the representative density: 

 ( )n n n1 1 R1 R 2
T1 R1 T1 R1 R1 T1 T1n n
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density at 1/ 2
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z z 1h h h
2 2 2 h h
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   ∆ ∆ ρ − ρ  ρ = ρ − + ρ + ρ −     +     
  
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 (D.117) 

which can be written as 
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2n

T1n n1 1
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T1 B2

hz z h h
2 2 2 h h

∆ ∆ ρ = ρ − + ρ + ∆ρ  + 
 (D.118) 

where the form of eq. (D.98) is used to define R1/ 2∆ρ .  Further simplification provides 

 n1 1
T1 R1 T1

z z h
2 2

∆ ∆ρ = ρ − n
T1h+

( )
( )

2n
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R1/ 2n n
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h

2 h h
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 (D.119) 

so that we have 
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 (D.120) 
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In a similar fashion, after mixing we would have 
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h
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+
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ρ = ρ + ∆ρ

∆ +
 (D.121) 

As long as  

 n 1 n 11 2
T1 B2

z zh and h
2 2

+ +∆ ∆≤ ≤  (D.122) 

the representative density does not change, so that 

 n 1 n n 1 n n 1 n
R1 R1 R 2 R 2 R1/ 2 R1/ 2and and+ + +ρ = ρ ρ = ρ ∆ρ = ∆ρ  (D.123) 

It follows that the average density in the upper half of the layer 1 is given by 
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 (D.124) 
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 In a similar manner to eq. (D.117), the average density in the lower half of layer 2 is 
given by 
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 (D.125) 

which becomes 
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 (D.126) 

or 

 n2 1
B2 R 2 B2

z z h
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∆ ∆ρ = ρ − n
TB2h+

( )
( )

2n
B2

R1/ 2n n
T1 B2

h

2 h h
  + ∆ρ  + 

 (D.127) 

or, at time ‘n’ 
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 (D.128) 

The change due to mixing is then 
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 (D.129) 

 The net mass transfer (per unit area) upward out of grid cell 1 is given based on the layer 
1 cell as 

 ( )n 1 n1 1
T1 T1

m z
x y 2

+∆ ∆= ρ − ρ
∆ ∆

 (D.130) 

which will be negative since the average density will decrease.  Similarly, the net mass transfer 
(per unit area) downward out of grid cell 2 is given based on the layer 2 cell as 

 ( )n 1 n2 2
B2 B2

m z
x y 2

+∆ ∆= ρ − ρ
∆ ∆

 (D.131) 

which will be positive since the average density is increasing in layer 2, so we have 1 2m m∆ = −∆  
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 We assume that the above mass transfer is accomplished by the exchange of equal 
volumes of fluids of density R1ρ  and R 2ρ , which can be represented by a volume V   Thus we 
require that the net mass into layer 2 be given by the mass arriving from layer 1 and the mass 
leaving layer 2,  

 2 1/ 2 R1 1/ 2 R 2m V V∆ = ρ − ρ  (D.132) 

Similarly, the change in mass in layer 1 is given by 

 1 1/ 2 R1 1/ 2 R 2m V V∆ = − ρ + ρ  (D.133) 

so that 1 2m m∆ = −∆ , and mass is exactly conserved.   

 Using eq. (D.130) and eq. (D.133) we find 

 ( )
n n

n 1 n1 1/ 2 R1 1/ 2 R 2
T1 T1

z V V
2 x y

+∆ − ρ + ρρ − ρ =
∆ ∆

 (D.134) 

So we can solve for the volume exchange as 
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 (D.135) 

which can be written as the volume exchange due to mixing. 
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 (D.136) 

Applying eq. (D.124), we end up with 
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 (D.137) 

or 
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 (D.138) 

Similar to eq. (D.134), if we use eq. (D.131) and (D.132), we obtain 
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B2 B2
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2 x y
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 (D.139) 

 

From which it follows that 
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 (D.140) 

or 
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 (D.141) 

Applying eq. (D.129) 
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or 
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 (D.143) 

Since the volume flux upward must be identical to the volume flux downward, eq. (D.138) and 
(D.143) can be equated and 

 
( )

( )
( )

( )
( )

( )
( )

( )
2 2 2 2n 1 n n 1 n

T1 T1 B2 B2

n 1 n 1 n n n 1 n 1 n n
T1 B2 T1 B2 T1 B2 T1 B2

h h h h

h h h h h h h h

+ +

+ + + +

  − = − − 
+ + + +  

 (D.144) 

 To generalize the above, it follows that the change in the average volume concentration 
of any conserved scalar, φ , in the upper half of layer 1 due to mixing by K-H billows is given by 
a the volume fluxes and the representative scalar concentrations as 
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(D.146) 

or 
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 (D.147) 
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which is (not surprisingly) the same as eq. (D.124) with the density replaced by the general 
scalar volume concentration φ . 

 In the same way, for the lower half of the layer 2 grid cell we obtain 

 n 1 n n n2 2
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z zx y x y V V
2 2

+∆ ∆∆ ∆ φ = ∆ ∆ φ + φ − φ  (D.148) 

or, using eq. (D.143) 
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which provides 
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Noting eq. (D.144), eq. (D.150) can be written as 
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 Thus, for a general grid cell ‘k’, eq. (D.147) is written as 
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and eq. (D.151) is 
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 Considering a general cell at grid level ‘k’ which may have changes at both top and 
bottom interfaces, we can write 

 ( )n 1 n 1 n 1k
k k Tk Bk

zz
2

+ + +∆∆ φ = φ + φ  (D.154) 

So substituting eq. (D.152) and (D.153) we obtain 
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 (D.155) 

We note that 

 ( )n n n
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so that we obtain 
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 (D.157) 

 

Thus, eq. (D.157) provides the K-H billow mixing of the average volume concentration of any 
conserved scalar (including components of momentum).   

 

D.5.ii Summary of the K-H billow where the billow thickness is small compared 
to the grid cell  

The K-H billow thickness is predicted from eq. (D.99), (D.104) and (D.108), rewritten here as: 
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along with the definition that 
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 n n 1 n 1 n
Tk Tk Tkh h h→ + +∆ ≡ −  (D.161) 

and the requirement of symmetry in the interface growth 

 n n 1 n n 1
Bk 1 Tkh h→ + → +

+∆ = ∆  (D.162) 

 The change in the average volume concentration of any scalar is then found from eq. 
(D.157), rewritten here as: 
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 (D.163) 

Once the mixing of the average volume concentrations and the interface thicknesses have been 
calculated as above, the hydrodynamic code is used to transport all values of T B, h , hφ .  Thus, in 
addition to the mixing algorithm above, we need to compute the transport of two additional 
scalars.  Note that the algorithm for transporting h’s remains to be carefully derived.  After the 
transport, we need to reconstruct the values of the representative concentrations, Rφ .  
Generalizing from the derivation for density in eqs. (D.92), (D.93), (2.8) and (2.9), we need to 
solve a tridiagonal for each scalar as 
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 (D.164) 

where 
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 (D.165) 

Using 
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 (D.166) 

We can write the matrix equation 
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which is inverted to provide the representative values in the cells. 

 

D.6 K-H billows for small grid cells 
A difficulty arises with the approach in D.5 when Th z / 2> ∆  or Bh z / 2> ∆ .  In such cases, the 
method fails because there is a possible interaction between the T and B layers.   As shown in the 
sketch below, if we were to keep with the idea of two gradient regions and a center region, a 
large increase in the thickness of the two gradient regions leads to inconsistency at the center of 
the grid cell.  Arguably, the method might actually be considered to provide correct results as 
long as 

 n 1 n 1
Tk Bk kh h z+ ++ ≤ ∆  (D.168) 

The simplest fix might be to consider that for any cell wherein eq. (D.168) is violated, the cell 
has mixing layers from both the bottom to the top.  The gradient layer thicknesses would be set 
to zero, i.e. 

 n 1 n 1 n 1 n 1 n 1 n 1
Tk Bk Tk 1 Bk 1 Tk Bk kh h h h 0 where h h z+ + + + + +

− += = = = + > ∆  (D.169) 

Note that because we define a continuous gradient across the cell faces, the adjacent gradient 
heights in the adjacent cells are also zero.  The above definitions will then require that 

 n 1 n 1 n 1 n 1
k Rk Tk Bk kwhere h h z+ + + +φ = φ + > ∆  (D.170) 
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It does not appear that eq. (D.163) could be correctly used to compute the updated φ .  We need 
to re-derive a method for computing the flux across the k+1/2 boundary where the mixing 
thickness connects across the grid cell.  We may want to go back to the approach derived as 
eq.(D.53), namely, across the k+1/2 boundary we have 

 ( ) ( ){ }3/ 22 22Sk 1/ 2
H S 0 k 1/ 2 k 1/ 2 kh

E 1 C C U V : t T
t 2
+

+ +
∂ = ρ ∆ + ∆ ≤

∂
 (D.171) 

And we can calculate a similar supply of energy across the k-1/2 boundary.  To keep things 
general, let us write eq. (D.171) as 

 ( ) ( ){ }3/ 22 2Sk 1/ 2
C 0 k 1/ 2 k 1/ 2 kh

E 1 C U V : t T
t 2
+

+ +
∂ = ρ ∆ + ∆ ≤

∂
 (D.172) 

where 2
C H SC C C=  returns eq. (D.171) and C T SC C C=  returns eq. (D.52).  Thus, the choice of 

form does not affect the following results. 

 

 Where n 1 n 1
Tk Bk kh h z+ ++ > ∆ , the top and bottom mixing layers are deemed to have met in the 

middle of the grid cell, so the representative density, Rkρ  is no longer a reasonable 

grid layer 2 

grid layer 1 z

ρ 

∆z2 

∆z1 

hB1 

hT1 hB2 

hT2 

∆h1/2 

∆h1/2 

∆z0 grid layer 1 
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approximation of the cell density for use in mixing computations.  Instead, we will use the 
average density in the cell as our baseline for mixing.  With mixing possible at both the top and 
bottom boundaries of a cell, the volume flux exchanged through each boundary should be limited 
to no more than half the grid cell volume.  If a volume flux greater than half the volume is 
implied, then the mixing should be done in stages. 

 If we use eq. (D.172) for the rate at which mixing energy is supplied, we can compute the 
rate at which mixing occurs between based on potential energy arguments.  We argue that 
mixing occurs at the rate 

 S PE E
t t

∂ ∂=
∂ ∂

 (D.173) 

The potential energy per unit area in two layers of arbitrary thickness h1 and h2 on either side of 
an interface at elevation Iz  is obtained as 

 
I I 2

I 1 I

z z h

Pu 1 2

z h z

E g zdz g zdz
+

−

= ρ + ρ∫ ∫  (D.174) 

or (dropping the overbar for simplicity) 

 
I I 2

I 1 I

z z h2 2

Pu 1 2
z h z

z zE g g
2 2

+

−

   
= ρ + ρ   

   
 (D.175) 

or 

 [ ]( ) [ ]( ){ }2 22 2
Pu 1 I I 1 2 I 2 I

gE z z h z h z
2

= ρ − − + ρ + −  (D.176) 

or 

 2
Pu 1 I

gE z
2

= ρ 2
Iz−( )2 2

I 1 1 2 I2z h h z+ − + ρ 2 2
I 2 2 I2z h h z− + −( ){ }  (D.177) 

or 

 ( ) ( ){ }Pu 1 1 I 1 2 2 I 2
gE h 2z h h 2z h
2

= ρ − + ρ +  (D.178) 

 

After mixing, the potential energy is 

 
I 2

I 1

z h

Pm m

z h

E g zdz
+

−

= ρ ∫  (D.179) 

or 
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 [ ] [ ]( )2 2
Pm m I 2 I 1

gE z h z h
2

= ρ + − −  (D.180) 

or 

 2
Pm m I

gE z
2

= ρ 2 2
I 2 2 I2z h h z+ + −( )2

I 1 12z h h+ −  (D.181) 

or 

 ( ) ( ){ }Pm m 2 I 2 1 I 1
gE h 2z h h 2z h
2

= ρ + + −  (D.182) 

We require that mass should be conserved during mixing, so 

 1 1 2 2
m

1 2

h h
h h

ρ + ρρ =
+

 (D.183) 

Thus, eq. (D.182) becomes 

 ( ) ( ){ }1 1 2 2
Pm 2 I 2 1 I 1

1 2

g h hE h 2z h h 2z h
2 h h
 ρ + ρ= + + − + 

 (D.184) 

The change in PE over the course of mixing is found by subtracting eq. (D.178) from (D.184) 

 

 
( ) ( ){ }

( ) ( ){ }

1 1 2 2
Pm Pu 2 I 2 1 I 1

1 2

1 1 I 1 2 2 I 2

g h hE E h 2z h h 2z h
2 h h

g h 2z h h 2z h
2

 ρ + ρ− = + + − + 

− ρ − + ρ +

 (D.185) 

which expands to 

 

( ) { }

{ }

2 2 3
Pm Pu 1 1 2 I 1 1 2 1 1 I 1 1

1 2

2 2
2 2 2 I 2 2 2 2 2 1 I 2 2 1

1 2

2 2
1 1 I 1 1 2 2 I 2 2

2 1E E 2 h h z h h 2 h z h
g h h

1 2 h h z h h 2 h h z h h
h h

2 h z h 2 h z h

 
− = ρ + ρ + ρ − ρ + 
 

+ ρ + ρ + ρ − ρ + 
− ρ + ρ − ρ − ρ

 (D.186) 

or 
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( )Pm Pu 1 1 2 I
1 2

2 1E E 2 h h z
g h h

 
− = ρ + 

2 2
1 1 2 1 1 Ih h 2 h z+ ρ + ρ 3

1 1h− ρ{ }
2

2 2 I
1 2

1 2 h z
h h

 
+ ρ + 

3
2 2h+ ρ 2 1 2 I2 h h z+ ρ{ }2

2 1 2

2
1 1 I

1 2

h h

1 2 h z
h h

− ρ

 
+ − ρ + 

1 1 2 I2 h h z− ρ 3
1 1h+ ρ{ }2

1 1 2

2 1 2 I
1 2

h h

1 2 h h z
h h

+ ρ

 
+ − ρ + 

2
2 2 I2 h z− ρ{ }2 3

2 1 2 2 2h h h− ρ − ρHJJJJG

 (D.187) 

or 

 ( )( ) ( ) ( )2 2
Pm Pu 1 2 1 2 1 2 1 2 1 2

2 E E h h h h h h
g

− + = ρ − ρ + ρ − ρ  (D.188) 

or 

 
( ) ( )

2
1 2

Pm Pu 1 2
1 2

2gh hE E
2 h h

− = ρ − ρ
+

 (D.189) 

or 

 
( ) ( )

2
1 2

Pm Pu 1 2
1 2

gh hE E
h h

− = ρ − ρ
+

 (D.190) 

Note that if 1 2h h h= =  we obtain 

 ( )2
Pm Pu 1 2

1E E gh
2

− = ρ − ρ  (D.191) 

 

 We will model the mixing as an exchange of equal volumes across the grid cell interface, 
so the rate of increase of potential energy is given by 

 ( ) ( ) { }2
Pm Pu 1 2

1E E g h
t 2 t

∂ ∂− = ρ − ρ
∂ ∂

 (D.192) 

or 

 ( )P
1 2

E hg h
t t

∂ ∂= ρ − ρ
∂ ∂

 (D.193) 

In terms of some general grid cell at level ‘k’ 

 ( )Pk 1/ 2
k k 1

E hg h
t t
+

+
∂ ∂= ρ − ρ

∂ ∂
 (D.194) 
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Setting eq. (D.194) and (D.172) 

 ( ) ( ){ } ( )
3/ 22 2

C 0 k 1/ 2 k 1/ 2 k k 1 kh
1 hC U V g h : t T
2 t+ + +

∂ρ ∆ + ∆ = ρ − ρ ≤
∂

 (D.195) 

However, it will probably work better to proceed with a discrete version of (D.191) over some 
increment of time as 

 ( )2Pk 1/ 2
k k 1

E 1t gh
t 2
+

+
∂∆ = ρ − ρ

∂
 (D.196) 

Now we consider eq. (D.172) as 

 ( ) ( ){ }3/ 22 2Sk 1/ 2
C 0 k 1/ 2 k 1/ 2 kh

E tt C U V : t T
t 2
+

+ +
∂ ∆∆ = ρ ∆ + ∆ ∆ ≤

∂
 (D.197) 

so that equating (D.196) and (D.197) provides 

 ( ) ( ){ } ( )
3/ 22 2 2

C 0 k 1/ 2 k 1/ 2 k k 1 kh
t 1C U V gh : t T

2 2+ + +
∆ ρ ∆ + ∆ = ρ − ρ ∆ ≤  (D.198) 

Thus, the thickness of the mixing region on either side of the grid cell interface is given by 

 
( ) ( ) ( ){ }3/ 22 2C 0

k 1/ 2 k 1/ 2 kh
k k 1

tCh U V : t T
g + +

+

∆ ρ= ∆ + ∆ ∆ ≤
ρ − ρ

 (D.199) 

Which can be written as a time interval to mix to a given height as 

 

 ( ) ( ) ( ){ } 3/ 22 2k k 12
R k 1/ 2 k 1/ 2 R kh

C 0

t gh U V : t T
C

−
+

+ +

ρ − ρ
∆ = ∆ + ∆ ∆ ≤

ρ
 (D.200) 

 Since ‘h’ is the height on either side of the interface and is identical on both sides, it 
follows that the volume flux transported upward from grid cell ‘k’ into grid cell k+1 is exactly 
equal to the volume flux transported downward from grid cell ‘k+1’ into ‘k’ and must be exactly 
equal to 

 hV x y
2

= ∆ ∆  (D.201) 

Thus, the volume flux rate of the mixing exchange is given by 

 V h x y
t 2 t

= ∆ ∆
∆ ∆

 (D.202) 

It follows that the volume exchanged is 25% of the grid cell thickness when 

 zV x y
4

∆= ∆ ∆  (D.203) 
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or  

 zh
2

∆=  (D.204) 

The time at which ¼ of the volume of the cell has been exchanged is found by solving eq. 
(D.200) using (D.204), or 

 ( ) ( ) ( ){ }
2 3/ 22 2k k 1/ 2

R k 1/ 2 k 1/ 2
C 0

g z
t U V

4C

−
+

+ +

− ∆ ∆ρ
∆ = ∆ + ∆

ρ
 (D.205) 

If kh RT t≤ ∆  then the KH mixing is conducted in a single step such that the mixing thickness in a 
single cell is 

