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Abstract

The paper reviews empirical best linear prediction (EBLUP) and the associated
jackknife MSE estimator of EBLUP. The bias of jackknife MSE estimator is of order
o(m™1), where m is the number of small areas. The jackknife works well both for
normal and nonnormal Fay-Herriot models. The proposed methodology is illustrated
using a real life example from the National Health and Interview Survey.

1 Introduction

Fay and Herriot (1979) put forward an empirical Bayes method to estimate per-cpita
income of small-places (population less than 1000) using a Bayesian model that combines
Current Population Survey data in conjunction with relevant administrative and census data.
Their empirical results demonstrate that their empirical Bayes estimator performed better
that both direct survey estimator and a synthetic estimator which is a direct estimator for
the corresponding county. The Fay-Herriot method is a popular small-area method because
of its simplicity and its demonstrated good empirical performances. It also produces design
consistent estimator, a desirable property which brings a model-based estimator closer to
direct estimator for large sample, irrespective of the true model.

Prasad and Rao (1990) developed a delta method for estimating mean square error (MSE)
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of empirical best linear unbiased predictor (EBLUP) of a general mixed effect in the context
of a mixed linear normal model which covers the Fay-Herriot model. Lahiri and Rao (1995)
robustified the Prasad-Rao method by allowing nonnormal random effects in the Fay-Herriot
model. However, both the papers are vaild only for ANOVA method of estimating the model
parameters. Datta and Lahiri (2000) considered the mixed linear normal model considered by
Prasad and Rao (1990) but generalized the Prasad-Rao’s method to include ML and REML
variance component estimators. More recently, Jiang et al. (2001) proposed a jackknife
method to estimate the MSE of empirical best predictor (EBP) for nonnormal and nonlinear
mized models and for general M-estimators of model parameters. Their MSE estimator enjoys
the desirable property that the bias is of order o(m™').

The main purpose of this paper is to spell out the jackknife method for the Fay-Herriot
model. For a very special case of the Fay-Herriot model, Lahiri (1995) noted that the jackknife
MSE estimator of an EBLUP involves estimated skewness and kurtosis terms. The jackknife
MSE estimtor is also asymptotically equivalent to Morris’ (see Morris 1983) formula which
was obtained as an approximation to the posterior variance under a uniform improper prior
distribution on the model parameters. Thus, the jackknife is very similar to a Bayesian
procedure, at least for this special case.

As for an illustration of our methodology, we carry out a data analysis to estimate the
proportion of people who did not visit a doctor’s office during the last twelve months for each
state and the District of Columbia (small areas). The Fay-Herriot model cannot be applied
directly to the survey estimates since one would expect its true sampling variances to be related

to the corresponding true small-area proportions. Note that the Fay-Herriot model assumes
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that the sampling variances to be known. Thus, we first make a suitable transformation of the
direct survey estimates to stabilize their sampling variances and then assumed known design
effects. We then simply apply the Fay-Herriot model on the transformed survey estimates
in order to combine information from various relevant census and administrative data. The
performances of the Fay-Herriot type of estimator and the associated jackknife MSE estimator

seem reasonable.
2 Estimation in a non-normal Fay-Herriot Model

We assume a non-normal version of the small area model considered by Fay and Herriot
(1979). According to the model, y; = 0; +¢;; 0; = .5+ v;, where e; and v; are all uncorrelated
with E(e;) = E(v;) = 0 and Var(e;) = D;, Var(v;) = A (i =1,---,m). In the model, D;’s
(t=1,---,m) are assumed to be known. Let p be the dimension of x; and ¢ = (3, A).

When ¢ is known the best predictor (BP) of 6; is simply the conditional mean of 6;
given y; and is given by 0;(yi; ¢) = (1 — ~,)@,3 + vy, where v; = A/(A + D;). Note that
the above BP can be also interpreted as a Bayes estimator When 3 is unknown but A is
known, one can estimate by the generalized least square estimator of 3, given by B(A) =
(S (A+ D) ) S (A + D) e

An EBP [or empirical Bayes (EB)] of 6; is then obtained by replacing 3 in the BP by 5(A).
Note that this is also the best linear unbiased predictor (BLUP), see Prasad and Rao (1990).

In practice A is rarely known and so it needs to be estimated from the data. Prasad and

Rao (1990) used a method of moments (MOM) estimator of A, defined by A = mazx[0, A]

with A = (m - p)_l Egl{(yi - x;BOLS)Q - (1 - hi)Di}7 where h; = 37;( ) xzﬂ?;)_lxm [}OLS =
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(X xix;)_l 2ty Tili-
Researchers have used other methods of estimating A (see, e.g. Fay and Herriot 1979,

Jiang et al. 2001, among others). Plugging in an estimator of A in the BLUP yields EBLUP

~ ~

-1 m
(A+ D) 'zix}) S (A+ D)z
1 =1

~

BA) = (

NE

-.
Il

Note that it can be also interpreted as an EB estimator.
In order to understand if EBLUP method is effective, we now develop a method of con-

structing confidence intervals of 7; based on the point estimates 4; (i = 1,---,m). Applying

D?
K

Grp) v;(A), where

Taylor series method, we obtain an estimator of Var(;) as v;(%;) =
vs(A) = m-1 m (A_, — A)? is a jackknife estimator of Var(A). Here A_, is calculated ex-
actly in the same way as A except that the data for the uth small area is deleted (v = 1,---,m)
We can construct the confidence intervals of ; as {¥; —21/vs (%), Vi +2+y/vs(Fi) }, i = 1,- -+, m.
If EBLUP is effective, the confidence intervals of 7; for most of the states will not contain 1
or 0.

Next, we discuss the important assumption of known sampling variances D;’s. In Fay and
Herriot (1979), the following justification was given. They assumed that the coefficient of
variation for the i th small area direct estimate is approximately 3/y/N;, where N; denotes
20 percent sample count. This approximation was made based on an empirical study which
found that above approximation works well for eight states. A log transformation was then
taken to stabilize the variance and the Fay-Herriot model was applied on the transformed
direct estimates with D; = 9/N;.

In view of the above discussion, we are often encountered with the problem of estimation
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of h(0;), a function, possibly nonlinear, in 6;. A simple estimator (e.g., Fay and Herriot 1979)
is h=1(6;), where h™'(.) is the inverse transformation of h(.). This is not an EBP but should
work fine as long as sample size for the small areas are not very small. We, however, note

that it is possible to come up to the BP of h(6;) and hence EBP (see, Lahiri 1999).

3 Jackknifing in the Fay-Herriot Model

In this section, we spell out the jackknife MSE estimator of the Fay-Herriot type estimator
based on Jiang et al (2001). The MSE of 0; is defined as MSE(6;) = E(6; — 6;)?, where E
is with respect to the Fay-Herriot mixed model. Note that the MSE of the BP is given by
g1:(A) = A(1 — ;). One can then naively propose a MSE estimator of EBLUP as g1;(A). The
problem with this naive estimator is that it does not incorporate the extra variabilities due to
the estimation of ¢ and so underestimates the true MSE. Several researchers addressed this
important issue and came up with improved MSE estimators which account for these extra
variabilities (see, e.g., Prasad and Rao 1990, Lahiri and Rao 1995, Datta and Lahiri 2000,
among others). But they are all valid for mixed linear normal model.

