
 The Danger of Software Patents
 Speech by Richard Stallman at Cambridge University,
 25 March 2002

You might have been familiar with my work on free software. This
speech is not about that. This speech is about a way of misusing laws
to make software development a dangerous activity. This is about what
happens when patent law gets applied to the field of software.

It is not about patenting software. That is a very bad way, a
misleading way, to describe it, because it is not a matter of patenting
individual programs. If it were, it would make no difference, it would
be basically harmless. Instead, it is about patenting ideas. Every
patent covers some idea. Software patents are patents which cover
software ideas, ideas which you would use in developing software. That
is what makes them a dangerous obstacle to all software development.

You may have heard people using a misleading term, "Intellectual
Property". This term, as you can see, is biased. It makes an
assumption that whatever it is you are talking about, the way to treat
it is as a kind of property, which is one among many
alternatives. This term "Intellectual Property" pre-judges the most
basic question in whatever area you are dealing with. This is not
conducive to clear and open minded thinking.

There is an additional problem [in that term] which has nothing to do
with the promotion of any one opinion: It gets in the way of
understanding even the facts. The term "intellectual property" is a
catch-all; it lumps together completely disparate areas of law such as
copyrights and patents, which are completely different. Every detail
is different. It also lumps together trademarks which are even more
different, and various other things more or less commonly encountered.
None of them has anything in common with any of the others. Their
origins historically are completely separate; the laws were designed
independently; they covered different areas of life and activities;
the public policy issues they raise are completely unrelated. So, if
you try to think about them by lumping them together, you are
guaranteed to come to foolish conclusions. There is literally no
sensible intelligent opinion you can have about "Intellectual
Property". [So] if you want to think clearly, don't lump them together.
Think about copyrights, and then think about patents. Learn about
copyright law, and separately learn about patent law.

To give you some of the biggest differences between copyrights and
patents; Copyrights cover the details of expression of a work.
Copyrights don't cover any ideas. Patents only cover ideas and the
use of ideas. Copyrights happen automatically. Patents are issued by
a patent office in response to an application.

Patents cost a lot of money. They cost even more paying the lawyers to
write the application than they cost to actually apply. It takes
typically some years for the application to get considered, even
though patent offices do an extremely sloppy job [of] considering [them].

Copyrights last tremendously long. In some cases they can last as
long as 150 years. Patents last 20 years, which is long enough that
you can outlive them but still quite long by the timescale of a field
such as software. Think back about 20 years ago when the PC was a new
thing. Imagine being constrained to develop software using only the
ideas which were known in 1982.

Copyrights cover copying. If you write a novel which turns out to be
word-for-word the same as Gone With The Wind, and you can prove you
never saw Gone With The Wind, that would be a defence to any
accusation of copyright infringement.

A patent is an absolute monopoly on the use of an idea. Even if you
could prove you had the idea on your own, that would be entirely
irrelevant if the idea is patented by somebody else.

I hope you will forget about copyrights for the rest of this talk,
because this talk is about patents, and you should never lump together
copyrights and patents. It is about your understanding of these legal
issues. It is like what would happen in your understanding of
practical chemistry if you confused water and ethanol.

When you hear people describe the patent system, they usually describe
it from the point of view of somebody who is hoping to get a
patent--what it would be like for you to get a patent, what it would
be like for you to be walking down the street with a patent in your
pocket, so that every so often you can pull it out and point it at
somebody and say "Give me your money!"

There is a reason for this bias, which is that most of the people who
will tell you about the patent system have a stake in it, so they
want you like it. There is another reason: the patent system is a lot
like a lottery, because only a tiny fraction of patents actually bring
any benefit to those who actually hold the patents. In fact, 'The
Economist' once compared it to a "time-consuming lottery." If you have
seen ads for lotteries, they always invite you to think about
winning. They don't invite you to think about losing, even though
losing is far more likely. It is the same for ads for the patent
system. They always invite you to think about being the one who wins.

To balance this bias, I am going to describe the patent system from
the point of view of its victims--that is, from the point of view of
somebody who wants to develop software but is forced to contend with a
system of software patents that might result in getting sued.

So, what is the first thing you are going to do after you have had an
idea of what kind of program you are going to write?

The first thing you might want to try to do with the patent system is
find out what patents may cover the program you want to write. This is
impossible.

The reason is that some of the patent applications that are pending
are secret. After a certain amount of time they may get published,
like 18 months. But that is plenty of time for you to write a
program, and even release it, not knowing that there is going to be a
patent and you are going to get sued.

This is not just academic. In 1984, the compress program was written,
a program for data compression. At the time, there was no patent on
the LZW compression algorithm which it used. Then in 1985, the U.S.
issued a patent on this algorithm and over the next few years, those
who distributed the compress program started getting threats.

There was no way that the author of compress could have realised that
he was likely to get sued. All he did was use an idea he found in a
journal, just as programmers had always done. He hadn't realised
that you could no longer safely use ideas that you found in a journal.