 
( ) ( ) ( ){ }3/ 22 2kh C 0

k 1/ 2 k 1/ 2 k 1/ 2
k k 1

T Ch U V
g+ + +

+

ρ= ∆ + ∆
ρ − ρ

 (D.206) 

and the volume flux (per unit area) is given by 

 
( ) ( ) ( ){ }3/ 22 2kh C 0

k 1/ 2 k 1/ 2
k k 1

1 T C U V
x y 2 g + +

+

ρ= ∆ + ∆
∆ ∆ ρ − ρ
V  (D.207) 

It follows that the change of any conservative scalar average volume concentration, φ , is given 
by 

 n 1 n n n n nk 1/ 2 k 1/ 2 k 1/ 2 k 1/ 2
k k k k 1 k k 1

V V V Vz z
x y x y x y x y

+ + + − −
+ −φ ∆ = φ ∆ − φ + φ − φ + φ

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
 (D.208) 

or 

 ( ) ( )n 1 n n n n nk 1/ 2 k 1/ 2
k k k 1 k k k 1

V Vz z
x y x y

+ + −
+ −φ ∆ = φ ∆ + φ − φ − φ − φ

∆ ∆ ∆ ∆
 (D.209) 

Substituting eq. (D.207) when both KHk 1/ 2 Rk 1/ 2T t+ +≤ ∆  and KHk 1/ 2 Rk 1/ 2T t− −≤ ∆  we obtain 

 

( ) ( )

( ) ( )

1/ 21/ 2 3/ 42 2n 1 n nC 0 KHk 1/ 2
k k k 1/ 2 k 1/ 2 k 1/ 2

k 1/ 2

1/ 2
3/ 42 2n KHk 1/ 2

k 1/ 2 k 1/ 2 k 1/ 2
k 1/ 2

1 C Tz z U V
2 g

T U V

+ +
+ + +

+

−
− − −

−

   ρ   φ ∆ = φ ∆ + ∆φ ∆ + ∆      −∆ρ   
   −∆φ ∆ + ∆     −∆ρ  

(D.210) 

However, in the case where KHk 1/ 2 Rk 1/ 2T t+ +≥ ∆  or KHk 1/ 2 RT t− ≥ ∆ , then we must proceed in several 
steps.  That is, as defined in eq. (D.205), Rt∆ is the time required for fully ½ of the grid cell 
volume to be involved in mixing.  At this point, it is reasonable to assume that similar mixing at 
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the k-1/2 boundary may affect the mixing at the k+1/2 boundary.  Thus, where KHk 1/ 2 RT t+ ≥ ∆   or 

KHk 1/ 2 RT t− ≥ ∆ we will slightly modify eq. (D.210) as 

 

( ) ( )

( ) ( )

1/ 21/ 2 S0 3/ 42 2S1 n nC 0
k k k 1/ 2 k 1/ 2 k 1/ 2

k 1/ 2

1/ 2S0 3/ 42 2n
k 1/ 2 k 1/ 2 k 1/ 2

k 1/ 2

1 C tz z U V
2 g

t U V

+ + +
+

− − −
−

   ρ ∆  φ ∆ = φ ∆ + ∆φ ∆ + ∆      −∆ρ   
 ∆  −∆φ ∆ + ∆     −∆ρ  

(D.211) 

where [ ]S0
Rk 1/ 2 Rk 1/ 2t min t , t+ −∆ = ∆ ∆  and S1φ  is the new value of φ  after a single step of S1t∆ .  

Once we have computed new values for the set S1 S1 S1 S1U ,V , , ρ φ   we can compute a new value 

of S1
Rt∆ for both the k+1/2 and k-1/2 faces from (for example)  

  ( ) ( ) ( ){ }
2 S1 3/ 22 2k k 1/ 2S1 S1 S1

Rk 1/ 2 k 1/ 2 k 1/ 2
C 0

g z
t U V

4C

−
+

+ + +

− ∆ ∆ρ
∆ = ∆ + ∆

ρ
 (D.212) 

We then define S1 S1 S1
Rk 1/ 2 Rk 1/ 2t min t , t+ − ∆ = ∆ ∆  .  If S0 S1

KHk 1/ 2T t t+ ≥ ∆ + ∆ or S0 S1
KHk 1/ 2T t t− ≥ ∆ + ∆ , 

then it will be necessary to perform both a second step similar to eq. (D.211) and a third step as 
well.  To write this in a more general form, we will have to take note that the last step will need 
to be limited by last Si

KH
i 1,n

t T t
=

∆ = − ∆∑ . 
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Appendix E DERIVATION OF GRADIENT MIXING 
E.1 Introduction 

We are interested in determining the change in kinetic energy and the change in potential energy 
when a gradient region increases in thickness.  Let us consider a simple system that begins with 
two uniform density (and velocity) regions separated by a linearly-varying region.  We will call 
the initial state α .  After some mixing, the gradient region is now thicker, but still provides a 
linear gradient between unchanged uniform density and velocity regions (i.e. the mixing does not 
affect properties outside the gradient region.  The final state after mixing is β . The initial linear 
region has thickness hα  and the final state linear region has thickness hβ .  We require 

 0 h hα β≤ ≤  (E.1) 

and define the thickness difference as 

 h h hβ αδ ≡ −  (E.2) 

Let 0z 0=  be the base of the linear gradient region in the final state.  Let 1 1,Uρ  represent the 
lower layer characteristics and 2 2,Uρ  represent the upper layer.   

 

E.2 Summary of the derivation 

The following sections show that the inital potential energy (before mixing) is given by eq. 
(E.58). The final potential energy (after mixing) is given by eq. (E.10).  The initial kinetic energy 
is given by eq. (E.103).  The final kinetic energy is given by eq. (E.20). The change in potential 
energy is given by eq. (E.62), and the change in kinetic energy is given by eq. (E.128). 

 

E.3 Potential energy in final state 

The potential energy in the final state is 

 
h

p

0

E g (z)zdz
β

β β= ρ∫  (E.3) 

The density in the linear region at the final state is given by 

 ( )1 1 2
z(z)

hβ
β

ρ = ρ − ρ − ρ  (E.4) 

To be consistent with taking differences from the upper to the lower level we define 
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 2 1∆ρ ≡ ρ − ρ  (E.5) 

such that 0∆ρ < .  We then have 

 1
z(z)
hβ

β

ρ = ρ + ∆ρ  (E.6) 

So the potential energy is 

 
h

p 1

0

zE g zdz
h

β

β
β

 
= ρ + ∆ρ  

 ∫  (E.7) 

or 

 
h h

2
p 1

0 0

E g zdz g z dz
h

β β

β
β

∆ρ= ρ +∫ ∫  (E.8) 

or 

 2 3
p 1

1 1E g h g h
2 3 hβ β β

β

∆ρ= ρ +  (E.9) 

or 

 2
p 1

1 1E gh
2 3β β

 = ρ + ∆ρ 
 

 (E.10) 

 

E.4 Kinetic energy in final state 

The kinetic energy in the final state is given by 

 { }
h

2

k

0

1E (z) U (z) dz
2

β

β β= ρ∫  (E.11) 

We have 

 1
zU (z) U U
hβ

β

= + ∆  (E.12) 

where 

 2 1U U U∆ ≡ −  (E.13) 

so we obtain 
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h 2

k 1 1

0

1 z zE U U dz
2 h h

β

β
β β

    = ρ + ∆ρ + ∆  
    ∫  (E.14) 

expanding 

 
h

2
2 2

k 1 1 1 2

0

1 z z zE U 2 UU U dz
2 h h h

β

β
β β β

    = ρ + ∆ρ + ∆ + ∆  
    ∫  (E.15) 

more expanding 

 
h h

2 2 3
2 2 2 2

k 1 1 1 1 12 2

0 0

1 z z 1 z zE U 2 UU U dz U z 2 UU U dz
2 h h 2 h h h

β β

β
β β β β β

   ∆ρ   = ρ + ∆ + ∆ + + ∆ + ∆   
      ∫ ∫ (E.16) 

more expanding 

 

h h h

2 2 2
k 1 1 1 1 12

0 0 0

h h h

2 2 2 3
1 12 3

0 0 0

1 1 1E U dz UU zdz U z dz
2 h 2h

1 1 1U zdz UU z dz U z dz
2h h 2h

β β β

β β β

β
β β

β β β

= ρ + ρ ∆ + ρ ∆

+ ∆ρ + ∆ρ∆ + ∆ρ∆

∫ ∫ ∫

∫ ∫ ∫
 (E.17) 

integrating 

 
( )

2 3
2 2

k 1 1 1 1 12

2 3 4
2 2

1 12 3

h h1 1 1E U h UU U
2 h 2 2h 3

h h h1 1 1U UU U
2h 2 h 3 2h 4

β β
β β

β β

β β β

β β β

   
= ρ + ρ ∆ + ρ ∆      

   
     

+ ∆ρ + ∆ρ∆ + ∆ρ∆          
     

 (E.18) 

canceling 

 

2 2
k 1 1 1 1 1

2 2
1 1

1 1 1E U h UU h U h
2 2 6
1 1 1U h UU h U h
4 3 8

β β β β

β β β

= ρ + ρ ∆ + ρ ∆

+ ∆ρ + ∆ρ∆ + ∆ρ∆
 (E.19) 

 

 

 

combining 
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 2 2
k 1 1 1 1 1

1 1 1 1 1 1E U h UU h U h
2 4 2 3 6 8β β β β

     = ρ + ∆ρ + ∆ ρ + ∆ρ + ∆ ρ + ∆ρ     
     

 (E.20) 

So eq. (E.10) and (E.20) provide the potential and kinetic energy of the section of fluid in state 
β .   

 

E.5 Potential energy in initial state 
 Now let us consider the potential energy in state α , which is more complex due to the 
need to treat the uniform sections above and below the linear section of thickness hα   

 
hh

h h

hh / 2/ 2

p 1 2

0 / 2 h / 2

E g zdz g (z)zdz g zdz
βα

β

+δδ

α α

δ −δ

= ρ + ρ + ρ∫ ∫ ∫  (E.21) 

where 

 
h

1

1z
2(z)

hα
α

− δ
ρ = ρ + ∆ρ  (E.22) 

The first term of eq. (E.21) is 

 
h / 2 2

h
1 1

0

1g zdz g
2 2

δ
δ ρ = ρ  

 ∫  (E.23) 

or 

 
h / 2

2
1 1 h

0

1g zdz g
8

δ

ρ = ρ δ∫  (E.24) 

The third term of eq. (E.21) is 

 
h

h 2
2

2 2 h

h / 2

1 1g zdz g h h
2 2

β

β

β β

−δ

   ρ = ρ − − δ     
∫  (E.25) 

or 

 
h

h

2 2 2
2 2 h h

h / 2

1 1g zdz g h h h
2 4

β

β

β β β

−δ

  ρ = ρ − − δ + δ    ∫  (E.26) 

or 
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h

h

2
2 2 h h

h / 2

1 1g zdz g h
2 4

β

β

β

−δ

 ρ = ρ δ − δ 
 ∫  (E.27) 

or 

 
h

h

2
2 2 h 2 h

h / 2

1 1g zdz g h g
2 8

β

β

β

−δ

ρ = ρ δ − ρ δ∫  (E.28) 

The second term of eq. (E.21) is 

 { }
h h

h h

h / 2 h / 2
h

1

/ 2 / 2

1z
2g (z) zdz g zdz

h

α α+δ +δ

α
αδ δ

 − δ 
ρ = ρ + ∆ρ 

 
 

∫ ∫  (E.29) 

or 

 { }
h h h

h h h

h / 2 h / 2 h / 2

1 h

/ 2 / 2 / 2

1 1g (z) zdz g zdz g z zdz
h 2

α α α+δ +δ +δ

α
αδ δ δ

 ρ = ρ + ∆ρ − δ 
 ∫ ∫ ∫  (E.30) 

or 

 { }
h h h h

h h h h

h / 2 h / 2 h / 2 h / 2

2
1 h

/ 2 / 2 / 2 / 2

1 1g (z) zdz g zdz g z dz g zdz
h 2h

α α α α+δ +δ +δ +δ

α
α αδ δ δ δ

ρ = ρ + ∆ρ − ∆ρδ∫ ∫ ∫ ∫  (E.31) 

or 

 { }
h h h

h h h

h / 2 h / 2 h / 2

2
1 h

/ 2 / 2 / 2

1 1g (z) zdz g g zdz g z dz
2h h

α α α+δ +δ +δ

α
α αδ δ δ

 
ρ = ρ − ∆ρδ + ∆ρ 

 ∫ ∫ ∫  (E.32) 

 

The first term of eq. (E.32) is 

 
h

h

h / 2 2
2

1 1 h h h

/ 2

1 1 1 1g zdz g g h
2 2h 2 4

α +δ

α
αδ

    ρ = ρ − ∆ρδ + δ − δ        
∫  (E.33) 

or 

 
h

h

h / 2

2 2 2
1 1 h h h h

/ 2

1 1 1 1g zdz g g h h
2 2h 4 4

α +δ

α α
αδ

   ρ = ρ − ∆ρδ + δ + δ − δ       ∫  (E.34) 

or 
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 { }
h

h

h / 2

1 1 h h

/ 2

1 1g zdz g g h h
2 2h

α +δ

α α
αδ

 
ρ = ρ − ∆ρδ + δ 

 ∫  (E.35) 

or 

 
h

h

h / 2

1 1 h

/ 2

1 1g zdz g h h g h
2 4

α +δ

α β β

δ

ρ = ρ − ∆ρδ∫  (E.36) 

The second term of eq. (E.32) is 

 
h

h

h / 2 3
2 3

h h

/ 2

1 1 1 1g z dz g h
h 3h 2 8

α +δ

α
α αδ

   ∆ρ = ∆ρ + δ − δ     
∫  (E.37) 

or 

 
h

h

h / 2

2 2 2 3
h h h h

/ 2

1 1 1 1 1g z dz g h h h
h 3h 4 2 8

α +δ

α α α
α αδ

    ∆ρ = ∆ρ + δ + δ + δ − δ        ∫  (E.38) 

or 

 
h

h

h / 2

2 3 2 2 2 2 3 3
h h h h h h

/ 2

1 1 1 1 1 1 1g z dz g h h h h h
h 3h 4 2 2 8 8

α +δ

α α α α α
α αδ

 ∆ρ = ∆ρ + δ + δ + δ + δ + δ − δ 
 ∫ (E.39) 

or 

 
h

h

h / 2

2 3 2 2
h h

/ 2

1 1 3 3g z dz g h h h
h 3h 2 4

α +δ

α α α
α αδ

 ∆ρ = ∆ρ + δ + δ 
 ∫  (E.40) 

or 

 
h

h

h / 2

2 2 2
h h

/ 2

1 1 3 3g z dz g h h
h 3 2 4

α +δ

α α
α δ

 ∆ρ = ∆ρ + δ + δ 
 ∫  (E.41) 

or 

 
h

h

h / 2

2 2 2
h h

/ 2

1 1 1 1g z dz g h g h g
h 3 2 4

α +δ

α α
α δ

∆ρ = ∆ρ + ∆ρδ + ∆ρδ∫  (E.42) 

 Putting together eq. (E.36), and (E.42), we have eq. (E.32), which is the second term in 
eq. (E.21) as 
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 { }
h

h

h / 2

2 2
1 h h h

/ 2

1 1 1 1 1g (z) zdz g h h g h g h g h g
2 4 3 2 4

α +δ

α α β β α α

δ

ρ = ρ − ∆ρδ + ∆ρ + ∆ρδ + ∆ρδ∫  (E.43) 

Putting together eq. (E.24), (E.28) and (E.43) to provide eq. (E.21), as 

 

2 2 2
p 1 h 1 h h h

2
2 h 2 h

1 1 1 1 1 1E g g h h g h g h g h g
8 2 4 3 2 4
1 1g h g
2 8

α α β β α α

β

   = ρ δ + ρ − ∆ρδ + ∆ρ + ∆ρδ + ∆ρδ   
   
 + ρ δ − ρ δ 
 

 (E.44) 

or 

 2 2 2 2
p 1 h h h h 2 h h

1 1 1 1 1 1 1 1E g h h g h h h g h
8 2 3 2 4 4 2 8α α β α α β β

     = ρ δ + + ∆ρ + δ + δ − δ + ρ δ − δ    
     

(E.45) 

using eq. (E.5), the last term of eq. (E.45) is 

 ( )2 2
2 h h 1 h h

1 1 1 1g h g h
2 8 2 8β β

   ρ δ − δ = ρ + ∆ρ δ − δ   
   

 (E.46) 

or 

 2 2 2
2 h h 1 h 1 h h h

1 1 1 1 1 1g h g h g g h g
2 8 2 8 2 8β β β

 ρ δ − δ = ρ δ − ρ δ + ∆ρδ − ∆ρδ 
 

 (E.47) 

so that eq. (E.45) is now 

 

2 2 2
p 1 h h h h

2 2
1 h 1 h h h

1 1 1 1 1 1E g h h g h h h
8 2 3 2 4 4

1 1 1 1g h g g h g
2 8 2 8

α α β α α β

β β

   = ρ δ + + ∆ρ + δ + δ − δ  
   

+ ρ δ − ρ δ + ∆ρ δ − ∆ρ δ
 (E.48) 

 

combining terms provides: 

 

2
p 1 h

1E g
8α = ρ δ 2

h h
1 1 1h h h
2 2 8α β β+ + δ − δ

2 2 2
h h h h h

1 1 1 1 1 1g h h h h
3 2 4 4 2 8α α β β

 
 
 

 + ∆ρ + δ + δ − δ + δ − δ 
 

 (E.49) 

or 
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p 1 h

2 2
h h h

1 1E g h h h
2 2

1 1 1 1g h h h
3 2 8 4

α α β β

α α β

 = ρ + δ 
 

 + ∆ρ + δ + δ + δ 
 

 (E.50) 

or 

 ( ) 2 2
p 1 h h h h

1 1 1 1 1E g h h g h h h
2 3 2 8 4α β α α α β

 = ρ + δ + ∆ρ + δ + δ + δ 
 

 (E.51) 

using the definitions implied by eq. (E.2)  

 ( ) ( )22 2
p 1 h h h h h

1 1 1 1 1E g h g h h h
2 3 2 8 4α β β β β

 = ρ + ∆ρ − δ + δ − δ + δ + δ 
 

 (E.52) 

or 

 ( ) ( )2 2 2 2 2
p 1 h h h h h h

1 1 1 1 1E g h g h 2 h h h
2 3 2 8 4α β β β β β

 = ρ + ∆ρ − δ + δ + δ − δ + δ + δ 
 

 (E.53) 

or 

 2 2 2 2 2
p 1 h h h h h h

1 1 2 1 1 1 1 1E g h g h h h h
2 3 3 3 2 2 8 4α β β β β β

 = ρ + ∆ρ − δ + δ + δ − δ + δ + δ 
 

 (E.54) 

or 

 2 2 2
p 1 h h

1 1 1 1 1 1 2 1E g h g h h
2 3 3 2 8 2 3 4α β β β

    = ρ + ∆ρ + δ − + + δ − +    
    

 (E.55) 

or 

 2 2 2
p 1 h h

1 1 8 12 3 6 8 3E g h g h h
2 3 24 24 24 12 12 12α β β β

    = ρ + ∆ρ + δ − + + δ − +    
    

 (E.56) 

or 

 2 2 2
p 1 h h

1 1 1 1E g h g h h
2 3 24 12α β β β

 = ρ + ∆ρ − δ + δ 
 

 (E.57) 