Recently, Jiang et al. (2001) proposed a jackknife method which takes into account uncer-
tainties due to the estimation of ¢. This method is valid for nonnormal and nonlinear mixed

models and for general M-estimators of model parameters. For the Fay-Herriot model, the
jackknife MSE estimator of EBLUP is given by
. . m N . —1m
mse (0;) = g1i(A) — Z G1i(A_y) — g1i(A4)] + - Z
where A,u(ﬁ,u) is the estimator of A (/3) after deleting the u'* small-area data,

Oi —w = Fi—uyi+(1— f%,—u)x;B—ua
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A,
A, + D,

~

gli(AfU) = A,u(l—’%,u).

Yi,—u —

Lahiri (1995) examined the above jackknife MSE estimator for a very special case of the

Fay-Herriot model with D; = D and )8 =p (i = 1,---,m). He showed that

. N N l)2
D? . 212 -
+m(b2 —D(yi —y)° — m\/h(yz Y),

where by = m2/(A+ D)3, by = my/(A+ D)? and gy(A) = (A:;D)x( M) et )~ly, Thus,

unlike the normality-based MSE estimators, the jackknife MSE estimator involves estimated

skewness and kurtosis terms. Lahiri (1995) also compared jackknife with the two normality-

based MSE estimators of the following EBP of 6;. 6; = § + (1-— Bl)(yi — 7)), where § =
1 <—m ) S D(m—3)

m= 3%y and B = ST W)

We present three formulae below for comparison:

Morris (1983):

(- B+ 20y ;B_lz(yz- —7)%
Prasad and Rao (1990):
(1= B)D + Dfl + 21;31,
The jackknife Formula:
(- pyp+ 2By 25%@1- -9

The jackknife estimator is equivalent to the Morris’ formula which was obtained as an

approximation to the posterior variance formula under uniform improper prior on the model
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parameters: p and A. Also, the bias of our jackknife MSE estimator is of the order o(m™1).
Thus, our jackknife MSE estimator enjoys both good frequentist and Bayesian properties. It
is interesting to note that the Prasad-Rao MSE estimator, unlike Morris’ and ours, is the
same for all the areas in this balanced case.

The above results are for the transformed scale. We need to provide results in the original
scale. We approximate the MSE of h=1(6;) by mse[h=(6;)] = [~ (6;)]mse(6;), where h="' (z)
denotes the derivative of h~'(z) with respect to 2 and mse(6;) is an estimate of MSE obtained

by jackknife method as described above.
4 Data Analysis

In this section, we demonstrate our methodology to estimate the proportion of individuals
who did not visit doctor’s office during the last twelve months for all the fifty states and
the District of Columbia (small areas) using the National Health Interview Survey (NHIS)
data in conjunction with relevant administrative and census data. Earlier Malec et al. (1997)
proposed a hierarchical Bayes method to address the same estimation problem. Unlike our
modeling, they used an individual level model and their method does not produce design
consistent small area estimators. Also, they did not use auxiliary data at the small area level.
Our method can be viewed as a first step in getting a simple minded design consistent small
area estimators. It has also a huge computational advantage over their procedure.

Let n; be the sample size for the ith state and w;; be the sampling weight for the jth
individual in the ith state (i = 1,---,m =51;j =1,---,n;). For the jth individual in the ith

state, we observe a binary response z;; which takes on the value 1 if the individual did not
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visit a doctor’s office during the last 12 months and 0 otherwise (i =1, -+, m;j =1,---,n;).
Then, z; = Z?;l wi;Zij/ Z?;l w;; is the direct survey estimate of 7;, the true proportion of
individuals who did not visit a doctor’s office during the last 12 months for the ith state
(t=1,---,m). Using SUDDAN, sample survey software, the NCHS has provided data on z;
and its sampling variance V; for ¢t =1,---,m.

Note that E(z;|m;) ~ m;, and

il —m
V(alm) = Dy, T =)
where
vy Vi
D:O = 7ri(1—7l'i) ~ Zi(l_zi) D’iO'

The factor Dy, is known as a design effect and adjusts the simple random sampling formula
by incorporating effects due to clustering and unequal probability selections. Consider the
transformation: y; = sin~',/z;. Thus, for this example, h(.) = sin~'(.). By Taylor series

argument, we have

and

V(yil0:) = Visin™' /z]63]

1
~ Vsin /w4 (5 - ) e ]
2\/7‘(’1‘(1 _7Ti)
_ 1 D% - mi(l —mi)
47@(1 —7Ti) n;
_ Dy
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We will assume that D; = %‘3 is the estimated sampling variance of y; (i =1,---,m).

In addition to z; and V; provided to us by the NCHS, we collected data on 1990 urban
population (X;), 1995 Bachelor’s degree completion for 25+ population (X5), 1995 high school
completion for the 25+ population (X3), 1995 health insurance coverage (X,), and 1990
physician population (X5) for each of the 50 states and the District of Columbia. The covariate
information was obtained from the Census Bureau web site.

We first consider the issue of covariate selection. For this purpose, we considered the
largest 15 states (in terms of sample size) and used SAS to produce Tables 1 and 2. For these
states sampling variabilities are very low and so the usual SAS procedures are justified. Note
that correlations between Y and each of the three covariates X5, X3, and X, are significant
(at 0.1 level). While X} is significantly correlated with X3, it is not significantly correlated
with X4. Likewise, X} is significantly correlated with X3, but not with X,. Thus, keeping the
aspect of multicollinearity in mind, Table 1 suggests to consider X5 and Xy in the model. The
selection of these two covariates is confirmed by Table 2. Both R? and adjusted R? are the
highest when we include X5 and X, in the model. We would also select these two covariates
when we apply the C), criterion.

The estimates of 7 ranges between .09 (South Dakota) and .95 (California), depending
on the sampling variability of the corresponding state NCHS estimate. The 7 values are
low for small states (indicating that the NCHS estimates are highly unreliable) and large for
large states (indicating the NCHS estimates are reliable). None of the confidence intervals
[(L.L.,U.L)] includes 0 or 1 suggesting the use of EBLUP. See Table 3 and Figure 3.

