The Economics of Open Source Software

A Public Comment Submitted to the
Federal Trade Commission and Department of Justice Hearings on
Competition and Intellectual Property Law and Policy in the
Knowledge-Based Economy

Z.0e Konovalov

November 4, 2002

Table of Contents

1. Introduction

.. 3
2. Definition of open SOULCe SOfEWALE. . vvuerr et ienie it e eee e e 4
3. History |

3a. Eérly RISTOTY. oo e 6
3b. Berkeiey and the development of the UNIX operating system, 7
3c. The development Of LIMUX. .. ovvevnverninireieeriiieeeraiteeneiaeeeenenennn. 9
3d. The ggy ‘owth of the Apache grOup 11
3e. Netscape’s rise, fall, and the release of Mozilla............ooevvivviniinnen.... 12
3f. Hardware companies and open-souxéce: a rekindled romance. 13
4. Economic analysis of open-source labor incentives.
4a. Qverview. DL F PSP PRI PP 14
4b. Creativity and Labor TnCentives.ovvvueeirarie it iieiei et eieeeeine e, 18
4c. Copyrights, Labor Incentives, and Forking............ooooviiiiiii ., 19
4d. Open-source models, elegance, and extendibility.........oovviiiiniinian.... 21
4e. The principal agent model....... e e 23
4f. >“Nev'vbies” and User Interface Design......... PRI 25
5. Open—Source business models
5a. Introduction to Business Models.v.overeiireririiiiieiiiiiiieniiianen, 27
5b. When does open source make sense to the suppliet?cc...evnn... 32
5c. List of Business Models used by Companies..........oooevviiiiiiiiiii, 35
6. Conclusion —and a 100k at the fULUre.voueiuteeeiieeieiiees e 37

7. Biblioggaphy ... 40

!

e T

Introduction

The world of open source software and open standards was once seemingly the
concern only of computer specialists and hackets, irrelevant to the general public or to

economists. Yet in the past few years, public events have launched open-source software

| into the public eye. During its antitrust trial, Microsoft’s defense argued that the company

had about 2 90% share of the operating system market, it was not able to abuse monopoly
pbwer; since viable alternatives existed which thc;, market éould turn ‘to. Richard
Schmﬂcnsee, Microsoft’s economist, testified that Linux, an open-source operating system,
represented a rapidly growing threat to Windows." Companies like RedHat, a Linux
distributor, and other open-source related firms were included in the technology stock mania
of the late 1990s; RedHat’s stock, for example, reached a high of $150 per share in the third
quarter of 2000 before plummeting to around $6 a share today.” In 1998, Netscape
announced that it would release the source code for its internet browser in an attempt to
regain its position against the Microsoft juggernaut. They were influenced in large part by
the writings of Eric Raymond, an open-source philosopher and advocate.” And in markets
such as web servers, open source solutions like the Apache group have actually captured 2
dominant market share.*

Many people found it hard to believe that software available for free, and often

cobbled together by the efforts of unpaid enthusiasts, could actually challenge Microsoft

Windows or any closed-source software company on its own turf. Yet, in fact, the form of

software development referred to as “open,” in which the soutce code for the program is

! US Department of Justice, Microsoft appeals brief, 1999
2 RedHat, 10-K Annual Report, April 2001.
3 Quitter, Speeding the Net, p316.

available, and typically based upon the contributions of a core group of volunteers, with extra
help from casual amateurs, has consistently succeeded in producing programs which ival and
even surpass their proprietary counterparts.

Press coverage of the distinctive culture of hackers — their inflammatory diatribes against
" “evil Microsoft,” their libertarian leaning and fierce meritocracy — has been the new, trendy — =
subject in the high tech field. Yet there has been very little economic analysis of why this strange
concept actually works. How can the work of volunteers, who are paid nothing and give away
their code, rival the product of a company that pays people to work? And why would it ever be
- in a company’s best interests to give away its “crown jewels” — its source code?

In this comment, I will provide a definition of open soutce software and analyze various
types of open source development, along with a brief history of open source software for
context. I will discuss some economic analyses of different business models incorporating some
form of open soutce software, mostly focussing on the labour side (i.e., what ate the incentives
programmers face to contribute). Then I will discuss the various business models that have been
proposed for making money from open source softwate.

Definition of open source software

A computer program is 2 seties of instructions of tasks to performs given to a piece of
hatdware. There are a number of different “languages,” roughly analagous to human languages,
which can be used to write a computer program. However, the only instructions which
hardware can understand are a series of 1’s and 0’s, representing the presence or absence of an

electrical current in a circuit. Computer programming languages — for example, C,

4 Netcraft annual web server survey, www.netcraft.com

C++, Java, BASIC, or Perl, exist to provide an interface between the “machine language” of

1’s and Os, which is extremely tedious for the human mind to work with, and human

I

thought about the goals of a program.

#include <stdio.h> o)
Specialized programs, known as “compilers,”

main()

{
}

can translate programs written in a higher-level
printf (“hello world”); programming language into machine language.

Therefore, when a company or -

~—The ubiguitons introductory computer
program, written in C, this causes the
words “hello world” to appear on the
screen. (Fig 1)

individual distributes a computer program,

they can make a choice about whether to

distribute only the compiled code, which

appears as 1’s and 0’s and from which it is virtually impossible to recapture the original
program, or they can distribute the higher-level source code, which carries much more
information about the structure and purpose of the program. The most basic definition of
open-source software is a software program for which the source code is available. The
price of the software is irrelevant to this definition, although it is often the case, because of
the culture of computer programmers and sotne other aspects of the software wortld, that
open-source software is available for free over the internet. However, closed-source
software can also be distributed for free; then it is known as “shareware” and usually used to
build demand for a later or more sophisticated version. And open-source software is not
necessatily free; its copyright license can put a number of specifications on its use, including
payment. The théoretical differences between open and closed-source software come from

their different developmental and distributional models.

Open source softwate is a particular kind of public good, characterized by non-
excludability (once software has been put onto the internet, it can be distributed quickly and

freely) and perfect jointness of supply (one person’s use of the resource does not deplete it).’

A brief history of software p_foggamrm'ng and open sources

Computér science is a relatively new discipline, and it was born in é;ﬁvernmeglg and
university programs that supported an open culture of sharing code and collaborating.
Therefore, the idea of “open source sof.twa;e” is as old as computer programming itself, and
can be compared to the idea of peer review of academic articles. The history of computer
science, and the interaction of the public agd private sectors, can be seen as the story of
investors trying to balance the tremendous growth that sprung from encouraging open
coﬂaborgtion, while still trying to capture the value that resulted.

The “ARPANET”, the prototype of the modern intetnet, was built by the Defense
Department in 1969 and linked hundteds of universities, defense contractors and research
laboratories.® It gave an additional boost to the sharing of code by computer scientists all
across the country, and it wasn’t long before eatly versions sprung up of the standard
-bulletin boards and email lists used by open source developers tod%xy. Some important
centers of computer science research included MIT's Artificial Intelligence Lab, Stanford
University's Artificial Intelligence Laboratory (SAIL) and Carnegie-Mellon University’s
computer science department. ARi’ANET helped create a critical mass of information by
allowing an easy exchange of ideas between people from all these different places.