So the potential energy at the initial state is 

 2 2 2
p 1 h h

1 1 1 1E g h g h h
2 3 8 4α β β β

 = ρ + ∆ρ − δ + δ 
 

 (E.58) 
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E.6 Change in potential energy 
So the change in the potential energy from state α  to β  is obtained by subtracting eq. (E.58) 
from eq. (E.10) 

 2 2 2 2
p p 1 1 h h

1 1 1 1 1 1E E gh g h g h h
2 3 2 3 8 4β α β β β β

   − = ρ + ∆ρ − ρ − ∆ρ − δ + δ   
   

 (E.59) 

or 

 2
p p 1 1

1 1 1 1E E gh
2 2 3 3β α β− = ρ − ρ + ∆ρ − ∆ρ 2

h h
1 1 1g h
3 8 4 β

   − ∆ρ − δ + δ   
  

 (E.60) 

or 

 p p h h
1 1 1E E g h
3 4 8β α β

 − = − ∆ρδ − δ 
 

 (E.61) 

or, the increase in PE due to gradient mixing is: 

 p p h h
1 1E E g h

12 2β α β
 − = − ∆ρδ − δ 
 

 (E.62) 

or 

 ( )p p h
1E E g h h
24β α β α− = − ∆ρδ +  (E.63) 

or 

 ( )( )p p
1E E g h h h h
24β α β α β α− = − ∆ρ − +  (E.64) 

or 

 ( )2 2
p p

1E E g h h
24β α β α− = − ∆ρ −  (E.65) 

or 

 ( )2 2
p p 0

1E E g h h
24β α β α′− = ρ −  (E.66) 

write this as either 

 ( )2 2
P S avg

1E c g h h
2 ρ β α′= ρ −  (E.67) 

or, using eq. (E.63) 
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 P S avg h avg 3 2 2

M L M energyE c g h : LL
L T T unit areaρ ′= ρ δ = =  (E.68) 

where we use  

 
0

g g ∆ρ′ ≡ −
ρ

 (E.69) 

 To check eq. (E.62), let us consider the case where h 0α =  so that h hβδ = .  We obtain 

 p p
1 1E E g h h h

12 2β α β β β
 − = − ∆ρ − 
 

 (E.70) 

or 

 2
p p

1E E g h
24β α β− = − ∆ρ  (E.71) 

The above is identical to that of Sherman et al. (1978), attributed to Turner (1973, pp. 322,323). 

For h 0α = , we have the potential energy in state α  as 

 
h / 2 h

p (0) 1 2

0 h / 2

E g zdz g zdz
β β

β

α = ρ + ρ∫ ∫  (E.72) 

or 

 
2 2

2
p (0) 1 2

h h1 1E g g h
2 2 2 2

β β
α β

     = ρ + ρ −    
     

 (E.73) 

or 

 2 2
p (0) 1 2

1 3E g h g h
8 8α β β= ρ + ρ  (E.74) 

or 

 2 2 2
p (0) 1 1

1 3 3E g h g h g h
8 8 8α β β β= ρ + ρ + ∆ρ  (E.75) 

or 

 2 2
p (0) 1

1 3E g h g h
2 8α β β= ρ + ∆ρ  (E.76) 

So the subtracting eq. (E.76) from eq, (E.10) provides 
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 2 2 2
p p (0) 1 1

1 1 1 3E E gh g h g h
2 3 2 8β α β β β

 − = ρ + ∆ρ − ρ − ∆ρ 
 

 (E.77) 

or 

 2
p p (0) 1 1

1 1E E gh
2 2β α β− = ρ − ρ 1 3

3 8
 

+ ∆ρ − ∆ρ 
 

 (E.78) 

or 

 2
p p (0)

8 9E E gh
24 24β α β

 − = ∆ρ − 
 

 (E.79) 

or 

 2
p p (0)

1E E gh
24β α β

 − = − ∆ρ 
 

 (E.80) 

or 

 2
p p (0)

1E E g h
24β α β− = − ∆ρ  (E.81) 

As eq. (E.81) matches eq. (E.71), we have some confidence that eq. (E.62) is correctly derived. 

 Also, as a further check, let us consider the change in PE derived in class note for 
CE380S which considers only uniform layers.  We there obtain 

 
2

p
1 hE g
2 2

 ∆ = − ∆ρ 
 

 (E.82) 

where h is the mixing layer thickness.  We then obtain 

 2
p

1E g h
8

∆ = − ∆ρ  (E.83) 

Note that eq. (E.81) is significantly smaller change in PE than eq. (E.83), which is as expected as 
the latter implies mixing into a uniform layer. 

 

E.7 Kinetic energy at initial state 
Next let us consider the kinetic energy in the case of the α  state 

 { }
hh

h h

h / 2 h/ 2
22 2

k 1 1 2 2

0 / 2 h / 2

1 1 1E U dz (z) U (z) dz U dz
2 2 2

β β

β

−δδ

α α α

δ −δ

= ρ + ρ + ρ∫ ∫ ∫  (E.84) 

Considering the first term in eq. (E.84) 
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h / 2

2 2 h
1 1 1 1

0

1 1U dz U
2 2 2

δ
δ ρ = ρ  

 ∫  (E.85) 

or 

 
h / 2

2 2
1 1 1 1 h

0

1 1U dz U
2 4

δ

ρ = ρ δ∫  (E.86) 

The third term in eq. (E.84) is  

 
h

h

2 2 h
2 2 2 2

h / 2

1 1U dz U h h
2 2 2

β

β

β β

−δ

 δ  ρ = ρ − −    ∫  (E.87) 

or 

 
h

h

2 2
2 2 2 2 h

h / 2

1 1U dz U
2 4

β

β −δ

ρ = ρ δ∫  (E.88) 

or 

 
h

h

2 2 2
2 2 1 2 h 2 h

h / 2

1 1 1U dz U U
2 4 4

β

β −δ

ρ = ρ δ + ∆ρ δ∫  (E.89) 

or 

 ( ) ( )
h

h

2 22
2 2 1 1 h 1 h

h / 2

1 1 1U dz U U U U
2 4 4

β

β −δ

ρ = ρ + ∆ δ + ∆ρ + ∆ δ∫  (E.90) 

or 

 ( ) ( )
h

h

2 2 2 2 2
2 2 1 1 1 h 1 1 h

h / 2

1 1 1U dz U 2 UU U U 2 UU U
2 4 4

β

β −δ

ρ = ρ + ∆ + ∆ δ + ∆ρ + ∆ + ∆ δ∫  (E.91) 

or 

 { } { } { }
h

h

2 2 2
2 2 1 h 1 1 h 1 h 1

h / 2

1 1 1 1U dz U UU U
2 4 2 4

β

β −δ

ρ = δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ∫  (E.92) 

The second term in eq. (E.84) could be re-written as 
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 { }
h

2

0

1 (z) U (z) dz
2

α

γ λρ∫  (E.93) 

where 

 1
z(z) : 0 z h

hγ α
α

ρ = ρ + ∆ρ ≤ ≤  (E.94) 

and 

 1
zU (z) U U : 0 z h

hγ α
α

= + ∆ ≤ ≤  (E.95) 

so that we have 

 { }
h h 2

2
1 1

0 0

1 1 z z(z) U (z) dz U U dz
2 2 h h

α α

γ λ
α α

  
ρ = ρ + ∆ρ + ∆  

  ∫ ∫  (E.96) 

which is of the same form as eq. (E.14), repeated here for convenience, except that 
hα everywhere replaces hβ  

 
h 2

k 1 1

0

1 z zE U U dz
2 h h

β

β
β β

    = ρ + ∆ρ + ∆  
    ∫  (E.97) 

Thus, without further derivation, the integration of eq. (E.96) can be based on the integration of 
eq. (E.97), which is given as eq. (E.20) – the result is 

 { }
h

2 2 2
1 1 1 1 1

0

1 1 1 1 1 1 1(z) U (z) dz U h UU h U h
2 2 4 2 3 6 8

α

γ λ α α α
     ρ = ρ + ∆ρ + ∆ ρ + ∆ρ + ∆ ρ + ∆ρ     
     ∫ (E.98) 

Putting together eq. (E.86), (E.92) and (E.98) to provide the integration of eq. (E.84) 

 

{ } { } { }

2
k 1 1 h

2 2
1 1 1 1 1

2 2
1 h 1 1 h 1 h 1

1E U
4

1 1 1 1 1 1U h UU h U h
2 4 2 3 6 8

1 1 1U UU U
4 2 4

α

α α α

= ρ δ

     + ρ + ∆ρ + ∆ ρ + ∆ρ + ∆ ρ + ∆ρ     
     

+ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ

 (E.99) 

or 
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 ( ) ( ) ( )

2
k 1 h 1

2 2
1 h 1 1 h 1 h 1

2 2
1 h 1 1 h 1 h 1

1E U
4

1 1 1 1 1 1U h UU h U h
2 4 2 3 6 8

1 1 1 1 1 1U UU U
4 4 2 2 4 4

α

β β β

 = δ ρ 
 
     + − δ ρ + ∆ρ + ∆ − δ ρ + ∆ρ + ∆ − δ ρ + ∆ρ     
     

     + δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ     
     

(E.100) 

or 

 

2
k 1 h 1

2 2
1 1 1 h 1 1 1 1 h 1

2 2
1 h 1

2 2
1 h 1 1 h 1 h 1

1E U
4

1 1 1 1 1 1 1 1U h U UU h UU
2 4 2 4 2 3 2 3
1 1 1 1U h U
6 8 6 8

1 1 1 1 1U UU U
4 4 2 2 4

α

β β

β

 = δ ρ 
 

       + ρ + ∆ρ − δ ρ + ∆ρ + ∆ ρ + ∆ρ − ∆ δ ρ + ∆ρ       
       
   +∆ ρ + ∆ρ − ∆ δ ρ + ∆ρ   
   
   + δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ   
   

1
4

 + ∆ρ 
 

(E.101) 

or 

 

2
k 1 h 1 1 1

2
1 1 1 1

2
1

2
1 h 1 1 h 1 1

1 1 1 1 1E U
4 2 4 4 4

1 1 1 1U h UU h
2 4 2 3
1 1U h
6 8

1 1 1 1 1 1 1 1UU U
2 2 2 3 4 4 6 8

α

β β

β

 = δ ρ − ρ − ∆ρ + ρ + ∆ρ 
 

   + ρ + ∆ρ + ∆ ρ + ∆ρ   
   
 +∆ ρ + ∆ρ 
 
   +∆ δ ρ + ∆ρ − ρ − ∆ρ + ∆ δ ρ + ∆ρ − ρ − ∆ρ   
   

 (E.102) 

so the kinetic energy in the initial state can be written in terms of the final state as 

 

2
k 1 1 1 1

2 2
1 h 1 h 1

1 1 1 1E U h UU h
2 4 2 3

1 1 1 1 1UU U h U
6 6 8 12 8

α β β

β

   = + ρ + ∆ρ + ∆ ρ + ∆ρ   
   
     + ∆ δ ∆ρ + ∆ ρ + ∆ρ + ∆ δ ρ + ∆ρ     
     

 (E.103) 

As a check, let us consider the case of h 0α =  such that hhβ = δ , so that eq. (E.103) should 

reduce to 

 
h h

2 2 2 2
1 1 2 2 1 1 h 2 2 h

/ 2 / 2

1 1 1 1U dz U dz U U
2 2 4 4

δ δ

ρ + ρ = ρ δ + ρ δ∫ ∫  (E.104) 
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To demonstrate, substituting hhβ = δ  in eq. (E.103) provides 

 

2
k 1 h 1 1 h 1

2 2
1 h h 1 h 1

1 1 1 1E U UU
2 4 2 3

1 1 1 1 1UU U U
6 6 8 12 8

α
   = + δ ρ + ∆ρ + ∆ δ ρ + ∆ρ   
   
     + ∆ δ ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ     
     

 (E.105) 

or 

 

2
k 1 h 1 1 h 1

2
h 1 1

1 1 1 1 1E U UU
2 4 2 3 6

1 1 1 1U
6 8 12 8

α
   = + δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ρ   
   

 + ∆ δ ρ + ∆ρ + ρ + ∆ρ 
 

 (E.106) 

or 

 2 2
k 1 h 1 1 h 1 h 1

1 1 1 1 1 1E U UU U
2 4 2 2 4 4α

     = + δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ     
     

 (E.107) 

or 

 { } ( ) ( )2 2 2
k 1 h 1 h 1 1 h 1 h 1

1 1 1 1E U U UU U
4 4 2 4α = δ + δ ρ + ∆ρ + ∆ δ ρ + ∆ρ + ∆ δ ρ + ∆ρ  (E.108) 

or 

 { } ( ) ( ){ }2 2 2
k h 1 1 1 1 1 1 1

1E U U 2 UU U
4α = δ ρ + ρ + ∆ρ + ∆ ρ + ∆ρ + ∆ ρ + ∆ρ  (E.109) 

or 

 ( )( ){ }2 2 2
k h 1 1 1 1 1

1E U U 2 UU U
4α = δ ρ + ρ + ∆ρ + ∆ + ∆  (E.110) 

or 

 ( )( ){ }22
k h 1 1 1 1

1E U U U
4α = δ ρ + ρ + ∆ρ + ∆  (E.111) 

or 

 ( )( ){ }22
k h 1 1 2 2

1E U U
4α = δ ρ + ρ  (E.112) 

or 

 2 2
k 1 1 h 2 2 h

1 1E U U
4 4α = ρ δ + ρ δ  (E.113) 
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which is the same as eq. (E.104), so eq. (E.103) appears to be the correct initial kinetic energy 
state. 

 

E.8 Change in kinetic energy 

Now let us consider what happens when we subtract eq. (E.103) from eq. (E.20) 

 

2 2
k k 1 1 1 1 1

2
1 1 1 1

2 2
1 h 1 h 1

1 1 1 1 1 1E E U h UU h U h
2 4 2 3 6 8

1 1 1 1U h UU h
2 4 2 3

1 1 1 1 1UU U h U
6 6 8 12 8

β α β β β

β β

β

     − = ρ + ∆ρ + ∆ ρ + ∆ρ + ∆ ρ + ∆ρ     
     

   − ρ + ∆ρ − ∆ ρ + ∆ρ   
   
     − ∆ δ ∆ρ − ∆ ρ + ∆ρ − ∆ δ ρ + ∆ρ     
     

 (E.114) 

or 

 

2
k k 1 1 1

2
1 1 1 1 1

2
1 h h 1

1 1 1 1E E U h
2 4 2 4

1 1 1 1 1 1 1 1UU h U h
2 3 2 3 6 8 6 8
1 1 1UU U
6 12 8

β α β

β β

 − = ρ + ∆ρ − ρ − ∆ρ 
 

   + ∆ ρ + ∆ρ − ρ − ∆ρ + ∆ ρ + ∆ρ − ρ − ∆ρ   
   
   − ∆ δ ∆ρ − ∆ δ ρ + ∆ρ   
   

 (E.115) 

or 

 2
k k 1 h h 1

1 1 1E E UU U
6 12 8β α

   − = −∆ δ ∆ρ − ∆ δ ρ + ∆ρ   
   

 (E.116) 

so the change in kinetic energy is 

 2
k k 1 h h 1

1 1 1E E UU U
6 12 8β α

   − = −∆ δ ∆ρ − ∆ δ ρ + ∆ρ   
   

 (E.117) 

or 

 k k h 1 1
4 2 3E E U U U U
24 24 24β α

 − = ∆ δ − ∆ρ − ∆ ρ − ∆ ∆ρ 
 

 (E.118) 

 k k h 1 1 1 1
2 2 1 1 2 1E E U U U U U U U
24 24 24 24 24 24β α

 − = ∆ δ − ∆ρ − ∆ρ − ∆ ρ − ∆ ρ − ∆ ∆ρ − ∆ ∆ρ 
 

(E.119) 

or 
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 ( ) ( )k k h 1 1 1 1
2 2 1 1E E U U U U U U
24 24 24 24β α

 − = −∆ δ ∆ρ + ∆ + ∆ρ + ∆ ρ + ∆ ρ + ∆ρ 
 

 (E.120) 

or 

 ( ) ( ){ }k k h 1 1 1 1
1E E U 2 U U 2U U U
24β α− = − ∆ δ ∆ρ + ∆ + ∆ρ + ∆ ρ + ∆ ρ + ∆ρ  (E.121) 

or 

 { }k k h 2 1 1 2
1E E U 2 U 2 U U U
24β α− = − ∆ δ ∆ρ + ∆ρ + ρ ∆ + ρ ∆  (E.122) 

or 

 2 2
k k h 2 1 1 2

1 1 1E E U U U U U U
12 2 2β α

 − = − δ ∆ρ ∆ + ∆ρ ∆ + ρ ∆ + ρ ∆ 
 

 (E.123) 

 

 ( ) ( ) ( ) ( )2 2
k k h 2 2 1 1 2 1 1 2 1 2 2 1

1 1 1E E U U U U U U U U U U
12 2 2β α

 − = − δ ∆ρ − + ∆ρ − + ρ − + ρ − 
 

(E.124) 

 ( ) ( ) ( ) ( )2 22 2
k k h 2 1 2 1 2 1 1 2 1 2 2 1

1 1 1E E U U U U U U U U U U
12 2 2β α

 − = − δ ∆ρ − + ∆ρ − + ρ − + ρ − 
 

(E.125) 

 ( ) ( )( )22 2
k k h 2 1 2 1 2 1 1 2 2 1

1 1E E U U U U U U U U
12 2β α

 − = − δ ∆ρ − + − + ρ + ρ − 
 

 (E.126) 

or 

 ( ) ( )( )22 2
k k h 2 1 1 2 2 1

1 1E E U U U U
12 2β α

 − = − δ ∆ρ − + ρ + ρ − 
 

 (E.127) 

So the change in kinetic energy can be written as 

 ( ) ( )2 2 2
k k h 1 2 2 1

1 1E E U U U
12 2β α

 − = − δ ρ + ρ ∆ + ∆ρ − 
 

 (E.128) 

Note that if the density difference is small, the change in KE can be written as 

 2
k k h 0

1E E ~ U
12β α− − δ ρ ∆  (E.129) 

Which is identical to that gviven in Sherman et al (1978) and attributed to Turner (1973, pp. 322, 
323). 