The estimator of 7; is then given by #; = sin(6;). Thus, here A~1(.) = sin®(.). The MSE
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of #; is given by 47;(1 — 7;)mse(0;). A synthetic estimator of m; is given by " = sin®(z/().
Table 4 reports the NCHS estimates (z), proposed composite estimates (7), and synthetic
estimates (7°¥"). For large states (e.g., California , Texas, etc.), our proposed composite
estimates are similar to the NCHS estimates. Figure 1 plots these estimates.
Finally, Tables 5 provides standard errors of the NCHS estimates (se(z) = \/V;), the jack-
knife MSE estimates of our proposed composite estimates (se(7) = \/m), and percent
improvement defined by PCTIMP = 100 x %(ZS;(”) A corresponding plot of PCTIMP is

given in Figure 3. For small states (e.g., South Dakota, Vermont, etc.), improvement is quite

substantial.
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Table 1: Pearson Correlation Coefficients

Y X Xo X3 Xy Xs
Y 1.00000 0.10733 0.59754 0.55709  0.51929  0.26759
0.0 0.7034  0.0187  0.0310 0.0473 0.3349
X; 0.10733 1.00000 0.56726 0.44259 -0.25401 -0.64715
0.7034 0.0 0.0274  0.0985 0.3610 0.0091
Xo 0.59754  0.56726 1.00000 0.45595  0.02605 0.05537
0.0187  0.0274 0.0 0.0876 0.9266 0.8446
Xs 0.55709 0.44259 0.45595 1.00000 0.62160 -0.09249
0.0310  0.0985  0.0876 0.0 0.0134 0.7430
Xy 051929 -0.25401 0.02605 0.62160  1.00000  0.26579
0.0473  0.3610  0.9266  0.0134 0.0 0.3383
X5 0.26759 -0.64715 0.05537 -0.09249 0.26579  1.00000
0.3349  0.0091  0.8446  0.7430 0.3383 0.0

Table 2: Values of C), statistic, R?, and Adjusted R? for different possible models

Model Variables C, R? Adjusted R?
1 X 7.23672 0.35705587 0.3076
2 X3 8.56150 0.31035017 0.2573
3 Xy 9.71567 0.26965933 0.2135
4 X5, X3 6.33543 0.45934214 0.3692
5) Xo, Xy 2.03477 0.61096386 0.5461
6 X3, Xy 9.17802 0.35912540 0.2523
7 Xo, X3, X, 4.00000 0.61218982 0.5064

86


HARRISKOJE_B
86


Table 3: Direct survey estimates (y), synthetic estimates (2/3), EBLUP’s (6), and confidence
Intervals of +'s

STATE y ' A 0 L.L. U.L.
1 Alabama 1.08078 1.04874 0.85047 1.07599 0.72554 0.97539
2 Alaska 0.99007 1.08821 0.31453 1.05734 0.10274 0.52632
3  Arizona 1.05567 1.02178 0.73862 1.04681 0.54898 0.92827
4  Arkansas 1.05055 1.01292 0.72774 1.04031 0.53310 0.92237
5 California 1.04064 1.04298 0.95314 1.04075 0.90926 0.99701
6 Colorado 1.09146 1.11180 0.63604 1.09886 0.40864 0.86344
7  Connecticut 1.16463 1.13980 0.67252 1.15649 0.45618 (0.88887
8 Delaware 1.12824 1.06208 0.29641 1.08169 0.09154 0.50127
9 D.C. 1.19544 1.12036 0.28924 1.14207 0.08729 0.49118
10 Florida 1.00245 1.04526 0.82933 1.00976 0.69029 0.96837
11  Georgia 1.06529 1.04995 0.70721 1.06080 0.50380 0.91061
12 Hawaii 1.10652 1.09525 0.45527 1.10038 0.21166 0.69889
13 Idaho 1.03265 1.06746 0.37944 1.05425 0.14814 0.61074
14 Illinois 1.03504 1.09350 0.84473 1.04412 0.71589 0.97357
15 Indiana 1.00212 1.05179 0.61762 1.02111 0.38563 0.84961
16 Iowa 1.13109 1.07058 0.47988 1.09962 0.23469 0.72506
17 Kansas 1.07790 1.09118 0.62394 1.08289 0.39345 0.85443
18  Kentucky 1.04731 1.05219 0.72660 1.04865 0.53145 0.92174
19 Louisiana 0.99794 1.02531 0.69639 1.00625 0.48870 0.90409
20 Maine 1.06623 1.06694 0.69604 1.06645 0.48821 0.90387
21  Maryland 1.11723 1.07953 0.76824 1.10849 0.59334 0.94314
22 Massachusetts 1.15534 1.12785 0.83892 1.15091 0.70618 0.97166
23 Michigan 1.06529 1.08287 0.80384 1.06874 0.64894 0.95873
24  Minnesota 1.08561 1.11693 0.85396 1.09019 0.73145 0.97647

25 Mississippi 0.99608 1.01842 0.71197 1.00251 0.51053 0.91342
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Table 3 continued

STATE y 73 v 6 L.L. U.L.
26 Missouri 1.05847 1.06318 0.80648 1.05938 0.65316 0.95979
27 Montana 1.05871 1.07378 0.52071 1.06593 0.27555 0.76587
28 Nebraska 1.07682 1.10131 0.50497 1.08894 0.25941 0.75053
29 Nevada 1.03356  1.02295 0.31109 1.02625 0.10056 0.52161
30 New Hampshire 1.13083 1.10371 0.52596 1.11797 0.28104 0.77088
31 New Jersey 1.07383 1.09149 0.80306 1.07731 0.64769 0.95842
32 New Mexico 0.92677 1.00499 0.45629 0.96930 0.21258 0.69999
33 New York 1.09796 1.07945 0.92424 1.09656 0.85545 0.99302
34 North Carolina  1.03038 1.05896 0.79596 1.03621 0.63642 0.95550
35 North Dakota  1.08139 1.08619 0.22328 1.08512 0.05292 0.39364
36 Ohio 1.10328 1.06747 0.84758 1.09783 0.72067 0.97448
37 Oklahoma 1.05532 1.02779 0.76275 1.04879 0.58499 0.94052
38  Oregon 1.04041 1.07866 0.62788 1.05464 0.39836 0.85740
39 Pennsylvania  1.10080 1.08103 0.82972 1.09744 0.69093 0.96851
40 Rhode Island  1.19764 1.09811 0.42828 1.14074 0.18775 0.66881
41 South Carolina  1.05392 1.04741 0.71028 1.05203 0.50814 0.91243
42 South Dakota  1.03038 1.07693 0.09482 1.07252 0.01051 0.17913
43 Tennessee 1.09024 1.04420 0.79321 1.08071 0.63208 0.95434
44  Texas 1.00598 1.01310 0.94163 1.00640 0.88764 0.99562
45 Utah 1.03243 1.08697 0.47525 1.06105 0.23027 0.72023
46  Vermont 1.06659 1.10686 0.19413 1.09904 0.04045 0.34781
47 Virginia 1.09292 1.08670 0.81669 1.09178 0.66964 0.96375
48 Washington 1.08513 1.09427 0.78455 1.08710 0.61850 0.95059
49 West Virginia  1.03618 1.01954 0.32898 1.02501 0.11213 0.54583
50 Wisconsin 1.08380 1.09456 0.81777 1.08576 0.67138 0.96416
51 Wyoming 1.08030 1.05342 0.52217 1.06746 0.27707 0.76727
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Table 4: Direct estimates (z), composite estimates (7), and synthetic estimates (7°9")