Let's forget about that problem. The issued patents are published by
the patent office, so you can find the whole long list of them and see
exactly what they say. You couldn't actually read the whole list as
there are too many of them. In the U.S., there are hundreds of
thousands of software patents. There is no way you can keep track of
what they are all about. You would have to try to search for relevant
ones.

Some people say that should be easy in these modern days of computers.

You could search for key words and so-on. That one works to a certain
extent. You will find some patents in the area. You won't
necessarily find them all however.

For instance, there was a software patent (which may have expired by
now) on natural order recalculation in spreadsheets. This means
basically that when you make certain cells depend on other cells, it
always recalculates everything after things it depends on, so that
after one calculation, everything is up to date. The first
spreadsheets did their recalculation top-down, so if you made a cell
depend on a cell lower down, and you had a few such steps, you had to
recalculate several times to get the new values to propagate upwards.
(You were supposed to have things depend on cells above them.)

Then someone realised, why don't I do the recalculation so that
everything gets recalculated after the things it depends on? This
algorithm is called topological sorting. The first reference I could
find to it is in 1963. The patent covered several dozen different
different ways you could implement topological sorting.

But you wouldn't have found this patent by searching for
"spreadsheet." You couldn't have found it by searching for "natural
order" or "topological sort." It didn't have any of those terms in
it. In fact, it was described as a method of "compiling formulas into
object code." When I first saw it, I thought it was the wrong patent.

Let's suppose that you got a list of patents, so you want to see what
you are not allowed to do. When you try studying these patents, you
will discover they are very hard to understand, as they are written in
tortuous legal language whose meaning is very hard to understand. The
things patent offices say often don't mean what they seem to mean.

There was an Australian government study of the patent system in the
1980's. It concluded that aside from international pressure, there was
no reason to have a patent system--It did no good for the public--and
recommended abolishing it if not for international pressure. One of
the things they cited was that engineers don't try reading patents to
learn anything, as it is too hard to understand them. They quoted one
engineer saying "I can't recognise my own inventions in patentese".

This is not just theoretical. Around 1990, a programmer named Paul
Heckel sued Apple claiming that Hypercard infringed a couple of his
patents. When he first saw Hypercard, he didn't think it had anything
to do with his patents, with his "Inventions". It didn't look
similar. When his lawyer told him that you could read the patents as
covering part of Hypercard, he decided to attack Apple. When I gave a
speech about this at Stanford, he was in the audience. He said,
"That's not true, I just didn't understand the extent of my
protection!" I said "Yes, that's what I said."

So, in fact, you will have to spend a lot of time talking with lawyers
to figure out what these patents prohibit you from doing. Ultimately
they are going to say something like this: "If you do something in
here, you are sure to lose; if you do something here [sweeps out a
larger area], there is a substantial chance of losing, and if you
really want to be safe, stay out of this area [an even larger area].
And, by the way, there is a substantial element of chance in the
outcome of any law suit".

Now, that you have a predictable terrain for doing business(!) what
are you going to do? Well, there are three approaches you might
try. Any of which is applicable in some cases.

They are 1)Avoiding the patent 2)Licensing the patent 3)Overturning
the patent in court.

Let me describe these three approaches and what makes them workable or
unworkable.

1) Avoiding the patent. That means don't use the idea that the patent
covers. This can be easy or hard, depending on what that idea is.

In some cases, a feature is patented. Then you avoid the patent by
not implementing that feature. Then it just matters how important is
that feature.

In some cases, you can live without it. A while ago, the users of the
word processor XyWrite got a downgrade in the mail. The downgrade
removed a feature which allowed you to pre-define abbreviations. That [is,]
when you typed an abbreviation followed by a punctuation character, it
would immediately replace itself with by some expansion, so that you
could define the abbreviation for some long phrase, type the
abbreviation then the phrase will be in your document. They wrote to
me about this because they knew the Emacs editor has a similar
feature. In fact, it had it since the 70's. This was interesting as
it showed me that I had at least one patentable idea in my life. I
knew it was patentable because somebody else patented it afterward!

Actually they tried these various approaches. First they tried
negotiating with the patent holder, who turned out not to negotiate in
good faith. Then they looked at whether they could have a chance at
overturning the patent. What they decided to do was to take out the
feature. You can live without this feature. If the word processor
lacks only this feature, maybe people will still use it. But as
various features start getting hit, eventually you end up with a
program people think is not very good and they are likely to reject
it.

That is a rather narrow patent on a very specific feature. What do
you do with the British Telecom patent on traversing hyperlinks
together with dial-up access? Traversing hyperlinks is absolutely
essential to a major use of computers these days. Dial up access is
also essential. How do you do without this feature, which, by the
way, isn't even one feature, it is really a combination of two just
arbitrarily juxtaposed? It is rather like having a patent on a sofa
and television in the same room.

Sometimes the idea that's patented will be so broad and basic that it
basically rules out an entire field. For instance, the idea of Public
Key Encryption which was patented in the U.S. The patent expired in
1997. Until then, it largely blocked the use of Public Key Encryption
in the U.S. A number of programs which people started to develop got
crushed--they were never really available because the patent holders
threatened them. Then, one program got away, the program PGP which
initially was released as free software. Apparently, the patent
holders, by the time they got around to attacking, realised they might
get too much bad publicity. So they imposed restrictions, making it for
non-commercial use only, which meant it couldn't catch on too
much. They greatly limited the use of Public Key Encryption for a
decade or more. There was no way around that patent. There was nothing
else you could do like that.