 However, let us write the above as 

 ( ) ( ){ }2 2 2
S S S S h avg 2 1E E E c U U Uβ α∆ = − − = δ ρ ∆ + ∆ρ −  (E.130) 
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where  

 h h hβ αδ = −  (E.131) 

and 

 ( )avg 1 2
1
2

ρ ≡ ρ + ρ  (E.132) 

and 

 2 1∆ρ = ρ − ρ  (E.133) 

which is negative for a stably-stratified fluid (index 2 is above index 1).  The cS coefficient 
represents the bulk energy relationship between the velocity shear and the change in kinetic 
energy for mixing over the thickness mixing.  Using skc 1 / 12=  is the theoretical value for 
mixing from a linear shear layer of thickness hα  to a linear shear layer of thickness hβ .  Eq. 

(E.128) can be written as 

 
( )2 2

2 12
S sk h avg 2

avg

U U
E c U 1

U

 −∆ρ ∆ = δ ρ ∆ + ρ ∆  
 (E.134) 

Noting further that 

 
( ) ( )( )

( )
( )
( )

( )2 2
2 1 avg2 1 2 1 2 1 2 1

22
2 12 1

U U 2UU U U U U U U U
U U U U UU U

− − + + +
= = = =

∆ − ∆ ∆−
 (E.135) 

Thus, eq. (E.134) becomes 

 
2

avg2
S sk h avg 3 2 2

avg

2U M L M EnergyE c U 1 : L
U L T T unit area

 ∆ρ ∆ = δ ρ ∆ + = = ρ ∆  
 (E.136) 

Note that we cannot, in general, neglect the second term as small! 

 The above compares to the value of 

 21 2
k k 0

1 2

1 h hE E ~ U
2 h hβ α− − ρ ∆

+
 (E.137) 

derived in the CE380S class notes for two uniform layers of different thicknesses that are mixed 
into a single layer of uniform thickness.  If we let 1 2 hh h / 2= = δ , the above becomes 

 
h h

2
k k 0

h

1 2 2E E ~ U
2β α

δ δ

− − ρ ∆
δ

 (E.138) 

or 
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 2
k k h 0

1E E ~ U
8β α− − δ ρ ∆  (E.139) 

which is reasonably close (but slightly larger) than eq. (E.129).  Thus, we have some confidence 
that the derivation is correct. 
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Appendix F SURFACE/BOTTOM MIXING LAYER ENTRAINMENT  
 
F.1 Equilibrium TKE 

We take any mixing layer to provide a source of stirring energy (per unit surface area) that can 
be represented as ES, with units of J/m2  The rate at which this energy is supplied is given as 

SE / t∂ ∂ .  There is a background level of turbulence in the mixed layer that is given as an energy 
per unit volume of Be .  We can define an “equilibrium” of background TKE, again per unit 
volume, that we will define as Ee .  The mixed layer is characterized by large-scale eddies of a 
length scale H.  A mixing layer where H / t 0∂ ∂ = will be one in which the dissipation and supply 
of TKE are exactly balanced, i.e. for a uniformly distributed dissipation rate over H, we can write 

 S
E

E H
t

∂ = ρε
∂

 (F.1) 

Checking the units here we have 

 
2 2

2 2 2 3 3 3

J Nm kg m kg mm
m s m s m s m s

= = =  (F.2) 

which matches. 

 We consider the equilibrium dissipation rate (per unit mass) to scale on the background 
turbulence in the layer, the thickness of the layer, and the rate of energy supply, thus 

 
3

E 2 S
E 1

u C EC
H H t

ε
ε

∂ε = +
ρ ∂

 (F.3) 

where Eu  is the equilibrium TKE velocity scale.  Checking units 

 
2 3 2

3 3

3

kgN m
m m m~ kgs s m m s

m

+ =

m
2

m
s 2m

kg
m

2

3

3

m
s

s
m

=  (F.4) 

 The relationship between the equilibrium TKE and velocity scale is given by 

 2 E
E E E

1 2ee u u
2

= ρ ⇒ =
ρ

 (F.5) 

so that eq. (F.3) becomes 
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3/ 2

1 E 2 S
E

C 2e C E
H H t

ε ε  ∂ε = + ρ ρ ∂ 
 (F.6) 

Thus, a balance of production and dissipation for a constant thickness layer, eq. (F.1) requires 

 
3/ 2

S 1 E 2 SE C 2e C EH
t H H t

ε ε
  ∂ ∂= ρ +  ∂ ρ ρ ∂   

 (F.7) 

or 

 ( )3/ 2s 1 S
E 21/ 2

E C E2e C
t t

ε
ε

∂ ∂= +
∂ ρ ∂

 (F.8) 

or, the equilibrium TKE is modeled as 

 ( ) ( )3/ 2 21/ 2 s
E

1

1 C E2e
C t

ε

ε

− ∂= ρ
∂

 (F.9) 

which is also 

 ( ) 2/3
21/ 2 s

E
1

1 C1 Ee
2 C t

ε

ε

− ∂= ρ ∂ 
 (F.10) 

Eq. (F.10) will be used to determine the equilibrium TKE in a mixed layer.  Note that as the 
forcing changes, the equilibrium TKE changes, which will force the background to respond. 

 

F.2 Neutral stability conditions 
An energy balance requires the rate at which the energy in the mixing layer per unit area ( BHe ) 
increases must be equal to the rate of energy supply minus the dissipation in the mixing layer 
( Hε ) minus the rate of work required to entrain the fluid below the mixing layer into the mixing 
layer ( eW� ).  In neutral stratification, we take this work as composed of 1) the work required to 
accelerate the fluid to the velocity of the mixed layer plus 2) the work required to overcome 
increased dissipation associated with the entraining layer.   Note that increase in TKE required 
for the entraining layer will be directly included in the differential equation through the 

( )BHe / t∂ ∂  term.  Also note that the work term is positive definite and applies only we 

entraining; i.e. there is no work gain by detrainment. 
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( ) S
B H e e

2 2 2 2

3 2 2 2 3 3 3 2

3 3 3

EHe H W : W 0
t t

LML ML MLL 1 M L L
TL T TL T L T T L T
M M M
T T T

∂ ∂= − ρ ε − ≥
∂ ∂

 = − −  
 

= −

� �

 (F.11) 

It would seem that the appropriate to make the entrainment work 

 2
e e

1 HW U H
2 t

∂= ρ∆ + ρ ∆ε
∂

� = =  (F.12) 

where =  is a Heaviside step function 

 
H1 : 0
t
H0 0
t

≡ 
∂ > ∂

 ∂ ≤ ∂

=  (F.13) 

and where 2U∆  represents the change in the mean kinetic energy of the entraining fluid for 
simplicity in exposition, but we recognize that the full term is 2 2U V∆ + ∆ .  The dissipation term, 

e∆ε is the additional dissipation rate that results from the entrainment process, whose scaling is 
still to be determined. 

 Eq. (F.11) with eq. (F.12) provides 

 ( ) ( ) 2S
B H e

E HHe H U
t t 2 t

∂ ∂ ρ ∂= − ρ ε + ∆ε − ∆
∂ ∂ ∂

= =  (F.14) 

or 

 ( ) 2B S
B H e

e H E HH e H U
t t t 2 t

∂ ∂ ∂ ρ ∂+ = − ρ ε + ∆ε − ∆
∂ ∂ ∂ ∂

= =  (F.15) 

or 

 ( )2 S B
B H e

H E ee U H H
2 t t t
ρ ∂ ∂ ∂ + ∆ = − ρ ε + ∆ε −  ∂ ∂ ∂ 
= =  (F.16) 

which provides the basic balance between entrainment, mixing energy supply, dissipation and 
background TKE. 

 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 118

 

F.3 Scaling dissipation 

Similar to eq. (F.6) for the equilibrium dissipation, we argue that the actual dissipation rate over 
the mixed layer scales as 

 
3/ 2

1 B 2 S
H

C 2e C E
H H t

ε ε  ∂ε = + ρ ρ ∂ 
 (F.17) 

so eq. (F.16) is 

 
3/ 2

2 S 1 B 2 S B
B e

H E C 2e C E ee U H H
2 t t H H t t

ε ε
  ρ ∂ ∂ ∂ ∂  + ∆ = − ρ + + ∆ε −    ∂ ∂ ρ ρ ∂ ∂     

= =  (F.18) 

or 

 ( ) ( )3/ 22 S 1 B
B 2 B e

H E C ee U 1 C 2e H H
2 t t t

ε
ε

ρ ∂ ∂ ∂ + ∆ = − − − ρ ∆ε −  ∂ ∂ ∂ρ 
= =  (F.19) 

We model the additional dissipation rate associated with entrainment based on the rate of 
deepening, the velocity scale Bu  and overturn time scale, HT , as 

 B
e

H

H u~
t T

∂∆ε
∂

 (F.20) 

where  

 B
B

2eu =
ρ

 (F.21) 

and 

 H
B

HT
u

=  (F.22) 

It follows that 

 2B 3 3 B
e 3 B

B

H u C H C 2e HC u
t H / u H t H t

ε ε
ε

∂ ∂ ∂∆ε = = =
∂ ∂ ρ ∂

 (F.23) 

or 

 3
e B

C H2 e
H t
ε ∂∆ε =

ρ ∂
 (F.24) 

so that eq. (F.19) becomes 
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 ( ) ( )3/ 22 S 1 B
B 2 B 3 B

H E C H ee U 1 C 2e 2 C e H
2 t t t t

ε
ε ε

ρ ∂ ∂ ∂ ∂ + ∆ = − − − −  ∂ ∂ ∂ ∂ρ 
= =  (F.25) 

or 

 ( ) ( ) ( )3/ 22 S 1 B
B 3 2 B

H E C ee 1 2 C U 1 C 2e H
2 t t t

ε
ε ε

ρ ∂ ∂ ∂ + + ∆ = − − −  ∂ ∂ ∂ρ 
= =  (F.26) 

 

F.4 Mixed-layer under stratification conditions 

The energy required for mixing the density can be obtained, see eq. (C.31) , as 

 mixE H Hg
t 2 t

∂ ∂= − ∆ρ
∂ ∂

 (F.27) 

where 

 (S) E∆ρ = ρ − ρ  (F.28) 

with (S)ρ  as the mean density in the surface cell (k=S), which is also the density throughout the 
mixed layer.  The Gρ is the mean density of the entrained fluid, is approximated by the density of 
the fluid in the grid cell below the mixed layer and the lower portion of the grid cell that partially 
contains the mixed layer. 

 B(P) B(P) (P 1) (P 1)
E

B(P) (P 1)

h z
h z

− −

−

ρ + ρ ∆
ρ =

+ ∆
 (F.29) 

Note that eq. (F.27) is based on mixing of two uniform density layers rather than a uniform 
density layer and a gradient layer.  Thus, eq. (F.27) combined with eq. (F.29) may somewhat 
overestimate the mixing energy required for gradient layers that only progress to the next grid 
cell.  However, Eρ  is taken from the density in the partially mixed layer and the density in the 
first complete cell below the mixed layer, so in the case of a rapidly deepening layer (compared 
to the grid scale), this will underestimate the density that is lifted.  This approach therefore 
includes a grid and time step dependency.  While it is possible to improve this estimate 
somewhat by considering a linear gradient in the entraining region, it would then require ∆ρ  as a 
function of H / t∂ ∂ , which would then create a quadratic in the H / t∂ ∂  equation developed 
below as eq. (F.42).  Such an approach would still fail when the entrainment is large and moves 
beyond a simple gradient region.  Arguably, a more correct approach would be to use the above 
as an approach to get an estimated H / t∂ ∂ , then use this value to find the entrainment region 
upper (P) and lower (Q) bounds and obtain a better approximation of Eρ  as 
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P 1

n n n nM
E (P) B(P) (Q) T(Q) (r) (r)nM n

r Q 1

1 z
H H

−

= +

  ρ = ρ δ + ρ δ + ρ ∆ −   
∑  (F.30) 

which can be better interpreted by consulting section F.6.  This approach would require at least 
two computations of H / t∂ ∂  when entraining in a stably-stratified region. 

 The energy overall energy equation starts from eq. (F.26) with an additional term for the 
RHS, 

 ( ) ( ) ( )3/ 22 S 1 B
B 3 2 B e

H E C e H He 1 2 C U 1 C 2e H g
2 t t t 2 t

ε
ε ε

ρ ∂ ∂ ∂ ∂ + + ∆ = − − − + ∆ρ  ∂ ∂ ∂ ∂ρ 
= = =  (F.31) 

where the last term is added to the RHS since ∆ρ is negative.   This equation becomes 

 ( ) ( ) ( )3/ 22 S 1 B
B 3 2 B

H H E C ee 1 2 C U g 1 C 2e H
2 2 t t t

ε
ε ε

ρ ∂ ∂ ∂ + + ∆ − ∆ρ = − − −  ∂ ∂ ∂ρ 
= = =  (F.32) 

The above provides the basic relationship between deepening, energy supply, dissipation and 
TKE background levels.  Note that we identify the meaning of each term as: 

 

B

3

2

He power to entrain fluid to mixed-layer turbulence level
t

H2C rate of dissipation for entrained fluid
t
HU power required to accelerate entrained fluid to mean velocity

1 t
H Hg power req
2 t

ε

∂ →
∂

∂ →
∂

ρ ∂∆ →
∂
∂− ∆ρ →
∂

( )

( )

S
2

3/ 21
B

B

uired for mixing stable density profile

E1 C net rate of mixing energy supply (after dissipation)
t

C 2e dissipation rate of background TKE

eH rate of TKE increase in mixed layer
t

ε

ε

∂− →
∂

→
ρ
∂ →
∂

 (F.33) 

 

F.5 Change in eB and H  

Let us note that eq. (F.9) provides 

 ( ) ( )3/ 2 21/ 2 s
E

1

1 C E2e
C t

ε

ε

− ∂= ρ
∂

 (F.34) 

or 
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 ( ) ( )3/ 21 s
E 21/ 2

C E2e 1 C
t

ε
ε

∂= −
ρ ∂

 (F.35) 

so that eq. (F.32)is 

 ( ) ( ) ( )3/ 2 3/ 22 1 1 B
B 3 E B

H H C C ee 1 2 C U g 2e 2e H
2 2 t t

ε ε
ε

ρ ∂ ∂ + + ∆ − ∆ρ = − −  ∂ ∂ρ ρ 
= = =  (F.36) 

The TKE either increases or decreases towards equilibrium at a rate that may be modeled as 

 B E B

B

e e e
t T

∂ −=
∂

 (F.37) 

where TB is the time scale for mixing the background TKE.  Let us model this time scale using 
the overturn time scale, eq. (F.22) 

 B T H T
B

HT ~ C T C
u

=  (F.38) 

where CT is a coefficient that sets the proportion of the overturn time scale required for mixing to 
TKE equilibrium.  Using eq. (F.21), we obtain eq. (F.37) is 

 B E B B

T

e e e 2e
t C H

∂ −=
∂ ρ

 (F.39) 

It follows that eq. (F.36) is 

 ( ) ( ) ( )3/ 2 3/ 22 1 1 E B B
B 3 E B1/ 2

T

H H C C e e 2ee 1 2 C U g 2e 2e
2 2 t C

ε ε
ε

ρ ∂ − + + ∆ − ∆ρ = − −  ∂ ρ ρρ 
= = = (F.40) 

or, resorting the first two terms on RHS 

 ( ) ( ) ( ){ }3/ 2 3/ 22 E B B
B 3 1 E B

T

H H 2 e e 2ee 1 2 C U g 2C e e
2 2 t Cε ε
ρ ∂ − + + ∆ − ∆ρ = − −  ∂ ρ ρ 

= = = (F.41) 

 

We can solve for the rate of change of the mixing layer as 

 
( ) ( ) ( )

( )

3/ 2 3/ 2 B
1 E B E B

T

2
B 3

e2 2C e e e e
CH

Ht e 1 2 C U g
2 2

ε

ε

   − − −  ρ∂   = ρ∂ + + ∆ − ∆ρ= = =
 (F.42) 

The above should be correct for all conditions.  Note that the denominator is positive for any 
stable density gradient (i.e. 0∆ρ < ), so the Heaviside step function can be evaluated from the 
sign of the bracketed portion in the numerator 
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 ( ) ( ) ( )3/ 2 3/ 2 B
1 E B E B

T

e
2C e e e e 1

Cε
 − ≥ − ⇒ =  =  (F.43) 

 ( ) ( ) ( )3/ 2 3/ 2 B
1 E B E B

T

e
2C e e e e 0

Cε
 − < − ⇒ =  =  (F.44) 

Note that if 1==  the additional terms in the denominator can only serve to reduce the rate of 
increase of H, but cannot cause a change in sign. 

 

F.6 Implementation of changing mixed layer thickness 
We have arrived at eq. (F.42), in concert with (F.43) and (F.44) that can be used to find H / t∂ ∂ , 
and eq. (F.39) that can be used to find Be / t∂ ∂  To implement over a time step of t∆ , we must 
apply the limitation that the background TKE may only increase or decrease towards the 
equilibrium value, but cannot move across it. Thus, 

 B
B E

ee t e
t

∂+ ∆ ≤
∂

 (F.45) 

or 

 B E Be e e
t t

∂ −≤
∂ ∆

 (F.46) 

It follows that there are three possible conditions: T Bt C T∆ < ; T Bt C T∆ = ; T Bt C T∆ > .  In the first 
and second cases, eqs. (F.39) and (F.42) may be applied over the entire time step as 

 nM n B
B B

ee e t
t

∂= + ∆
∂

 (F.47) 

 

 nM n HH H t
t

∂= + ∆
∂

 (F.48) 

However, for the case where T Bt C T∆ > , then use of eq. (F.47) and (F.48) would move the 
energy past equilibrium.  Thus, we require the definition of a time used for mixing to equilibrium 
as 

 { }U T Ht min t, C T∆ = ∆  (F.49) 

where the change in background TKE and depth of the mixing layer are given by 

 nM n B
B B U

ee e t
t

∂= + ∆
∂

 (F.50) 
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 nM n
U

HH H t
t

∂= + ∆
∂

 (F.51) 

 Once we have established the new mixed-layer depth ( nMH ), it is necessary to find the 
new value for any scalar in the mixed layer.  The number of full grid cells in the surface layer 
before mixing is noted as nN , while the number of full grid cells after mixing is nMN .   The ‘k’ 
index of the partially-mixed cell in the surface layer before mixing is (P), while the index after 
mixing will be given as (Q). Determining the new cells in the surface mixed layer for a grid with 
nonuniform z∆  grid requires a sweep, whose iteration step is indicated by a superscript in 
parentheses.  The mixed-layer height remaining to be allocated is LH∆  so that at the start of the 
sweep 

 (0) nM n
LH H H∆ = −  (F.52) 

For simplicity in exposition, we will consider the case where the surface mixed layer is 
deepening, such that nM nH H> .  We then have 

 { }(1) (0)
L L B(P)H max 0, H∆ = ∆ − δ  (F.53) 

where B(P)δ  is the thickness of the region below the mixed layer in the partially-mixed grid cell 

k=P.  Eq. (F.53) is followed by a decision algorithm.   

