skip to content
 
Swift Science Center Italian site Italian site U.K. site U.K. site

How Does the Blast Wave Evolve and Interact with its Surroundings?

A GRB afterglow is thought to be produced by the interaction of an ultra-relativistic blastwave with the interstellar or intergalactic medium. The afterglow model predicts a series of stages as the wave slows. A key prediction is a break in the spectrum that moves from the gamma to the optical band, and is responsible for the power law decay of the source flux. This break moves through the X-ray band in a few seconds but takes up to 1000s to reach the optical. Thus, observations within the first 1000s in the optical and UV are crucial to see this early phase. While it now seems likely that all the GRBs have X-ray afterglow, not all have bright optical afterglow (at least after several hours). This may be due to optical extinction, but it is also possible that in some cases the optical afterglow is present but decays much more rapidly and is a function of the density of the local environment. Prompt high quality X-ray, UV, and optical observations over the first minutes to hours of the afterglow (inaccessible without Swift) are crucial to resolve this question. Continuous monitoring for hours and days is then important since model-constraining flares can occur in the decaying emission.

Stages of evolution of a gamma-ray fireball.
Whatever the progenitor, gamma rays and afterglow are believed to be produced by material moving at hyper-relativistic speeds, with initial Lorentz factor of around 1000, which then slows down as it interacts with surrounding medium. Starting from an initial radius of one million centimeters, the fireball has expanded to a distance of 3 x 1012 cm after 100 seconds. The burst is seen as the shock forms at a distance of 1014 cm in about 3000 seconds, and the afterglow occurs at a distance of 3 x 1016 cm after about a million seconds. The afterglow radiation is seen in x-ray, visible, and radio wavelengths.

Sensitivity to Afterglows
Sensitivity of Swift instruments
Sensitivity of Swift instruments (5σ, Δt/t = 1) compared to measured and fitted (Wijers, Rees, & Meszaros, 1997) light curves for GRB 980228. The Swift instruments are much more sensitive than current measurements.

Swift has good X-ray spectral capability to detect lines and edges. A huge wealth of information about the afterglow mechanism and sites is available from such measurements, including density, ionization, elemental abundance, and outflow characteristics. Lines are best detected in the early bright phase of the afterglow with a high-resolution spectrometer like the XRT.

Radio emission and scintillation probes interaction of fireball with surrounding medium.
Radio emission and scintillation probes interaction of fireball with surrounding medium.


Star forming regions are embedded in large columns of neutral gas and dust. The presence of extinction, whether in the host or in foreground objects, can be readily determined by multi-band photometry in the optical and IR. The simultaneous detection of high X-ray absorption, coupled with photometric E(B-V) measurements with Swift will determine whether dust and gas are present. Continuous monitoring over the first few hours to days will indicate whether dust is building up (due to condensation out of an expanding hot wind) or disappearing (due to ablation and evaporation).

The size of a causally connected emitting surface scales with the typical temporal variations seen in a burst (Δt ~ 1 s) whereas the size of the blast wave surface scales as t. Internal shocks are believed to be the photon source during the GRB phase because the observed time variability (Δt/t ~ 10-2 ) implies a smaller surface than made by external shocks. Some X-ray afterglows show Δt/t ~ 1 (GRB970508) but others show Δt/t ~ 0.05. The blastwave starts out with a Lorentz factor Γ> > 100, but decelerates sometime after the internal shock phase. This deceleration is the only known situation in the Universe (besides the Big Bang) where a flow transitions from super relativistic to more normal Γ < 10. Swift can continuously observe GRBs from t = 0 to t = 104 s when these unique physical processes occur. Swift will detect 1 ct/sec in X-ray for an event with ~ 10-11 erg cm-2 s-1. Since the afterglow decays as roughly 1/t, our ability to measure Δt/t is constant during the entire afterglow (~ 1/300).


If you have a question about Swift, please contact us via the Feedback form.

This page was last modified on Wednesday, 23-Jun-2004 17:35:54 EDT.

Science Mission Directorate Universe Division
Beyond Einstein | Origins

  • Questions/Comments/Feedback
  • Find helper applications like Adobe Acrobat
  • Learn about black holes, astronomy & more!
  • A service of the Astrophysics Science Division at NASA/ GSFC

    Swift PI: Neil Gehrels,
    Responsible NASA Official: Phil Newman
    Web Curator: J.D. Myers
    PAO Contact: Francis Reddy (301-286-4453)
    Privacy Policy and Important Notices.