Sometimes a specific algorithm gets patented. For instance, there is a
patent on an optimised version of the Fast Fourier Transform. It runs
about twice as fast. You can avoid that by using an ordinary FFT in
your program. That part of the program will take twice as long. Maybe
that doesn't matter, maybe that is a small part of the program's
running time. Maybe if it is twice as slow, you won't really
notice. Or maybe your program won't run at all as it will take twice
real time to do it's job. The effects vary.

In some cases, you can find a better algorithm. This may or may not do

you any good. Because we couldn't use compress, we started looking for
an alternative compression algorithm. Somebody wrote to us saying he
had one; he had written a program and decided to contribute it to
us. We were going to release it. Just by chance, I happened to see a
copy of the New York Times, it happened to have the weekly patent
column in it. I didn't see a copy of the Times more than once every
few months. So I looked at it and it said someone had got a patent for
"Inventing a new method of compressing data". I figured I better take
a look at this patent. I got a copy and it turned out to cover the
program that we were just a week away from releasing. That program
died before it was born.

Later on we did find another algorithm which was unpatented. That
became the program gzip, which is now effectively the de-facto
standard for data compression. As an algorithm to use in a program
for data compression, it was fine. Anyone who wanted to do data
compression could use gzip instead of compress.

The same LZW compression algorithm was also used in image formats such
as the GIF format. But there, because the job people wanted to do was
not to just compress data but to make an image that people could
display with their software, it turned out extremely hard to switch
over to a different algorithm. We have not been able to do it in 10
years! Yes, people used the gzip algorithm to define another image
format, once people started to be threatened with law suits for using
GIF files. When we started saying to people stop using GIF files,
switch over to this, people said "We can't switch. The browsers don't
support the new format yet". The browser developers said "We're not
in a hurry about this. After all, nobody is using this new file
format".

In effect, society had so much inertia in the use of the GIF format,
we have not been able to get people to switch. Essentially, the
community's use of the GIF format is still pushing sites into using
GIF format with the result that they are vulnerable to these threats.

In fact, the situation is even more bizarre. There are in fact two
patents covering the LZW compression algorithm. The patent office
couldn't even tell they were issuing two patents on the same thing,
they couldn't keep track. There is a reason for this: it takes a
while of study of these two patents to see that they really cover the
same thing.

If they were patents on some chemical process, it would be much
easier. You could see what substances were being used, what the inputs
were, what the outputs were, which physical actions are being
taken. No matter how they are described, you'd see what they were and
then you would see they are similar. If something is purely
mathematical, there are many ways of describing it, which are a lot
more different. They are not superficially similar. You have to really
understand them to see they are really talking about the same
thing. The patent office doesn't have time. The U.S patent office as
of a few years ago was spending on average 17 hours per patent. This
is not long enough to think carefully about them, so of course they
make mistakes like that. In fact, I told you about the program that
died before it was born. That algorithm also had two programs issued
for it in the U.S. Apparently, it is not that unusual.

Avoiding the patents may be easy, may be impossible. It may be easy
but it makes your program useless. It varies depending on the
situation.

Here is another point I should mention: Sometimes a company or
consortium can make a format or protocol the de-facto standard. Then,
if that format or protocol is patented, that is a real disaster for
you. There are even official standards that are restricted by patents.

There was a big political uproar last September when the World Wide
Web consortium was proposing to start adopting standards that were
covered by patents. The community objected so they reversed
themselves. They went back to insisting that any patents had to be
freely implementable by anyone and that the standards had to be free
for anyone to implement. That is an interesting victory. I think that
was the first time any standards body has made that decision. It is
normal for standards bodies to be willing to put something in a
standard which is restricted by patents and people are not allowed to
go ahead and implement it freely. We need to go to other standards
bodies and call on them to change their rules.

2) Licensing the patent. The second possibility instead of avoiding
the patent is to get a license for the patent. This is not
necessarily an option. The patent holder does not have to offer you a
license, it is not required. 10 years ago, the League for Programming
Freedom got a letter asking for help from somebody whose family
business was making gambling machinery for casinos, and they used
computers back then. He received a threat from another company that
said, "We have a patent. You are not allowed to make these things.
Shut down!"

I looked at this patent. It covered having a number of computers on a
network for playing games such that each computer supported more than
one game and allowed you to play more than one game at a time.

You will find patent office really thinks there is something brilliant
about doing more than one of anything. They don't realise that in
computer science, that's the most obvious way to generalise anything.
You did it once, so now you can do it any number of times, you can
make a subroutine. They think that if you do anything more than once,
that somehow means you are brilliant and that nobody can possibly
argue with you and that you have the right to boss them around.

