Nonlinear Equations and Newton's Method Pseudo-Transient Continuation (Vtc.) Constrained Vtc Projected Vtc Theory Examples

Pseudo-Transient Continuation

C. T. Kelley

NC State University

tim_kelley@ncsu.edu

Joint with Liqun Qi, Li-Zhi Liao, Moody Chu, Corey Winton

ORNL, November 2008

Outline

Nonlinear Equations and Newton's Method Implementation

Pseudo-Transient Continuation (Ψ tc)

What's wrong with Newton? Integration to Steady State and Ψtc

Constrained Ψtc

Projected Ψtc Theory

Convergence

Dynamics

Examples

Nonlinear Reaction-Diffusion Inverse Singular Value Problem

Conclusions

Newton's method

Problem: solve F(u) = 0

 $F: \mathbb{R}^N \to \mathbb{R}^N$ is Lipschitz continuously differentiable.

Conclusions

Newton's method

$$u_+=u_c+s$$
.

The step is

$$s = -F'(u_c)^{-1}F(u_c)$$

 $F'(u_c)$ is the Jacobian matrix

Implementation

Inexact formulation:

$$||F'(u_c)s + F(u_c)|| \le \eta_c ||F(u_c)||.$$

 $\eta=0$ for direct solvers + analytic Jacobians. If $F(u^*)=0$, $F'(u^*)$ is nonsingular, and u_c is close to u^*

Conclusions

$$||u_+ - u^*|| = O(\eta_c ||u_c - u^*|| + ||u_c - u^*||^2)$$

But what if u_0 is far from u^* ?

Armijo Rule: Find the least integer $m \ge 0$ such that

Conclusions

$$||F(u_c + 2^{-m}s)|| \le (1 - \alpha 2^{-m})||F(u_c)||$$

- ightharpoonup m = 0 is Newton's method.
- ▶ Make it fancy by replacing 2^{-m} .
- ho $\alpha = 10^{-4}$ is standard.

Theory

If F is smooth and you get s with a direct solve or GMRES then either

- ▶ **BAD:** the iteration is unbounded, i. e. $\lim \sup ||u_n|| = \infty$,
- ▶ **BAD:** the derivatives tend to singularity, <u>i. e.</u> lim sup $||F'(u_n)^{-1}|| = \infty$, or
- ▶ **GOOD:** the iteration converges to a solution u^* in the terminal phase, m = 0, and

Conclusions

$$||u_{n+1}-u^*||=O(\eta_n||u_n-u^*||+||u_n-u^*||^2).$$

Bottom line: you get an answer or an easy-to-detect failure.

Why worry?

- ▶ Stagnation at singularity of F' really happens.
 - ▶ steady flow → shocks in CFD
- Non-physical results
 - fires go out
 - negative concentrations
- Nonsmooth nonlinearities
 - are not uncommon: flux limiters, constitutive laws
 - globalization is harder
 - finite diff directional derivatives may be wrong

 Ψ tc is one way to fix some of these things.

Steady-state Solutioins

Think about a PDE

$$\frac{du}{dt} = -F(u), u(0) = u_0,$$

and its solution u(t).

F(u) contains

- ▶ the nonlinearity,
- boundary conditions, and
- spatial derivatives.

We want the steady-state solution: $u^* = \lim_{t \to \infty} u(t)$.

What can go wrong?

If u_0 is separated from u^* by

- complex features like shocks,
- stiff transient behavior, or
- unstable equlibria,

the Newton-Armijo iteration can

- stagnate at a singular Jacobian, or
- ▶ find a solution of F(u) = 0 that is not the one you want.

A Questionable Idea

One way to guarantee that you get u^* is

- ► Find a high-quality temporal integration code.
- Set the error tolerances to very small values.
- Integrate the PDE to steady state.
 - ▶ Continue in time until u(t) isn't changing much.
- Then apply Newton to make sure you have it right.

Problem: you may not live to see the results.

Ψtc

Integrate

$$\frac{du}{dt} = -F(u)$$

to steady state in a stable way with increasing time steps. Equation for Ψ tc Newton step:

Conclusions

$$\left(\delta_c^{-1}I + F'(u_c)\right)s = -F(u_c),$$

or

$$\| \left(\delta_c^{-1} I + F'(u_c) \right) s + F(u_c) \| \le \eta_c \| F(u_c) \|.$$

Ψtc as an Integrator

Implicit Euler for y' = -F(y)

$$u_{n+1} = u_n + \delta F(u_{n+1})$$

 u_{n+1} is the solution of

$$G(u) = u - u_n + \delta F(u) = 0.$$

Since $G'(u) = I + \delta F'(u)$, a single Newton iterate from $u_c = u_n$ is

$$u_{+} = u_{c} - (I + \delta F'(u_{c}))^{-1}(u_{c} - u_{n} + \delta F(u_{c}))$$
$$= u_{c} - (\delta^{-1}I + F'(u_{c}))^{-1}F(u_{c}),$$

since $u_c - u_n = 0$.