State z T oy
1 Alabama 0.7785 0.77451 0.75134
2 Alaska 0.6990 0.75873 0.78464
3 Arizona 0.7573 0.74967 0.72768
4  Arkansas 0.7529 0.74401 0.71975
5 California 0.7443 0.74440 0.74634
6 Colorado 0.7873 0.79333 0.80371
7  Connecticut 0.8439 0.83795 0.82546
8 Delaware 0.8166 0.77925 0.76277
9 District of Columbia 0.8656 0.82719 0.81046
10 Florida 0.7103 0.71691 0.74832
11 Georgia 0.7655 0.76168 0.75238
12 Hawaii 0.7995 0.79456 0.79040
13 Idaho 0.7373 0.75609 0.76734
14 Illinois 0.7394 0.74733 0.78897
15 Indiana 0.7100 0.72708 0.75397
16 Iowa 0.8188 0.79394 0.76997
17 Kansas 0.7761 0.78025 0.78707
18  Kentucky 0.7501 0.75125 0.75431
19 Louisiana 0.7062 0.71374 0.73082
20 Maine 0.7663 0.76648 0.76690
21 Maryland 0.8080 0.80107 0.77746
22 Massachusetts 0.8371 0.83382 0.81630
23 Michigan 0.7655 0.76842 0.78023
24  Minnesota 0.7825 0.78626 0.80777
25 Mississippi 0.7045 0.71036 0.72468
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Table 4 continued

~

~ SYyn

State z T T
26 Missouri 0.7597 0.76048 0.76371
27 Montana 0.7599 0.76604 0.77265
28 Nebraska 0.7752 0.78524 0.79531
29 Nevada 0.7381 0.73165 0.72872
30 New Hampshire 0.8186 0.80859 0.79724
31 New Jersey 0.7727 0.77561 0.78733
32 New Mexico 0.6395 0.67978 0.71260
33 New York 0.7926 0.79146 0.77739
34 North Carolina  0.7353 0.74043 0.76012
35 North Dakota 0.7790 0.78209 0.78297
36 Ohio 0.7969 0.79249 0.76735
37 Oklahoma 0.7570 0.75138 0.73301
38 Oregon 0.7441 0.75642 0.77673
39 Pennsylvania 0.7949 0.79217 0.77871
40 Rhode Island 0.8671 0.82618 0.79272
41 South Carolina 0.7558 0.75418 0.75018
42  South Dakota 0.7353 0.77160 0.77529
43 Tennessee 0.7863 0.77844 0.74740
44  Texas 0.7135 0.71388 0.71991
45 Utah 0.7371 0.76190 0.78362
46  Vermont 0.7666 0.79348 0.79977
47 Virginia 0.7885 0.78757 0.78339
48 Washington 0.7821 0.78372 0.78960
49 West Virginia 0.7404 0.73055 0.72568
50 Wisconsin 0.7810 0.78262 0.78983
51 Wyoming 0.7781 0.76733 0.75537
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Table 5: Design effects (Dy), standard errors of direct estimates [se(z)], and jackknife standard
errors of composite estimates [se(7)], and the percent improvement (PCTIM P)

STATE Dy se(z) se(T) Cv(z) CV(x) PCTIMP
1 0.94237 0.0099 0.009678 0.01272 0.012495 2.2442

2 1.00743 0.0385 0.027225 0.05508 0.035889  29.2862
3 1.77080 0.0145 0.013842 0.01915 0.018464 4.5357
4 0.97357 0.0150 0.014295 0.01992 0.019212 4.7026
3 2.33951 0.0055 0.005454 0.00739 0.007327 0.8372
6 2.28631 0.0176 0.015935 0.02235 0.020087 9.4589
7 2.15494 0.0144 0.013541 0.01706 0.016159 5.9646
8 1.89534 0.0339 0.027026 0.04151 0.034678  20.2782
9 1.86680 0.0304 0.024869 0.03512 0.030061  18.1926
10 3.67215 0.0117 0.011234 0.01647 0.015671 3.9842

11 3.32450 0.0155 0.014593 0.02025 0.019159 5.8500
12 2.07315 0.0249 0.021185 0.03114 0.026662  14.9180
13 2.14117 0.0320 0.025036 0.04340 0.033115  21.7635
14 247474 0.0107 0.010277 0.01447 0.013752 3.9540
15 4.29302 0.0203 0.018116 0.02859 0.024918  10.7605

16 297118 0.0228 0.020464 0.02785 0.025772  10.2464
17 1.82169 0.0184 0.016652 0.02371 0.021342 9.5004
18 1.76132 0.0151 0.014196 0.02013 0.018897 5.9837
19 2.16050 0.0171 0.015837 0.02421 0.022190 7.3858
20 0.61690 0.0159 0.014833 0.02075 0.019352 6.7100

21 1.63347 0.0123 0.011871 0.01522 0.014819 3.4840
22 1.38477 0.0092 0.008985 0.01099 0.010775 2.3375
23 2.77288 0.0119 0.011386 0.01555 0.014818 4.3202
24 0.93043 0.0097 0.009371 0.01240 0.011918 3.3941
25 1.11029 0.0165 0.015381 0.02342 0.021653 6.7832
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Table 5 continued

STATE Dy se(z) se(T) CV(z) CV(x) PCTIMP
26 1.61813 0.0119 0.011430 0.01566 0.015030 3.9498
27 1.06524 0.0233 0.020155 0.03066 0.026312 13.4962
28 1.85705 0.0235 0.020023 0.03031 0.025500 14.7958
29 3.22858 0.0372 0.028319 0.05040 0.038705  23.8739
30 1.13044 0.0208 0.018578 0.02541 0.022975 10.6826
31 2.57178 0.0118 0.011286 0.01527 0.014551 4.3583
32 4.22565 0.0298 0.024433 0.04660 0.035949 18.0113
33 1.91692 0.0066 0.006523 0.00833 0.008242 1.1667
34 2.07917 0.0127 0.012104 0.01727 0.016349 4.6896
35 241776 0.0440 0.029636 0.05648 0.037893  32.6465
36 2.18351 0.0097 0.009491 0.01217 0.011976 2.1512
37 1.41874 0.0136 0.013033 0.01797 0.017345 4.1681
38 2.39483 0.0191 0.017143 0.02567 0.022665 10.2484
39 2.74191 0.0104 0.010104 0.01308 0.012755 2.8445
40 1.56647 0.0223 0.020640 0.02572 0.024979 7.4418
41 1.58622 0.0156 0.014652 0.02064 0.019428 6.0756
42 8.20855 0.0775 0.035798 0.10540 0.046397  53.8087
43 1.65433 0.0119 0.011554 0.01513 0.014842 2.9060
44 1.84504 0.0064 0.006331 0.00897 0.008869 1.0754
45 2.30226 0.0263 0.021702 0.03568 0.028487  17.4841
46 3.52922  0.0490 0.030204 0.06392 0.038067  38.3593
A7 1.68620 0.0110 0.010620 0.01395 0.013484 3.4547
48 1.64145 0.0123 0.011732 0.01573 0.014969 4.6200
49 3.36938 0.0356 0.027687 0.04808 0.037898  22.2287
20 1.37013 0.0111 0.010674 0.01421 0.013639 3.8400
51 0.36386 0.0226 0.020070 0.02905 0.026154  11.1955
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Table 6: States arranged in increasing order of V;