Anyway, he was not offered a licence. He had to shut down. He
couldn't even afford really to go to court. I would say that
particular patent was an obvious idea. It is possible that a judge
might have agreed, but we will never know because he could not afford
to go to court.

However, a lot of patent holders do offer licenses. They often charge
a lot of money for that though. The company licensing the natural
order recalculation patent was demanding 5% of the gross sales of
every spreadsheet in the U.S. I am told that was the cheap
pre-lawsuit price--if you actually made them sue you and they won,
they'd demand more. You might be able to afford that 5% for licensing
this one patent, but what if you need to license 20 different patents
to make the program? Then all the money you take in goes on patents.
What if you need to license 21 patents?

People in business told me that practically speaking, 2 or 3 of them
would make any business unfeasible.

There is a situation where licensing patents is a very good
solution. That is if you are a multinational mega-corporation. Because
these companies own a lot of patents, and they cross-license with each
other. That way, they escape most of the harm that the patent system
does and they only get the good.

IBM published an article in Think magazine--I believe it was issue
No. 5 of 1990--on IBM's patent portfolio, which said that IBM got two
kinds of benefit from it's 9000 U.S. patents. (I believe the number
is larger today.) These were, first, collecting royalties and second,
getting "access to the patents of others." They said that the latter
benefit is an order of magnitude greater. So the benefit that IBM got
from being allowed to use the ideas that were patented by others was

10 times the direct benefit IBM could get from licensing patents.

What does this really mean? What is the benefit that IBM gets from
this "access to the patents of others"? It is basically the benefit
of being excused from the trouble that the patent system can cause
you. The patent system is like a lottery. What happens with any
given patent could be nothing, could be a windfall for some patent
holder or a disaster for someone else. But IBM being so big [that],
for them, it averages out. They get to measure the average harm and
good of the patent system. For them, the trouble of the patent system
would have been 10 times the good.

I say "would have been" because IBM through cross-licensing avoids
experiencing that trouble. That trouble is only potential, it doesn't
really happen to them. But when they measure the benefits of avoiding
that trouble, they estimate it as 10 times the value of the money they
collect from their patents.

This phenomenon of cross-licensing refutes a common myth, the myth of
the "starving genius", the myth that patents "protect" the "small
inventor". (Those terms are propoganda terms. You shouldn't use them.)

The scenario is like this: Suppose there is a "brilliant" designer of
whatever. Suppose he has spent "years" starving in the attic designing
a new wonderful kind of whatever, and now wants to manufacture it, and
isn't it a shame the big companies are going to go into competition
with him, take away all the business, and he'll "starve".

I have to point out that people in high tech fields are not generally
working on their own and that ideas don't come in a vacuum, they are
based on ideas of others; and these people have pretty good chances of
getting a job if they need to these days. So this scenario, the idea
that a brilliant idea came from this brilliant [person] working alone
is unrealistic, and the idea that he is in danger of starving is
unrealistic. But it is conceivable that somebody could have an idea
and this idea along with 100 or 200 other ideas can be the basis of
making some kind of product, and that big companies might want to
compete with him.

So let's see what happens if he tries to use a patent to stop them.
He says "Oh No, IBM. You cannot compete with me. I've got this
patent." IBM says, "Let's see. Let's look at your product. Hmmm. I've
got this patent and this one and this one and this one and this one
and this one, which parts of your product infringe. If you think you
can fight against all of them in court, I will just go back and find
some more. So, why don't you cross license with me?" And then this
brilliant small inventor says "Well, OK, I'll cross license". So he
can go back and make these wonderful whatever it is, but so can IBM.
IBM gets access to his patent and gets the right to compete with him,
which means this patent didn't "protect" him at all. The patent
system doesn't really do that.

The mega-corporations avoid the harm of the patent system; they see
mainly the good side. That is why they want software patents: they
are the ones who will benefit from it. But if you are a small
inventor or work for a small company, the small company will not
be able to do this. Small companies cannot get enough patents to do
this.

Any given patent is pointing in a certain direction. So if a small
company has patents pointing there, there and there and somebody over
there points a patent at them and says give me your money, they are
helpless. IBM can do it [retaliate] because with 9000 patents, they
are pointing everywhere; no matter where you are, there is probably an
IBM patent pointing at you. So IBM can almost always make you cross
license. Small companies can only occasionally make someone

cross-license. They will say they want patents for defensive
purposes but they won't get enough to be able to defend themselves.

There are cases where even IBM cannot make someone cross-license.
That is when there is a company whose sole business is taking a patent
and squeezing money out of people. The company that had the natural
order recalculation patent was exactly such a company. Their sole
business was to threaten to sue people and collect money from people
who were really developing something.

There are no patents on legal procedures. I guess the lawyers
understand what a pain it would be to have to deal with the patent
system themselves. The result is that there is no way to get a patent
to make that company cross license with you. So they go around
squeezing everyone. But I guess companies like IBM figure that is part
of the price of doing business so they can live with it.

