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9 ronnement Littoral – Quai de la Daurade, 34200, Sète, France; (Phone: +33-4-67-46-33-82, Fax: +33-4-67-

10 46-33-99, E-mail: guinand@univ-montp2.fr); 3National Forensics Laboratory, U.S. Fish and Wildlife Service,
11 1450 Main St., Ashland, OR USA; 4Minnesota Department of Natural Resources, 1601 Minnesota Dr.,
12 Brainerd, MN 56401-3971, USA
13

14 Received 6 June 2005 Accepted 22 November 2005

15 Key words: assignment test, coancestry, gene correlations, inbreeding, lake trout
16

17 Abstract

18 Methods for assigning individuals to population of origin are widely used in ecological genetics, resources
19 management, and forensics. Characteristics of genetic data obtained from putative source populations that
20 enhance accuracy of assignment are well established. How non-independence within and among unknown
21 individuals to be classified [i.e., gene correlations within individuals (inbreeding) and gene correlations
22 among individuals within groups (coancestry)] affect assignment accuracy is poorly understood. We used
23 empirical data for six microsatellite loci and offspring from full-sib crosses of hatchery strains of lake trout
24 (Salvelinus namaycush; Salmonidae) representing known levels of coancestry (mean h=0.006 and 0.06)
25 within families to investigate how gene correlations can affect assignment. Additional simulations were
26 conducted to further investigating the influence of allelic diversity (2, 6 or 10 alleles per locus) and
27 inbreeding (F=0.00, 0.05, and 0.15) on assignment accuracy for cases of low and high inter-population
28 variance in allele frequency (mean Fst=0.01 and 0.1, respectively). Inbreeding had no effect on accuracy of
29 assignments. In contrast, variance in assignment accuracy across replicated simulations, and for each
30 empirical case study increased with increasing coancestry, reflecting non-independence of probabilities of
31 correct assignment among members of kin groups. Empirical estimates of assignment error rates should be
32 interpreted with caution if appreciable levels of coancestry are suspected. Additional emphasis should be
33 placed on sampling designs (spatially and temporally) that define or minimize the potential for sampling
34 related individuals.
35

36
37 Introduction

38 Fundamental understanding of ecological and
39 genealogical relationships between populations is a
40 prerequisite for effective population management
41 and conservation. Allele frequencies estimated
42 using highly polymorphic DNA markers such as
43 microsatellite loci are widely recognized as a viable

44means to define population boundaries, and to
45estimate rates of gene flow among populations
46(Waser& Strobeck, 1998; Luikart &England, 1999;
47Manel, Gaggiotti & Waples, 2005). Statistical tools
48such as assignment tests have been widely used to
49place individuals to putative populations of origin
50when spatial genetic variation among populations
51exists. Assignment tests have been used widely in
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52 many ecological and evolutionary contexts,
53 including applied fisheries science (Hansen,
54 Kenchington & Nielsen, 2001a), to establish rela-
55 tionships among individuals within and among
56 groups (e.g., Roques, Duchesne & Bernatchez,
57 1999;Koskinen, Piironen&Primmer, 2001; Nielsen
58 et al., 2001), identification of introgression and
59 hybrid individuals (Martinez et al., 2001), and
60 ecotypes (Taylor et al., 2000), forensics (Primmer,
61 Koskinen & Piironen, 2000), phylogeographical
62 analyses (King et al., 2001), documenting contri-
63 butions of stocked individuals to natural popula-
64 tions or evaluation of supportive breeding
65 programs (Hansen et al., 2000, 2001b),1 and to infer
66 rates of dispersal (Berry, Tocher & Sarre, 2004;
67 Castric & Bernatchez, 2004). Empirical and theo-
68 retical studies have shown assignment tests to be
69 useful for purposes of classification when moderate
70 numbers of loci are employed, characterized by
71 moderate to high numbers of alleles per locus, and
72 when populations are moderately to highly differ-
73 entiated (Fst[ 0.05 or higher; Cornuet et al., 1999;
74 Bernatchez & Duchesne, 2000; Paetkau et al.,
75 2004). Studies have focused on properties of the
76 putative source populations rather than on the un-
77 known individuals to be classified (Manel et al.,
78 2005).
79 Despite the wide use of assignment tests, several
80 constraints may limit their use. Tests generally as-
81 sume that sourcepopulations are inHardy–Weinberg
82 equilibrium and loci are independent (i.e., no linkage
83 disequilibrium). Tests assume adequate samples sizes
84 of source populations, and random and equitable
85 sampling across genealogical groups within sources
86 populations to ensure accurate estimation of allele
87 (and expected genotype) frequencies (Guinand et al.,
88 2004). Regardless of the statistical basis of different
89 assignment methods, all assume that the genetic
90 markers employed provide independent information
91 on an individual’s ancestry. The importance of vio-
92 lations of assumptions to assignment accuracy have
93 been investigated for source samples (e.g., linkage in
94 admixed populations; Falush, Stephens & Pritchard,
95 2003), but are likely to be similarly important for
96 samples of unknowns to be classified. For example, if
97 unknown individuals collected from the same locale
98 were related (i.e., gene correlations or non-zero
99 coancestry between individuals within the same
100 breeding group; Wright, 1969; Chesser, 1991a, b),
101 non-independence due to shared pedigree could
102 influence population assignment. Individuals char-