 

Let i=1, then 

 

(1)
L

nM n

nM n (0)
H(Q) H(P) L

nM nM
B(Q) H(Q) H(Q)

nM
H(P)

nM
B(P)

if H 0 then (mixing does not move to next grid cell)
Q P
N N

H

z

stop
else (mixing moves to next grid cell)

0

0

i i 1
endif

∆ =
=

=

δ = δ + ∆

δ = ∆ − δ

δ =

δ =

= +

 (F.54) 

Once the first step is taken, the remaining of the sweep proceeds as 

 { }(i) (n 1)
L L (Q)H max 0, H z−∆ = ∆ − ∆  (F.55) 

followed by the decision algorithm that is iterated for i 1>  
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(i)
L

nM (i 1)
H(Q) L

nM (i 1)
B(Q) H(Q) L

nM n

nM
H(Q)

nM
B(Q)

if H 0 then (mixing does not move to next grid cell)
Q P (i 1)

H

z H

N N i 1
stop

else (mixing moves to next grid cell)
0

0

i i 1
endif

−

−

∆ =
= − −

δ = ∆

δ = ∆ − ∆

= + −

δ =

δ =

= +

 (F.56) 

Once the cycle is completed, we have P as the ‘k’ index of the original partially-mixed cell at the 
bottom of the surface mixed layer, and Q as the ‘k’ index of the new bottom of the partially-
mixed layer.  The above algorithm is only correct for the case where  Q P≤ .  Once Q and P are 
identified, the new mixed layer concentration of any scalar is given by 

 
S

nM n nM
(S k Q) (Q) H(Q) (r) (r)nM

r Q 1

1 z
H≥ ≥

= +

  φ = φ δ + φ ∆ 
  

∑  (F.57) 
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Appendix G CONVECTIVE MIXING BASICS 
 
G.1 Introduction 

The surface mixed layer can be treated as a control volume that may expand or contract with 
time.  At some time (t), the mixed layer is characterized by H(t), dH/dt, and a single density 

m (t)ρ .    

 

G.2 Solar radiation 
We introduce solar radiation Qr > 0.  That is, let rQ  represent the solar radiation flux (watts/m2) 
with r0Q  as the solar radiation that penetrates the free surface of elevation η .  Based on TVA, 
the solar radiation profile below the free surface can be given as 

 ( ) ( )k z
r r0 rQ (z) Q 1 e : z− η−= − γ − ∞ < ≤ η − δ  (G.1) 

where rδ  is some small thickness of an upper layer in which r0Qγ solar radiation is rapidly 
absorbed.  While no data appears to be available, it will be convenient to assume that the solar 
radiation is absorbed linearly over the thickness so that 

 r r0 r
r

zQ (z) Q 1 : z
 η −= − γ η − δ < ≤ η δ 

 (G.2) 

We will represent the solar radiation energy per unit volume as er, where the rate at which it is 
absorbed in a layer of thickness z∆ is found from 

 ( ) ( )r a r ba b
r

Q z Q zz ze
t 2 z

−∂ +  = ∂ ∆ 
 (G.3) 

where a bz z z= + ∆ .  In the limit as z 0∆ →  we can write this as 

 r re (z) Q (z)
t z

∂ ∂=
∂ ∂

 (G.4) 

 

 

 

It follows that 
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( ) ( )

r

r0 r
r

k z
r0 r

e (z)
t Q : z

Q 1 k e : z− η−

∂ = 
γ∂  η − δ < ≤ η

 δ


− γ − ∞ < ≤ η − δ

 (G.5) 

Following this thread, let us consider the effect this energy has on temperature, which we will 
represent as θ .   

 p
e c
t t

∂ ∂θ= ρ
∂ ∂

 (G.6) 

so it follows that 

 

( )

r0 r
r p

k( z)
r0 r

p

(z)
t Q : z

c

1
Q k e : z

c
− η−

∂ θ = 
γ∂  η − δ < ≤ η δ ρ


 − γ

− ∞ < ≤ η − δ ρ

 (G.7) 

Relating temperature to density by 

 
t t

∂ρ ∂θ= −αρ
∂ ∂

 (G.8) 

We then arrive at 

 

( )

r

r0 r
r p

k( z)
r0 r

p

(z)
t Q : z

c

1
Q k e : z

c
− η−

∂ ρ = 
αγ∂  − η − δ < ≤ η δ


 α − γ

− − ∞ < ≤ η − δ


 (G.9) 

 

G.3 Evaporative mass loss 
Next, let us consider the effect of mass removal by evaporation, which is given by a velocity eV  
that represents the rate at which pure water is evaporated.  We will consider there is some thin 
layer, eδ , over which the evaporation leaves behind higher salinity water (generally we expect 
that e rδ < δ ).  We will assume that in the layer  e z 0−δ < ≤ , the salt is uniformly mixed. It 
follows that the rate of increase of salinity in the thin layer is given by 

 e

e

S V S
t η

∂ =
∂ δ

 (G.10) 
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where Sη is the salinity at the free surface.  Thus, using 

 S
t t

∂ρ ∂= βρ
∂ ∂

 (G.11) 

 

the density relationship due to evaporation is given by 

 e
e e

e

V(z) S : z
t η

∂ βρρ = η − δ < ≤ η
∂ δ

 (G.12) 

 

G.4 Effects of precipitation 

Not completed.  This should require both mass gain due to precipitation volume and possibly 
stabilizing/destabilizing thermal effects depending on precipitation temperature. 

 

G.5 Surface heat fluxes 

Next, we consider the addition of longwave, sensible and latent heating and cooling.  The net 
will be given by Qh where hQ 0>  is heating and hQ 0<  is cooling.  For convenience, we 
consider this heating/cooling to occur over the same small layer as the evaporation, so that the 
rate of change of thermal energy due to the heating/cooling is given by 

 h h

e

e Q
t

∂ =
∂ δ

 (G.13) 

it follows that 

 h h
p

e c
t t

∂ ∂θ= ρ
∂ ∂

 (G.14) 

It is useful (for later) to note that eq. (G.14) and (G.13) can be combined to write 

 h h
e

p e

Q : z
t c

∂θ = η − δ < ≤ η
∂ ρ δ

 (G.15) 

The density change due to the heating/cooling is 

 h h h

p

e
t t c t

∂ρ ∂θ α ∂= −αρ = −
∂ ∂ ∂

 (G.16) 

so that 
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 h h e
e p

(z) Q : z
t c

∂ αρ = − η − δ < ≤ η
∂ δ

 (G.17) 

 

G.6 Handling grid sizes in the near-surface region 

The equations used for mixing in the near surface regions will result in one of several 
possibilities: 

 1.  The system is well-mixed from η  down to rδ  

 2.  The system is well-mixed down to e rhδ < < δ , and has a different (but modeled as 
uniform value over the interval r z hη − δ ≤ ≤ η − . 

 3.  The system has a uniform value over e zδ ≤ ≤ η and a different uniform value over the 
interval r ezη − δ ≤ ≤ η − δ . 

Thus, we imagine the near surface layer having up to two steps whose thickness varies with the 
surface forcing.   For convenience, we will define these as 

 e e∆δ ≡ η − δ  (G.18) 

 r r e∆δ ≡ δ − δ  (G.19) 

There are the following possibilities for the relationship between the upper layer thicknesses and 
the model grid cell at the surface (k = S) 

 1.  e (S)z∆δ > ∆  

 2.  e (S)z∆δ = ∆  

 3.  e (S)z∆δ < ∆  

We will consider e∆δ and r∆δ  to be constant, whose values need to be set after further research.  
That is, these layer thicknesses represent the region over which sensible heating/cooling and 
relatively uniform absorption of solar radiation take place. As starting points, we can use 

e ~ 0.5m∆δ  and r 0.5m∆δ = .  Note that we are arguing that e rδ ≤ δ ; that is, the uniform region 
of solar radiation penetration is always at least as deep as the uniform penetration of sensible 
heating/cooling.  

 Let us consider the case where e r (S)z∆δ + ∆δ < ∆ , so that both thin layers are in the 

uppermost cell of the model grid.  Let us define the region in cell (S) that is outside the near-
surface layers as 

 B(S) (S) e rz∆δ = ∆ − ∆δ − ∆δ  (G.20) 
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At the beginning of the mixing routine in time step ‘n’, we will have stored the mean 
concentrations of all transported variables (i.e. nφ ) along with the values of the concentrations in 
the n

e∆δ and n
r∆δ  regions after transport,  Thus, we will need to perform separate transport 

algorithms for the scalars in the near-surface regions.  Having a dual transport algorithm 
applying to scalars in a single grid cell will require a method to adjust the scalar values in the 

e∆δ and r∆δ  to satisfy the 3D transported scalar mean. 

 In a more general sense, we will always have one of four types of cells in the near surface 
region 

 1.  A cell that is entirely either e∆δ  or r∆δ  

 2.  A cell that contains only e∆δ  and r∆δ  

 3.  A cell that contains only  r∆δ  and B(k)∆δ  

 4.  A cell that contains e∆δ , r∆δ  and B(k)∆δ  

For the first case, after transport we require that a cell that is entirely e∆δ  at the ‘k’ level must 
satisfy 

 e(k) (k)φ = φ  (G.21) 

where the RHS represents the (mean) scalar value from the 3D transport for the cell (k). 
Similarly, a cell that is entirely r∆δ  at the ‘k’ level must satisfy 

 r(k) (k)φ = φ  (G.22) 

That is, we ignore the independent 2D transport results of the rφ  and eφ when the layers are 
resolved by the grid.   

 

 For a cell that contains only e∆δ and r∆δ , we define the portion of the ‘k’ level grid cell 
in the e∆δ region as 

 
S

e(k) e (q)
q k 1

z z
= +

∆ = ∆δ − ∆∑  (G.23) 

It follows that the portion of the ‘k’ level grid in the ‘r’ region is 

 r(k) (k) e(k)z z z∆ = ∆ − ∆  (G.24) 

we have an estimated mean that satisfies 
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* *
e(k) e(k) r(k) r(k)*

(k)
(k)

z z
z

φ ∆ + φ ∆
φ =

∆
 (G.25) 

However, we need to make the mean of the layers equal the mean obtained in the 3D transport.  
The scalar difference is defined as  

 *
(k) (k) (k)∆φ ≡ φ − φ  (G.26) 

The scalar adjustments are defined as 

 n *
e(k) e(k) (k)φ ≡ φ + ∆φ  (G.27) 

 n *
r(k) r(k) (k)φ ≡ φ + ∆φ  (G.28) 

If the above works, then the mean should be satisfied by the scalar values in the two portions of 
the near surface region as 

 
n n

e(k) e(k) r(k) r(k)
(k)

(k)

z z
z

∆ φ + ∆ φ
φ =

∆
 (G.29) 

 To check, substitute eq. (G.27) and (G.28) into (G.29)  

 * *
(k) (k) e(k) e(k) e(k) r(k) r(k) r(k)z z z z z∆ φ = ∆ φ + ∆ ∆φ + ∆ φ + ∆ ∆φ  (G.30) 

Using eq. (G.25) as 

 * * *
(k) (k) e(k) e(k) r(k) r(k)z z z∆ φ = φ ∆ + φ ∆  (G.31) 

we obtain eq. (G.30) as 

 { }*
(k) (k) (k) (k) e(k) r(k)z z z z∆ φ = ∆ φ + ∆ + ∆ ∆φ  (G.32) 

 

which is simply eq. (G.26) 

 *
(k) (k)φ − φ = ∆φ  (G.33) 

so the approach is mass conservative. 

 We could have looked in this in a more general way, we still require eq. (G.29) as 

 n n
(k) (k) e(k) e(k) r (k) r(k)z z z∆ φ = ∆ φ + ∆ φ  (G.34) 

We then define a general form as 

 n *
e(k) e(k) e (k)Fφ ≡ φ + ∆φ  (G.35) 

 n *
r(k) r(k) r (k)Fφ ≡ φ + ∆φ  (G.36) 
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so that 

 ( ) ( )* *
(k) (k) e(k) e(k) e (k) r(k) r(k) r (k)z z F z F∆ φ = ∆ φ + ∆φ + ∆ φ + ∆φ  (G.37) 

Using eq. (G.25) as 

 * * *
(k) (k) e(k) e(k) r(k) r(k)z z z∆ φ = φ ∆ + φ ∆  (G.38) 

then eq. (G.37) becomes 

 *
(k) (k) (k) (k) e(k) e (k) r(k) r (k)z z z F z F∆ φ = ∆ φ + ∆ ∆φ + ∆ ∆φ  (G.39) 

So we obtain 

 { } { }*
(k) (k) (k) e(k) e r(k) r (k)z z F z F∆ φ − φ = + ∆ + ∆ ∆φ  (G.40) 

Noting eq. (G.26) , this requires 

 (k) e(k) e r(k) rz z F z F∆ = ∆ + ∆  (G.41) 

Thus, we can use e rF F 1= = , and obtain 

 ( ) ( )(k) e(k) r(k)z z 1 z 1∆ = ∆ + ∆  (G.42) 

Which is what we used for eq. (G.27) and (G.28).  However, the above could be used to obtain 
some different apportionments of the scalar difference.  For now, we will stick with the simplest. 

 Next we consider the case of a cell that has only  r∆δ  and B(k)∆δ .  Again, we have a 

transported scalar in the ‘r’ layer given as *
r(k)φ , and we have a transported mean value of the 

scalar given as (k)φ .  We also have a value of the scalar in the layer below as (k 1)−φ .  We require 

values for n
r(k)φ  and n

B(k)φ  such that 

 
n n

r(k) r(k) B(k) B(k)
(k)

(k)

z z
z

∆ φ + ∆ φ
φ =

∆
 (G.43) 

and the value for n
B(k)φ  must be bounded by the surroundings, such that either 

 n n
(k 1) B(k) r(k)−φ ≤ φ ≤ φ  (G.44) 

or 

 n n
(k 1) B(k) r(k)−φ ≥ φ ≥ φ  (G.45) 

is satisfied 
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Let us consider the possibility that n *
r(k) r(k)φ = φ  will satisfy the conditions.  It follows from eq. 

(G.43) that 

 
*

(k) (k) r(k) r(k)*
B(k)

B(k)

z z
z

∆ φ − ∆ φ
φ =

∆
 (G.46) 

If the result satisfies either eq. (G.44) or (G.45), it follows that 

 
n *
r(k) r(k)

n *
B(k) B(k)

φ = φ

φ = φ
 (G.47) 

 

However, if the result of eq. (G.46) fails to satisfy eq. (G.44) or (G.45), then we require 

 n
B(k) (k 1)−φ = φ  (G.48) 

and 

 
n

(k) (k) B(k) B(k)n
r(k)

r(k)

z z
z

∆ φ − ∆ φ
φ =

∆
 (G.49) 

 

 Next, for the case where a cell that contains e∆δ , r∆δ  and B(k)∆δ .  We have a transported 

scalar in the ‘r’ layer given as *
r(k)φ , a transported scalar in the ‘e’ layer given as *

e(k)φ and we 

have a transported mean value of the scalar given as (k)φ . We require 

 
n n n

e(k) e(k) r(k) r(k) B(k) B(k)
(k)

(k)

z z z
z

∆ φ + ∆ φ + ∆ φ
φ =

∆
 (G.50) 

Again, we require the value for n
B(k)φ  must be bounded by the surroundings, such that either 

 n n
(k 1) B(k) r(k)−φ ≤ φ ≤ φ  (G.51) 

or 

 n n
(k 1) B(k) r(k)−φ ≥ φ ≥ φ  (G.52) 

is satisfied.  There are two possibilities for a cell such as this: 1) if this is the surface cell, then 
there is no cell above it; 2) if this is not the surface cell, then the cell above it must be entirely 
within the eδ  layer.  Let us require the first case meets the condition n *

e(S) e(S)φ = φ , and the second 

case meets the condition n *
e(k) e(S)φ = φ .  It follows that 
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* n n

e(k) e(S) r(k) r(k) B(k) B(k)
(k)

(k)

z z z
z

∆ φ + ∆ φ + ∆ φ
φ =

∆
 (G.53) 

or 

 n n *
r(k) r(k) B(k) B(k) (k) (k) e(k) e(S)z z z z∆ φ + ∆ φ = ∆ φ − ∆ φ  (G.54) 

 

G.7 Mixing of scalars in the near-surface region 
Scalars other than temperature, salinity and density in the region r zη − δ ≤ ≤ η  are computed 
from 

 ( ){ }M
e e r e

1 h
hδφ = φ δ + φ − δ  (G.55) 

However, for the temperature and salinity we must consider both starting values in regions ‘e’ 
and ‘r’ and the change do to thermodynamics.  