Another important hub, the XEROX Cotporation’s PARC (Palo Alto Research

Center), provides an eatly example of the potential danger of over investment in open source

5 In fact, as will later be argued, use of open source software can, instead of depleting it, actually increase its
value for others in the community.

development. PARC created a huge number of important inventions, including modern
mice, windows, and icon software interface, the laser printer, the local area network, and
eatly prototypes of personal computers. Yet although the existence of PARC certainly
contributed far moré value to the wotld than it cost — it was a classic public good - XEROX
failed to recognize the value of the innovations that came from PARC, and didn’t capitalize
on many of them. Eric Raymond, a leader in the open source community, describes PARC
a as,‘place that “developed brilliant ideas for everyone else.”’
The Universigf vof Berkeléy and the development of UNIX
| UNIX, the first advanced and i;nportant computer operating system, arose as a result
of a characteristic collaboration between the semi-public (Berkeley’s computer science
department) and private (Bell Labs.) Ken Thompson, a Bell employee, modified the Multics
time-sharing operaﬁng system, and realized that by writing an operating system in the C
programming language instead of high-level machine language, it could be much more
portable, flexible, and understandable. The first implementation of UNIX came in 1969 —
the yéar that ARPANET was created — and after a decade of work UNIX had been
successfully “ported” to several different hardware systems. As Eric Raymond says, “If
Unix could present the same face, the same capabilities, on machines of many different
types, it could setve as 2 common software environment for all of them. No longer would
users have to pay for complete new designs of software every time a machine went obsolete.
Hackers could carry around software toolkits between different machines, rather than having
to re-invent the equivalents of fire and the wheel every time.”

The history of software development can be usefully viewed in terms of the

framework of the clash between a collegial, open model and a corporate, closed model. This

5 Levy, Stephen, Hackers, p52.

clash is exemplified by the problems that sprung up in the reladonship between AT&T and
Berkeley. Their collaboration started breaking down when a group of computer scientists at
Berkeley developed a distribution of UNIX called the BSD (Berkeley Software Distribution).

However, their code used part of the source code that had originated from AT&T, and the

- company sued Berkeley to prevent them from offering a free competition to its operating o

system, which earned such lucrative licensing fees.

Meanwhile, in the late 1980, the personal computer (PC) market was beginning to
" heat up, ér;d a éornpany called Microsoft v./as, &rough a collaborati(;n with IBM, able to
seize a aonlinant share of the operating system market for these domestically used machines.
The increase in PC use and the explosion of the use of the Internet by private consumers
was joined by a flowering of other companies that kept their code private and earned a
profit, such as N;etscape, the creator of the most widely used initial browser for surfing the
internet. This essay will later discuss why the market of personal users with low computer
skills and desire for applications with low networking benefits is particularly suited for
closed-source development.

However, open source development .never stopped during this time. Because the
Berkeley BSD distribution was tied up in the lawsuit by AT&T, there rose a hugé dem;md
for an open-source operating system of an equal power and sophistication to UNIX (DOS
ana Windows were not respected by setious hackers). One of the most important projects
was Linux, started by Linus Torvaldis, who wrote a kernel (based in large part on earlier

work done by Richard Stallman of the Free Software Foundadoh).

7 Raymond, Eric, “A Brief History of Hackerdom.”

The birth of Linux

As befits any institution with a passionate following, the story of Linux’s creation has
become hacker legend. It started with a Finnish graduate student, Linus Torvaldis, who

became frustrated with the UNIX operating system in 1991, and revamped it into the Linux

- core program. However, to say that Linus “created” Linux would be to misrepresent his

most important accomplishment, which was the perfection of the open-source system of
software development. As Andrew Leonard puts it in his book-in-progress on

~ the history of open-source sa&waxe, “Torvaldis exploited the Net's facility for

bringiﬁg people together . . . using e-mail and Usenet, he nurtured a worldwide

of Linux: a cute

icon has become

8

community of freely collaborating programmers.” This network of

emof theLinux | programmers, all of whom used Linux, suggested bugs that needed to be

dty.

fixed, and submitted code that fixed those bugs. Programmers had used the
open-source system ever since the first days of the Internet, but Linux is the biggest, most
complex, and arguébly the most successful open-source project ever to exist.
Linus continued to work programming Linux, but he also acted as a “benevolent dictator™:
he received submissions from anyone else using the operating system, chose the best ones,
and periodically (sometimes even daily) issued new releases of Linux’s source code, crediting
the contributors. By 1994, Linux version 1.0 was ready for general distribution. The
operaﬂng system was steadily improved, becoming more stable and more complete, with
evety new version numbered in such a way that potential users could make a choice either to
run the last version designated “stable” or risk bugs to get new features.

The Linux core handles all the basic functions of an operating system, and is still

being managed by Linus. Meanwhile, there is an expanding galaxy of Linux-compatible

j -a?Pﬁcadons, all of them “copylefted,” which are available from different places on the
5 Iﬁtémet. Linux companies such as Red Hat and VA Linux add value by providing complete
LmuX packages, available on CD-ROM, with the Linux kernel and a coherent selection of
: accessories, some of v&hich may be developed by the Linux company itself, others of which
are simply teproduced according to their “copylefts.” Last year there was a period of intense
:excitement in the investment community about Linux. Red Hat went public and at one
. point had shares valued at $150, creating a markét capitﬁzadon of $8 billion for the
| \‘ccv)mp‘i.ny; however, that euphbria has subsided — Red Hat now trade‘S at a more reasonable
$26 a share.

Today the five-year-old operating system accounts for 25% of server operating
~ systems and ’about 4% of desktop operating systems sold wotldwide. That makes Linux
~ No. 2 behind Microsoft in the server operating systems market and No. 3 in desktop
software, just behind Apple. It’s available for download from many sites, including
Ww.hmoday.com, on CD-ROM packages from various companies such as Red Hat
Linux, and even comes bundled with some Dell PCs. Despite dismissive public statements,
a Microsoft internal memo’ reads, “[Linux] poses a direct, short-term revenue and platform
thréat to Mcrosoft, particulasly in server space . . . Linux is making a progressively more

credible argument that OSS software is at least as robust -- if not more - than commercial

alternatives .. .”

8 Leonard, Andrew, “The Free Software Project:‘”

10

The growth of the Apache web server group

The Apache web server group is another open source project that started in 1995,
when the most used server software on the web was a public domain HTTP daemon
developed by Rob McCool at the N ationalA Center for Supercomputing Applications. A
group of webmasters, who had developed their own private extensions and bug fixes,
gathered together to join and coordinate these changes, something that helped them
immensely with all of their individual jobs. The core group of developers,i including Brian
Behlendorf (who works for O’Reilly Software Associates), and Ken ‘Coar (who works for
IBM), formed the Apache Software Foundation, a non-profit corporation, in July 1999."°
Their goal was to provide a legal framework for Apache’s development, but members of the
Apache community remain solidly pragmatic and focuseci on their regular jobs. The Apache
ﬁreb server group has a2 completely diffetent culture and goals from the Linux group. Theit
motivation for collaborating in an open séurce environment is much more closely tied to the

reduction of development costs in their existing work, while a contributor to Linux is more

likely to be motivated by what Lerner and Tirole call “signaling incentives.”

Today, web servers using the Apache software account for about 65% of the total

7 Janig L Fal] 908 s T r1999. < AERZO00T T e anpang
CWadd lvadLu LU e L/CHALUUCML UL Juduce vy a LULAICE IVAICLOAWVAL VLU Y L LR WICLOUCLTIVTL Y s ana Ty T T T
tthC Cncea £ dtane tha “Liall DNeocisaent 2 1% auailahle in manu slacec inchidine oo

W) Fig 2 — Apache’s growing market share (http://www.netcraft.com/survey)
W]

11

! Every eight seconds another Apache-based website joins the existing 3.5 million

on _thé Web."? Apache web servers are. well known for being stable and secure; according to

b_- anéfhef survey by Attrition.org, over half of defacements of web pages weie on Windows-
based machines Whiie Apache servers only accour;ted for 29% of defacements, despite a

| | market share more than double that. -

Netscape — Rise, fall, and possible recovery?