103acterized by non-zero levels of coancestry could be
104sampled from populations of low effective size, if the
105variance in adult reproductive success is high, or due
106to other life-history and behavioral factors leading to
107kin-structured populations (Sugg et al., 1996).
108Levels of inter-population variance in allele fre-
109quency (Fst; Wright, 1965) have been widely used to
110predict the accuracy with which individuals can be
111assigned to population of origin. Fixation indices
112(F-statistics; Wright, 1965) may also be interpreted
113in light of non-independence among individuals,
114based on measures of inbreeding (F), coancestry (h)
115and inter-group correlations (a) (Wright, 1969;
116Cockerham, 1973; Chesser, 1991a, b). As correla-
117tions increase, less genetic variation is apportioned
118at other levels of population structure (Chesser,
1191991a, b). Hence, increasing coancestry leads to
120lower variance within populations, and concomi-
121tantly to reapportionment of greater portions of
122overall variance among families within populations
123and among populations. Understanding how the
124relative apportionment of genetic variance influ-
125ences assignment accuracy has not been rigorously
126examined. For example, Cornuet et al. (1999) per-
127formed extensive simulations focusing on varying
128levels of population differentiation (Fst), but not on
129other components of genetic variance such as
130inbreeding (F) and coancestry (h).
131Using empirical data sets, we investigate how
132inbreeding and coancestry of unknown individuals
133to be classified influences assignment accuracy.
134Specifically, we created mixtures composed of
135individuals from different strains of lake trout
136(Salvelinus namaycush; Salmonidae), where vary-
137ing proportions of individuals from each strain
138were related at the level of full-sibs. Simulations
139were also conducted on a range of values for
140parameters including the number of loci, number
141of alleles per locus, and level of population differ-
142entiation, that reflect characteristics observed for
143empirical data sets typically studied in nature. We
144demonstrate that coancestry, but not inbreeding
145levels of unknown individuals to be classified
146influenced accuracy of assignment decisions.

147Materials and methods

148Three levels of mean coancestry were considered:
149no coancestry (hj=0.00), low coancestry
150(hj=0.006), and high coancestry (hj=0.06). All
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151 analyses were conducted using source populations
152 characterized by empirically estimated variance in
153 allele frequency (Fst[ 0.01 and Fst[ 0.10). In all
154 cases, accuracy of assignment was computed by
155 assigning individuals of a given coancestry level to
156 source populations. Genotype frequencies in all
157 simulated and empirical source populations con-
158 formed to Hardy–Weinberg expectations (i.e., no
159 significant coancestry).