So that is the possibility of licensing a patent, which may or may not
be possible, and you may or may not be able to afford it

The third possibility 3)Overturning a patent in court. Supposedly, in
order to be patented, something has to be new, useful and unobvious.
That is the language used in the U.S.; I think other countries have
other language which is pretty much equivalent to it. Of course, when
the patent office gets into the game, they start interpreting "new"
and "unobvious". "New" turns out to mean "We don't have it in our
files", and "unobvious" tends to mean "unobvious to someone with an
I.Q of 50".

Somebody who studies most of the software patents issued in the U.S.,
or at least he used to, I don't know if he can still keep up with
them, said 90% of them wouldn't have passed the "Crystal City test",
which meant if the people in the patent office went outside to the
news stand and got some computer magazines, they would see that these
ideas are already known.

The patent office does things that are so obviously foolish, you
wouldn't even have to know the state of the art to see they are
foolish. This is not limited to software. I once saw the famous
mouse patent which was obtained after Harvard genetically engineered a
mouse with a cancer-causing gene. The cancer-causing gene was already
known, and was inserted using known techniques into an already
existing strain of mouse. The patent they got covered inserting any
cancer-causing gene into any kind of mammal using any method
whatsoever. You don't have to know anything about genetic engineering
to realize that is ridiculous. I am told that this "overclaiming" is
normal practice, and that the U.S. patent office sometimes invites
patent applicants to make their claims broader--basically, make the
claims broader until you think they are running into something else
which that's unambiguous prior art. See how much land grab in mental
space you can get away with.

When programmers look at a lot of software patents, they say "this is
ridiculously obvious!" Patent bureaucrats have all sorts of excuses
to justify ignoring what programmers think. They say "Oh! but you
have to consider it in terms of the way things were 10 or 20 years
ago." Then they discovered that if they talk something to death then
you can eventually lose your bearings. Anything can look unobvious if
you tear it apart enough, analyse it enough. You simply lose all
standard of obviousness, or at least lose the ability to justify any
standard of obvious or unobvious. Then, of course, they describe the
patent holders as brilliant inventors, all of them, therefore we can't
question their entitlement to power over what we do. If you go to
court, the judges are likely to be a little more stringent about what
is obvious or not. But the problem is that it costs millions of
dollars to do that.

I heard of one patent case, the defendant I remember was Qualcomm, and
I believe the ruling was ultimately 13 million dollars of which most
went to pay the lawyers on both sides. There were a few million
dollars left over for the plaintiff (because they [Qualcomm] lost).

To a large extent, the question of the validity of a patent will
depend on historical accidents. Lots of historical accidents such as
precisely what was published when, and which of those things somebody
manages to find. Which of them didn't get lost, precise dates and
so-on. Many historical accidents determine whether a patent is valid.

In fact, it is a weird thing that the British Telecom following
hyperlinks together with telephone access patent was applied for in
1975. I think it was in 1974 that I developed the Info package for
the first time. The Info package allows you to traverse hyperlinks,
and people did use telephones to dial up and access the system. So in
fact, I did produce a piece of prior art for this patent. This is the
second piece of prior art I have produced in my life.

I didn't think this was interesting enough to publish it. After all,
the idea of following hyperlinks I got from the demo of Englebart's
editor. He is the one who had an idea which was interesting to
publish. What I done I called "poor man's hypertext", as I had to
implement it in the context of TECO. It was not as powerful as his
hypertext, but it was at least useful for browsing documentation,
which it all it was meant for, and as for there being dial-up access
to the system, well, there was, but it didn't occur to me that the one
had anything particular to do with the other. I wasn't going to
publish a paper saying, "Oh! I implemented this poor man's hypertext,
and guess what! There are dial-up lines on the computer too!" I
suspect there is no way to tell precisely on what date I implemented
this.

And was it published in any sense? Well, we invited guests to come in
across the ARPAnet, and log in on our machine, so they could have
browsed documentation using Info and seen the thing. If they had
asked us, they would have found we had dial-up access. As you can
see, historical accident determines whether you have prior art.

Now of course, there is a publication made by Englebart about
hypertext, which they [the defendants] are going to show. I don't
think it says anything about having dial-ups on the computer however,
so whether it will suffice is not clear.

So, this is an option, the possibility of going to court to overturn
the patent. Because of the expense, it is often out of the question
even if you can find solid prior art which ought to be sufficient to
overturn the patent. As a result, an invalid patent, a patent which
nominally shouldn't have existed (but in fact lots and lots of them
do) is a dangerous weapon. If someone attacks you with an invalid
patent, that can really cause a lot of trouble for you. You might be
able to bluff them away by showing them the prior art. It depends
on whether they can get scared off that way. They might think,
"Well, you are just bluffing, we figure you can't really go to court,
you can't afford it so we'll sue you anyway".

All of these three possibilities are things that sometimes you can
manage to use, but often you can't. So you have to face patent after
patent after patent. Each time you may be able to find one of these
three possibilities you can use, then there is another patent, then
another and another. It gets like crossing a minefield. Each step
you take, each design decision, probably won't step on a patent, so
you can take a few steps and probably there won't be an explosion.
But the chance you can get all the way through the minefield and
develop the program you want to develop without ever stepping on a
patent gets less and less as the program gets bigger.

