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Nonlinear Equations and Newton’s Method

Implementation

Newton's method

Problem: solve F(u) =0
F : RN — RN is Lipschitz continuously differentiable.

Newton's method
Uy = uc +s.

The step is
s=—F'(u) " F(uc)

F’(uc) is the Jacobian matrix
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Nonlinear Equations and Newton’s Method

Implementation

Implementation

Inexact formulation:
[F'(uc)s + Fuc)ll < nellF(uc)l-

n = 0 for direct solvers + analytic Jacobians.
If F(u*) =0, F'(u*) is nonsingular, and u. is close to u*

luy = u*[| = O(nellue — u™[| + [luc — u*||?)
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Nonlinear Equations and Newton’s Method

Implementation

But what if ug is far from u*?

Armijo Rule: Find the least integer m > 0 such that
1F(uc+27"s)| < (1 —a2™™)|[F(uc)
» m =0 is Newton's method.

» Make it fancy by replacing 27

» o = 107* is standard.
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Nonlinear Equations and Newton’s Method

Implementation

If F is smooth and you get s with a direct solve or GMRES then
either
» BAD: the iteration is unbounded, i. e. limsup || u,|| = oo,
» BAD: the derivatives tend to singularity, i. e.
limsup ||F"(un) 71| = oo, or
» GOOD: the iteration converges to a solution u*
in the terminal phase, m =0, and

lunt1 — u*|| = O(nllun — || + [lun — u”||?).

Bottom line: you get an answer or an easy-to-detect failure.
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Pseudo-Transient Continuation (Vtc )
What’s wrong with Newton?
Integration to Steady State and Wtc

Why worry?

» Stagnation at singularity of F’ really happens.
» steady flow — shocks in CFD
» Non-physical results
» fires go out
> negative concentrations
» Nonsmooth nonlinearities
» are not uncommon: flux limiters, constitutive laws

» globalization is harder
» finite diff directional derivatives may be wrong

Wtc is one way to fix some of these things.
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Pseudo-Transient Continuation (Vtc )
What’s wrong with Newton?
Integration to Steady State and Wtc

Steady-state Solutioins

Think about a PDE

and its solution u(t).
F(u) contains

» the nonlinearity,
» boundary conditions, and
» spatial derivatives.

We want the steady-state solution: u* = lim_, . u(t).
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Pseudo-Transient Continuation (Vtc )
What’s wrong with Newton?
Integration to Steady State and Wtc

What can go wrong?

If ug is separated from u* by

» complex features like shocks,
» stiff transient behavior, or
» unstable equlibria,

the Newton-Armijo iteration can

» stagnate at a singular Jacobian, or
» find a solution of F(u) = 0 that is not the one you want.
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Pseudo-Transient Continuation (Vtc )
What'’s wrong with Newton?
Integration to Steady State and Wtc

A Questionable Idea

One way to guarantee that you get uv* is
» Find a high-quality temporal integration code.
» Set the error tolerances to very small values.
» Integrate the PDE to steady state.
» Continue in time until u(t) isn't changing much.
» Then apply Newton to make sure you have it right.

Problem: you may not live to see the results.
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Pseudo-Transient Continuation (Vtc )

What’s wrong with Newton?
Integration to Steady State and Wtc

Integrate

du
= _F
o (u)

to steady state in a stable way with increasing time steps.
Equation for Wtc Newton step:

(0 + F'(ue)) s = —F(uc),

(8t + F'(ue)) s + F(ue)ll < nell Fue)ll.
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Pseudo-Transient Continuation (Vtc )
What'’s wrong with Newton?
Integration to Steady State and Wtc

Wtc as an Integrator

Implicit Euler for y’ = —F(y)
Unt1 = Up+ 0F (Unt1)
Uny1 is the solution of
G(u)=u—u,+0F(u)=0.
Since G'(u) =1 + 0F'(u), a single Newton iterate from u. = uj, is
uy = ue— (I +0F (ue)) Y ue — up + 5F(uc))
=ue— (07 + F'(uc)) " F (ue),

since u. — u, = 0.
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Pseudo-Transient Continuation (Vtc )
What'’s wrong with Newton?
Integration to Steady State and Wtc

Wtc as an Integrator

» Low accuracy PECE integration

» Trivial predictor
» Backward Euler corrector + one Newton iteration
» 1st order Rosenbrock method

High order possible, Luo, K, Liao, Tam 06

» Begin with small “time step” §. Resolve transients.

» Grow the “time step” near u*. Turn into Newton.
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Pseudo-Transient Continuation (Vtc )
What’s wrong with Newton?
Integration to Steady State and Wtc

Time Step Control

Grow the time step with switched evolution relaxation (SER)

S = min(do|[ F (o) [I/[1F (un)l; dmax)-

If Omax = 00 then 6, = dp—1]|F(un—1)||/[|F(un)]
Alternative with no theory (SER-B):

5n = 5n71/”un - Unfl”
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Pseudo-Transient Continuation (Vtc )
What'’s wrong with Newton?
Integration to Steady State and Wtc

Temporal Truncation Error (TTE)

Estimate local truncation error by
S 5%(“)7(tn)
2
and approximate (u)/ by

2 ((u)i)n — ((W)i)n—1  ((u)i)n—1 — ((v)i)n—2
(5n—1 + 5n—2 5n—1 6n—2

Adjust step so that 7 = .75.
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Constrained Wtc

Constraints

% = —F(u),u(0) =up € Q.
u(t) € Q, F(u) € 7(u) (tangent to Q).