Rank of V; State State 1D Vi
1 California 5 .0000303
2 Texas 44 .0000410
3 New York 33 .0000436
4 Massachusetts 22 .0000846
5 Minnesota 24 .0000941
6 Ohio 36 .0000941
7 Alabama 1 .0000980
8 Pennsylvania 39 .0001082
9 [llinois 14 .0001145
10 Virginia 47 .0001210
11 Wisconsin 50 .0001232
12 Florida 10 .0001369
13 New Jersey 31 .0001392
14 Michigan 23 .0001416
15 Missouri 26 .0001416
16 Tennessee 43 .0001416
17 Maryland 21 .0001513
18 Washington 48 .0001513
19 North Carolina 34 .0001613
20 Oklahoma 37 .0001850
21 Connecticut 7 .0002074
22 Arizona 3 .0002103
23 Arkansas 4 .0002250
24 Kentucky 18 .0002280
25 Georgia 11 .0002403
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Table 6 continued

Rank of V; State State 1D Vi
26 South Carolina 41 .0002434
27 Maine 20 .0002528
28 Mississippi 25 .0002723
29 Louisiana 19 .0002924
30 Colorado 6 .0003098
31 Kansas 17 .0003386
32 Oregon 38 .0003648
33 Indiana 15 .0004121
34 New Hampshire 30 .0004326
35 Rhode Island 40 .0004973
36 Wyoming 51 .0005108
37 Towa 16 .0005198
38 Montana 27 .0005429
39 Nebraska 28 .0005523
40 Hawaii 12 .0006200
41 Utah 45 .0006917
42 New Mexico 32 .0008880
43 District of Columbia 9 .0009242
44 Idaho 13 .0010240
45 Delaware 8 .0011492
46 West Virginia 49 .0012674
47 Nevada 29 .0013838
48 Alaska 2 0014823
49 North Dakota 35 .0019360
50 Vermont 46 .0024010
51 South Dakota 42 .0060063
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Figure 1: Estimates [direct (D), synthetic (S), and EBLUP (C)] Plotted against States Ar-
ranged in Increasing Order of V; (see Table 6 for identifying the states)
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Figure 2: Percent Improvement Plotted against States Arranged in Increasing Order of V; (see
Table 6 for identifying the states)
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Figure 3: Confidence Interval for v Plotted against States Arranged in Increasing Order of V;
(see Table 6 for identifying the states)
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Jackknifing in the Fay-Herriott Model
with An Example
by Jiming Jiang, Partha Lahiri, Shu-Mei Wan, and Chien-Hua Wu

Discussion (corrected version, 10/19/2001)
by William R. Bell, U.S. Bureau of the Census

The paper by Jiang, Lahiri, Wan, and Wu (hereafter JLWW) considers use of
the jackknife to estimate the mean squared error (MSE) of small area estimates from
Fay-Herriott (1979) models. The paper notes that Jiang et al. (2001) discuss use of
the jackknife more generally for estimating MSE with nonlinear and nonnormal small
area models. As the present paper restricts consideration to the linear model case,
my remarks will focus only on this case. It should be kept in mind, however, that
ignoring the generality of the jackknife may be ignoring one of its prime advantages.

The model of Fay and Herriott (1979) for small area estimation can be written

y, = 0;+e¢; i=1,....m (1)
= (f+uw)te (2)

JLWW give detailed assumptions underlying this model. Here I simply repeat that the
sampling variances D; = Var(e;) of the direct survey estimates y; are assumed known
(actually meaning they are estimated using survey microdata), so that the unknown
parameters of the model given by (1) and (2) are the regression parameters 3 and the
model error variance A = Var(v;). To apply this model from a frequentist perspective
one first estimates the model parameters § and A using the direct estimates y;, and
then applies standard empirical Bayes prediction formulas to produce point estimates
of the ;. A Bayesian approach can also be used (Berger 1985, Bell 1999).

Assuming the model given by (1) and (2) is true (more on this later), the error in
the estimates of the 6; can be broken into three terms:

error = error when all parameters are known
+ contribution to error from estimating /3 (3)

+ contribution to error from estimating A

The mean square of this error for area ¢ is, under suitable assumptions,

MSE; = g1(A)+ g2(A) + g3:(A)
= Al =) + (1= v, Var (8) z; + gsi(A) (4)

where

7= A/(A+ D)
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Since A is unknown to estimate MSE we plug an estimate of A into (4). Results for
the term gs;(A) are discussed shortly. The “suitable assumptions” referred to above
include normality, which is relevant in regard to asymptotic orthogonality of the
second and third terms in (3). My focus, however, will be on comparing the form of
(4) with the jackknife estimate of MSE suggested by JLWW, and on examining results
from the jackknife for a particular empirical example. For simplicity of notation I will
henceforth drop the subscript ¢ that indexes the small areas. It should be understood
that all subsequent expressions implicitly depend on i, e.g., through x; and D;.
Two problems arise in applying (4):

e g1(A) is biased. In fact, even when A is approximately unbiased, E[g;(A)] ~
91(A) — g3(A).

e There is no exact formula for g3(A).

Several approaches have previously been suggested to deal with the second problem:
ignore g3(A) (naive approach); estimate g3(A) using an asymptotic expression (Prasad
and Rao 1990, Datta and Lahiri 2000); or use a Bayesian approach (Berger 1985, p.
192, Bell 1999). JLWW propose the jackknife to address both of the two problems.

Before examining how the jackknife addresses the two problems noted, it is worth
reminding ourselves of a third problem, which is that use of the MSE result (4)
depends on the model being correct. This problem may well be more important and
more difficult to address than either of the other two problems. It compromises all
the approaches noted to an unknown degree for any particular example.

JLWW’s jackknife estimate of MSE is

m

Zl@u -0 (5

mo =

m— 1

The term in braces estimates g1 (A), with the second term within the braces providing
the jackknife bias correction to the plug-in estimate gy(A). The last term in (5)
estimates ga(A) + g3(A) together, not just gs(A). These features provide for some
generality of the jackknife (e.g., to nonnormal models), though it means that in the
context of the linear model ((1),(2)) considered here (5) does not make use of either
(i) the asymptotic relation between bias(gi(A)) and gs(A), or (i) the exact result
for go(A). The question arises as to when does the jackknife work better, worse, or
about the same as alternatives?

In regard to the question of “How well does the jackknife work?,” Jiang et al.
(2001) report simulation results for some linear and nonlinear (GLIM) models. The
jackknife works well in the simulations reported, however, so do all the other ap-
proaches considered. In fact, the worst case reported in the simulations of bias in
estimated MSE for any method is -10.1% for the naive approach (for a mixed logistic
model). This is a relatively small understatement of MSE since, if resulting MSE
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estimates were used to construct prediction intervals, the corresponding “standard
error” would be understated by only about 5%. Given uncertainties about normality
assumptions needed to construct prediction intervals, this amount of understatement
of prediction standard error seems relatively unimportant.