Netscape, which started as one of the early, trend s¢tting closed-source software

‘ ’ c;ﬁxpanies, decided in 199I9‘ to go open-source. Why did rthey chang;e their mindsé It was

£ éﬁginaﬂy very economically advantageous for Netscape to keep control of their source code.
They haa a “killer app,” code which they had developed which did not exist anywhere else,
and the market for talented programmers familiar with the then-nascent internet was illiquid
enoﬁgh that it would be extremely hard for other companies to duplicate their efforts. |
Moreover, the most important target users of Netscape were relatively computet-
inexperienced users both in businesses and households. This meant that there was a faitly
large training cost involved in beginning to use the Netscape browser. A company that
trained all its employees to use Netscape would be unlikely to shell out even more money to
train them again to use a different browser, gnd consumers would similarly be reluctant.to

| learn again. Therefore, there was a large amount of profit for Netscape to capture by
keeping control of its source code. However, over the course of the 1990s, Microsoft
developed a competing Internet browser, Internet Explorer (IE), and began to use their
monopolistic distribution channels to force IE’s dominance over Netscape. By the late
1990s Netscape had lost a considerable amount of market share, and Marc Andreeson, the

CEO of Netscape, citing the influential essay “The Cathedral and the Bazaar,” decided to

11 Netcraft web server survey, www.netcraft.com

12

release Netscape’s source code and attract a group of open source programmers in an
attempt to find a2 new way to challenge Microsoft.”” So far, this attempt has been a relative
failure, especially compared with the success of Linux and the Apache server, in attracting

both developers and users. The Mozilla browser is an interesting case study to contrast to

developmental choices that lead to incentives for programmers to volunteer their time to an

open source project, and for consumers to prefer an open source product.

\

Hardware companies and open-source software; a rekindled romance

Since software and hardware are complementary goods, as will be discussed later,
hardware companies have a natural interest in open source software. Indeed, IBM’s
mainframes originally all ran open-source operating systems, which IBM would collaborate
on with its clients. However, during the 1980s IBM moved away from this model, closing
the source code of its operating systems for mainframes and building a partnership with
Microsoft to create the proprietary DOS (Disk Operating System) for its PCs.

In the past three years, hardware companies have been rekindling their romance with
open source software. This is due in large patt to the controversy over Microsoft’s operating
system monopoly, which it used to help push hardware towatds the realm of a commodity.
In May 1998, an IBM project team created a device driver that would allow the Linux
operating system to run on its top-of-the-line mainframe computer, the System 390. IBM
has announced investments in Red Hat Linux and has funded various Linux conferences.
Other hardware companies are getting in on the action: Dell Computers now offers the
option of having Linux bundled with its PCs, and Sun Microsystems has made significant

investments in Linux server development.

12 Netcraft survey, www.netcraft.com/ survey

13

Op. en source volunteers and labor incentives.

| Many participants in open soutce software development would probably deny that

: thelr behavior has anything to do with traditional economic incentives. Instead, they are

| n;ore likely to cite the inherent ethical imperative to release source, or the fact that it is more
fan and coding skills are improved better by working with other péople. | Yet during the

B 19905 - perhaés because of the increasing rise of the competing closed-source development
: model — the open source community began to be more self-reflective about the reasons for
 their success. If open source development could be viewed in light of the tragedy of the
commons, where free-riders have an incentive to contribute less and take more than their
share, might not the open-source wotld be inherently unstable and ultimately doomed to
collapse? A number of important thinkers began to articulate the reasons why the tragedy of
the commons was not the right metaphor and that, in some cases, open source development
might not just be more enjoyable for programmets, but more effective.

Eric Raymond, a notable open-source programmer who has led such projects as the
development of Sendmail, wrote an essay called “The Cathedral and the Bazaar,” first
presented in 1997. It was the first time anyone had put closed and open development
- models into an analytical framework that stressed the different incentives each model created
and their effects on a project. The title or the essay comes from an extended metaphor he
develops, comparing closed—séurce development to building a cathedtral and open-source
development to creating a bazaar. Before Raymond became familiar Wi'th Linux, he said, “I
believed that the most important éoftware (opetating systems and really large tools like the

Emacs programming editor) needed to be built like cathedrals, carefully crafted by individual

wizards or small bands of mages working in splendid isolation, with no beta to be released

13 Madden, Andrew, “The Good Ship Netscape,” in Red Herring.
14

a pefore its time.” Instead, Linus Torvaldis, the creator of Linux, followed the rule “release
' ‘eatly, release often, delegate everything you can, be open to the point of promiscuity ... a
o great babbling bazaar of differing agendas and approaches . . . out of which a coherent and

. stable system could seemingly emerge only by a succession of miracles.”

oo — - Traditional econiomic theoty regards labor as an input like any other, whichcanbe
: Ly reg €

,deSéribed by a characteristic production function. Therefore, according to traditional
. ."manageriall thinking, increasing the number of people on a programming team could reduce
‘ tﬁe completion time requiréd by a predictable Percentage. Or, each i’lOllI spent
progtramming has a regular and predictable productivity. And it is conventonal wisdom in
the programming world that past cvertain point, the productivity of each additional
- programmer on a projecf declines preciPitously, because of communication and
coordination overhead."* In traditional production functions, there are three inputs: labor,
land, and capital; inputs begin to experience declining marginal productivity because of
constraints on one of the other inputs. If a restaurant wanted to add more sandwich grillers,
they would eventually run out of space to stand around the sandwich grill. In the
programming world, the equivalent of this space constraint is mental space in a project: there
are only so many others you can work with on a parricula; programming problem. (See
- Graph 1).
However, open-source development takes advantage of modular, parallelized
‘development. Raymond’s metaphor of an open-source project as a bazaar is misleading,
since all open-source projects depend upon having an organized leadership, either one
person alone or a group of people with a governing arrangement. Certain programming

tasks, such as debugging, don’t even require that an open source contributor be aware of any

4 Brooke, The Mythical Man-Month, p50.

15

other aspects of development, if properly managed. Furthermore, the infrastructure of open
soutce development — mailing lists and websites — encourages 2 modular structure of
software development, similar in spirit to ébject-oﬁented programming, which allows many
more programmers t(g work on a project without getting in each others’ way.

Different working arrangements and incentives can have radical and surprising
impacts én labor productivity, often through the process of parallelizing workers’ efforts.
Thgt is the key to open source development — it increases the Productivity and quality of
programming so ‘dfamz;ﬁcaﬂy tha't,‘de'spif.e eséentially depénciing on r‘noneta.tily unpaid iabor, :
certain open source pr;)jects can nonetheless compete with the best that the closed-source
wortld can accomplish. As Raymond puts it, “Given enough eyeballs, all bugs are shallow.”"’

Why is this true? The success of open source development can be broken into
sbeveral parts. The first is the ava.ila.bility of labor: programmers are willing to donate their
time to open source projects. The second is the effectiveness of the organizational model:
despite such motivational tools as the threat of firing someone or the promise of a bonus,
which conventional managers depend upon, and the far-flung nature of developmeptal
teams‘(connected by only an email list) and the sporadic involvement of individuals, open
source projecfs tend to be more efficient than closed source projects in creating stable,
elegant code and fixing bugs. And the last part is the ability of open source projects to grow
— often despite strong leadership from the top, projects such as Linux or Apache are being

continually added to and extended as the software market changes. How do programmers

know what to wotk on and which direction is the best way to go?

15 Raymond, “The Cathedral and the Bazaar.”

16

The first question, the motivations behind programmers who donate their time, is
analyzed by Josh Lerner and Jean Tirole". Essentially, 2 programmer will participate in a
project if the benefits she derives are greater than the costs of participating. These costs and
benefits have both an immediate and a delayed component. Immediate benefits can include
| monetary compensation, personal benefit from fixing a bug or customizing a program, and

the immediate cost is the opportunity cost of a programmer’s time, measured by the benefits

of the other work she could be doing.

| Delayed payoffs include two separate motivations, career cox;cerns Gob offers,
ventute capital access) and the benefits of having a good reputation among one’s peers.
Lerner and Tirole cite this second benefit as being tied to ego gratification, but a second part
of having a good reputation is the advantage that other programmers will be more likely to
help you with your projects since they respect you, lowering the cost to you of bug fixes or
information gathering.
Therefore, the question facing a programmer deciding whether to participate in a

project is:

(Current benefit (= Wage + Personal Benefit) + Future Benefit (= Career

Advantage + Reputation Benefit) >? (Opportunity cost of time)