160 Empirical samples

161 Three lake trout hatchery strains were selected for
162 empirical evaluations. The Marquette (SMD) and
163 Seneca (SLW) strains represented a pair-wise
164 comparison where allele frequencies were highly
165 divergent, and represented a high Fst case
166 (Fst[ 0.10). The SMD and Isle Royale (SIW)
167 strains were selected as the low Fst case
168 (Fst[ 0.01). Details on hatchery strains may be
169 found in Page et al. (2003). Spawning of adults
170 were conducted by U.S. Fish and Wildlife Service
171 personnel during annual lake trout egg takes for
172 each domestic broodstock during the fall of 1998.
173 All crosses for each family involved one male and
174 one female. Fertilized eggs from each full-sib
175 family were incubated individually and upon
176 emergence were placed together in 95% non-
177 denatured ethanol for analysis.
178 Reproductive data including the total number
179 of lake trout pairs spawned and total numbers of
180 juveniles produced from each mating were used to
181 calculate average levels of coancestry (mean h;
182 Chesser, 1991a). We sampled 15 offspring from
183 each of four full-sib families and 6 individuals
184 from each of 10 full-sib families to generate
185 empirical sample sets with high and low levels of
186 coancestry, respectively for each strain comparison
187 in our analyses. Coancestry represents correlations
188 of genes between individuals within the same
189 family group, describing the probability of identity
190 by descent for two alleles drawn randomly from
191 each of two individuals. Coancestry values be-
192 tween full-sibs were 0.25. Gene correlation matri-
193 ces were derived for individual families as
194 described by Chesser (1991a). The number of
195 juveniles sampled per family (b=6 or 15), number
196 of families (n=10 or 4), and total numbers of
197 individuals within a strain used in the experiment

198(N) were used to estimate the average coancestry
199of the jth strain as per Chesser (1991a):
200

hj ¼

Pn

i¼1

b2i � bi

4 N2 �Nð Þ ð1Þ

202202203Using Equation (1) we selected full-siblings from
204families to empirically establish groups with
205known high (hj=0.06) and low (hj=0.006) empir-
206ical levels of known coancestry using offspring
207from four and 10 family crosses, respectively.
208Baseline SIW, SLW and SMD broodstocks were
209used as source populations in assignments where h
210for each source was assumed to be zero.

211Laboratory analyses of empirical samples

212DNA extraction of tissues from emergent juveniles
213(N=382) was performed using a proteinase K
214digestion and a modified Puregene extraction pro-
215tocol (Gentra, Inc., Minneapolis, MN). DNA was
216resuspended in 50 ll of TE buffer (10 mM Tris–
217HCL, pH 8.0, 1 mM EDTA). Fluorometry was
218used to determine DNA concentrations. One hun-
219dred nanograms of DNA was used for each PCR.
220We used six microsatellite loci that were originally
221developed for other salmonid species including
222brook trout (Salvelinus fontinalis) (Sfo1, Sfo12 and
223Sfo18; Angers, Bernatchez, 1996), 2pink salmon
224(Onchorynchus gorbuscha) (Ogo1a; Olsen, Bentzen
225& Seeb, 1998), bull trout (Salvelinus confluentus)
226(Scol19; Taylor et al., 2001), and Atlantic salmon
227(Salmo salar) (Ssa85; O’Reilly et al., 1996). PCRs
228were performed in 25 ll volumes using conditions
229provided by the respective authors. PCR products
230were screened using 6% polyacrylamide vertical
231gels. Products were visualized by a Hitachi FMBIO
232II Multi-View scanner and associated software.
233Microsatellite fragments were sized manually using
234a 20 bp internal lane standard. Several individuals
235of known genotype were used as additional allele
236size standards on each gel.

237Summary statistics for empirical data

238Estimates of allele frequency for the baseline
239SMD, SIW, and SLW broodstocks were obtained
240independently (Page, 2001) for each of 6 micro-
241satellite loci based on >60 adults per broodstock.
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242 Previous simulation studies (Guinand et al., 2004)
243 have shown that sample sizes at or exceeding this
244 level are sufficient to accurately estimate allele
245 frequencies for source populations under all con-
246 ditions evaluated in this study. Estimates of devi-
247 ations of observed genotypic proportions from
248 Hardy–Weinberg expectations were made using
249 the Markov Chain method of Guo and Thompson
250 (1992) implemented in the program Genepop
251 (Raymond & Rousset, 1995). F-statistics (Weir &
252 Cockerham, 1984) describing levels of allelic vari-
253 ance among individuals within and among strains
254 were estimated using Genetix 4.02 (Belkhir et al.,
255 2001). Statistical significance for all Hardy–Wein-
256 berg tests and tests of inter-strain differences in
257 allele frequency were based on probability levels
258 adjusted for multiple comparison tests using
259 sequential Bonferroni tests (Rice, 1989). Evidence
260 for linkage disequilibrium was tested using
261 Genetix 4.02.