Examples:
» Q has interior: bound constrained optimization
» Q smooth manifold: inverse eigen/singular value problems

Problem: Wtc will drift away from 2.

C. T. Kelley Pseudo-Transient Continuation



Constrained Wtc

Projected Wtc

uy = Pluc — (5;1/ + H(“C))il F(uc))
where

> P is map-to-nearest RN — Q
[P (u)]] =1 for u € Q.

» H(uc) makes Newton-like method fast.
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Convergence
Projected Wtc Theory Dynamics

General Method

Liao-Qi-K, 2006
F Lipschitz (no smoothness assumptions)

uy = Pluc — (671 + H(ue)) "1 F(ue)),

where H is an approximate Jacobian.
Theory: H bounded, other assumptions imply u, — u* and

Upt1 = U,I1V+1 + 0(5;1 +nn)[lun — ™|

where
u,’,V_H =u, — H(u,,)_lF(u,,)

which is as fast as the underlying method.
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Convergence
Projected Wtc Theory Dynamics

What are those other assumptions?

»
|
>
>
>
>

u(t) — u*

do is sufficiently small.

|P'(u)|| =1 or Lip const of P =1

u* is dynamically stable

H(u) is uniformly well-conditioned near {u(t)|t > 0}

uy = ue — H(ue) 1F(uc) is rapidly locally convergent near u*
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Convergence
Projected Wtc Theory Dynamics

A word about dynamics

du
i —F(u),u(0) = uo

implies u(t) — v* if F = Vf and
» f is real analytic,

» the Lojasiewicz inequality
V()| = clf(u) — f(u”)]

holds, or
» f has bounded level sets and finitely many critical points.

But none of this implies that v* is dynamically stable.
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Convergence
Projected Wtc Theory Dynamics

Fixing TTE and SER-B

If the underlying problem is minimization of f and ...

» you reduce § until f is reduced,
> o is sufficiently small, and

» u* is the unique root of F.

Then either §, — 0 or you converge to u*.
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem

Examples

—Uzz + Amax(0,u)? =0

z € (0,1), u(0) = u(1) = 0,

where p € (0,1).
Reformulate as a DAE to make the nonlinearity Lipschitz.
Let
L { uP ifu>0
u ifu<O
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Reformulation

Set x = (u, v)T and solve

Flx) = < f(u,v) > _ < — U, + Amax(0, v) ) _o,

u—w(v)

The nonlinearity is

(V) = vi/P ifv >0
v if v<O
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

DAE Dynamics
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Why not ODE dynamics?

Original time-dependent problem is
ur = Uz — Amax(0, u)P.
Applying Wtc to
ve = u—w(v)
rather than using u — w(v) = 0 as an algebraic constraint
» adds non-physical time dependence,

» changes the problem, and

» doesn’t work.
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Parameters

» p=.1and A =200. Leads to "dead core”.
> 60 = 1.0, Gmax = 10°.
» Spatial mesh size §, = 1/2048; discrete Laplacian L;,

» Terminate nonlinear iteration when either
IF(xa) I/ F(x0)|| < 1073 or ||sn]| < 10720,

Step is an accurate estimate of error (semismoothness).
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Solution
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Analytic OF

Fo) = < F(u,v) )

g(u, v)
_ —Ls,u A
N < u— v — max(0, v1/P) > + ( 1 ) max(0, v).
Since
0, if v <O
dmax(0,v) =< [0,1], ifv=0
1, if v >0,
we get ...
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem

Examples

_ —Ls, 0
oF = < 1 —1—(1/p)max(0,v(1=P)/pP) >

0 A
+ < 0 1 >8max(0, v).
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Nonlinear Reaction-Diffu
Inverse Singular Value Problem
Examples

Convergence
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Linear Algebra Problem

Chu, 92 ...
Find ¢ € RN so that the M x N matrix
N
B(c)=Bo+ ) ckBx
k=1
has prescribed singular values {o;} ¥ ;.

Data: Frobenius orthogonal {B;}N |, {0}V .

C. T. Kelley Pseudo-Transient Continuation



Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Formulation

Least squares problem
min F(U, V) = |R(U, V)|}

where

N
R(U,V)=ULVT =By~ > < ULVT, B, >F By
k=1

Manifold constraints: U is orthogonal M x M and
V is orthogonal N x N
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Dynamic Formulation

Q={( g ) € RM*M g RN>N| (- and V orthogonal }

Projected gradinet:

(R(U,V)VETUT — UZVTR(U, V)T)

U
g(U, V) = ( (R(U,V)TUZVT — VETUTR(U, V))V ):

ODE:
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Projection onto 2

Higham 86, 04
Projection of square matrix onto orthogonal matrices

A — Up.

where A = UpHp is the polar decomposition.
Compute Up via the SVD A= UX VT

Up=UVT.
Projection of
A
w= ( B )

onto Q is
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

The local method

Given u € Q let Pr(u) = P’(u) be the projection onto the tangent
space to Q2 at u. Let

H= (I — Pr(u)) + Pr(u)F'(u)Pr(u)

Locally (very locally) superlinearly convergent if Q is OK near u*.
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Nonlinear Reaction-Diffusion
Inverse Singular Value Problem
Examples

Inverse Singular Value Problem

S

0 5 10 15 20 2 30 35 a0
iterations
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Conclusions

Conclusions

» Wtc computes steady-state solutions.
» Works on some manifolds.
» Can succeed when traditional methods fail.
» It is not a general nonlinear solver!
» Theory and practice for many problems
» ODEs, DAEs
» Nonsmooth F
> Inverse eigen/singular value problems.
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