Ψtc as an Integrator

- Low accuracy PECE integration
 - Trivial predictor
 - ▶ Backward Euler corrector + one Newton iteration
 - 1st order Rosenbrock method
 High order possible, Luo, K, Liao, Tam 06
- ▶ Begin with small "time step" δ . Resolve transients.
- ▶ Grow the "time step" near u^* . Turn into Newton.

Time Step Control

Grow the time step with switched evolution relaxation (SER)

Conclusions

$$\delta_n = \min(\delta_0 || F(u_0) || / || F(u_n) ||, \delta_{max}).$$

If $\delta_{max} = \infty$ then $\delta_n = \delta_{n-1} ||F(u_{n-1})|| / ||F(u_n)||$.

Alternative with no theory (SER-B):

$$\delta_n = \delta_{n-1}/\|u_n - u_{n-1}\|$$

Temporal Truncation Error (TTE)

Estimate local truncation error by

$$\tau = \frac{\delta_n^2(u)_i''(t_n)}{2}$$

Conclusions

and approximate $(u)_i''$ by

$$\frac{2}{\delta_{n-1}+\delta_{n-2}}\left[\frac{((u)_i)_n-((u)_i)_{n-1}}{\delta_{n-1}}-\frac{((u)_i)_{n-1}-((u)_i)_{n-2}}{\delta_{n-2}}\right]$$

Adjust step so that $\tau = .75$.

Constraints

$$\frac{du}{dt} = -F(u), u(0) = u_0 \in \Omega.$$

 $u(t) \in \Omega$, $F(u) \in \mathcal{T}(u)$ (tangent to Ω).

Examples:

- \triangleright Ω has interior: bound constrained optimization
- $ightharpoonup \Omega$ smooth manifold: inverse eigen/singular value problems

Problem: Ψ tc will drift away from Ω .

Projected Ψtc

$$u_{+} = \mathcal{P}(u_{c} - (\delta_{c}^{-1}I + H(u_{c}))^{-1}F(u_{c}))$$

where

- ▶ \mathcal{P} is map-to-nearest $R^N \to \Omega$ $\|\mathcal{P}'(u)\| = 1$ for $u \in \Omega$.
- \blacktriangleright $H(u_c)$ makes Newton-like method fast.

General Method

Liao-Qi-K, 2006

F Lipschitz (no smoothness assumptions)

$$u_{+} = \mathcal{P}(u_{c} - (\delta^{-1}I + H(u_{c}))^{-1}F(u_{c})),$$

where H is an approximate Jacobian.

Theory: H bounded, other assumptions imply $u_n \rightarrow u^*$ and

Conclusions

$$u_{n+1} = u_{n+1}^N + O(\delta_n^{-1} + \eta_n) ||u_n - u^*||$$

where

$$u_{n+1}^N = u_n - H(u_n)^{-1}F(u_n)$$

which is as fast as the underlying method.

What are those other assumptions?

- $ightharpoonup u(t)
 ightharpoonup u^*$
- δ_0 is sufficiently small.
- ▶ $\|\mathcal{P}'(u)\| = 1$ or Lip const of $\mathcal{P} = 1$
- ▶ u* is dynamically stable
- ▶ H(u) is uniformly well-conditioned near $\{u(t) \mid t \ge 0\}$

Conclusions

ho $u_+ = u_c - H(u_c)^{-1}F(u_c)$ is rapidly locally convergent near u^*

A word about dynamics

$$\frac{du}{dt} = -F(u), u(0) = u_0$$

Conclusions

implies $u(t) \rightarrow u^*$ if $F = \nabla f$ and

- f is real analytic,
- the Lojasiewicz inequality

$$\|\nabla f(u)\| \ge c|f(u) - f(u^*)|$$

holds, or

f has bounded level sets and finitely many critical points.

But none of this implies that u^* is dynamically stable.

Fixing TTE and SER-B

If the underlying problem is minimization of f and ...

- you reduce δ until f is reduced,
- $ightharpoonup \delta_0$ is sufficiently small, and
- ▶ u* is the unique root of F.

Then either $\delta_n \to 0$ or you converge to u^* .

Example

$$-u_{zz} + \lambda \max(0, u)^p = 0$$

$$z \in (0,1), u(0) = u(1) = 0,$$

where $p \in (0,1)$.

Reformulate as a DAE to make the nonlinearity Lipschitz.

Conclusions

Let

$$v = \left\{ \begin{array}{ll} u^p & \text{if } u \ge 0 \\ u & \text{if } u < 0 \end{array} \right.$$

Reformulation

Set $x = (u, v)^T$ and solve

$$F(x) = \begin{pmatrix} f(u, v) \\ g(u, v) \end{pmatrix} = \begin{pmatrix} -u_{zz} + \lambda \max(0, v) \\ u - \omega(v) \end{pmatrix} = 0,$$

Conclusions

The nonlinearity is

$$\omega(v) = \begin{cases} v^{1/p} & \text{if } v \ge 0 \\ v & \text{if } v < 0 \end{cases}$$

Conclusions

DAE Dynamics

$$D\begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} u' \\ 0 \end{pmatrix}$$
$$= -\begin{pmatrix} f(u, v) \\ g(u, v) \end{pmatrix} = -F(x), \quad x(0) = x_0,$$

Why not ODE dynamics?