262 Assignment tests

263 We first employed the likelihood-based assignment
264 test of Paetkau et al. (1995) to assign individuals
265 to strain of origin. This approach was used pri-
266 marily due to the wide use of likelihood-based
267 methods in the empirical literature. Our working
268 hypothesis was that genetic correlations among
269 individuals would lead to greater probabilities of
270 concurrent correct or misclassification of members
271 of the same family group. We then summarized
272 results characterizing the importance of gene cor-
273 relations and apportionment of genetic variation
274 on assignment error rate. We estimated accuracy
275 of individual strain classification using multilocus
276 genotype frequencies of each lake trout brood-
277 stock as described previously (Page, 2001; Page
278 et al., 2003) using the leave-one-out procedure
279 (Efron, 1983). We assigned progeny from low
280 coancestry and high coancestry groups of un-
281 knowns for each inter-strain comparison to
282 determine whether accuracy of individual assign-
283 ments was random across samples. To investigate
284 whether assignment accuracy covaried non-inde-
285 pendently among individuals as a function of
286 familial relationship (i.e., a ‘family effect’ charac-
287 terized by elevated inter-individual gene correla-
288 tions), we conducted chi-square tests to examine
289 whether progeny from the same parental cross
290 were more likely to be assigned correctly to source

291populations relative to random members of the
292entire sample.
293We also used the Bayesian method of Pritchard
294et al. (2000), 3implemented in the program Struc-
295ture (v. 1.0). The program uses multilocus geno-
296types to infer population structure and to assign
297individuals based on posterior probabilities to
298populations (or strains). Results were based on
299100,000 or 500,000 Markov Chain Monte Carlo
300iterations following a burn-in period of 20,000 or
301100,000 iterations for the high- and low Fst cases,
302respectively. For each Fst level and each coancestry
303case, we estimated individual admixture propor-
304tions (q̂, posterior probability of assignment),
305representing the estimated proportion of an indi-
306vidual’s genotype originating from either parental
307population. We ranked estimated q̂ values from
308the smallest to the highest value to obtain a dis-
309tribution of individual admixture proportions for
310each Fst level and each coancestry case as described
311by Nielsen et al. (2003). We then used a
312Kolmogorov–Smirnov two-sample test to evaluate
313pair-wise differences between observed distribu-
314tions of individual admixture proportions under
315two coancestry levels. This test compares distri-
316butions of q̂ values between different groups
317characterized by different mean coancestry levels.
318Specifically, pair-wise comparisons were con-
319ducted between distributions of individual admix-
320ture proportions with no coancestry [mean
321hj=0.00], low coancestry [mean hj=0.006], and
322high coancestry [mean hj=0.06]. Test were con-
323ducted were considered for each level of empiri-
324cally estimated variance in allele frequency
325[Fst[ 0.01 and Fst[ 0.1]).