Now, people used to say to me, "Well, there are patents in other
fields, why should software be exempt?" Note the bizarre assumption
in there, that somehow we are all supposed to suffer through the patent
system. It is like saying "Some people get cancer. Why should you be
exempt?" As I see it, each person who doesn't get cancer is good.

But there is, behind that, a less biased question, a good question,
which is: Is software different from other fields? Should patent
policy be different in different fields? If so, why?

Let me address that question: patents relate to different fields
differently because in different fields patents relate to products
differently.

On one extreme we have pharmecuticals where a given chemical formula
would be patented, so that patent covers one and only one
product. Some other product wouldn't be covered by the existing
patent. If there is to be a patent for this new product, the patent
holder would be whoever developed the new product.

This fits in with the naive idea of the patent system that we have,
that if you are designing a new product, you are going to get "the
patent". The idea that there is one patent per product and that it
covers the idea of the product. In some fields it is closer to being
true. In other fields it is further from being true.

[The software field is at that extreme.] This is because
software packages are usually very big. They use many different ideas
in a new combination. If the program is new and not just copied, then
it is probably using a different combination of ideas--combined, of
course, with newly written code, because you can't just magically say
the names of these ideas and have them work. You have to implement
them all. You have to implement them all in that combination.

The result is that even when you write a program, you are using lots
of different ideas, any one of them might be patented by somebody. A
pair of them may be patented as a combination by somebody. There
might be several different ways of describing one idea which might be
patented by various different people. So there are possibly thousands
of things, thousands of points of vulnerability in your program, which
might be patented by somebody else already.

This is why software patents tend to obstruct the progress of
software--the work of software development. If it were one patent-one
product, then these patents wouldn't obstruct the development of
products because if you develop a new product, it wouldn't be patented
by somebody else already. But when one product corresponds to many
different ideas combined, it gets very likely your new product is
going to be patented by somebody else already.

In fact, there is economic research now showing just how imposing a
patent system on a field where there is incremental innovation can
retard progress. You see, the advocates of software patents say
"Well, yes, there may be problems, but more important than any
problems, the patents must promote innovation, and that is so important
it doesn't matter what problems you cause". Of course, they don't say
that out loud because it is ridiculous, but implicitly they want you to
believe that as long as it promotes progress, that outweighs any
possible cost. But actually, there is no reason to believe it does
promote progress. We now have a model showing precisely how patents
can retard progress. The case where that model can fit describes the
software field pretty well; incremental innovation.

Why is software on that extreme of the spectrum? The reason is that
in software we are developing idealised mathematical objects. You can
build a complicated castle and have it rest on a thin line and it will

stay up because it doesn't weigh anything. In other fields, people
have to cope with the perversity of matter--of physical
objects. Matter does what it is going to do. You can try to model it,
[but] if the actual behaviour doesn't fit the model then tough on you,
because the challenge is to make physical objects that really work.

If I wanted to put an 'If' statement in a 'While' statement, I don't
have to worry about whether the 'If' statement will oscillate at a
certain frequency and rub against the 'While' statement and eventually
they will fracture. I don't have to worry whether it will oscillate at
a certain higher frequency and induce a signal in the value of some
other variable. I don't have to worry about how much current that 'If'
statement will draw, and whether it can dissipate the heat there inside
that 'While' statement. Whether there will be a voltage drop across the
'While' statement that will make the 'If' statement not function. I
don't have to worry that if I run this program in a salt water
environment, the salt water may get in between the 'If' statement
and the 'While' statement and cause corrosion.

I don't have to worry when I refer to the value of a variable whether
I am exceeding the fan-out limit by referring to it 20 times. I don't
have to worry how much capacitance it has and whether there has been
sufficient time to charge up the value. I don't have to worry when I
write the program, about how I am going to physically assemble each
copy and whether I can manage to get access to put that 'If' statement
inside the 'While' statement. I don't have to worry about how I am
going to gain access in case that 'If' statement breaks, to remove it
and replace it with a new one. [There are] so many problems that we
don't have to worry about in software. That makes it fundamentally
easier. It is fundamentally easier to write a program than to design
a physical object that's going to work.

This may seem strange because you have probably heard people talking
about how hard software is to design and how this is a big problem and
how we are going to solve it. They are not really talking about the
same question as I am. I am comparing physical and software systems
of the same complexity, the same number of parts. I am saying the
software system is much easier to design than the physical system.
But the intelligence of people in these various fields is the same, so
what do we do when we are confronted with an easy field? We push it
further! We push our abilities to the limit. If systems of the same
size are easy, let's make systems which are ten times as big, then it
will be hard! That's what we do: we make software systems which are
far bigger in terms of number of parts than physical systems.

A physical system whose design has a million different pieces in it is
a mega project. A computer program whose design has a million pieces
in it is maybe 300,000 lines; a few people will write that in a couple
of years. That is not a particularly giant program. GNU Emacs now
has several million pieces in its design, I think. It has a million
lines of code. This is a project done with essentially no funding
whatsoever, mostly done by people in their spare time.