 For temperature ( θ ), we note that eq. (G.7) models the solar radiation in the near surface 
region providing a uniform temperature change 

 r
r0 r

r p

Q : z
t c

∂θ γ= η − δ < ≤ η
∂ δ ρ

 (G.56) 

Similarly, the surface heating/cooling is considered uniform and is given by eq. (G.15) as  

 n *
r(k) r(k) (k)φ ≡ φ + ∆φ  (G.57) 

It follows that the temperature in the near-surface mixed region is given by 

  
n n

e(k) e(k) r(k) r(k)
(k)

(k)

z z
z

∆ φ + ∆ φ
φ =

∆
 (G.58) 

Using eq. (G.56) and (G.57) this becomes 

 ( )M h
e e r e r0

p e r p

1 tQ h th Q
h c cδ

  ∆ ∆ γ θ = θ + δ + θ − δ +   ρ δ δ ρ   
 (G.59) 

 For salinity, we have effective gain in concentration in the upper layer by 

 ( )M
e e r e

1 SS S t S h
h tδ
 ∂  = + ∆ δ + − δ  ∂  

 (G.60) 

Using eq. (G.10), we obtain 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 134

 ( )M e
e e e r e

e

1 VS S t S S h
hδ

   = + ∆ δ + − δ  δ   
 (G.61) 

or 

 ( ) ( ){ }M
e e e r e

1S 1 tV S S h
hδ = + ∆ δ + − δ  (G.62) 
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Appendix H ENERGY IN THE NEAR-SURFACE REGION 
 
H.1 An energy rate approach 

The rate of change of density due to the surface forcing is given by 

 r e h(z) (z) (z) (z)
t t t t

∂ ∂ ∂ ∂ρ = ρ + ρ + ρ
∂ ∂ ∂ ∂

 (H.1) 

which is given by 

 

( )

e
r0 h e

r p e e p

r0 r e
r p

k( z)
r0 r

p

(z)
Vt Q S Q : z

c c

Q : z
c

1
Q k e : z

c

η

− η−

∂ ρ = 
αγ βρ α∂ − + − η − δ < ≤ η δ δ δ


 αγ
− η − δ < ≤ η − δ

δ
 α − γ− − ∞ < ≤ η − δ

 (H.2) 

 

 Let us consider only the two regions from r zη − δ < ≤ η .  Note that in both the upper 
region e zη − δ < ≤ η  and the lower region r ezη − δ < ≤ η − δ  the density will change uniformly 
over each layer.  Let us define 

 r e e e( h z ) and ( z )ρ ≡ ρ η − < < η − δ ρ ≡ ρ δ ≤ ≤ η  (H.3) 

and 

 er e r∆ρ = ρ − ρ  (H.4) 

If we do not allow large-scale advection to create unstable density gradients, then at the 
beginning of the mixing algorithm, the density field will meet the condition 

 er (t) 0∆ρ ≤  (H.5) 

From eq. (H.2) we can write the rate of change of the difference between the densities will be 

 ( ) ( ) e
e r er h

e e p

V S Q
t t cη

∂ ∂ βρ αρ − ρ = ∆ρ = −
∂ ∂ δ δ

 (H.6) 

 

Thus, the density gradient at any point in time is found as 
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 ( )er er er(t t) (t) t
t

∂∆ρ + ∆ = ∆ρ + ∆ ∆ρ
∂

 (H.7) 

Since er 0∆ρ > is unstable, we are interested in the time to instability, It∆  when er I(t t ) 0∆ρ + ∆ >  

 ( )er I er(t) t 0
t

∂∆ρ + ∆ ∆ρ >
∂

 (H.8) 

or 

 ( )I er ert (t)
t

∂∆ ∆ρ > −∆ρ
∂

 (H.9) 

or 

 e
I h er

e e p

Vt S Q (t)
cη

 βρ α ∆ − > −∆ρ δ δ  
 (H.10) 

Note that if the term in the brackets is negative, then It∆ = ∞ , since eq. (H.5) requires a neutral 
or negative density gradient at the start of mixing and a negative term in the brackets would 
indicate stabilization by thermodynamics.  If the initial density gradient is neutral and the 
bracketed term is positive, then It 0∆ =  and instability immediately occurs.  Thus 

 I
er

er
1

e e
er h h er

e e p e e p

e
h er

e e p

t
undefined : (t) 0
0 : (t) 0

V V(t) S Q : S Q 0 and (t) 0
c c

V: S Q 0 and (t) 0
c

−

η η

η

∆ = 
∆ρ >

 ∆ρ =

  βρ α βρ α −∆ρ − − > ∆ρ <  δ δ δ δ  

βρ α∞ − < ∆ρ < δ δ

(H.11) 

If It t∆ < ∆ , then unstable mixing will occur.  That is, the surface thermodynamics can force the 
density profile to neutral over time It∆ , and then further surface thermodynamics lead to 
instability.  It can be shown that the energy made available by unstable mixing of the two layers 
over time t∆  is found as in eq. (H.61) below, repeated here in slightly modified form as 

 ( ) e
A max e r e er h

e e p

1 t V tE (t t) g (t) S Q
2 cη

 ∆ βρ ∆ α∆ + ∆ = δ δ − δ ∆ρ + −  δ δ 
 (H.12) 

where er (t)ρ is the density gradient at the start of mixing and A maxE∆  indicates the maximum 
energy that can be made available due to unstable mixing (i.e. it does not include dissipation).  
Once time It∆  is reached, we have er I(t t ) 0ρ + ∆ = , so we can write 
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 ( ) I e I
A max I e r e h

e e p

1 t V tE ( t t ) g S Q
2 cη

 ∆ βρ ∆ α∆ ∆ − ∆ = δ δ − δ −  δ δ 
 (H.13) 

Thus, if the thickness of the layers and the forcing is considered constant, the rate at which 
energy is provided by the surface thermodynamics over the time 0 I 0t t t t t+ ∆ ≤ ≤ + ∆  is 

 ( )A max
r e e h 0 I 0

p

E 1 g V S Q : t t t t t
t 2 cη

 ∂ α= δ − δ βρ − + ∆ ≤ ≤ + ∆  ∂  
 (H.14) 

So, to handle the two thin layers, we start by computing It∆  from eq. (H.11).  If I0 t t≤ ∆ ≤ ∆ then 
unstable mixing occurs and provides the maximum mixing energy at the rate from eq. (H.14).   

 However, we should reduce the unstable mixing energy to account for dissipation that 
occurs during the mixing of the initial stable density gradient er (t) 0∆ρ < .  We note that the 
energy required to mix er (t) 0∆ρ <  (i.e. without any thermodynamics) is 

 ( )M e r e er
1E (t t) g (t)
2

∆ + ∆ = − δ δ − δ ∆ρ  (H.15) 

This mixing occurs over time It∆ , so the rate that mixing energy is consumed is 

 ( )M
e r e er

I

E 1 g (t)
t 2 t

∂ = − δ δ − δ ∆ρ
∂ ∆

 (H.16) 

Similar to eq. (F.17), we scale dissipation as 

 
3/ 2

1 B 2 MC 2e C E
t

ε ε
δ

  ∂ε = + δ ρ ρδ ∂ 
 (H.17) 

The energy that is available at the end of It∆  is then 

 A A max IE E t δ∆ = ∆ − ∆ ρδε  (H.18) 

which is required to be non-negative.  Substituting eq.(H.13), (H.16) and (H.17) into (H.18) 

 

( )

( )

I e I
A e r e h

e e p

3/ 2
1 B 2

I e r e er
I

1 t V tE g S Q
2 c

C 2e C 1t g (t)
2 t

η

ε ε

 ∆ βρ ∆ α∆ = δ δ − δ −  δ δ 
    − ∆ ρδ − δ δ − δ ∆ρ   δ ρ ρδ ∆     

 (H.19) 

which must be non-negative.  If the value is computed as negative, it must be set to zero as it 
implies that all the energy that would have been available for convective mixing was instead 
used up in dissipation.  Eq. (H.19) can be written as 
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( )

( ) ( )

I
A r e e h

p

3/ 2
I 1 B 2 e r e er A

tE g V S Q
2 c

2 1t 2C e C g (t) : E 0
2

η

ε ε

 ∆ α∆ = δ − δ βρ −  
 

− ∆ + δ δ − δ ∆ρ ∆ ≥
ρ

 (H.20) 

Thus, the rate at which mixing energy is made available from 0 I 0t t t t t+ ∆ ≤ ≤ + ∆ is 

 
( )

( ) ( )

A
r e e h

p

3/ 2 A
1 B 2 e r e er I

I

E 1 g V S Q
t 2 c

2 1 E2C e C g (t) : 0 and t 0
2 t t

η

ε ε

 ∂ α= δ − δ βρ −  ∂  

∂− + δ δ − δ ∆ρ ≥ ∆ >
ρ ∆ ∂

 (H.21) 

Note that It 0∆ = , if and only if er 0∆ρ = , in which case the last term has the form 0/0.  In effect 
if the initial gradient is neutral, then we can consider the available mixing energy is supplied at 
the maximum rate, i.e.  

 ( )A A
r e e h I

p

E 1 Eg V S Q : 0 and t 0
t 2 c tη

 ∂ α ∂= δ − δ βρ − ≥ ∆ =  ∂ ∂ 
 (H.22) 

and all dissipation is handled in the surface mixing algorithm 

 

H.2 Energy released/required for mixing in the near surface region 
Let’s look at some small time step t∆  .  The change in the density profile is given by 

 (z, t t) (z, t) t
t

∂ρρ + ∆ = ρ + ∆
∂

 (H.23) 

So we have 

 

( )

e
r0 h e

r p e e p

r0 r e
r p

k( z)
r0 r

p

(z, t t) (z, t) t (z)
Vt Q S Q : z

c c

Q : z
c

1
Q k e : z

c

η

− η−

∂ρ + ∆ = ρ + ∆ ρ = 
αγ βρ α∂ − + − η − δ < ≤ η δ δ δ


 αγ
− η − δ < ≤ η − δ

δ
 α − γ− − ∞ < ≤ η − δ

(H.24) 

Thus, we obtain 
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 e
r0 h e

r p e e p

t t V t(z, t t) (z, t) Q S Q : z
c cη

∆ αγ ∆ βρ ∆ αρ + ∆ = ρ − + − η − δ < ≤ η
δ δ δ

 (H.25) 

 r0 r e
r p

t(z, t t) (z, t) Q : z
c

∆ αγρ + ∆ = ρ − η − δ < ≤ η − δ
δ

 (H.26) 

 ( ) k( z)
r0 r

p

t 1
(z, t t) (z, t) Q k e : z

c
− η−∆ α − γ

ρ + ∆ = ρ − − ∞ < ≤ η − δ  (H.27) 

Note that eq. (H.25) and (H.26) have uniform density profiles, so it is convenient to introduce the 
notation   

 r e e e(t) ( h z , t) and (t) ( z , t)ρ ≡ ρ η − < < η − δ ρ ≡ ρ δ ≤ ≤ η  (H.28) 

so we have 

 e
e e r0 h

r p e e p

t t V t(t t) (t) Q S Q
c cη

∆ αγ ∆ βρ ∆ αρ + ∆ = ρ − + −
δ δ δ

 (H.29) 

 r r r0
r p

t(t t) (t) Q
c

∆ αγρ + ∆ = ρ −
δ

 (H.30) 

 ( ) k( z)
r0 r

p

t 1
(z, t t) (z, t) Q k e : z

c
− η−∆ α − γ

ρ + ∆ = ρ − − ∞ < ≤ η − δ  (H.31) 

The unmixed potential energy from some point ‘h’ where e rhδ < ≤ δ  

 
e

e

U e r

h

E (t t) g zdz g zdz
η−δη

η−δ η−

+ ∆ = ρ + ρ∫ ∫  (H.32) 

which is 

 
e

e

e
U e r0 h r r0

r p e e p r p h

t t V t tE g (t) Q S Q zdz g (t) Q zdz
c c c

η−δη

η

η−δ η−

   ∆ αγ ∆ βρ ∆ α ∆ αγ   = ρ − + − + ρ −   δ δ δ δ      
∫ ∫ (H.33) 

or 

 e

e

2
e

U e r0 h
r p e e p

2

r r0
r p h

t t V t zE g (t) Q S Q
c c 2

t zg (t) Q
c 2

η

η
η−δ

η−δ

η−

  ∆ αγ ∆ βρ ∆ α = ρ − + −  δ δ δ   

  ∆ αγ + ρ −  δ   

 (H.34) 

or 
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( ){ }

( ) ( ){ }

22e
U e r0 h e

r p e e p

2 2
r r0 e

r p

1 t t V tE g (t) Q S Q
2 c c

1 tg (t) Q h
2 c

η

 ∆ αγ ∆ βρ ∆ α = ρ − + − η − η − δ δ δ δ  
 ∆ αγ + ρ − η − δ − η − δ  

 (H.35) 

We could write this as 

 { } ( ){ } { } ( ) ( ){ }2 2 22
U e e

1 1E g A g B h
2 2

= η − η − δ + η − δ − η −  (H.36) 

where 

 e
3 r0 h

r p e e p

t t V tA (t) Q S Q
c cη

∆ αγ ∆ βρ ∆ α= ρ − + −
δ δ δ

 (H.37) 

 r r0
r p

tB (t) Q
c

∆ αγ= ρ −
δ

 (H.38) 

 If we consider the mixed density 

 
e

e

M r e

h

1(t t) (t t) dz (t t) dz
h

η−δη

η−δ η−

  ρ + ∆ = ρ + ∆ + ρ + ∆ 
  

∫ ∫  (H.39) 

or 

 e

e

e
M e r0 h

r p e e p

r r0
r p h

1 t t V t(t) Q S Q dz
h c c

1 t(t) Q dz
h c

η

η

η−δ

η−δ

η−

 ∆ αγ ∆ βρ ∆ α ρ = ρ − + − δ δ δ  

 ∆ αγ + ρ − δ  

∫

∫
 (H.40) 

or 

 

{ }

{ }

e

e

e
M e r0 h

r p e e p

r r0 h
r p

1 t t V t(t t) (t) Q S Q z
h c c

1 t(t) Q z
h c

η
η η−δ

η−δ

η−

 ∆ αγ ∆ βρ ∆ α ρ + ∆ = ρ − + − δ δ δ  
 ∆ αγ + ρ − δ  

 (H.41) 

or 

 e e e
M e r0 h r r0

r p e e p r p

t t V t h t(t) Q S Q (t) Q
h c c h cη

   δ ∆ αγ ∆ βρ ∆ α − δ ∆ αγ      ρ = ρ − + − + ρ −      δ δ δ δ         
 (H.42) 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 141

The potential energy after mixing is 

 M M

h

E (t t) g (t t) zdz
η

η−

+ ∆ = ρ + ∆ ∫  (H.43) 

So that we get 

 ( ){ }22
M M

1E g h
2

= ρ η − η −  (H.44) 

or 

 

( ){ }

( ){ }

22 e e
M e r0 h

r p e e p

22 e
r r0

r p

1 t t V tE g h (t) Q S Q
2 h c c

1 h tg h (t) Q
2 h c

η

 δ ∆ αγ ∆ βρ ∆ α  = η − η − ρ − + −   δ δ δ   
 − δ ∆ αγ  + η − η − ρ −   δ   

 (H.45) 

or 

 
( ){ } { }

( ){ } { }

22 e
M

22 e

1E g h A
2 h
1 hg h B
2 h

δ = η − η −  
 

− δ + η − η −  
 

 (H.46) 

where A and B are defined as eq. (H.37) and (H.38).  Using eq. (H.46) and (H.36), so that we can 
write 

 
( ){ } { } ( ){ } { }

{ } ( ){ } { } ( ) ( ){ }

2 22 2e e
M U

2 2 22
e e

1 1 hE E g h A g h B
2 h 2 h
1 1g A g B h
2 2

δ − δ   − = η − η − + η − η −   
   

− η − η − δ − η − δ − η −
 (H.47) 

Grouping some terms, we obtain 

 
( ){ } ( )

( ){ } ( ) ( ) ( )

2 22 2e
M U e

2 2 2e2
e

1E E gA h
2 h

h1 gB h h
2 h

 δ  − = η − η − − η + η − δ    
− δ 

+ η − η − − η − δ + η − 
 

 (H.48) 

Expanding terms, we obtain 
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2 2e
M U

1E E gA
2 h

δ − = η − η 
 

{ }2 2 22 h h+ η − − η + η 2
e e

2 2

2

1 gB
2

 − ηδ + δ 
 

+ η − η{ } ( )e2 2h
2 h h

h
− δ

+ η − − η 2 2
e e2+ ηδ − δ + η 22 h h

 
− η + 

 

 (H.49) 

or 

 
{ }

{ } ( )

2 2e
M U e e

e2 2 2
e e

1E E gA 2 h h 2
2 h

h1 gB 2 h h 2 2 h h
2 h

 δ  − = η − − ηδ + δ    
− δ 

+ η − + ηδ − δ − η + 
 

 (H.50) 

or 

 
M U

1E E gA 2 h
2

− = η e

h
δ e

h
δ− 2h 2

e e2

1 gB 2 h
2

 − ηδ + δ 
 

+ η ( )eh
h
− δ 2h− ( )eh

h
− δ 2 2

e e2 2 h h
 

+ ηδ − δ − η + 
 

 (H.51) 

or 

 

 
M U e

1E E gA 2
2

− = ηδ e eh 2− δ − ηδ 2
e

1 gB 2 h
2

 + δ 

+ η e2− ηδ 2h− e eh 2+ δ + ηδ 2
e 2 h− δ − η 2h+ 

 

 (H.52) 

or 

 [ ] [ ]M U e e e e
1 1E E gA h gB h
2 2

− = δ δ − + δ − δ  (H.53) 

or 

 [ ] [ ]{ }M U e e e
1E E g B h A h
2

− = δ − δ − − δ  (H.54) 

or 

 [ ][ ]{ }M U e e
1E E g B A h
2

− = δ − − δ  (H.55) 

Note that 
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r r0

r p

e
e r0 h

r p e e p

tB A (t) Q
c

t t V t(t) Q S Q
c cη

∆ αγ− = +ρ −
δ

∆ αγ ∆ βρ ∆ α− ρ + − +
δ δ δ

 (H.56) 

or 

 e
r e h

e e p

t V tB A (t) (t) S Q
cη

∆ βρ ∆ α− = +ρ − ρ − +
δ δ

 (H.57) 

It is convenient to define 

 er e r∆ρ = ρ − ρ  (H.58) 

so that 

 e
er h

e e p

t V tB A S Q
cη

∆ βρ ∆ α− = −∆ρ − +
δ δ

 (H.59) 

we then obtain the change in potential energy due to mixing as 

 [ ]e
M U e er h e

e e p

1 t V tE E g S Q h
2 cη

  ∆ βρ ∆ α − = δ −∆ρ − + − δ  δ δ    
 (H.60) 

or 

 

 ( ) e
M U e e er h

e e p

1 t V tE E g h S Q
2 cη

 ∆ βρ ∆ α− = − δ − δ ∆ρ + −  δ δ 
 (H.61) 

If M UE E 0− ≥  then it requires energy to mix the two upper layers down to depth h.  If η , for 

rδ , then energy is made available by the mixing down to the depth h. 

 We can solve for h as 

 e rhδ < < δ  (H.62) 

 

which can be interpreted as the h that is reached when some mixing energy r z hη − δ ≤ ≤ η −  is 
applied.  Note that since the layer e zδ ≤ ≤ η is of uniform density, it must all mix (i.e. 

r ezη − δ ≤ ≤ η − δ ) if  e e∆δ ≡ η − δ . 

 We note that the maximum value for h is r r e∆δ ≡ δ − δ , so going back to eq. (H.61) we 
obtain the energy made available (or required) for mixing the surface layers as 
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 ( ) e
M U e r e er h

e e p

1 t V tE E g S Q
2 cη

 ∆ βρ ∆ α− = − δ δ − δ ∆ρ + −  δ δ 
 (H.63) 
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Appendix I MIXING IN THE SOLAR PENETRATION REGION  
The thermodynamic analysis of the near surface region either produces either 1) stabilizing 
change in the density field, 2) destabilizing change in the density field, or 3) neutral change in 
the density field.  In contrast, the thermodynamics below the near-surface region are entirely 
stabilizing due to the penetration only of stabilizing solar radiation.  Thus, any destabilizing 
forcing in this region must be propagating down from the near-surface region.   