326Computer simulations

327We used computer simulations for the range of
328parameters represented in the empirical lake trout
329examples. We simulated population data for 6 loci
330using three different levels of allelic diversity (2, 6
331or 10 alleles per locus). We focused on loci with
332this range of allelic diversity because individual
333characterizations will result in higher probabilities
334of individuals sharing alleles that are identical in
335state but not identical by descent relative to sim-
336ulations employing loci with higher allelic diver-
337sity. Accordingly, the null hypothesis (no effect of
338gene correlations on assignment accuracy) would
339be more difficult to reject. Further, Bernatchez and
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340 Duchesne (2000) showed that increasing the
341 number of alleles did not significantly improve
342 assignment accuracy.
343 For simulated data sets, two levels of popula-
344 tion differentiation estimated as per Wright (1965)
345 were examined, including a low and high Fst case
346 (Fst=0.01 and 0.10, respectively). Levels of inter-
347 population variance in allele frequency were con-
348 sistent with levels of inter-strain differentiation
349 between the low Fst and high Fst from the empirical
350 lake trout examples, respectively, and reflected
351 ranges of values likely encountered in natural set-
352 tings. Individuals were simulated by randomly
353 drawing alleles with replacement each allele for
354 each locus, with probabilities associated with
355 multinomial distributions established for each
356 population. Multinomial distributions in each
357 population were characterized by the same number
358 of allelic states. Under conditions of high Fst (0.10)
359 and low Fst (0.01), allele frequencies for a second
360 population were established as per Wright (1965)
361 with levels of inbreeding or gene correlations
362 within individuals (F) equal to 0.00, 0.05 and 0.15.
363 We assumed no gametic disequilibrium (DAB=0;
364 Weir, 1979). To simulate progeny for use in
365 assignment tests, we randomly selected two indi-
366 viduals as parents and randomly selected one allele
367 per parent per locus to produce progeny geno-
368 types. Progeny arrays were constructed with 60
369 individuals with contributions from each parental
370 pair proportional to the empirical low and high
371 coancestry levels described above for the empirical
372 lake trout data (i.e., 10 families of 6 individuals in
373 the low coancestry case; 4 families of 15 individ-
374 uals in the high coancestry case). We conducted 25
375 replicate simulations for each combination of
376 allelic diversity (2, 6 or 10), coancestry (0.00, 0.006,
377 and 0.06), and inbreeding (0.00, 0.05, 0.15). Inter-
378 population variance in allele frequency was set at
379 Fst=0.01 and 0.10. Likelihood-based tests of
380 assignment accuracy were summarized for each
381 combination as the mean and standard error in
382 assignment accuracy over the 25 replicates.
383 We also computed mean distributions of indi-
384 vidual admixture proportions over the simulated
385 replicates using the Structure (v. 1.0) program.
386 Characteristics of Markov Chain Monte Carlo
387 and burn in period were identical to the ones used
388 for empirical data sets. We then performed
389 Kolmogorov–Smirnov two-sample tests as de-
390 scribed above. For each level of allelic diversity, we

391made pair-wise comparisons both between differ-
392ent coancestry level for a given inbreeding and Fst

393level, but also between different inbreeding levels
394for each coancestry and Fst level.

395Results

396Empirical data

397No significant linkage disequilibrium was detected
398in each baseline (broodstock) sample, and geno-
399type frequencies of each broodstock conformed to
400Hardy–Weinberg expectations. However, increas-
401ing coancestry of individuals in groups of un-
402knowns led to significant and increasing
403departures from HWE expectations for unknown
404samples (Table 1).
405Accuracy of assignment increased with
406increasing coancestry in both the low and high Fst

407cases (Table 1). Increases in levels of coancestry
408and lower inter-individual variance within families
409led to concomitant changes apportionment of ge-
410netic variance (greater variance among families
411and broodstocks), especially when Fst was high
412(Table 1). Higher inter-population variance in al-
413lele frequency (Fst) led to greater assignment
414accuracy in all empirical lake trout cases. We
415found significant differences (Kolmogorov–Smir-
416nov test; p £ 0.05) between distributions of indi-
417vidual admixture proportions for samples from
418each pair-wise coancestry level comparison in the
419low Fst case (SMD–SIW). No significant difference
420was detected in the high Fst case (SMD–SLW).
421Results were not significant (0.05<p<0.10) when
422comparing q̂ distributions between the high coan-
423cestry and low coancestry data sets.
424To investigate the effects of familial relation-
425ship on assignment accuracy, we tabulated the
426number of offspring from crosses within each
427strain and full-sib family that were correctly clas-
428sified to strain of origin. The null hypothesis that
429assignment accuracy across all individuals was
430independent of familial origin was rejected. When
431classifying unknown individuals originating from
432broodstocks characterized by low inter-population
433variance in allele frequency (e.g., the low Fst case;
434SIW and SMD lake trout broodstocks; Fst� 0.01)
435and with both low and high coancestry levels, we
436found that the majority of individuals from the
437same families were either correctly or incorrectly
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438classified. All four v2 tests (2 strains for each of 2
439coancestry levels) were significant (p<0.05). For
440the high Fst case (SLW and SMD strains), we
441found little evidence for lack of independence in
442assignment as a function of familial membership.
443Only one of four v2 tests were significant for the
444SLW strain in the low coancestry case (p=0.011).
445No significant results were detected for the SMD
446strain for the low (p=0.40 ) or high (p=0.25)
447coancestry cases. Since a high proportion of indi-
448viduals were correctly classified even in the absence
449of coancestry (Table 1), there was no statistically
450significant family effect in the high Fst case. In
451contrast, when variance in allele frequency be-
452tween strains was low (the low Fst case), assign-
453ment accuracy was greatly affected by coancestry
454levels of unknown individuals.