Original time-dependent problem is

$$u_t = u_{zz} - \lambda \max(0, u)^p$$
.

Applying Ψtc to

$$v_t = u - \omega(v)$$

rather than using $u - \omega(v) = 0$ as an algebraic constraint

Conclusions

- adds non-physical time dependence,
- changes the problem, and
- doesn't work.

Parameters

▶ p = .1 and $\lambda = 200$. Leads to "dead core".

Conclusions

- $\delta_0 = 1.0, \ \delta_{max} = 10^6.$
- ▶ Spatial mesh size $\delta_z = 1/2048$; discrete Laplacian L_{δ_z}
- Terminate nonlinear iteration when either

$$||F(x_n)||/||F(x_0)|| < 10^{-13} \text{ or } ||s_n|| < 10^{-10}.$$

Step is an accurate estimate of error (semismoothness).

Solution

Analytic ∂F

$$F(x) = \begin{pmatrix} f(u,v) \\ g(u,v) \end{pmatrix}$$
$$= \begin{pmatrix} -L_{\delta_z} u \\ u - v - \max(0, v^{1/p}) \end{pmatrix} + \begin{pmatrix} \lambda \\ 1 \end{pmatrix} \max(0, v).$$

Conclusions

Since

$$\partial \max(0, v) = \left\{ egin{array}{ll} 0, & \mbox{if } v < 0 \ [0, 1], & \mbox{if } v = 0 \ 1, & \mbox{if } v > 0, \end{array}
ight.$$

we get ...

Conclusions

$$\partial F = egin{pmatrix} -L_{\delta_z} & 0 \ 1 & -1 - (1/p) \max(0, v^{(1-p)/p}) \end{pmatrix} \ + egin{pmatrix} 0 & \lambda \ 0 & 1 \end{pmatrix} \partial \max(0, v).$$

Convergence

Linear Algebra Problem

Chu, 92 . . .

Conclusions

Find $c \in R^N$ so that the $M \times N$ matrix

$$B(c) = B_0 + \sum_{k=1}^{N} c_k B_k$$

has prescribed singular values $\{\sigma_i\}_{i=1}^N$. Data: Frobenius orthogonal $\{B_i\}_{i=1}^N$, $\{\sigma_i\}_{i=1}^N$.

Formulation

Least squares problem

$$\min F(U, V) \equiv ||R(U, V)||_F^2$$

Conclusions

where

$$R(U, V) = U\Sigma V^{T} - B_{0} - \sum_{k=1}^{N} \langle U\Sigma V^{T}, B_{k} \rangle_{F} B_{k}$$

Manifold constraints: U is orthogonal $M \times M$ and V is orthogonal $N \times N$

Dynamic Formulation

$$\Omega = \left\{ \left(\begin{array}{c} U \\ V \end{array} \right) \in R^{M \times M} \oplus R^{N \times N} \mid U \text{ and } V \text{ orthogonal} \right\}$$

Conclusions

Projected gradinet:

$$g(U,V) = \frac{1}{2} \left(\frac{(R(U,V)V\Sigma^TU^T - U\Sigma V^TR(U,V)^T)U}{(R(U,V)^TU\Sigma V^T - V\Sigma^TU^TR(U,V))V} \right).$$

ODE:

$$\dot{u} = \begin{pmatrix} \dot{U} \\ \dot{V} \end{pmatrix} = -F(u) \equiv -g(U, V).$$

Projection onto Ω

Higham 86, 04

Projection of square matrix onto orthogonal matrices

$$A \rightarrow U_P$$
.

where $A = U_P H_P$ is the polar decomposition.

Compute U_P via the SVD $A = U \Sigma V^T$

$$U_P = UV^T$$
.

Projection of

$$w = \begin{pmatrix} A \\ B \end{pmatrix}$$

onto Ω is

$$\mathcal{P}(w) = \left(\begin{array}{c} U_P^A \\ U_P^B \end{array}\right).$$

The local method

Given $u \in \Omega$ let $P_T(u) = \mathcal{P}'(u)$ be the projection onto the tangent space to Ω at u. Let

Conclusions

$$H = (I - P_T(u)) + P_T(u)F'(u)P_T(u)$$

Locally (very locally) superlinearly convergent if Ω is OK near u^* .

Inverse Singular Value Problem

Conclusions

- Ψtc computes steady-state solutions.
- Works on some manifolds.
 - ► Can succeed when traditional methods fail.
 - It is not a general nonlinear solver!
- Theory and practice for many problems
 - ODEs, DAEs
 - ▶ Nonsmooth F
 - Inverse eigen/singular value problems.