 After mixing the near surface region, we find that one of two cases will exist: 1) all the 
wind stirring energy will have been depleted in mixing to a depth of rH ≤ δ  and unstable mixing 
energy will not exist or 2) there will be some remaining wind-stirring energy and/or some 
unstable mixing energy for application in mixing below the near-surface region.   

 Let us deal with the second case, i.e. where wind-stirring production or unstable 
production exists after mixing to rδ .  The mixing energy remaining in the time step after near-
surface mixing is either 

 ( ) ( )W A A
I

E E Et t t : 0 (instability in )
t t t

∂ ∂ ∂∆ + ∆ − ∆ ≥ δ
∂ ∂ ∂

 (I.1) 

or 

 ( ) W AE Et t : 0 (stable stratification in )
t tδ

∂ ∂∆ − ∆ < δ
∂ ∂

 (I.2) 

where It∆  is the time to mix to instability and tδ∆ is the time for wind mixing to mix a stabilized 
near-surface layer.  We obtain AE / t∂ ∂ from eq. (H.21) or (H.22), depending on It∆ , which is 
computed from eq. (H.11).  We obtain WE / t∂ ∂  from the parameterization of the wind (section 
K.3).  The reduction of wind energy by dissipation and overcoming stable stratification in the 
near surface region is characterized by the reduction of time for mixing using tδ∆ , computed 
from eq. (J.10) .  Thus, using the above we have the total mixing energy available at rz = η − δ , 
the top of the solar penetration region, which we will write as 

 
( )

( )

S

IW A A

W A

E :
t t tE E E: 0 (instability in )

t t t t
t t E E: 0 (stable stratification in )

t t t
δ

∂ = 
∂ ∆ − ∆∂ ∂ ∂ + ≥ δ ∂ ∆ ∂ ∂

 ∆ − ∆ ∂ ∂ < δ ∆ ∂ ∂

 (I.3) 

 In the solar penetration region, we have a profile in the rate of increase of density, 
obtained from eq. (H.2) as 
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 ( ) k( z)
r0 r

p

1
(z) Q k e : z

t c
− η−α − γ∂ ρ = − − ∞ < ≤ η − δ

∂
 (I.4) 

So we will need top proceed downward by sweeping a single cell at a time. 
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Appendix J STABILIZING THERMODYNAMICS AND WIND MIXING 
 
If M UE E 0− ≥ , (stabilizing thermodynamics), we must look at the rate at which wind-stirring 
energy is applied at the surface, WE / t∂ ∂ , along with the dissipation rate and the background 
TKE.   If the wind energy is sufficient to overcome the stabilizing force, then we can continue 
with the prior mixing height as the basis for the mixing computations.  However, if the wind is 
insufficient to mix the near-surface region, then the mixing height is determined by the 
stabilizing gradient.   The time required for the wind stirring to completely mix the stabilizing 
gradient over the layer r zη − δ ≤ ≤ η  can be found from  

 W B
r r M U

E et E E
t tδ δ

∂ ∂ ∆ − ρδ ε − δ = − ∂ ∂ 
 (J.1) 

where we take WE / t∂ ∂  as the only source of mixing energy in the near-surface region and we 
use tδ∆  to indicate the time used for mixing in the r zη − δ ≤ ≤ η  near-surface region. We have 
previously shown that dissipation can be scaled as in eq. (F.17), which can be modified for the 
near-surface region as  

 
3/ 2

1 B 2 W

r r

C 2e C E
t

ε ε
δ

  ∂ε = + δ ρ ρδ ∂ 
 (J.2) 

Similarly, the rate of change of the background TKE is modeled as a modification of eq. (F.39) 
as 

 B E B B

T r

e e e 2e
t C

∂ −=
∂ δ ρ

 (J.3) 

where similar to eq. (F.10) 

 ( ) 2/3
21/ 2 W

E
1

1 C1 Ee
2 C t

ε

ε

− ∂= ρ ∂ 
 (J.4) 

and similar to eq. (F.9) 

 n
r∆δ  (J.5) 

It follows that eq. (H.63) can be written as 

 e∆δ  (J.6) 

which expands on the LHS to 
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 r∆δ  (J.7) 

Using eq. (J.5) this becomes 

 

( ) ( ){ }

( )

3/ 2 3/ 2 E B B
1 E B

T

er e
e e h

U e e p

8 e e 2eC e e
C

1 Vg h S Q
2 t c

ε

η

 −− −  ρ ρ 
 ∆ρ βρ α= − δ − δ + −  ∆ δ δ 

 (J.8) 

We can write eq. (J.8) as an equation for the time used in the mixing process as 

 
( ) ( ){ }

( )
( )

( )

3/ 2 3/ 2
1 E B B E Ber e

h
e e p e e T e e

4 2C e e 2 2e e eV S Q
t c g h C g h

ε

η
δ

− −∆ρ βρ α= − + − +
∆ δ δ ρ δ − δ ρ δ − δ

 (J.9) 

or 

 
( ) ( ){ }

( )
( )

( )

13/ 2 3/ 2
1 E B B E Be

er h
e e p e e T e e

4 2C e e 2 2e e eVt S Q
c g h C g h

−

ε

δ η

 − −βρ α ∆ = ∆ρ − + − + δ δ ρ δ − δ ρ δ − δ  

 (J.10) 

 

 If t tδ∆ > ∆ for rh = δ , then complete mixing of the two layers does not occur.  In which 
case, we need to solve for h in eq. (J.8) using t tδ∆ = ∆  

 
( ) ( ){ }3/ 2 3/ 2 E B B

1 E B
T

e

er e
e h

e e p

8 e e 2eC e e
C

h
1 Vg S Q
2 t c

ε

η

 −− −  ρ ρ = δ −
 ∆ρ βρ αδ + −  ∆ δ δ 

 (J.11) 

or, with some algebra 

 
( ) ( ){ } ( )3/2 3/ 2

1 E B B E B
T

e

er
e e h

p

2C 4 2 e e 2e e e
Ch

g V S Q
t c

ε

η

− − −
= δ −

 ∆ρ αρ δ + βρ −  ∆ 

 (J.12) 

 

In this case (i.e. t tδ∆ > ∆ ), all the wind-stirring energy is used in the near-surface region so the 
mixed layer is set to e(k) (k)φ = φ , where h is found from eq. (J.12).   
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 If t tδ∆ = ∆ , then all the wind-stirring energy is used in the near-surface region to mix 
down to nM

rH = δ . 

 If t tδ∆ < ∆ , then the wind-stirring energy mixes down to rδ  in time r∆δ .  Thus, the next 
part of the mixing sweep will begin with only Lt t tδ∆ = ∆ − ∆ . 
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Appendix K SOME SCALING RELATIONSHIPS 
 
K.1 Time scales for billowing 

In the case of KH billows, Thorpe (1973a) defines the non-dimensional time for a KH billows as 
( )( )( ) 0g t / Uτ ≡ ∆ , where  the U0 velocity scale is half the difference between the two layers, so 

that  0U U / 2= ∆ and the density scale is ( ) ( )2 1 2 1/∆ ≡ ρ − ρ ρ + ρ .  For the present work, we note 

that ( )( )g g / 2′∆ = , so 

 ( )( )
Thorpe

0

g g t
U U

∆ ′
τ ≡ =

∆
 (K.1) 

Thorpe did not conduct experiments for 20τ > .  It is not clear how Laval et al decided to use 20 
as a good number for the end of billowing.  I would argue from Thorpe’s results that 15 would be 
better.  Indeed, in Thorpe (1973b , JFM) he use 12τ >  as the defining “long time’.  In either 
case, let us define 

 tKH
KH

c gT
U

′
≡

∆
 (K.2) 

 

K.2 Time scale for shear mixing (without billows) 

However, we need to figure out the time scale for general shear mixing that is applicable in 
homogeneous flows and stratified flows without KH billowing.  It would seem that the most 
simple time scale would depend on the TKE and the mixing length scale, i.e. 

 m 1/ 2
k

h
T

e
β∝  (K.3) 

However, what we are really interested in is the rate at which the mixing layer thickens, i.e. 

 1/ 2
k

m

hdh e
dt T

β∝ ∝  (K.4) 

We can argue that 

 dh w
dt

′=  (K.5) 

and the essentially isotropic turbulence in a shear layer provides 
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1/ 2

kew
3

 ′ =  
 

 (K.6) 

Thus, the time scale to increase the shear layer by thickness  hδ  is given by 

 h h
m 1/ 2

k

T
dh / dt eδ

δ δ= ∝  (K.7) 

 

K.3 Mixing energy from wind 

In Hodges et al. (2000) followed Spigel et al. (1986) in modeling the production due to wind 
stirring as 

 3 3
N *

1 C u
2

 (K.8) 

We note that this has the units m3/s3.  If we multiply by density, we obtain (kg/m3) (m3/s3), which 
is simply (kg /s3), and so is then a value of E / t∂ ∂ .  Let us continue with this form and write 

 
3

3N N
0 *

E C u
t 2

∂ = ρ
∂

 (K.9) 

 



Hodges (2008): Representative Scalar Transport and Vertical Mixing 

 152

 

Appendix L ALTERNATIVE APPROACHES 
 
In sections 3 and 4, we introduced energy scaling methods for modeling the mixing layer 
thickness.  In developing these ideas, we also formulated some alternative approaches that are 
presented here, but require further exploration before implementation and testing. 

 

L.1 Alternative layer thickness approach 

Eq. (5.1) can also be written as 

 
k

b

de
dh dt

dedt
dh

− ε −
=

P
 (L.1) 

From Appendix B.3, entraining a uniform density region of thickness δ  into another uniform 
density region of thickness h provides 

 B h

h

de 1 g
dh 2

δ ρ − ρ=  ρ 
 (L.2) 

So eq. (L.1) can be written as 

 
( )

h k

h

dh 2 de
dt g dtδ

ρ  = − ε − ρ − ρ  
P  (L.3) 

Using eq. (5.2) 

 
( )

3/ 2h k
k

h

dh 2 c dee
dt g 2L dt

ε

δ ε

 ρ= − − ρ − ρ  
P  (L.4) 

Using the layer thickness as the length scale 

 
( )

3/ 2h k
k

h

dh 2 c dee
dt g 2h dt

ε

δ

ρ  = − − ρ − ρ  
P  (L.5) 

Thus, once we have solved for kde / dt  from eq. (5.33), we can then readily solve for 
dh / dt from eq. (L.5). 

 Let us consider what happens if we consider mixing from a gradient region.  From 
Appendix B.4 the change in BPE is given for this case by 
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 B

h

de g d
dh 2 dz

δρ= − δ
ρ

 (L.6) 

Substituting into eq. (L.1) we find 

 h kdh 4 de
ddt dtg
dz

δ

ρ  = − − ε − ρ  δ
P  (L.7) 

 

L.2 Alternative approach for wind-mixing  

For wind mixing, the production rate is given by 

 ( )3
N *

1~ C u
2h

P  (L.8) 

So eq. (5.33) becomes 

 kde c 2h
dt

τ=
τ

( )fc
11 R

c 2hε

− ( )
2/3

3
N * kC u e

   −  
   

 (L.9) 

where τ  is given by eq. (L.8) substituted into eq. (5.24)  as 

 
( )

2/3

1/ 2
k

N *1/3 1/3

h hmin , : h 01 eC u
2 h

 
 

τ = > 
 
 

 (L.10) 

which reduces to 

 
3

1/ 2
N * k

h 2 hmin , : h 0
C u e

 
τ = >  

 
 (L.11) 

The time scale is a length scale over a velocity scale, i.e. 

 h
u

τ =
�

 (L.12) 

where 

 
( )

1/ 2N *
k1/3

C uu max ,e
2

 
=  

 
 

�  (L.13) 

As a result, eq. (L.9) can be written as 
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 ( )
2/3

2k fc
N * k

de c u 1 R C u e
dt h c

τ

ε

  − = −  
   

�
 (L.14) 

For the rate of change of layer thickness, we have eq. (L.8) substituted into eq. (L.5), which 
provides 

 
( ) ( )3 3/ 2h k

N * k
h

dh 2 1 c deC u e
dt g 2h 2h dt

ε

δ

ρ  = − − ρ − ρ  
 (L.15) 

 

L.3 Is it worthwhile using a linear density shear layer approximation? 

The mixing by billowing is typically considered (Sherman et al?) to result in a diffuse mixing 
layer rather than a uniform layer as derived above.  Let us consider the somewhat more 
complicated case where in the initial conditions are still as eq. (D.1), but the mixed conditions 
are 

 m 2
1 2

(z) z
h h

∆ρρ = ρ −
+

 (L.16) 

where z=0 is at the bottom of the two layers.  Let us check that this satisfies continuity by 
integrating the total mass 

 

( )

( )

1 2 1 2 1 2

1 2

m 2
1 2h h h h h h

2

2 1 2
1 2 h h

2 1 2
1 2

(z)dz zdz
h h

zh h
h h 2

h h
h h

+ + +

+

∆ρρ = ρ −
+

 ∆ρ= ρ + −  +  

∆ρ= ρ + −
+

∫ ∫ ∫

( ) 2
1 2

1 h h
2

  + 
 

( ) ( ) ( )

( ) ( )

2 1 2 2 1 1 2

2 1 2 1 1 2

1h h h h
2

1 1h h h h
2 2

 = ρ + − ρ − ρ + 
 

= ρ + + ρ +

 (L.17) 

 

if 1 2h h z= = ∆  

 ( )m 2 1

z z

(z)dz z z
∆ +∆

ρ = ρ ∆ + ρ ∆∫  (L.18) 
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Thus, the above is consistent for uniform thickness layers only.  We will require a conservation 
of momentum that can be written as 

 m m 1 1 2 2U (z)dz hU hUρ = ρ + ρ∫  (L.19) 

where we make the modeling approximation that the momentum ends up completely mixed and 
we have invoked the uniform thickness layer approximation required for eq. (L.16).  It follows 
that 

 m 2 1 1 2 2

2h

U z dz hU hU
2h
∆ρ ρ − = ρ + ρ 

 ∫  (L.20) 

or 

 
2

m 2 1 1 2 2
2h

zU 2h hU hU
2h 2

  ∆ρ ρ − = ρ + ρ  
   

 (L.21) 

or 

 
2

m 2 1 1 2 2
4hU 2h hU hU

2h 2
  ∆ρ ρ − = ρ + ρ  
   

 (L.22) 

or 

 ( )m 2 1 1 2 2U h 2 hU hUρ − ∆ρ = ρ + ρ  (L.23) 

or 

 [ ]( )m 2 2 1 1 1 2 2U h 2 hU hUρ − ρ − ρ = ρ + ρ  (L.24) 

or 

 ( )m 2 1 1 1 2 2U h hU hUρ + ρ = ρ + ρ  (L.25) 

so that 

 
( )

1 1 2 2
m

2 1

hU hUU
h

ρ + ρ=
ρ + ρ

 (L.26) 

Noting that 

 
( )

( ) ( )

2
km m m

2h

2
m 1 2

1E U (z)dz
2

1 U h
2

= ρ

= ρ + ρ

∫
 (L.27) 
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we note that 

 ( ) ( ) ( ) ( ) ( )
( )

2 2
1 1 2 22 1 1 2 2

m 1 2 1 2
2 1 2 1

hU hUhU hUU h h
h h

  ρ + ρρ + ρρ + ρ = ρ + ρ =  ρ + ρ ρ + ρ 
 (L.28) 

 

Now we write the change in the kinetic energy, i.e. eq. (D.7) 

 ( ) ( )
( )

( ) ( ) ( ){ }
( )

2 22
1 2 1 1 2 21 1 2 2

km ku
2 1 1 2

h h h U h UhU hU
E E

2h 2 h h

ρ + ρ ρ + ρρ + ρ
− = −

ρ + ρ ρ + ρ
 (L.29) 

where again we have taken advantage of the uniform layer approximation.  Simplifying provides 

 ( )
( ) ( ) ( ) ( ){ }

( )

2 2 2
1 1 2 2 1 2 1 1 2 2

km ku
1 2

h U U h U U
E E

2

ρ + ρ − ρ + ρ ρ + ρ
− =

ρ + ρ
 (L.30) 

expanding the numerator 

 ( )2
1 1Uρ ( )2

1 1 2 2 2 22 U U U+ ρ ρ + ρ ( )2 2
1 1U− ρ ( ) ( ) ( )2 2 2 2

1 2 1 1 2 2 2 2U U U− ρ ρ − ρ ρ − ρ  (L.31) 

or 

 ( )2
1 2 1 2U U−ρ ρ −  (L.32) 

so we obtain the linear gradient result as 

 ( ) ( )
( )

2
1 2 1 2

km ku
1 2

h U U
E E

2
−ρ ρ −

− =
ρ + ρ

 (L.33) 

Note that we previously derived for uniform density result 

 ( ) ( )( )
( )

2
1 2 1 2 1 2

km ku
1 1 2 2

h h U U
E E

2 h h
− ρ ρ −

− =
ρ + ρ

 (L.34) 

Using 1 2h h h= = , the uniform gradient result is 

 ( )
2

1 2
km ku

h
E E

− ρ ρ
− =

( )( )2
1 2U U

4 h

−

( )1 2ρ + ρ
 (L.35) 

comparing eq. (L.33) and (L.35) indicates that mixing only to a linear gradient releases more 
kinetic energy; i.e. eq. (L.33) is larger.  However, this is somewhat inconsistent as it requires the 
momentum to be fully mixed by the density to be only linearly mixed.  Thus, we prefer to use the 
original result, eq. (L.35), developed for complete mixing. 
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L.4 Is it worthwhile using linear gradient approximations for both 
density and velocity in shear model? 