455Simulated data

456Using simulated data we were able to examine
457effects of coancestry as well as inbreeding on
458assignment accuracy. Increasing levels of inbreed-
459ing and coancestry reflect decreasing variance
460within families, and concomitantly, a propensity
461for greater variance among families. With
462increasing inter-population variance in allele fre-
463quency (low versus high Fst), and when loci with
464different allelic diversities are used (2, 6 or 10 al-
465leles per locus), there were no effects of inbreeding
466across the cases considered (Figure 1). Accuracy
467of assignment was approximately equal and the
468magnitude of variance across replicates were sim-
469ilar. Assignment error rates and associated stan-
470dard errors for the low coancestry at F=0.01 and
4710.10 were nearly identical across simulations of
472different levels of allelic diversity (Figure 1).
473Contrary to results for inbreeding, the rela-
474tionship between accuracy of likelihood-based
475assignment and coancestry was complex using
476simulated data. Average assignment error rates
477were generally lower for low coancestry cases
478compared to the no coancestry cases (except when
479Fst was high for the 6 and 10 allele cases), because
480assignment accuracy was already high in cases of
481no coancestry cases (Figure 1(d–f)). Assignment
482error rates increased for high coancestry cases.
483Increases in average assignment error rate for
484higher levels of coancestry was evident for the 6
485and 10 allele cases only, especially when variance
486in allele frequency among source populations (Fst)T
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Figure 1. Mean assignment error rates for low- and high-coancestry individuals in Salvelinus namaycush empirical data sets repre-

senting low and high Fst cases. Bars indicate standard errors over replicates.
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487 was high (Figure 1(d–f)). At the high coancestry
488 level, accuracies of assignment in the 2, 6, and 10
489 allele cases were similar. Generally, no improve-
490 ment in likelihood-based assignment accuracy was
491 observed when loci characterized by high allelic
492 diversity were used. In simulations of non-zero
493 coancestry, we observed greater variance in
494 assignment accuracy among families and greater
495 inter-replicate variance in assignment accuracy.
496 Ranges of assignment error rates, as assessed by
497 standard errors associated with mean assignment
498 accuracy, increased with level of coancestry for all
499 levels of allelic diversities considered, and for low
500 and high Fst cases (Figure 1). This trend was
501 stronger for the 10 allele case (Figure 1).
502 We used Kolmogorov–Smirnov tests to con-
503 duct pair-wise comparisons of individual admix-
504 ture proportions (q̂) for different levels of
505 inbreeding, for levels of allelic diversity and
506 coancestry level. No significant changes associated
507 with level of inbreeding level were observed (re-
508 sults not shown). Conversely, significant changes
509 in distributions of q̂ between simulated groups
510 characterized by different coancestry level were
511 observed in both the low and high Fst cases for
512 each level of allelic diversity (Table 2).

513 Discussion

514 Given the increasing number of molecular genetic
515 studies of kin association and microgeographic

516genetic structuring (Storz, 1999; Ross, 2001), stud-
517ies of the effects of non-independence (coancestry)
518of individuals to be assigned to population of origin
519on assignment error rates are warranted. The pres-
520ence of non-zero gene correlations within or among
521samples of unknown individuals (inbreeding and
522coancestry, respectively) will reduce variance com-
523ponents within each contributing population as a
524proportion of the total variance. For fishes, samples
525characterized by non-zero levels of coancestry and/
526or inbreeding could be collected if samples are ob-
527tained from populations of low effective size, if the
528variance in female reproductive success is high, if
529individuals are philopatric and remain in vicinity of
530hatching location until maturity, or due to group
531behaviors such as avoidance of predators (Ryman,
532Allendorf & Ståhl, 1979; Hedgecock, 1994; Hansen,
533Nielsen & Mensberg, 1997; Gerlach et al., 2001;
534Bekkevold, Hansen & Loeschke, 2002; Castric
535et al., 2002). Although demonstration of kin asso-
536ciation in fish is debated (Arnold, 2000; Krause
537et al., 2001; Russell et al., 2004), evidence is accu-
538mulating for the importance of non-random genetic
539structuring and of the occurrence of inbreeding in
540natural populations (Fontaine & Dodson, 1999;
541Pouyaud et al., 1999; Gerlach et al., 2001; Castric
542et al., 2002; Planes & Lenfant, 2002; Planes et al.,
5432002; Hansen & Jensen, 2005; Kolm et al., 2005;
544Fraser, Duchesne & Bernatchez, 2005). Ruzzante,
545Hansen and Meldrup (2001) found that Danish
546populations ofSalmo truttawere likely composed of
547inbred individuals or by mixtures of individuals of