Analyzing the signaling incentive (which Lerner and Tirole use to group the future benefits
of project participation) yieldg the prediction that open source projects will be more
attractive if the petrformance is more visible, and if the participation is indicative of talent. In
fact, these predictions hold true. Open source projects are religious about listing

contributors’ credits — one of the worst etiquette mistakes one could make would be to

16 Lerner and Tirole, “The Simple Economics of Open Source.”

17

delete a contributor’s name from a project. In his essay “Homesteading the Noosphere,”
: Eric Raymond predicts that projects will be mote popular if they are anticipated to become
| Big and famous; this is balanced against the relative importance of the contribution a
| programimer is able té make. He extends and complicates the kind of argument that Lerner
and Tirole are making by comparing the customs governing the development of open source
software to the Lockean theory of land tenure. It might or might not be better to make a
-small contribution to the Linux kernel than a big contribution to an upstart new project.
3 Creativig. r and Programming Labor Incentives
; Like any creative work, the inc;emives for programming are far more complex,
vatious, and fuzzy than the simple desire for profit. Raymond lists several aspects of open-
source development that seem to provide strong incentives for motivation and attentiveness.
The first is that open-source development provides an oPportunity to “scratch yout own
itch”; that is, programmers are self-selected by their interest in a particular project. The
work, therefore, tends to be fueled to a greater d;:gree by personal pride, as well as the
personal benefit that comes from fixing one’s own problem. Raymond says, “too often
software developets spend their days grinding away for pay at programs they neither need
nor love.” In a widget factory, it doesn’t matter if the Widget welders were personally .
fulfilled and satisfied by their work. Of course, it’s always possible to make up stories about
the wotker who is resentful and daydreams, losing track of the widgets, or an increased
number of sick days becaﬁse people can’t bear to drag themselves to work, but to a large
degree, a widget is a widget and the inner life of its producer is irrelevant. But the mind

frame of a programmer, or anyone doing creative work, is vital — motivation provides a

much better source of sparks of inspiration than duty

18

Programmers’ incentives and open source copyrights

The terms of the copyright used for an open source project has a profound influence
on the course of the iJroject and the incentives behind contributors, as well as the likelihood
of “forking.” There are several main types of copyright. The most frequenﬂy used is the
GNU General Public License, or GPL, which was written by Richard Stallman in 1983 when
he led a group of computer programmers in an effort to create an entirely open version of
UNIX. The GPLis l'moﬁvnbas a “viral” license, or “copyleft,” becaus‘e it spedﬁes that
although anyone is free to take the soutce code and use it and customize it, any new code
that incorporates some part of the original code must also be governed by the GPL. That s,
itis irnpossibié to take a program copyrighted with the GPL, modify it, and release it for
commetcial purposes. (Objections to the overly powerful viral nature of this license led to
the creation of the GNU Lesser General Public License, which allowed users to incorporate
certain free libraries into commercial products.) This contrasts with the BSD-style free
license, in which users are free to do whatever they want with the code, including using it for
commertcial purposes, as long as they include an attribution to the copyright holder, and
refrain from using Berkeley’s endorsement without permission. Other academic institutions
such as MIT, as well as mote commercial open-source organizations such as the Apache
Group, all use a version of the BSD license in which the only requirement is attribution.
Netscape’s Mozilla project did not use either of these licenses, but created the “Mozilla
License,” which some commentators pointed to as a source of tension with the open source
community, sinc‘e it reserved for Netscape the right to use donated code in proprietary ways.

The most important reason that some open source licenses “';)uld forbid the use of

free code in proprietary ways is to preserve the incentives of programmets to contribute to

19

oPen source projects. If programmers are responding to the prospect of delayed payoffs, in
the form of increasing their reputations, then closing the source of code that includes their
contribution limits that signaling capacity. Furthermore, prograrﬁmers understand
themselves to be pnﬁcipadng in a symmetrical gift culture, in which their contributions are
freely given and are understood to rcsultv in contributions from others in the future.
Modifying and closing open source code also increases the likelihood of “forking,” or

“divergence of program development, which confuses users, splits programming resoutces,

‘ and is genéréﬂljr ﬁnhealr.hy for the life of a software project. On the ;iher‘hand, forbidding
the uSe of open source code for proprietary purposes can be very limiting, and could drive
people who would otherwise be attracted to the community away. The Apache license by no
means forbids the proprietary use of Apache code, since most members ate attracted to the
Apache group by the prospect of cutting development costs in their corporate webmaster
jobs.

Recent work by behavioral economists such as Samuel Bowles and Herbert Gintis
suggests another reason why it could be important that others are not allowed to use open-
source material as part of a closed-source product: reciprocity. Experiments suggest that the
idea of equality or fair piay is valuable to humans even independent of the quesﬁon of
personal welfare. One experiment suggests, for example, that people willingly pay their fair
share in taxes until they perceive that some businesses ot individuals do not and escape
consequences from the Internal Revenue ‘Service.” Similarly, due to the culture of the open-

source world, the programmers who participate in it value fairness in and of itself, another

possible factor in the framing of open source licenses.

17 Gintis, “Beyond Homo economicus: evidence from experimental economics™

20

Why are open source programs more efficient, elegant, and stable?

One of the tropes of the open source world is that open-source programs tend to be
more “elegant” than closed source programs. Itis hard to understand this concept without
having programmed before, but a useful simile might be of a program as a complicated piece
of machinery with plaées for other machinery to attach. Two machines fnight do exactly the
same task equally well, but oﬁe machine could have an easy slot to attach another extension,
while the second machine might need to be gutted and reassembled before it could be
extended. Things are further complicated by the fact that many different programmers will
wotk on a piece of code over its lifetime, and often, later generations of programmers will
have no way of communicating with the original creators of the code, and will have to rely
only on the code and its comments to understand how the program works and how to
extend it. Style and commenting is an incredibly important subject fbr programmers, and it
is common for a programmer to understand a piece of code she has written very well, while
it is almost incomprehensible to others."® This is why d"'xere is a difference between writing a
piece of code for personal use and for others: if the individual programmer is the only one
who has to use, 2dd to and understand the program, she can often complete the project in a
fraction of the time it would take to create a stable, elegant, public-ready version.

For this reason, effort expended on comments, style, and overall organization of
code can be seen as a public good. Comments and structure are often seen as a hassle by
programmers, who prefer to concentrate on the immediate goal of getting code that works

without botheting to explain themselves or figure out the best way of structuring their

18 A contest exists called the “Obfuscated C Award,” in which, as a joke, programmers compete to create C
programs which are bug-free and work perfectly, but in which it is completely impossible for a normal human
to figure out what the function or end result of the code will be after it is compiled. This can be seen as the

extreme case of non-extendible code.

21

grarm. They impose an 1rnmcd1ate cost; however, they drastically reduce the future cost

i PIO

of gxtcnding, modifying, and stabilizing a program.

- One could say that there is no basic teason why open source programming should be
f;:,table to create code of more elegance and stability; after all, managers in closed source

compames could simply take account of the future savings and instruct their programmers to

»',‘;:O‘dc in a future-savvy way. However, there are several reasons that programmers working
on closed—séurce projects are much less likely to invest effort in the future value of their

. cédé. The first is a failure in managers’ abilities to check up on prog;ammers. Often,

| n;anagers are inexperienced programmers themselves, and might not understand the

| implications of stylish coding. Even if they know how to code themselves, it takes a long

* time to read over the structute of a program, checking for grace and appropriate comments,
as opposed to simply checking if it fulfills fhle end requirements. Managers sometimes try
workarounds, such as programs that analyze a piece of code to calculate the percentage of
the total text taken up by comments. However, programmers easily get around these ploys
by inserting dummy comments such as /*Hello, World!* /. The more basic problem is that
programmers themselves often have little investment in the future life of a project. They
know that they will probably not be the ones working on a program later, so they will not

have to deal with the future implications of their ugly code, and because it is not very

transparent who is responsible for a piece of code, they have no reputation benefits to wotry

about.