Now, if both momentum and density are only linearly mixed, and we use 

 m 2
UU (z) U z

2h
∆= −  (L.36) 

where 

 2 1U U U∆ = −  (L.37) 

Then the integrated kinetic energy after mixing is 

 ( )2
km m m

2h

1E U (z)dz
2

= ρ∫  (L.38) 

or 

 
2

km 2 2

2h

UE z U z dz
2h 2h
∆ρ ∆  = ρ − −  

  ∫  (L.39) 

So 

 

2
2 2

km 2 2 2 2
2h

2
2 2

2 2 2 2 2 2
2h

U UE z U 2U z z dz
2h 2h 4h

U Uz U z 2U z z z dz
2h 2h 2h 2h 4h

 ∆ρ ∆ ∆ = ρ − − +  
  

 ∆ρ ∆ρ ∆ ∆ρ ∆     = ρ − − ρ − + ρ −      
      

∫

∫
 (L.40) 

Thus, we have the change in energy as 

 

2
2 2

km ku 2 2 2 2 2 2
2h

2 2
1 1 2 2

U UE E z U 2 z U z z z dz
2h 2h 2h 2h 4h

hU hU

 ∆ρ ∆ρ ∆ ∆ρ ∆     − = ρ − − ρ − + ρ −      
      

− ρ − ρ

∫  (L.41) 

Then integrated momentum conservation requires is 

 m m 1 1 2 2U (z)dz hU hUρ = ρ + ρ∫  (L.42) 

or 
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 2 2 1 1 2 2

2h

Uz U z dz hU hU
2h 2h
∆ρ ∆  ρ − − = ρ + ρ  

  ∫  (L.43) 

The LHS can be written as 

 2 2 2 1 1 2 2

2h

Uz U z z dz hU hU
2h 2h 2h

 ∆ρ ∆ρ ∆    ρ − − ρ − = ρ + ρ        ∫  (L.44) 

Multiplying through by U2 

 2 2
2 2 2 2 1 1 2 2 2

2h

Uz U z U z dz hU U hU
2h 2h 2h

 ∆ρ ∆ρ ∆    ρ − − ρ − = ρ + ρ        ∫  (L.45) 

This can be substituted into eq. (L.41) to obtain 

 
2

km ku 1 1 2 2 2E E hU U hU− = ρ + ρ
2

2
2 2 2 2

2h

2 2
1 1 2 2

U Uz U z z z dz
2h 2h 2h 4h

hU hU

 ∆ρ ∆ ∆ρ ∆   + − ρ − + ρ −    
    

− ρ − ρ

∫ (L.46) 

Next, we apply eq. (L.37) to say 

 ( )1 1 2 1 1 1hU U hU U Uρ = ρ + ∆  (L.47) 

so that 

 
2

km ku 1 1E E hU− = ρ
2

2
1 1 2 2 2 2

2h

2
1 1

U UhU U z U z z z dz
2h 2h 2h 4h

hU

 ∆ρ ∆ ∆ρ ∆   + ρ ∆ + − ρ − + ρ −    
    

− ρ

∫ (L.48) 

The integral term 

 { }
2

2 3
2 2 2 22 3

2h

U U UU z U U z z dz
2h 4h 8h

 ∆ ∆ ∆ρ∆−ρ + ∆ρ + ρ ∆ − 
 ∫  (L.49) 

which evaluates as 

 { }
2 3 2 4

2 2 2 22 3

U 4h U 8h U 16hU U U
2h 2 4h 3 8h 4

     ∆ ∆ ∆ρ∆−ρ + ∆ρ + ρ ∆ −     
     

 (L.50) 

or 

 { } 2
2 2 2 2

2 1h U U h U U U h U
3 2

− ρ ∆ + ∆ ∆ρ + ρ ∆ − ∆ρ∆  (L.51) 

or 
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 2 2
2 2 2 2

2 2 1h U U h U U h U h U
3 3 2

− ρ ∆ + ∆ρ ∆ + ρ ∆ − ∆ρ∆  (L.52) 

or 

 2 2
2 2 2 2

2 2 1h U U h U U h U h U
3 3 2

− ρ ∆ + ∆ρ ∆ + ρ ∆ − ∆ρ∆  (L.53) 

so that eq. (L.48) is 

 2 2
km ku 1 1 2 2 2 2

2 2 1E E h U U h U U h U U h U h U
3 3 2

− = ρ ∆ − ρ ∆ + ∆ρ ∆ + + ρ ∆ − ∆ρ∆  (L.54) 

This can be expanded as 

 ( )( ) 2 2
km ku 2 2 2 2 2 2

2 2 1E E h U U U h U U h U U h U h U
3 3 2

− = ρ − ∆ρ − ∆ ∆ − ρ ∆ + ∆ρ ∆ + + ρ ∆ − ∆ρ∆ (L.55) 

or 

 

2 2km ku
2 2 2 2 2 2

2 2
2 2

E E U U U U U U U U
h

2 2 1U U U U
3 3 2

− = ρ ∆ − ρ ∆ − ∆ρ ∆ + ∆ρ∆ − ρ ∆

+ ∆ρ ∆ + ρ ∆ − ∆ρ∆
 (L.56) 

Grouping 

 km ku
2 2

E E U U
h
− = ρ ∆ 2 2

2 2 2 2
1 1 1U U U U U U
3 3 2

− ρ ∆ − ∆ρ ∆ + ∆ρ∆ − ρ ∆  (L.57) 

or 

 

 2 2
km ku 2 2

1 1 1E E h U h U h U U
2 3 3

− = ∆ρ∆ − ρ ∆ − ∆ρ ∆  (L.58) 

or 

 2 2
km ku 2 2

1 1 1E E h U h U hU U
3 2 3

 − = − ρ ∆ + ∆ρ ∆ − ∆ 
 

 (L.59) 

or 

 

 2
km ku 2 2

1 1 1E E h U h U U U
3 3 2

 − = − ρ ∆ + ∆ρ∆ − + ∆ 
 

 (L.60) 

If 2U U∆∼ then 
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 ( )2
km ku 2

1E E h U
3

− = − ρ ∆ + ∆ρO  (L.61) 

Without approximation, we might write 

 2
km ku 2 2

1 1 1E E h U h U U U
3 2 3

 − = − ρ ∆ + ∆ρ ∆ ∆ − 
 

 (L.62) 

Note that for the uniform slab mixing, we had 

 ( ) ( )( )
( )

2
1 2

km ku
1 2

h U
E E

4
− ρ ρ ∆

− =
ρ + ρ

 (L.63) 

which is approximately  

 ( ) 2
km ku 2

1E E h U
4

− = − ρ ∆  (L.64) 

Thus, since eq. (L.61) is larger (negatively) than eq. (L.64), this implies that there will be slightly 
more kinetic energy released when computed from mixing to linear gradients.  However, this 
might not be correct since if 2U U< ∆ , i.e. for a low velocity layer, then the leading additional 
term is 2h U / 2∆ρ∆ , which reduces the energy released. 

 This approach does not seem to be significantly better given the nature of the 
approximations involved.  
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Appendix M PSEUDO-CODE OF SHEAR MIXING 
%% required data at start of mixing 

Mt∆  

n n n n n
R (i, j,k ) R(i, j,k) R(i, j,k) T(i, j,k ) B(i, j,k)U , V , , h , hρ  

 

%% compute shear mixing ===================== 

 

%% initialize mixing time remaining  

  (1)
L(k 1/ 2) Mt t+∆ = ∆  

%% initialize representative gradients 

  (1) n n
R (i, j,k 1/ 2) R (i, j,k 1) R (i, j,k)U U U+ +∆ = −  

  (1) n n
R(i, j,k 1/ 2) R (i, j,k 1) R (i, j,k)V V V+ +∆ = −  

  (1) n n
R (i, j,k 1/ 2) R (i, j,k 1) R(i, j,k)+ +∆ρ = ρ − ρ  

%% time for KH billows, eq.  

  ( ) ( )2 2(1) (1) (1)0
KH(k 1/ 2) R(k 1/ 2) R(k 1/ 2)(1)

R(k 1/ 2)

20T U V
g+ + +

+

ρ= − ∆ + ∆
∆ρ

 

%% time left for KH billow computation 

   (1) (1)
LKH(k 1/ 2) KH(k 1/ 2)T T+ +=   

%% KH billow thickness 

  ( ) ( ){ }2 2(1) (1) (1)0
KH(k 1/ 2) R(k 1/ 2) R(k 1/ 2)(1)

R(k 1/ 2)

0.3 U V
g+ + +

+

ρδ = − ∆ + ∆
∆ρ

 

%% define initial mixing time step  

   { }(1) (1) (1)
U(k 1/ 2) L(k 1) KH(k 1/ 2)t min t ,T+ + +∆ = ∆    %% over all cells 

%% define the mixing thickness during the time step 
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(1)
U(k 1/ 2)(1) (1)

m(k 1/ 2) KH(k 1/ 2)(1)
KH(k 1/ 2)

t
T

+
+ +

+

∆
δ = δ  

%% define the mixing anomaly (the amount greater than local dz) 

   (1) (1)
m(k 1/ 2) m(k 1/ 2) (k 1/ 2)a z+ + +δ = δ − ∆  

%% define the set of cell faces for single-step mixing and multistep mixing 

   aa = where ( (1)
m(k 1/ 2)a 0+δ ≤ )  %% single step 

   ff = where not (aa) faces     %% multi-step 

%% set the time used to zero for multi-step (ff) cell faces so that they are not altered by the  

%% single-step mixing 

   (1)
U(k 1/ 2)t 0+∆ =    %% over ff cell faces 

%% the additional mixing completed 

  { }(1) (1) n n
(k 1/ 2) m(k 1/ 2) T(k) B(k 1)

1h h h
2+ + + ∆ = δ − +   %% over (aa) faces 

%% define the cells where the existing gradient was larger than the KH billow gradient 

   bb = k or k+1 where (1)
(k 1/ 2)h 0+∆ >  

%% apportion the mixing change equally on both sides 

   (2) (1) (1)
T(k) T(k) (k 1/ 2)h h h += + ∆      %% over (bb) cells 

   (2) (1) (1)
B(k 1) B(k 1) (k 1/ 2)h h h+ + −= + ∆   %% over (bb) cells 

%% adjust for mixing regions greater than grid cell size – height anomaly 

   (2) (2)
(k) T(k) B(k) kah h h z= + − ∆  %% over (bb) cells 

%% identify the areas where the net top and bottom mixing is larger than the grid cell 

   cc = where ( (k)ah 0> )  %% over (bb) cells 

%% reset mixing thickness for cells that mixing is greater than grid cell size 

%% this neglects an interaction between upper and lower boundaries of a cell, but this should be 
%% a small term 

%% To make this conservative, we must change the mixing layer equally on both sides. 
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   { }(2) (2)
T(k) T(k) (k) (k 1)

1h h max ah ,ah
2 += −  %% over (cc) cells 

   { }(2) (2)
B(k) B(k) (k) (k 1)

1h h max ah ,ah
2 −= −  %% over (cc) cells 

%% error checking 

   if  (2)
B(k)h 0<  or (2)

T(k)h 0<  and error has occurred (investigate) 

%% update grid-cell average values 

   

2 2(2) n
T(k) T(k)(2) (2) n

(k) (k) R (k 1/ 2) (2) (2) n n
(k) T(k) B(k 1) T(k) B(k 1)

2 2(2) n
T(k 1) T(k 1)n

R(k 1/ 2) (2) (2) n n
T(k 1) B(k) T(k 1) B(k)

h h1
2 z h h h h

h h

h h h h

+
+ +

− −
−

− −

         φ = φ + ∆φ − ∆ + +   
         −∆φ − + +   

  %%  over (bb) cells 

%% define the time left for mixing 

   (2) (1) (1)
L(k 1/ 2) L(k 1/ 2) U(k 1/ 2)t t t+ + +∆ = ∆ − ∆  over all cells (requires Ut 0∆ = for ff faces) 

   (2) (1) (1)
LKH(k 1/ 2) LKH(k 1/ 20 U(k 1/ 2)T T t+ + += − ∆  

%% finished with single-step mixing. 

 

%% Begin multi-step mixing over cell boundaries (ff) ========================= 

%% set the loop counter 

    m=3 

%% count the number of cells with multi-step mixing 

    ncells = number of cell faces in (ff) 

%% main loop for multi-step mixing 

   while ncells > 0  %% outer iteration   

  %% compute mean gradients over cell faces (ff) 

     (m 1) (m 1) (m 1)
(i, j,k 1/ 2) (i, j,k 1) (i, j,k )U U U− − −

+ +∆ = −  

   (m 1) (m 1) (m 1)
(i, j,k 1/ 2) (i, j,k 1) (i, j,k)V V V− − −

+ +∆ = −  
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   (m 1) (m 1) (m 1)
(i, j,k 1/ 2) (i, j,k 1) (i, j,k)

− − −
+ +∆ρ = ρ − ρ  

 %% time for KH billows using mean gradients over cell faces (ff) 

   ( ) ( )2 2(m) (m 1) (m 1)0
KH(k 1/ 2) (k 1/ 2) (k 1/2)(m 1)

(k 1/ 2)

20T U V
g

− −
+ + +−

+

ρ= − ∆ + ∆
∆ρ

 

 %% time left for KH billow computation over cell faces (ff) 

    (m) (m)
LKH(k 1/ 2) KH(k 1/ 2)T T+ +=   

 %% KH billow thickness using mean gradients over cell faces (ff) 

   ( ) ( ){ }2 2(m) (m 1) (m 1)0
KH(k 1/ 2) (k 1/ 2) (k 1/ 2)(m 1)

(k 1/ 2)

0.3 U V
g

− −
+ + +−

+

ρδ = − ∆ + ∆
∆ρ

 

 %% Reset the cumulative thickness counter and billow time over cell faces (ff) 

    
(m 1)
c(k 1/ 2)

(m 1)
c(k 1/ 2)

t 0

0

−
+

−
+

∆ =

δ =
 

 %%  Define new faces (ff) for the multi-step 

    ff = where (m)
LKH(k 1/ 2)T 0+ >  and (m)

L(k 1/ 2)t 0+∆ >   

 %% set the ncells 

   ncells = number of cell faces in (ff) 

 

 %% begin inner iteration 

   while ncells > 0  %% inner iteration 

  %% find the dz anomaly; the amount of a grid cell that has not been mixed by the 

  %% billow.  If this is negative, then mixing must go to an outer iteration. 

     

(m)
U(k 1/ 2) (k 1) c(k 1/ 2)

(m)
L(k 1/ 2) (k) c(k 1/ 2)

1a z z
2

1a z z
2

+ + +

+ +

∆ = ∆ − δ

∆ = ∆ − δ
 

  %% compute the allowed mixing height in the sub-time step 

    (k) (k 1)(m) (m) (m)
f U(k 1/ 2) L(k 1/ 2)

z z
min , , a z , a z

2 2
+

+ +

∆ ∆ 
δ = ∆ ∆ 

 
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  %% find where a negative might have occurred (indicating that no further mixing 

  %% in the cell is possible in this step) 

    where (m)
f (k 1/ 2)( 0)+δ <   set (m)

f (k 1/ 2)( 0)+δ =  

  %% compute the time required for a fraction of the cell volume to flux across a 

  %% boundary 

     ( ) ( ){ }
2(m) (m 1) 3/ 22 2f (k 1/ 2) (k 1/ 2)(m) (m 1) (m 1)

R (k) (k 1/ 2) (k 1/ 2)
C 0

g
t U V

C

− −
+ + − −

+ +

 − δ ∆ρ ∆ = ∆ + ∆
ρ

    

  %% ... above is over (ff) cell faces 

  %% compute the allowable mixing time used in this mixing sub-time step 

     (m) (m 1) (m 1) (m)
U(k 1/ 2) L(k 1/ 2) LKH(k 1/ 2) R(k 1)t min t T , t ,− −

+ + + + ∆ = ∆ ∆   %% over (ff) cell faces 

  %% compute the actual height mixed based on the time used over (ff) cell faces 

      ( ) ( ){ }
(m) 3/ 22 2C 0 U(k 1/ 2)(m) (m 1) (m 1)

f (k 1/ 2) (k 1/ 2) (k 1/ 2)(m 1)
(k 1/ 2)

C t
U V

g
+ − −

+ + +−
+

− ρ ∆
δ = ∆ + ∆

∆ρ
   

  %% compute the cumulative mixing time for this billow 

     (m) (m 1) (m 1)
c(k 1/ 2) c(k 1/ 2) U(k 1/ 2)t t t− −

+ + +∆ = ∆ + ∆  %%  over (ff) cell faces 

  %% compute the cumulative mixing height for this inner iteration 

     (m) (m 1) (m)
c(k 1/ 2) c(k 1/ 2) f (k 1/ 2)

−
+ + +δ = δ + δ  

  %% define cell centers where a face is in (ff) 

     gg = where (k+1/2 in ff or k-1/2 in ff) 

  %% update the cell mean values.  Note that this will also compute over cells with 

  %% faces 

  %% where  (m)
f (k 1/ 2)( 0)+δ = .  This extra computation shouldn’t be an issue since  

  %% Ut 0∆ = will be required for these cells 
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{ }
1/ 21/ 2 m 3/ 42 2U(k 1/ 2)m m 1 m 1 m 1 m 1C 0

(k) (k) (k 1/ 2) (k 1/ 2) (k 1/ 2)m 1
(k) (k 1/ 2)

1/ 2m
2U(k 1/ 2)n m 1 m

k 1/ 2 (k 1/ 2) (k 1/ 2)m 1
(k 1/ 2)

t1 C U V
2 z g

t
U V

+− − − −
+ + +−

+

− −
− − −−

−

  ∆ ρ      φ = φ + ∆φ ∆ + ∆      ∆ −∆ρ    

 ∆   −∆φ ∆ + ∆   −∆ρ  
{ }3/ 421−


   


  

  %% ...the above is over (gg) cells 

  %% update the time left for the KH billow and the mixing over (ff) cell faces 

     (m) (m 1) (m 1)
LKH(k 1/ 2) LKH(k 1/ 2) U(k 1/ 2)T T t− −

+ + += − ∆  

     (m) (m 1) (m 1)
L(k 1/ 2) L(k 1/ 2) U(k 1/ 2)t t t− −

+ + +∆ = ∆ − ∆      

  %% find cells to continue with another iteration.  These cells must have time left 

  %% in the time step, in the billow evolution, and must not have “run out” of grid 

  %% cells space. 

     ff = where (m)
LKH(k 1/ 2)T 0+ >  and (m)

L(k 1/ 2)t 0+∆ >  and (m)
f (k 1/ 2)( 0)+δ >  

  %% loop counter 

     m=m+1 

  %% loop control 

     ncells = number of cell faces in (ff) 

   %% compute mean gradients for next loop over faces (ff) 

      (m 1) (m 1) (m 1)
(i, j,k 1/ 2) (i, j,k 1) (i, j,k )U U U− − −

+ +∆ = −  

    (m 1) (m 1) (m 1)
(i, j,k 1/ 2) (i, j,k 1) (i, j,k)V V V− − −

+ +∆ = −   

    (m 1) (m 1) (m 1)
(i, j,k 1/ 2) (i, j,k 1) (i, j,k)

− − −
+ +∆ρ = ρ − ρ  

      end while %% inner ncells > 0 

end while %% outer ncells > 0 
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