In the present paper, the jackknife results JLWW present for the NHIS application
look quite reasonable. I decided to examine results from the proposed jackknife
approach for an application I am familiar with: estimation of poverty rates of school-
aged (5-17 year old) children for the states of the U.S. and DC. These estimates
are an important product of the Census Bureau’s Small Area Income and Poverty
Estimates (SAIPE) program. The Fay-Herriott model used to produce these estimates
is developed in Fay and Train (1997). Bell (1999) discusses Bayesian treatment of
this model. Further information on the SAIPE program can be found on the SAIPE
web site at http://www.census.gov/hhes/www /saipe.html.

For applying the jackknife to the SATPE example I used the method-of-moments
(MOM) estimator of A used by JLWW in their NHIS example. Table 1 shows these
estimates of A for nine years of data to which the model was applied. (1994 is omitted
because sampling variances have not been estimated for this year due to complica-
tions caused in that year by transition to a redesign of the Current Population Survey
which supplies the direct estimates y;.) Both the not truncated and truncated (at 0)
MOM estimates are shown. Maximum likelihood (ML), restricted maximum likeli-
hood (REML), and Bayesian estimates (posterior means) are shown for comparison.
These all assume normality, and the Bayesian estimates use flat priors for § and A.

Table 1. Alternative Estimates of A(SAIPE example)

not truncated truncated

year ML REML Bayes

MOM MOM
1989 0 0 1.7 —.1 0
1990 0 0 2.2 1.1 1.1
1991 0 0 1.6 -3.1 0
1992 0 0 1.6 -3.2 0
1993 4 1.7 3.4 5.8 5.8
1995 0 2 2.0 ) )
1996 0O 0 1.9 2.0 2.0
1997 0 0 1.5 -1.3 0
1998* .7 2.0 3.7 5.8 5.8

*Preliminary results

We notice that the MOM estimates of A are rather unstable. The truncation at zero
is frequently required, and for 1993 and 1998 the MOM estimate is quite large relative
to the other estimates. ML and REML, though more stable, are not very appealing
since these estimates are zero in most years. Bell (1999) notes how estimating A at
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zero leads to unreasonable MSE estimates for M. and REML. On the other hand,
the Bayesian estimates of A appear much more reasonable (and Bell (1999) notes
that resulting Bayesian posterior variances are more reasonable than the frequentist
MSE estimates.)

Though I shall omit giving detailed results, it turns out that the jackknife MSE
estimates look unreasonable both when A is estimated to be zero and when the MOM
estimates of A are large. The poor performance is not generally the fault of the
jackknife, however, but simply a result of getting unreasonable estimates of A from
MOM. In principle the jackknife could be applied with ML or REML estimation of A,
at significantly higher computational cost, though the results in Table 1 suggest this
would rarely help in this example. Rather than dwell on possibilities for improving
jackknife results by using alternative estimates of A, I will compare jackknife MSE
results (using A mon) for two years to illustrate a particular problem that arises when
A is estimated at or near zero, and that is more pertinent to the performance of the
jackknife.

Notice that when A = 0 g;(4) = 0, and all of MSE; comes from the second
and third terms in (5). Tables 2 and 3 below examine the components of M SE; for
two years (1991 and 1989) for which AMO um = 0. For both years results are shown
for a small number of states for illustration. In the table headings 1‘~1Mo u denotes
the original, not truncated MOM estimates of A from Table 1. Bayesian posterior
variances are shown for comparison. It is worth noting that for most states in most
years, these posterior variances are very close to what one obtains by substituting the
posterior mean of A into g;(A).

Table 2. Jackknife estimation of MSE for 1991 (SAIPE example)

(Apom = =31, Ayronr = max(0, Apronr) = 0)
state g ( A) A, b?c?s[gl(;l)] g2 +¢gs MSE; Bayes
AL 0 —2.7 0 7 7 2.0
AK 0 —2.8 0 . .9 2.3
A7 0 -3.1 0 .0 .0 2.0
AR 0 —-3.2 0 1.3 1.3 2.5
CA 0 —2.9 0 .6 .6 1.4
CO 0 —2.8 0 2 .2 1.6

The A_, columns in Tables 2 and 3 give the leave-one-out not truncated MOM
estimates of A. In 1991 (Table 2) all of the A_, are negative, with the result that

-~

all of the truncated leave-one-out MOM estimates of A (A_,) are zero. This is not
surprising given that the full sample not truncated MOM estimate for 1991 (Ayon =
—3.1) is well below zero—dropping any one observation does not have enough effect

~

to turn any of the A, positive. As a result g;(A_,) = 0 for all states u, and since

-~

g1(A) = 0 as well, the second term in (5) estimating the bias in g;(A) is zero. Hence,
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both terms in the braces in (5) are zero for every state, and M SE; comes entirely
from the third term in (5). This term (labelled g5 + g3 in the tables) is a jackknife
estimate reflecting variation in the small area point estimates 6 due to variation in the
leave-one-out estimates of 3 and A. The resulting MSE estimates tend to look too
small both in an absolute sense and relative to the Bayesian estimates—mnote Colorado
(CO) in particular. The MSE estimates also exhibit the same sort of pattern problems
noted in Bell (1999) for the ML and REML estimates based on (4). For example,
MSE; for California (CA), despite its large CPS sample, is as high or higher than
that for many other states with much smaller samples.

Table 3 shows a different problem that arises for the jackknife estimate of MSE.
For 1989 the not truncated MOM estimate of A, Ayon = —.1, is very close to zero.
Dropping one observation alters the not truncated MOM estimates as shown in the
A_, column, sometimes yielding positive values, and sometimes yielding negative
values. When A_, < 0, A_, is truncated to 0, and gl(A w) = 0. These states
make no contribution to the second term in (5). When A_, > 0, however, g;(A_,)
is positive, and these states do contribute to the second term in (5). In fact, since
g1(A) = 0 here, the term in braces in (5) is simply minus the sum of these positive
terms (multiplied by (m — 1)/m = 50/51), which turns out to be around 2 for each
state. This is the jackknife estimate of bias in gi(A). Subtracting off this bias
estimate of around 2 overwhelms the third term in (5), go + g3, resulting in negative
estimates of MSE for every state. (The estimates of bias in gl(;l) vary only slightly
over states since, reintroducing the state subscript 4, for state ¢ this term is actually

—m-l Zu l[glz(A u)] where glz(A u) A D /(A*u + Dz) = félfu/(1 + Afu/Dz) ~
A_, since the D; are much larger than the A_,.)