22

Factors internalizing the incentives Factors destroying incentives for
for programmers to create clean code | programmers to create clean code

Ownership is obvious Tenuous link between code and its author
Code is an important platform for future | Code will not be used in the future
projects '

Link between cleanness of code and No link between code quality and
compensation: compensation

1. Well-informed, insightful managers
2. Peer review (the larger and more
widespread, the stronger the incentive)

Programmer has a long-term relationship | Programmer expects to “hand-off” whatever
with code: expects to keep job for some | code has been created and soon work at a
time and to have to work with code different, unrelated job '
created ' ' ‘

Conventional software development and the principal-agent model

In short, there is a moral-hazard problem with the conventional model of software
programming teams, which can be approximated by the principal-agent model in game
theory". Assume a project manager can choose a compensation package to offer to a
programmer. The programmer can choose a high-effort working strategy (EH) including
future planning and extensive commenting, or a low-effort strategy featuring murky, buggy
code (EL). However, this model is complicated because the firm’s initial profit will always
be A; regardless of how clean the code is, if it is closed-source, it only matters that the code
fulfills its desired function. However, the programmer’s effort will influence the company’s

future profits, which depend upon being able to adapt, extend, and maintain its existing
code. Low effort (EL) implies 2 higher probability of future profit B and effort EH implies
a higher probability of future profit C, where (C>B).

Incentive schemes that are used to deal with the moral hazard problem include the

pure wage scheme with a fixed salary, the pure franchise scheme where the agent pays a

fixed franchise fee and is essentially a “residual owner,” and the wage plus bonus scheme

23

where risks and profits are split between the agent and the employer. Game theory predicts

¢hat the franchise system and the bonus scheme will be more likely to elicit effort from the

agent, respectively, and all of these payment schemes exist in the software industry.

However, the fact that the costs of inelegant software design are revealed only in the

- future means that the vatious incentive schemes are often irrelevant under a closed model, as
long as the future is discounted heavily enough in people’s minds, which it often is in the

"’_ software industry. Decisions are made based on the initial profit A, not the future profits B

s

" _A or C.

An example of the problems that can arise from the shoddy workarounds

encouraged by the organizational structure of closed source software companies comes from

the example of Netscape.” In 1999 the company decided it wanted to release their browser
code to the world and add %1 powérfui new rendering engine. However, first it had to hire
people to comb through the browser source code and remove all of the swearwords and
other offensive language inserted in the comments by stressed programmers. Then, the
structure of the Netscape code which had accumulated over the years turned out to be too
complicated for outside programmers to understand well enough to modify. The Mozilla
team énded up throwing out most of their old code altogether and starting completely from
scrétch.

By contrast, in the open source world, it is imperative that one’s code be clearly
understandable to others in a wide audience. That is how ong’s petformance is measured
and how one’s reputation is increased. Credit for code is clearly assigned. Even within
various departments of a company like Microsoft (for example, teams working on Microsoft

Word and Internet Explorer), it is hard to request access to source code. By contrast, a

19 Dutta, Prajit, Strategies and Ganes.

24

p gogrammer releasing code into the open source universe knows that it must be readily

| 6 émpréhensible to a virtually unlimited audience. The transparency and peer review of the
éPen source world seems to be the only effective mechanism for creating the public good of
élean, elegant code, ft is this fact, along with the idea of parallelizable debugging, that leads
;0 the‘ﬁOtOIiOUS fact that open source programs tend to be much more stable and bug-frée

- pan their closed-source counterparts. This feature, of course, is more valuable for mission-
Gfidcal proéams than for those used in 2 more casual way. A domestic Windows user

aoesn’t mind that much, if she has to reboot het computer a few times when it freezes, but it .

i imperative that 3 web server not crash for months at a time.

hy are open source programs hard for neophytes to understand?

‘The vast majority of domestic consumers in the world stll use application software
created by proptietary, closed-source companies, and, furthermore, have no interest in seeing
¢he source code of the software they are using. This fact is often hard for the hackers in the
open source culture to understand; to a hacker, the idea of using a graceful program you can
gespect is paramount. However, there is a reason that proprietary software is much more
gcCCSSible to inexperienced users: closed-source companies have the resources to expend on
pelp files, documentation, and, most importantly, user interface architecture. (There isa
distinction to be drawn here. All the help, documentation and guidance one could ever want
of1 a1 OpEn soue program is certainly available online, and the programming community ;s
qUiCk to respond to requests posted on bulletin boards. However, this is more useful to the
experienced or business user who knows where to go and what questions to ask, not Mr.

First-Time PC wser who needs a cheery pop-up help file).

Quittner, Joshua, §peeding the Net, pp103-20.

25

Why doesn’t documentation and help files get fulfilled by Raymond’s free market of
patches, where hackers try to “homestead the noosphere” in the most desirable places?
There are several reasons. Fifst, documentation and help is a bit of a dull job, which requires
time but not much ix;tellectual creativity; it therefore carries less signaling power to a hacker’s

skills. Second, a related point, programmers who volunteer their time are competing for
status amongst each other, not amongst inexperienced computer users who have no relation
to then: lives, so they taﬂo¥ their products to an »experie»nced audience. And third, there is a
high‘erﬁinfo:;.mz'ztion gap even ass@g a hacker did have the motiva;ion to make a program
more usable. A fundamental feature of user intetface architecture is that it is impossible to
see the shortfalls in a system you have designed or that you understand. Yet the open source
community doesn’t have aﬁy of the UI testing labs that Microsoft, for example, invests in,

- and anyone who is exposed to an open source project in the development phése has already
overcome a faitly high barrier of competency. Therefore, the cost to an open-source
programmer of figuring out how to best help and guide an inexperienced user is higher than
to a closed source programmer, and rhanagers in closed-source companies can easily allocate
programming time to the dull jobs of documentation and help, ot the more complicated and
inaccessible» job (more related to psychology than programming) of user interfacé design.
There is a reason that the closed-source Macintosh and then Windows were the furst to use
the famous “graphical interface,” and that it is Microsoft and not Linus that has dabbled
with such concepts as the “pop-up help paperclip.”

| It can therefore be predicted that if extensive help manuals and user interface design
does exist relating to the open source world, it will not be free. In fact, this is the case, and
the gréatest number of companies providing help and packaging has sprung up around the

program with the most potential to reach a domestic audience: Linux. (Anyone who is really

26

in the market for 2 web server is probably computer-savvy enough to be on a similar level
with its developers and therefore understand the kind of help they are able to give)) The
most prominent companies of this sort include Red Hat Linux and TurboLinux; essentially,
what they sell is not fhe Linux code (which is available for free anywhere) but easy to use
packaging, instructions for installation, and “dummy” bug fix guides. Part of the cost is

from the raw materials of the box, paper and CD-ROM, but most is for the marketing and
user interface design investment. The Red Hat user’s manual, for example, has a glossy
cover, and 425 pégesﬁ of well-organized help séctions, compleie With‘page views and graphics
and reassuring text like “If you count yourself among the many who are discovering Red Hat
| Linux for the first time, this book is for you”™ Nothing remotely similar would have been

available for a would-be Linux newbie even three years ago.

4. Open Source Business Models and the Market for Lemons

In the previous section I gave the example of certain companies that have sprung up
around the idea of providing user interface support for Linux, such as Red Hat Linux.
Indeed, while the labor side of open source softwate is certainly most prominent, and has
been the subject of most acadenﬁc scrutiny, fhere are a number of business models that have
been built around open source software in some way. The question of what to do with the
source code of its projects is an important one for businesses, too often given little
consideration under the knee-jerk reaction of keeping it secret. While the alternate response
of many of the mote fervent membets of the open source community — that of freeing all

source code — certainly doesn’t always make economic sense for businesses, I plan to analyze

2 Redhat, Getting Started Guide, pix

27

some of the various costs and benefits of releasing the source code for programs, and the
dynamic incentives that govern how they change over time.

5 The case of co@paﬂgs contracting out a software development project — for
;‘example, a content ménagemen‘t system, a database system, or a web server —is a classic
_"‘example of asymmetric information and how it can sometimes create what Akerlof described

222

as 2 “market for lemons.”* Like a used-car salesman, a software company providing a

'péckage of closed-soutce code has a lot more information about the stability, elegance, and

future maintenance costs of that software than the buyer ever will. Yet often the function of .