Table 2. Summary of significant pair-wise changes in mean distributions of individual admixture proportions (q̂) over replicated

simulated data sets when coancestry (h) varied

Inbreeding level Coancestry level Low Fst (0.01) High Fst (0.01)

2 alleles 6 alleles 10 alleles 2 alleles 6 alleles 10 alleles

Low h High h Low h High h Low h High h Low h High h Low h High h Low h High h

0 No h * * NS NS (*) NS No h NS NS NS (*) NS (*)

Low h NS NS NS Low h NS (*) *

0.05 No h * * NS NS NS NS No h NS NS NS (*) NS (*)

Low h NS NS NS Low h NS * *

0.15 No h * (*) * NS (*) NS No h NS NS NS (*) NS (*)

Low h NS (*) NS Low h NS (*) *

NS, not significant.

*p<0.05 when corrected for multiple tests.

(*), p<0.05, not corrected for multiple tests.

Results were provided by Kolmogorov–Smirnov two-sample test.
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548 different demes at scales smaller than sampling
549 locations. Non-independence among individuals to
550 be classified has been cited as potentially influencing
551 individual classification decisions (Hansen et al.,
552 1997; Ruzzante et al., 2001). Using simulations and
553 mixtures of known ancestry, we explicitly address
554 unstudied aspects of how attributes of unknown
555 individuals affect assignment accuracy.
556 Our empirical and simulation results extend
557 previous empirical observations by examining a
558 range of conditions under which inbreeding and
559 coancestry may be expected to exist in natural
560 populations. In the empirical portion of this study
561 we described results of assignment accuracy based
562 on collections of known full-sibs. Accuracy of
563 assignment was higher when genetic correlations
564 were greater than zero (i.e., with increasing levels
565 of coancestry; Table 1). Using Kilmogorov–Smir-
566 nov test, we also demonstrated that changes oc-
567 curred among distributions of individual
568 admixture proportion (posterior probability, q̂)
569 when coancestry levels varied. Based on results of
570 v2 tests, we showed that accuracy of assignment
571 was dependent on familial origin, especially in the
572 low Fst case (comparison of the SIW and SMD
573 strains). Results for the high Fst case (comparison
574 of the SLW and SMD strains) were inconclusive,
575 likely due to low power, because so few individuals
576 were incorrectly classified even in cases of zero
577 coancestry.
578 The variance among groups (families or popu-
579 lations) is proportional to the coancestry of indi-
580 viduals within groups (i.e., gene correlation
581 between individuals of the same breeding group;
582 Cockerham, 1969, 1973) only in the absence of
583 inbreeding (i.e., gene correlation within individu-
584 als) within groups. Hence, because we could not
585 breed related individuals, empirical lake trout data
586 based on full-sib crosses could not simultaneously
587 examine the effects of inbreeding and coancestry
588 on assignment accuracy.
589 Results from simulations permitted results
590 from empirical cases to be generalized across
591 ranges of parameter values likely to be encoun-
592 tered in natural populations. We found that
593 inbreeding, over the ranges simulated (F=0.00,
594 0.05, 0.15), did not affect likelihood-based assign-
595 ment accuracy (Figure 1). No significant changes
596 were observed across distributions of q̂ when
597 inbreeding varied, regardless of the level of allelic
598 diversity and coancestry level. Results from

599simulations also indicated that mean likelihood-
600based assignment error rates will be generally
601lower with increasing levels of coancestry among
602unknown individuals, particularly when coances-
603try is low. On average, likelihood-based assign-
604ment accuracy was minimally effected when
605coancestry was high (Figure 1). We also docu-
606mented greater variance in likelihood-based
607assignment error rates regardless of the level of Fst