Table 3. Jackknife estimation of MSE for 1989 (SAIPE example)
(Aviom = —1, Ao = max(0, Ayonr) = 0)

state ¢ A_, biaslgi] ¢2+g93 MSE; Bayes

AL 0 A6 1.97 .52 —14 2.1
AK 0 .04 1.96 .70 —1.2 24
Az 0 —-.09 197 37 —-1.5 2.1
AR 0 A8 1.97 71 —1.2 24
CA 0 —-03 185 .60 —-1.2 1.1
CO 0 10 1.96 A8 —-1.7 1.6
cr 0 -150 1.96 1.30 —.6 3.0
DE 0 16 1.97 .38 —-1.5 1.8
DC 0 .02 1.98 90 —1.0 3.3
FL. 0 -=13 191 .59 —-1.3 1.4

The negative estimates of MSE result not just from the poor estimation of A by
MOM (though this is a necessary part of the problem), but also from poor estimation
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-~

of the bias in g;(A) by the jackknife. This would appear to be a potential problem
for the jackknife any time the not truncated estimate of A is very close to zero.
Since the jackknife MSE estimates JLWW present for their NHIS application look
quite reasonable, this raises a question about how the SAIPE application differs from
the NHIS application. Table 4 provides some answers. It shows, for both surveys, the
maximum and minimum values of the estimated signal-to-noise ratio (4/D;) across
states, as well as the ratio of the maximum to the minimum state sampling variances

(max(D;)/ min(D;)).
Table 4. Comparing the NHIS and SAIPE Examples
max (%) min (D%) %(gj))
NHIS 20 (CA) .1 (SD) 200

SAIPE 1to 1.5 (CA) .07to.1 (DC) 15 to 20

For the NHIS application the signal-to-noise ratio ranges from a very high value of
20 to a very low value of .1. In contrast, for the SAIPE application (for which the
results vary some over the years of data) the smallest signal-to-noise ratio is about
the same as that for NHIS, but the largest is only around 1 or 1.5. The corresponding
ratio of the maximum to minimum sampling variances is 200 for NHIS, reflecting a
very wide range of sampling variance across states, but is only 15 or 20 for SAIPE.
These data suggest that in the NHIS application the states with large samples provide
enough information for reasonably reliable estimation of A (here by MOM), which
leads to reasonable looking estimates of MSE by the jackknife (and presumably by
other approaches). Small area estimation is needed for those states with small NHIS
samples (low signal-to-noise ratios). On the other hand, the CPS direct estimates used
in the SATPE application have sufficiently high levels of sampling error that estimates
of A are more unreliable, and conventional frequentist estimates of A frequently run
into trouble (as can be seen from Table 1). Resulting estimates of MSE can be
unreasonable, and if the not truncated estimate of A is near zero, this can lead to the
problem illustrated for the jackknife estimate of MSE.

To generalize the conclusions a bit, estimation of A in the Fay-Herriott model
appears to be of more fundamental importance than the choice of alternative ap-
proaches to estimating MSE, in the sense that when the data do not provide enough
information for reliable estimation of A by conventional frequentist methods, any re-
sulting estimates of MSE are suspect. The Bayesian approach appears to yield more
reasonable results in such cases at least by preventing estimates of A near zero. The
appeal of the jackknife may be more for cases where nonnormality is a serious con-
cern or the model is nonlinear (e.g., GLIM models), though its performance is still
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likely to depend on whether or not the data provide sufficient information for reliable
estimation of variances or other dispersion parameters of the model.
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Can What Partha Lahiri and Company Have Done Help
the National Agricultural Statistics Service?

Phillip S. Kott; USDA/NASS

The National Agricultural Statistics Service (NASS) is using component-of-variance small-
domain estimation to help estimate the undercoverage in the US Census of Agriculture. The
backbone of the Census of Agriculture is an extensive (but not exhaustive) list of farms in the US.
Although farms on this list are responsible for over 95% of most agricultural activities, NASS
estimates that 13% of all farms operating in 1997 were not on the Census list. One reason for this is
that the federal government uses a very liberal definition of a farm: an operation producing at least
$1,000 of agricultural output in a year or capable of producing that output.

Leaving aside the merits of the government’s definition of a farm, NASS wants the 2002
Census of Agriculture to do a better job than it has in the past providing state aggregates for the
farms not on the Census list. NASS’s key instrument in that endeavor is an area-frame sample
designed primarily to estimate the total corn, wheat, soy beans, cotton, and potato acreage and
production in the US. A secondary use of this sample is the estimation of aggregates for farms not
on NASS’s survey and Census lists. For the 2002 Census effort, this sample will be supplemented
to better measure the Census-list undercoverage. Nevertheless, NASS believes that only the total
numbers of farms missing form the Census list will be reliably estimated at the state level (and even
then, certain states like those in New England will have to be combined). For aggregates like the
number of missing farms that have horses or the number of missing farms operated by blacks,
small-domain techniques will be needed that draw strength from states outside the particular state of
interest.

For the purposes of this discussion, let us focus on one particular estimate: the fraction of
farms not on the Census list that have a black operator. In truth, NASS will be estimating 20 or 30
fraction like this one, from the fraction of missing farms with horses to the fraction of missing farms
with annual sales in a given range. Conceptually, however, they are all the same. One thing to note
is that the fractions are many and disparate. Consequently, unlike the problem in Jiang et al.
(2001), NASS uses a single covariate  the fraction of farms on a state’s Census list with the
attribute in question (e.g., a black operator). To begin, we will ignore even that covariate.

Background

Partha Lahiri and his team of collaborators, Jiming Jiang, Shu-Mei Wan, and Chien-Hua
Wu, have written a number of papers based on research funded by federal statistical agencies
through the National Science Foundation. The question I will address here is whether that research
can be of service to NASS in its attempt to estimate the fraction of black-operated farms among
those missing from a state’s Census list. I begin with some notation borrowing liberally from Jiang
et al., the particular paper under review. Throughout this discussion, I will refer to the “Lahiri
team.” That should not be construed as a denigration of Jiang and the other collaborators’
contributions.

Let z;; be 1 if a missing farm j in the area sample of State 1 has a black operator; 0 otherwise.
The direct, randomization-based estimator for m;, the fraction of black-run operations among those
missing from the Census list in State 1, is

105



Zi= ZjeS(i) WijZij / ZjeS(i) Wij,

where wj; is the sampling weight attached to farm j, and S(i) 1s the set of farms in the area sample of
State i1 but not on the State’s Census list.
That variance of this model under a simple Bernoulli model is

Var(z) = {Yjesa) Wi/ [Yjesey Wil } mi (1 m)
= ni(l Tci)/l’li*,

where n* = { [Yicsq) Wiil*/ Yiesq) Wi} is the effective sample size in State i. NASS believes that the
simple Bernoulli model is appropriate in this context. It ignores the effects of stratification and
cluster sampling on variance and assumes that the only role sample weighting plays is in increasing
variance and decreasing effective sample size. Nevertheless, weights are used in determining z; as
protection against model failure.

Jiang et al. assumes that the D; can be determined reliably with randomization-based
methods. That is not my experience. If sample sizes are not large enough to estimate m; directly,
then estimates of the variance of the direct estimator are even more suspect. Still, nothing is lost if
Jiang’s randomization-based D; is replaced by my model-based one.