‘the code is far more vital to the buyer’s business than a car ever could be.

Good Quality “Lemon”
‘Net valuation of buyer 1,500 750
‘Net valuation of seller 1,250 : 500

:‘:If what distinguishes a good car from a bad car is the expected costs of upkeep and repairs,
similatly, the distinction between well- and poorly-written pieces of software is the future
-costs of changing and updating them. Suppose that the expected upgrade cost of a good
quality softwa;e package is 100 and it is 850 for a badly-designed piece of code. If there are
both competent and shoddy software consultants in the marketplace with an equal

| probability, and no way of evaluating the quality of the code inside the product they provide,
the average vaiuation for a buyer will be (750 + 1500)/2 or 1,125. Yet no good-quality
software provider will be able to sell at that price, and only “lemons” will remain in the

: markeq:»lace.23

* 2 Akerlof, “The Market for Lemons.”
- B Dutta, Strategies and Games, p392.

28

This is part of the reason why, in markets such as the business database system,
brand names like Oracle become so important; they are one way of making sure of the
quality of the code. Yet even a well-established company like Oracle has been infamous in
the past for providiﬁg buggy first solutions to customers, as well as marketing strategies that
play on uncertainties about their competitors. There are a growigg number of mid-range
companies in the business;database space who, while less prestigious than Oracle, have
found their niche by offeting open-source software solutions that solve the lemon problem
through trzms»pa.x:ency.24 |

Another important advantages open source software holds for its customers is the
security that they will be able to maintain’ and modernize their code even if the company
supplying it goes out of business. In the closed-source wotld, there is a huge incentive for
the selection of software suppliers with strong ieputations and stable cash flows, because the
tisk for customers if their suppliers go out of business is huge. They will be stuck with an
impenetrable system that nobody has the power to change when needed, and will be forced
to incur the large costs needed to switch to an alternate system. In the words of Eric
Raymond, “Thé price a consumer will pay is effectively capped by the expected future value of
vendor service (where ‘sérvice' is here construed broadly to igclude enhancements, upgrades,
and follow-on projects).”” By contrast, if the source code for the prog@s a business uses
is available, it doesn’t matter whether the original supplier disappears, because the business
can either make the necessary changes and adaptations itself, or hire somebody else to do it.

Opening the sources code also has a number of advantages for customers related to
increased information. They will be better able to verify that the software system is stable

and has no secutity bugs, by subjecting it to independent and outside scrutiny. Itis a

% Scannell, Ed, “New front opens in database war,” Infoworld.

29

common misconception of those unfamiliar with programming that it is necessary to keep
source code hidden in order to prevent hackers breaking in. Raymond’s words on the subject:
“[If this is your belief], T recommend therapeutic conversation with a cryptographer immediately.
The really professional paranoids know better than to trust the security of closed-source
programs, because they’ve learned through hard experience not to. Security is an aspect of
reliability; only algorithms and implementations that have been thoroughly peer-reviewed can
possibly be trusted to be secure.”2 Even besides the obvious costs that come from outsiders
compromising a system, the transparency that accompanies open soutce software makes it much
easier for customers to check the quality of the code provided by their supplier.

Other benefits to the customer have already been touched on in this comment. Open
source software is often cheaper than closed-source alternatives, or even free, depending on how
much other demand there is in the marketplace for a particular type of solution. However, this
is not always the case — for wotk contracted according to individual business specifications, there
is no inherent reason why open-sourced software should be any cheaper. And there is also the
benefit that comes from code of higher quality, because of the various labour incentives
discussed earlier. Open source code is usually more stable and extendable than closed could ever
be.

However, there are also aspects of open source software that can give clients pause. A
particular problem comes from open source code that already exists as part of the public
domain, not created according to specification. Open soutce programs are generally less user-
friendly than closed source programs, because open source programmers ate less willing to sink

time into surface design, and other aspects of using the programs — understanding

23 Raymond, “The Magic Cauldron.”

30

documentation, finding help — are often much less accessible to non-techies than are

provided by the more commercial closed-source software world. However, if one does have

technical expertise, the service and support found in the open-source world of bulletin
boards and email Hsté 1s usually at least as good as anything else available.

Finally, there is the marketing consideration. Among many parts of the corporate
world today, open source software is dismissed out of hand as a business solution because it
is assumed that anything offered for free, or as part of the open-soutce culture (seen as not
“serious”) cannot truly be of good quality. This image is often reinf;Jrced by open-source
programmers, who, because of the culture of the world they operate in, often present an
unpolished appearance and do not know how to interact by the rules of formal business.
While this might not affect the quality of their code, it can make it hard for them to interact
with some clients, depending on the nature of their corporate culture.

After examining these costs and benefits to the consumer, it is fairly easy to predict
the type of customer for whom open source programs will be most valuable. This customer
is searching for a business solution where stability, security, and quality has much more
priority than surface design and usability features. The customer is technically sophisticated,
so that finding access the support offered by the open source world carries less of a cost.
Interestingly, the actual sticker price of a software program is comparatively unimportant to
the customer in this profile; other, non-listed costs and benefits are much more important
considerations. This makes it clear why, of all open source projects that exist today, the
Apache Software Foundation has been the most successful. They specializing in developing
mission critical software — web servers — on which their participants’ jobs rely, and they have

absolutely no need to make their work accessible to newcomerts.

26 Raymond, “The Magic Cauldron.”

31

When does it make sense for a business to provide a program’s source code?

It is important to distinguish between the idea of individual programmers making the
cost-benefit decisions to contribute to a piece of open source code, and profit-driven
businesses who make the decision to either release the soutce code of programs that they
have initiated, or hire programmers to wotk on open-source projects. It would be
theoretically possible for a flourishing open—sburce software universe independent of any
related companies, thanks to the contributions from programmers who decide that
volunteering time to open-source projects is a valuable enterprise. I—‘Iowever, any
phenomenon as successful and intriguing as open source software is certain to attract
companies who seek some way of making a profit from it. So: how do businesses actually
make money from open-soutce software? Isn’t it a contradiction in terms? After all, open
source software is usually free. Whete does the money come from? We will see that there
are a number of factors that could lead companies to release the source code of their “crown
jewels”. Companies will be more likely to do it with programs which are either specifically
contracted, extremely unique and individualized, or with programs which are very
generalized, but with a value that depends largely on network effects (programs which only
become useful When many other people use them).

A company faces a trade—off when deciding whether or not to release the source
code of its programs. It could possibly lose future revenue. If the software project has
already been commissioned by a client, the issue is not the loss of that fee, but the future
loss of other fees by clients who have similar problems, or the release of valuable
information to potential competitors. On the other hand, open source development has 2

number of advantages. Development costs are lower and the code is mote likely to be stable

faster; it is likely that the customer could prefer it. Furthermore, open source code is a good

32

(Foreclosed future revenue) >? (Reduced development costs) + (Information
effects) + (Network effects)
-Cost-benefit analysis for a company deciding whether to release source code for its program

signaling method when a market is competitive or crowded. If a company’s software
program is the only one of its kind to solve a particular problem, this is less important. But
if there are many alternative options, a potential customer might not even be willing to
consider a particular company if not for the proof of competence offered by its code. An
example of this is the use of content-management systems by websites: the high-end option
is the Oracle database, which is extremely expensive, closed-source, and uses extremely
sophisticated technology. In the mid-range of the market, there are a number of competing
alternatives for lower-priced content-management systems, none of which have market
dominance. More and more of them are beginning to move to an open-source model of
development. Since content-management software is not an extremely cutting edge
technology, and furthermore, it is very specific, requiring much customer personalization,
these companies do not lose much competitive ground by opening their source code, and
make themselves much more attractive to their clients.