There is another big saving. If you have designed a physical product,
the next thing you have to do is design the factory to make it. To
build this factory may cost millions or tens of millions, whereas to
make copies of the program you just have to type 'copy'. The same
copy command will copy any program. You want copies on CD, then fine,
You burn a master CD and send it off to a CD plant. They will use the
same equipment which will copy any contents on a CD. You don't have
to build a factory to make this product.

There is tremendous simplification and tremendous reduction in costs
of designing things. The result is, say for an automobile company,
who will spend 50 million dollars to build a factory, to build a new
model of auto, they can hire some lawyers to cope with patent license

negotiations. They can even cope with a law suit if they wanted to.
To design a program of the same complexity may cost 50 thousand or 100
thousand dollars. By comparison, the cost of dealing with the patent
system is crushing. Or actually designing a program with the same
complexity as the mechanical design of an auto is probably a month's
work. How many parts does an auto have...that is, if it is an auto
which doesn't have computers in it. That is not to say designing a
good one is easy, but just that there are not that many different
things in it.

The result is software really is different from other fields because
we are working with mathematical stuff designing something is far, far
easier and the result is that we regularly make systems which are
much, much larger and do so with just a few people. The result is
that instead of being close to one product-one patent, we are in a
system where one product involves many, many ideas which could be
patented already.

The best way to explain it by analogy is with symphonies. A symphony
is also long and has many notes in it, and probably uses many musical
ideas. Imagine if the governments of Europe in the 1700's had decided
they wanted to promote the progress of symphonic music by establishing
a European musical patent office that would give patents for any kind
of musical ideas which you could state in words. Then imagine it is
around 1800 and you are Beethoven and you want to write a
symphony. You will find that getting your symphony so that it doesn't
infringe any patents is going to be harder than writing a good
symphony.

When you complain about this, the patent holders would say "Aw
Beethoven, you are just bitching because you have no ideas of your
own. All you want to do is rip off our inventions". Beethoven, as it
happens, had a lot of new musical ideas--ut he had to use a lot of
existing musical ideas in order to make recognisable music, in order
to make music that listeners could possibly like, that they could
recognise as music. Nobody is so brilliant that he can re-invent
music [completely different] and make something that people would want
to listen to. Pierre Boulez said he would try to do that, but who
listens to Pierre Boulez?

Nobody is so brilliant he can re-invent all of computer science,
completely new. If he did, he would make something that the users
would find so strange that they wouldn't want to use it. If you look
at a word processor today, you would find, I think, hundreds of
different features. If you develop a nice new innovative word
processor, that means there are some new ideas in it, but there must
be hundreds of old ideas in it. If you are not allowed to use them,
you cannot make an innovative word processor. Because the work of
software development is so big, the result is that we don't need any
artificial scheme to incentivise new ideas. You just have people
writing software and they will have some new ideas. If you want to
write a program and you want to make it good, some ideas will come to
you and some you will see a way to use.

What used to happen--because I was in the software field before there
were software patents--was most of the developers would publish any
new ideas that they thought were noteworthy, that they thought that
they might get any credit or respect for. The ideas that were too
small or not impressive enough, they would not publish because that
would be silly. Now the patent system is supposed to encourage
disclosure of ideas. In fact, in the old days, nobody kept the ideas
secret. They kept the code secret, it's true. The code, after all,
represented the bulk of the work. They would keep the code secret and
publish the ideas so that way the employees would get some credit and
feel good. After software [patents], they still kept the code secret
and they patented the ideas, so in fact, disclosure has not been

encouraged in any meaningful sense. The same things are kept secret
now as what were kept secret before, but the ideas which used to be
published so that we could use them are now likely to be patented and
off-limits for 20 years.

What can a country do to change this? How should we change the policy
to solve this problem?

There are two places you can attack it. One is the place where
patents are being issued, in the patent office. The other is where
patents are being applied. That is a question of what does a patent
cover.

One way is to keep a good criterion for issuing patents. This can
work in a country which has not authorised software patents before,
for instance, for the most part, in Europe. Simply to clearly
re-enforce the European Patent Office's rules which say that software
is not patentable. This is a good solution for Europe. Europe is now
considering a directive on software patents. (The directive I suppose
may be broader than that, but one of its important implications is for
software patents.) Simply by modifying this to say software ideas
cannot be patented will keep the problem out of Europe for the most
part, except for some countries that may have admitted the problem on
their own. Unfortunately one of them being the U.K. (Unfortunately
for you.)

That approach won't work in the U.S. The reason is that the U.S
already has large numbers of software patents, and any change in the
criteria for issuing patents won't get rid of the existing ones. In
fact, these patents are not officially labeled as software patents. I
say software patents but what do I really mean? Patents which might
potentially apply to software, patents which might potentially get you
sued for writing software. The patent office doesn't divide patents
into software patents and other patents. So, in fact, any patent
might conceivably get you sued for writing software if it could apply
to some software. So, in the U.S., the solution would have to be done
through changing the applicability, the scope, of patents, saying that
a pure software implementation running on general purpose computer
hardware which does not in itself infringe the patent is not covered
by any patent, and you cannot get sued for it. That is the other kind
of solution.