608among source populations (Figure 1). Results of
609Kolmogorov–Smirnov two sample tests further
610demonstrated that distributions of q̂ values may
611significantly vary when coancestry varies, when
612loci characterized by low and high allelic diversity
613are used, and when inbreeding is non-zero (Ta-
614ble 2).
615Results from simulations for the 2, 6 and 10
616allele cases differed markedly. Assignment error
617rate decreased (Figure 1(a–c)) or were approxi-
618mately constant (Figure 1(d-e)) with increasing
619coancestry for the 2 allele case. The relationship
620was more complex for 6 and 10 allele cases, where
621error rates were greater at the high than at the low
622coancestry level (Figure 1). High variance in
623assignment accuracy was most notable in the 6 and
62410 allele cases with increasing coancestry (Fig-
625ure 1). Large variance in assignment error rates
626associated with high coancestry in simulated data
627sets can be explained by inter-family variance, as
628documented in the empirical case studies. In sim-
629ulated data sets, individuals in a family were fre-
630quently all correctly or incorrectly classified
631(specific data not shown) as observed for empirical
632data sets (quantified using v2 tests).
633Confamilial-based non-independence in
634assignment accuracy resulted in high inter-
635replicate variance in estimates of assignment
636accuracy, particularly for simulated data sets
637involving loci with higher allelic diversity (6 and 10
638alleles per locus). Across simulated data sets,
639individuals (full-sibs) in each family were
640either largely correctly or mostly all misclassified
641(Figure 1). Results presented a trend toward
642bimodality in assignment accuracy (data not
643shown); one ‘mode’ representing low error rates
644whereas the other ‘mode’ depicted high error rates.
645These observations have important implications to
646empirical studies in natural populations. Mean
647assignment error rates described in Figure 1 for
648data sets with moderate or high allelic diversity
649(6 and 10 alleles per locus), and when source
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650 populations are highly genetically differentiated
651 (high Fst cases) should be interpreted with caution.
652 Further, sampling of unknown individuals may
653 lead to very different estimates of source popula-
654 tion contributions if levels of coancestry are
655 greater than zero.
656 Based on results from the simulation studies,
657 estimates of accuracy of assignment described for
658 empirical lake trout cases are readily explained.
659 For the high Fst case (SMD and SLW) and for the
660 low Fst case (SMD and SIW), allele distributions
661 did not completely match because rare alleles were
662 present. In simulated data sets, rare alleles may
663 decrease accuracy of assignment (Cornuet et al.,
664 1999), as the accuracy of allele frequency estimates
665 is highly dependent on sample size (Guinand et al.,
666 2004). In the low coancestry case, individuals
667 possessing common alleles were sampled with
668 higher probability. As a consequence, allelic dis-
669 tributions across families were more likely to
670 overlap in situations of low coancestry and high
671 Fst. Thus, assignment accuracy across families was
672 not improved (Table 1). In cases of high coances-
673 try and high Fst, individuals sampled had higher
674 probabilities of sharing rare alleles and accuracy of
675 assignment was greatly improved (Table 1).

676 Conclusion

677 Results of our empirical and simulated data sets
678 have important implications for analyses of wild
679 populations when biologists seek to correctly as-
680 sign individuals to populations of origin. Assign-
681 ment error is highly non-random when significant
682 levels of coancestry existed among unknowns.
683 Estimates of assignment accuracy made on the
684 basis of resampling source populations will not
685 likely be predictive of expected accuracy for un-
686 known individuals characterized by non-zero
687 coancestry. Gene correlations among individuals
688 within source populations will upwardly bias esti-
689 mates of assignment accuracy because the variance
690 among groups (families or populations) is pro-
691 portional to the coancestry of individuals within
692 groups (i.e., gene correlation between individuals
693 of the same breeding group; Cockerham, 1969,
694 1973). Genetic correlations among individuals will
695 likely bias results unless assignment tests are
696 accompanied by additional analyses that provide
697 surrogate estimates of pedigree relationships (e.g.,

698use of genetic markers to estimate coefficients of
699relationship such as Queller and Goodnight’s rxy;
700Queller and Goodnight, 1989).
701
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