Netscape, for example, saw its revenue sources changed as its business developed
and as its core browser technology became less-cutting edge. When companies such as,
prirﬁarily, Microsoft, began offering competing browsers free, rent from Netscape’s formerly
proprietary technology disappeared. According to Netscape’s 1999 10-K repott, revenues
from licenses of enterprise software and related professional services revenues accounted for
66.4%, in that year, up from 30.4% in 1996, respectively. The company was evolving into a
service provider, which made the costs of releasing its source code much lower and the

benefits much higher.

33

A final and very important incentive that pushes towards the opening of soutce code
and standards is the extent to which a software program provides a base platform for other
systems. At one end of this continuum would be something like the HTTP prétoéol thaf
allows for computers all over the wotld to link into the global internet. In the middle of the
continuum would be an operating system, which is installed on one particular computer but
which provides a base for other applications to hook on to. And at the other end of the
continuum would be applic}ltiéns, stand-alone utilities that hook on to an operating system
and on which no other programs depeﬁd. Cleatly, the value of netv;ork~crucial programs
depends much more on their ubiquity and attractiveness as a base platform. The more that a
program works as part of a system with other programs, the more pressure there will be for
its standards to be open and its source code available, so that it can be useful as a platform.
This is not so important for an application like a word processing program.

Network externalities in a traditional network come when a subscriber can reach
others in a larger network. Although software programs are often governed to some degree
by this network effect, they can be thought of a “virtual network,”* where nemork
externalities arise because larger sales of component A induce larger availability of
complementary components B1, ..., Bn, thereby increasing the value of component A. The
increased value of component A results in further positive feedback. Despite the cycle of
positive feedbacks, it is typically expected that the value of component A does not explode
to infinity because the additional positive feedback is expected to decrease with increases in
the size of the network.

Not only do applications gain less value from being open-sourced than networked

programs, it is harder to make money from them. Raymond points to the distinction

27 Fconomides, Nicholas, Information Networks website, http:/ /www.stern.nyu.edu/networks/site.html

34

between the use value and the sale value of software (equivalent to its value as an
intermediate and final good)®. Much morte of applications’ value is captured in the sale.

This prediction can be verified by real life results. All of the software that drives the
Internet — the HTTP protocol, the Sendmail program which governs email standards, etc. —
is open source. The open-source Apache web server software is the most popular choice for
businesses; it is 2 mission-critical, networked program. In the world of personal computer
operating system§, Microsoft Windows, a closed-source program, is dominant, but there is
significant competition from an open-source program, Linux, amon‘g certain audiences.
However, there is no open-source equivalent to Microsoft Word or WordPerfect, or even

close.

Some business models of open-source software companies

After taking all these factors into consideration, we can determine a number of
possible business models for companies who want to téke advantage of open source
software, and evaluate their potential success. The first person to look at open source
business models in an analytical way was Eric Raymond, and his ideas were refined and
expanded by Lerner and Tirole. In June 2000 Frank Hecker released a paper on the internet
called “Setting Up Shop: The Business of Open Source Software,” based on an internal
memo he had written at Netscape in 1997 which spurred that company’s decision to release
the source code of its browser. These business models can roughly be divided into those
that focus mainly on reducing costs of software as an input, and those that create profits
from associated benefits of open soutce software.

1. The Apache model: cost-sharing. This business model relies on open source

development not as 2 source of profits, but as a way to drastically reduce the costs for

28 Raymond, “The Magic Cauldron.”

35

companies, allowing their primary businesses to become more profitable. If different users
all have a similar need for a complex type of software that is a primary input to their
business, they can derive great benefits from sharing the cost of development and reaping
the advantages of widespread peer review.

2. Risk-spreading. This is another form of cost—reductioq, in which the
encouragement of an open source community reduces the possible risk of a particular
developer leaving or going out of business:

3. Market positioniné. This is the use of open source develc‘)pment in one software
market to entrench a position and allow for the sale of proprietary software in an associated
market. One example is Netscape releasing the source code of its Mozilla browser in an
attempt to keep Microsoft from gaining a browser monopoly, so that it could continue to
hold a viable place in the server market.

4. Encourage the sale of complementary hardware. This was the eatliest open
source business model, since IBM originally released all the source code for the operating
systems of its early mainframes. Hardware and software are complimentary goods; a fast
chip is useless without software to make it work. Unlike software, hardware is a rivalrous
good: if I own a computer, that precludes you from owning the same computer. Itis
therefore very simple to capture sale value from hardware, and open source software can be
used as a way of increasing the value of that hardware. In recent months, hardware
companies such as IBM, Hewlett-Packard, and Sun Microsystems have all announced
vatious kinds of open soutce initiatives and alliances with the Linux community, so it is clear
that this business model is an important and viable one.

5. Sell services associated with open source software. The old cliché would be

“Give away the razor, sell the razor blades,” although this is not completely precise since a

36

razor is a rivalrous good while open source software is not. A better analogy might be “Give
away the recipe, open a restaurant.” Companies following this business model include
RedHat, which sells well-designed packages of ready-to-install versions of L;nux, offers
installation support and technical services.

According to RedHat’s April 2001 10-K filing, it plans to make money by “offering
technical support, custom development, and related setvices to customers, [offering]
convenience and quality with shrink-wrapped packaging, user manuals and other related
documentation and access to seﬁricés and technical support offcrinés; using open source
products as a means of attracting visitors to their web sites, which in turn can result in the
sale of other products, services, and advertising; and developing brand loyalty . . . [to]
leverage to sell additional products and services to customers.”

6. Intellectual capital marketing. Prestigious consulting companies such as
McKinsey and the Boston Consulting Group publish journals collecting their most
important market research and business insights. It is true that this allows access to their
work without paying a consulting fee, but their gifts are more than repaid by the matketing
value of these journals, increasing the companies’ intellectual reputation and their name
recognition. In a similar way, a popular open source release, if associated with a particular

company, acts like free advertising for the expertise of its human capital — its programmets —

and can allow it to gain contracts for individual customization.

Conclusions

The success of open source software is not a fluke or an unstable cultural
phenomenon. Instead, it is a serious and potentially revolutionary form of software
development, which, although it seems counterintuitive to conventional business thinking,

has the potential to challenge proprictary development in certain arenas. Some open source

37

projects have been extraordinarily successful. The Apache web server has a sterling

reputation and a market share of 65% which continues to grow. The Linux operating

system is an explosive cultural phenomenon which continues to become more user-friendly
and technically soplﬁsticated every day. Businesses are starting to take open-source ideas
seriously ~ even if it’s sometimes hard to adapt existing closed-source businesses to open-
source frameworks. Netscape’s experiment releasing the source of its web browser, as
Mozilla, has had mixed results. The browser, which was made available for the widespread
public in February, has some interesting technical advances, but Was‘ delayed more than a
year in development and has not yet pulled the rug out from under Microsoft. Some of
Netscape’s problems related to their unusual choice of license; they also had problems
building the kind of open-soutce development community that comes to a project started
from scratch.

There are many open-source initiatives which may become important in the future.
Apple’s new Macintosh OS X, released in March this year, was based on an open-source
UNIX variant; the company described it as “the most fundamental changes in both core
technology and user intetface design made by the company to the Mac OS in a single
upgrade since th¢ original introducton of the Macintosh in 1984.7% Hewlett-Packard is
developing an open-source project, “e-speak,” which aims to provide the new backbone for
internet trading in services™. Major hardware companies such as IBM, Hewlett-Packard, and
Dell and working with the Linux community to develop new high-end servers. And open-
source software has geographical as well as technical scope. Many developing countries,
such as India and China, are beginning to look towards open-source software as a way to

avoid the high prices charged by companies like Microsoft, and encourage a local software

» Apple Computers 10-K Annual Report, Sept. 2000, p11.

38

industry which can learn from the example provided by open-source programs. Part of the
United Nation’s new development program involves handing out CD-ROMs with versions of
W Llnux topromote the use of 7open—source software. 3

Yet the tools of traditional economics can seem frustrating when attempting to analyze
the success of open source software development and business models. It is still hard to
quantify the relationship between labour productivity, creativity, and inspiration, or the costs and
benefits of network effects and asymmetrical information to companies. In this comment I have
attempted to provide an overview of open-source software study, and a tentative exploration of
the economic incentives undetlying this surptising phenomenon. Yet the subject of the
economics of open source software is still wide open, and the future will hopefully bring many

more investigations into this important topic.