Suppose we have M “states” for which we need estimates (recall that some states are
collapsed together for this purpose). To draw strength from the other states, NASS assumes that
each z; can itself be modeled:

Z =00 + €
nt+v; + e, (D)

where E(v;) = E(e;)) =0, Var(vi) = A, and Var(e;) =Di=m (1 m)/ni*.
Consider the estimator

z7=1 vz +vi YMwia/ YN wi,
= vz +viz @

where y; = D;i /(A + Di), wg is the sum of the sampling weights within S(k), and z is the
randomization-based estimator for the fraction of black-run operations among the farms missing
from the Census list nationally. Since D; approaches 0 as the effective sample size in i becomes
arbitrarily large, zi(Y) 1s randomization consistent whenever z; is.

The estimator, z, is not quite optimal under the component-of-variance model in equation
(1). Many (Lahiri and his team included) would not weight the z by wi. Moreover, z" ignores
the variance of z and the covariance between z; and z. Nevertheless, we will assume for simplicity
that M is large enough that such issues hardly matter. More important is the requirement that we
estimate A and the D; before zi(Y) can be operationalized.

To estimate Dj;, we need to estimate m; first, but that is precisely the goal of the entire
exercise. It is common to estimate D; using z; in place of ;. Indeed, that is what NASS has been
doing for the most part. Note, however, that when z; =0 , D; must also be zero. This is suspect.
Just because we find no black-run operations that not on the Census list in a state area sample does

not mean there are no back-run operations missing from the state’s Census list anywhere. To avoid
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this silliness, NASS has been setting an arbitrary lower bound on its D; estimate. Nevertheless, the
agency’s calculation of y; remains dependent on a very rickety estimator for ;.
The variance component A can be estimated using the methods of moments:

a*=[YMz?  (YMz)yY/MYM 1) [YMz(  z)n#F]/M.

This formula can produce negative estimates. It is therefore popular to estimate A with
a =max{0, a*}.

NASS uses something a bit different:

anass =max{a*, (12)[ YMz?  (YMz)’/M/M D}

Although NASS does not think it has the sample sizes to estimate the m; directly. It does
think that it can estimate directly the fraction of black-operated farms among the farms missing
from the Census list nationally with z. Consequently, if z;* denotes NASS’s final estimator for 7, it
desires the z;* satisfy

ZM w;iz;*/ ZM Wi = Z.
This is the bookkeeping constraint.
The Arcsine-root Transform

Jiang et al. hits upon a clever way to remove the dependence of the D; on m;. Instead of
applying the components-of-variance model in equation (1) to the z;, he applies it to a transform of
the z;:

yi= 2sin'1(l Zi).

(I added a factor of 2 to the transform. It does not effectively change anything, but it makes the
arithmetic a bit cleaner.)

One can show that Var(y;) = 1/n;*, which is invariant to w;! Thus, if we replace the z; in
equation (1) by the yj, the D; become (nearly) 1/n;*, and the need for early estimates of the m; is
avoided. If NASS were to follow this suggestion, then it would not have to set an arbitrary lower
bound on the D;.

The problem with this transformation is that in invoking it one needs to assume the D; and
A are small. Otherwise, one could not go forward and backward between the original and arcsine-
root spaces and preserve near unbiasedness (in particular, the back-transformed solution may not
even be unconditionally unbiased for ). If A is small, however, then

Di=m(l m)nh*=m+vi)(l =w v)n*
=m(l m)/n*
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where the near equality gets better when we take expectations.

This suggests that instead substituting z; for m; in D;= m (1 m)/n*, NASS begin with
di(l) =z(1 z)/n;*, because z is much more stable than z;, never zero in practice, and fairly close to
m;. The agency can calculate a set of y; based on the di(l) (and an estimator for A), and then use the
computed 7™ from equation (2) within d® = zi(Y)(l Zi(Y))/ni*. This leads to an iterative process
that will likely converge fairly quickly. It should be noted, however, that the Lahiri team’s arcsine-
root transformation removes the need for iteration.

NASS'’s Single Covariate and the Bookkeeping Constraint

Unlike in the Lahiri team’s formulation, NASS uses a single covariate and no intercept.
Instead of the model in equation (1), NASS bases its small-domains estimation on

zi = ci(utvi)t e

where ¢; is the fraction of farms on the Census list in State i that have black operators. How to
incorporate this type of information in arcsine-root space is not a trivial question.

Although more intuitively appealing than a model at least half in arcsine-root space (it is
unclear whether the ¢; should also be so transformed), the model NASS uses has its own conceptual
drawback. It is not symmetric in that the model for 1  z; is not linear in 1  ¢;. For fractions like
black-operated farms, it is clear that NASS wants to look at z; rather than 1  z; because it is much
smaller. For other fractions, like the fraction of farms with hog production, that is not so
straightforward. Indeed, whether z;or 1  z; is smaller depends upon the state.

Often a simple ratio adjustment is used to enforce the bookkeeping constraint. That is to
say, each near-optimal z" is multiplied by the common factor necessary for the constraint to hold.
NASS, however, has been incorporating the constraint directly into the optimality requirement.
Rather than minimizing the mean squared error of each state separately. NASS attempts to
minimize the weighted sum of the state mean squared errors under the bookkeeping constraint.
This would be nearly impossible to do in arcsine-root space.

Variance Estimation

Perhaps the Lahiri team’s single largest contribution is in the area of variance estimation,
where they propose two simple jackknives to adjust for the asymptotic biases of the conventional
variance estimator for the optimal zi(Y), v; = Dja/(a + Dj), where a is a method-of-moments estimator
for A, and D; is known.

Even if we accept my model-based formulation, D; is not known, except approximately in
arcsine-root space. More to the point, because of the restriction on a (or, more precisely, anass)
and the bookkeeping constraint, NASS will not be using a near-optimal z”, although it’s estimator
can still be put in the form of equation (2) (which I will continue to call z?, without, I hope, undo
confusion). With this in mind, it is not clear to me that treating the y; NASS uses as fixed in the
variance formula:

V=10 ywzP0 z")m*+yla
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is inappropriate when M is large. When M is less than large, an analogous formula can be derived.
This does not render the Lahiri team’s variance formula useless, however. It can still be
calculated to estimate just what NASS loses by not using the optimal z*.

What About Confidence Intervals?

Wald confidence intervals for proportions can extend below 0 and beyond 1. Jiang et al.
point out that the arcsine-root transform appears to be a cure for that.
An alternative is to extend Wilson’s (1927) method; e.g., compute a 95% confidence interval by
solving the following for m; :
‘ Zi(v) 71:i|
< 1.96,
m(l m[z1 zM)"

Squaring both sides leads to a easily solvable second degree polynomial in m;, which can be
converted into a asymmetric confidence interval around z;*.

Concluding Remarks

Although NASS will likely not use the jackknives proposed by Lahiri and his collaborators,
I find them extremely useful in principle and remarkably intuitive (where what they extend was
not). NASS will also likely not use the arcsine-root transformation. Nevertheless, I think it is fair

to say that the exercise of studying what the Lahiri team had done will sharpen what NASS finally
does.
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