The first kind of solution, the solution that operates on what types
of patents can be valid, is a good solution for Europe to use.

When the U.S. started having software patents, there was no political
debate. In fact, nobody noticed. The software field, for the most
part, didn't even notice. There was a Supreme Court decision in 1981
which considered a patent on a process for curing rubber. The ruling
was that the fact that the apparatus included a computer and a program
as part of the process to cure the rubber didn't make it unpatentable.
The next year, the appeals court which considers all patent cases
reversed the quantifiers: they said the fact that there is a computer
and a program in this makes it patentable. The fact that there is a
computer and program in anything makes it patentable. This is why the
U.S started having business procedure patents: because the business
procedures were carried out on a computer and that made them
patentable.

So this ruling was made, and I think the natural order recalculating
patent was one of the first or might have been even the first.

Throughout the 80's, we didn't know about this. It was around 1990
that programmers in the U.S. started to become aware that they were
faced with a danger from software patents. So I saw how the field
worked before and how the field worked after. I saw no particular

speed up in progress after 1990.

There was no political debate in the U.S., but in Europe there has
been a big political debate. Several years ago there was a push to
amend the Munich treaty that established the European Patent Office.
It has a clause saying that software is not patentable. The push was
to amend that to start allowing software patents. But the community
took notice of this. It was actually free software developers and
free software users who took the lead. [But] we are not the only ones
threatened by software patents. All software developers are
threatened by software patents, and even software users are threatened
by software patents.

For instance, Paul Heckel, when Apple wasn't very scared of his
threats, he threatened to start suing Apple's customers. Apple found
that very scary. They figured they couldn't afford to have their
customers being sued like that, even if they would ultimately win. So
the users can get sued too, either as a way of attacking a developer
or just as a way to squeeze money out of them on their own or to cause
mayhem. All software developers and users are vulnerable.

But it was the free software community in Europe that took the lead in
organising opposition. In fact, twice now the countries that govern
the European Patent Office voted not to amend that treaty. Then the
E.U. took a hand and the Directorates of the E.U were divided on the
issue. The one whose job is to promote software is against software
patents it seems. They were not in charge with this issue. It is the
Open Market Directorate who is in charge, and is run by somebody who is
in favor of software patents. They basically disregarded public
opinion which has been expressed to them. They have proposed a
directive to allow software patents. The French government has
already said they are against it.

People who are working [on] various other governments in Europe to
oppose software patents, and it is vital to start doing so here.
According to Hartmut Pilch, who is one of the leaders in the European
struggle against software patents, the main impetus comes from the
U.K. Patent office. The UK patent office is simply biased in favour
of software patents. It had a public consultation, and most of the
responses were opposed to software patents. They then wrote a report
saying people seem to be content with them, completely disregarding
the answers. You see, the free software community said, "Please send
the answers to them and to us too." So they published these answers
which were generally opposed. You'd have never guessed that from the
report that the UK patent office published.

They use a term that they call "technical effect". This is a term
which can stretch tremendously. You are supposed to think it means a
program idea would only be patentable if it only relates to specific
physical acts. If that is the interpretation, it would mostly solve
the problem. If the only software ideas which can be patented were
those that really did relate to a particular technical, specific
physical result that you might have patented if you didn't use a
program, that would be OK. The problem is that you can stretch that
term. You can describe the result you get by running any program as a
physical result. How does this physical result different from any
other? Well it is as a result of this computation. The result is that
the UK patent office is proposing something that looks like it leads
to mostly solving the problem and really gives carte blanche for
patenting almost anything.

The people in the same ministry are also involved in the copyright
issue, which really has nothing to do with software patents except that
it is being handled by the same people. It is a question of
interpreting the recent E.U copyright directive, a horrible law like
the DMCA in the U.S., but there is some latitude for countries to

decide how to implement it. The UK is proposing the most draconian
possible way of implementing this directive. You could greatly reduce
the harm it does by implementing it properly. The U.K. wants to
maximise the tyrannical effect of this directive. It seems there is a
certain group--The Department of Trade and Industry?--Who need to be
reined in. It is necessary to put a check on their activities, stop
their creating new forms of power.

Software patents tie up every software developer and every computer
user in a new in a new form of bureaucracy. If the businesses that
use computers realised how much trouble this can cause for them, they
would be up in arms, and I am sure they can stop it. Business doesn't
like being tied up in bureaucracy. Sometimes, of course, it serves an
important purpose. There are some areas where we wish the UK
government did a more careful job in tying certain businesses up in
bureaucracy, like when it involves moving animals around. But in
cases when it doesn't serve any purpose except to create artificial
monopolies so that somebody can interfere with software development,
squeeze money out of developers and users, then we should reject it.
We need to make management aware of what software patents will do to
them, get their support in fighting against software patents in
Europe.

The battle is not over. It still can be won.

Copyright 2002 Richard Stallman
Verbatim copying and distribution are permitted without royalty in
any medium provided this notice and the copyright notice are preserved.