30 www.e-speak-hp.com
31 www.sdnp.undp.org/home/html, “Sustainable Development Networking Programme Description.”

39

Bibliography

Books

Burdman, Jessica, Collaborative Web Development: Strategies and Best Practices ﬁ)r Web Teams.
Addison-Wesley Longman Inc., New York, 1999.

Delamarter, Richard, Big Blue: IBM’s Ufe and Abuse of Power. Dodd Mead & Co., New York,
1986.

Dutta, Prajit K., Strategies and Games: Theory and Practice. Massachusetts Institute of
Technology Press, 1999.

Kernighan, Brian, and Dennis Ritchie, The C Programming Language. Prentice Hall, New
Jersey, 1988.

Levy, Stephen, Hackers: Heroes of the Computer Revolution. New York: Dell, 1985,

Macho-Stadler, Ines, and David Perez-Castrillo, An Introduction to the Economics of
Information: Incentives and Contracts. Oxford University Press, 1997.

Moore, Geoffrey, Inside the Tornado: Marketing Strategies from Silicon Valley’s Cutting
Edge. HarperCollins; New York, 1995.

RedHat Linux, The Official Red Hat Linux Getting Started Guide, Red Hat Inc., 2000.

Resnick, Mitchell, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds.
Cambridge, Mass.: MIT Press, 1994.

Shapiro, Carl, and Hal Varian, Information Rules: A Strategic Guide to the Network
Economy. Harvard Business School Press, 1999.

Quittner, Joshua, Speeding the Net: The Inside Story of Netscape and How it Challenged Microsoft.
Atlantic Monthly Pr., New York, 1998.

Wayner, Peter, Free for All: How Linux and the Free Software Movement Undercut the High-Tech
Titans. Harper Collins Publishers, New York, 2000.

Weinberg, Gerald, The Psychology of Computer Programming. Dorset House Publishing,
New York, 1971.

Weiss, Mark Allen, Data Structures and Algorithmn Analysis in C. Addison-Wesley Longman,
Inc., Menlo Patk, CA, 1997.

Journal Articles

Aketlof, “The Matrket for Lemons: Quality Uncertainty and the Market Mechanism,”
Quarterly Journal of Economics, 89: (3) 488-500, 1970.

Bowles S. and H. Gintis, “Walrasian economics in retrospect,” in Quarterly Journal of
Econonics 115: (4) 1411-1439, Nov. 2000.

Gintis, H., “Beyond Homo economicus: evidence from experimental economics,” in
Ecological Economics 35: (3) 311-322, Dec. 2000.

Hannemyr, Gisele, "Technology and Pleasure: Considering Hacking Constructive,”
First Monday, vol. 4, no. 2 (Feb.), firstmonday.org/issues/issue4 2/gisle/index.html,
1999.

Kuwabara, Ko, “Linux: A Bazaar at the Edge of Chaos,”
W@g@gﬁ@_ﬂbﬂ@%ﬂﬁm Monday internet journal,
Feb. 2000).

Lerner, Josh, and Jean Tirole, “The Simple Economics of Open Source,”

http://papers.nber.org/papers/W7600. NBER Working Paper, March 2000.

40

Newspaper and Magazine Articles

Ante, Spencer. “The Four Horsemen of the New Economy.” Business Week, 10/02/2000,
Issue 3701, p48, 1p, 1 graph, 1c.

Burr, Jeffrey; Lelii, Sonia. “The World According to Oracle.” eWeek, 10/02/2000, Vol. 17,
Issue 40, p1, 3p, 1 chart, 1c.

Cassidy, John, “The Force of an Idea,” New Yorker, January 12, 1998.

" Chang, Leslie, “Microsoft Bashers Bloom in China,” Wall Street Journal, Jan. 1,2000. 7777 o

Lee, Lydia, “Linux in Every Lap,” www.salon.com, Feb. 24, 2000.

Leonard, Andrew, “Apache’s Free Software Warriors,” Oct. 30, 1997.
(http: / /www.salon.com/tech/feature/1997/10/30/ feature/index.html)

MacVittie, Lori. “The Means to Communicate.” Network Campm‘mg, 10/16/2000, Vol. 11
Issue 20, p112, 2p, 2c.

Madden, Andrew. “The Good Ship Netscape.” Red Herring Magaz;z;ze, September 1997.

McMilian, Robert, “IBM’s Linux Point Man: Interview,” Linux Magazine’s Web Exclusive,
http://www linux-mag.com/online/iv_irvingwb 01.html, October 2000.

Ricadela, Aaron; Whiting, Rick. “Back to Data Basics.” InformationWeek, 10/02/2000, Issue
806, p22, 4p, 3¢

Scannell, Ed, and Sullivan, Tom. “New front opens in database war.” InfoWorld,
10/23/2000, Vol. 22 Issue 43, p12, 2/3p, lc.

Shankland, Steven, “Computing heavyweights to chaperone Linux into servers.” CNet News,

August 30, 2000. (http://news.cnet.com/news/0-1003-200-2648853.html)

Weiss, Aaron, “Open Soutce Moves to the Mainstream,” Information Week Online

(www.informationweek.com), April 20, 2000.

Websites

Apache Group, www.apache.org.
Attrition Security website, security survey, www.attrition.org.

Economides, Nicholas, Information Networks website,

http:/ /www.stern.nyu.edu/networks/site.html ,
Ghosh, Rishab Aiyer, “Cooking pot markets: 2 model for trade and services on the internet,”
http:/ /www.dxm.org/tcok/cookingpot/.

Free Software Foundation, “What is Copyleft?”, www.fsf.org/copyleft/copyleft.html.
Hecker, Frank, “Setting Up Shop: The Business of Open Source Software.”
http:/ /www.hecker.org/writings /setting-up-shop html,
Internal Microsoft memo (“Halloween Document”) posted on www.opensource.org.
Leonard, Andrew, The Free Software Project, book-in-progrtess.
http://www.salon.com/tech/fsp/outline/index.html, March 2000-April 2001.
Netcraft, Web server survey. http://www.netcraft.com/survey/.
Netscape Mozilla development site, www.mozilla.org.
Open Soutce Initiative web page, www.opensource.org.
Raymond Eric, The Cathedral and the Bazaar workmg paper.

1997
Raymond, Enc Homesteadlng the Noosphere working paper
: tuxedo. -

41

Raymond, Eric, The Magic Cauldron, working paper.
http:/ /www.tuxedo.org/~esr/writings /magic-cauldron / magic-cauldron html#toc9
June 1999. . ’

Raymond, Eric, A Brief History of Hackerdom.
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/ hacker-history, February
1997.

Shirky, Clay, “In Praise of Evolvable Systems.”

http:/ /www.shirky.com/ OpenSource/evolve.html

Sims, David, "Interview: Eric Raymond, Software Developer," TechlWes,

www.techweb.com/internet/profile/eraymond/interview, F ebruary 25, 1999.
Stallman, Richard, “The GNU Manifesto.” 1984. http://www.gnu.org/gnu/manifesto hirnl

Stallman, Richard, “Why Software Should Not Have Owners.” 1994,

http://www.gnu. org/philosophy/why-free. html

Torvalds, Linus, "Linux History," Linux International, at www.li.org/1i/linuxhisto shtml, 6
July 1999.

US Department of Justice, Mictrosoft appeals brief, 1999.

http:/ /usdoj.gov/atr/cases/ms index.htm

SEC Filings

Apple Computers Inc., 10-K Annual Report Form, filed September 30, 2000.

Microsoft Corporation, 10-K Annual Report Form, filed September 28, 2000.

Netscape Communications Corporation, 10-K Annual Report Form, filed January 29, 1999.
RedHat Inc., 10-K Annual Report Form, filed April 19, 2001.

42

