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Abstract. The probabilistic response of depth-integrated soil water to given climatic 
forcing can be described readily using an existing supply-demand-storage model. An 
apparently complex interaction of numerous soil, climate, and plant controls can be 
reduced to a relatively simple expression for the equilibrium probability density function 
of soil water as a function of only two dimensionless parameters. These are the index of 
dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless 
storage capacity (active root zone soil water capacity divided by mean storm depth). The 
first parameter is mainly controlled by climate, with surface albedo playing a subsidiary 
role in determining net radiation. The second is a composite of soil (through moisture 
retention characteristics), vegetation (through rooting characteristics), and climate (mean 
storm depth). This minimalist analysis captures many essential features of a more general 
probabilistic analysis, but with a considerable reduction in complexity and consequent 
elucidation of the critical controls on soil water variability. In particular, it is shown that 
(1) the dependence of mean soil water on the index of dryness approaches a step function 
in the limit of large soil water capacity; (2) soil water variance is usually maximized when 
the index of dryness equals 1, and the width of the peak varies inversely with 
dimensionless storage capacity; (3) soil water has a uniform probability density function 
when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the 
soil water probability density function is bimodal if and only if the index of dryness is <1, 
but this bimodality is pronounced only for artificially small values of the dimensionless 
storage capacity. 

1. Introduction 

Because soil water is replenished by precipitation, the tem- 
poral variability of soil water content has a strong random 
component. Consequently, a probabilistic description of soil 
water may provide a productive framework for analyses of 
processes that interact with soil water, complementing the 
equilibrium-based approach [Eagleson, 1978a, 1978b]. Cordova 
and Bras [1981] and Hosking and Clarke [1990] presented in- 
vestigations of the soil water probability density function (pdf) 
under conditions of random rainfall and soil water-dependent 
losses. Milly [1993] derived an analytic solution to the stochas- 
tic soil water problem using a nonlinear (double step, de- 
scribed below) loss function; the loss function is the combined 
loss to evaporation and runoff as a function of soil water 
amount. Roddguez-Iturbe et al. [1999] recently solved the prob- 
lem using a more general form of the loss function, in which 
Milly's [1993] steps are generalized to ramps, and the approach 
that they used allows for even more general forms of the loss 
function. The essay of Roddguez-Iturbe [2000] called attention 
to the probabilistic nature of soil water and speculated on its 
potential to yield insights into ecosystem dynamics. 

Although the "minimalist" model of MiRy [1993] is a special 
case of the model of Roddguez-Iturbe et al. [1999], it neverthe- 
less contains many essential features of the more general prob- 
lem. In particular, the amount of soil water storage is limited 
by a definite storage capacity, and both the refilling and the 
depletion of soil water storage are dependent on the soil water 
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content. The use of step functions by Milly [1993] is a mini- 
mum-parameter formulation that represents soil water depen- 
dence of the loss function in both the dry and wet limits. In 
light of interpretations by Roddguez-Iturbe et al. [1999] and 
Roddguez-Iturbe [2000] to the contrary, an explanation may be 
helpful. Milly [1993] assumed that soil water is replenished at 
the precipitation rate for all attainable levels of soil water 
except capacity (at which point, all precipitation is excluded). 
Likewise, evaporation was allowed to proceed at the potential 
rate for all attainable storage levels except the minimum (at 
which point, all evaporation ceases). This is equivalent to a loss 
function whose value is zero for soil water below the minimum, 
stepping up to some constant value at some minimum soil 
water level, and stepping up again to an infinite loss rate at the 
maximum soil water level. 

Mathematical models can play a crucial role in the under- 
standing of the dynamic interactions among climate, soil, soil 
water, and vegetation. The relative simplicity and dimension- 
less form of Milly's [1993] solution yields simple expressions for 
the pdf and low-order moments of soil water, presented here, 
that contribute to the elucidation of physical controls on soil 
water dynamics. They also offer a potential path toward the 
analysis of space-time links between climate, soil, and vegeta- 
tion that Roddguez-Iturbe [2000] has encouraged. 

Modeling always presents the analyst with a tradeoff be- 
tween simplicity and detail, and all points on the tradeoff curve 
are valid points of departure. It is acknowledged that the so- 
lution presented by Milly [1993], applied here, does not recog- 
nize the generally accepted gradual decrease in evaporation 
with depletion of soil water, and less importantly, it does not 
recognize the nonstep function nature of soil drainage. On the 
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other hand, the analysis rewards parametric frugality with sim- 
plicity and perspicuity of results. Furthermore, as shown here, 
the resulting probabilistic characteristics of soil water are very 
similar to those implied by the more general model, implying 
that the exact shape of the loss function is only of secondary 
importance. 

The objectives of this paper are (1) to compare the formu- 
lations and results of the models of Milly [1993] and Roddguez- 
Iturbe et al. [1999] and (2) to use the simpler model to explain 
the control of the soil water pdf, mean, and variance by soil, 
climate, and vegetation characteristics. 

2. Relation Between the Two Models 

2.1. Climatic Forcing 

Milly [1993] and Roddguez-Iturbe et al. [1999] made identical 
assumptions about the nature of climatic forcing. The depth of 
rain h for any storm is drawn from an exponential distribution. 
In the notation of Rodriguez-Iturbe et al. the expected value of 
this storm depth is expressed (by scaling against soil charac- 
teristics) as nz/•/, in which n is soil porosity, z is "depth of soil" 
(i.e., effective depth of root zone), and •/is a dimensionless 
constant. Storm arrival is a Poisson process with mean arrival 
rate 3, (events per unit time). Storms are assumed to have zero 
duration (and infinite intensity). Evaporative demand is ex- 
pressed through a constant "potential" or maximum (i.e., not 
water limited) evaporation rate E. Seasonality of forcing is 
ignored. 

2.2. Loss Functions 

In both analyses, it is assumed that precipitation will enter 
the soil store as long as the soil is not saturated. Thus the water 
balance can be readily discussed in terms of differences in loss 
functions. Roddguez-Iturbe et al. [1999] assume that the rate of 
water loss, under unsaturated conditions, can be expressed by 
a piecewise linear function of saturation s, which is the total 
amount of soil water divided by the available soil void volume 
nz. For s less than some value s* the loss (depth per unit time) 
is given by Es/s*. For s between s* and some greater value s •, 
the loss is given simply by E. Over both of these regions the 
loss is considered to be due only to evaporation. For s greater 
than s • the evaporative loss E is supplemented by a "leakage" 
(or soil drainage) loss that varies linearly from zero at s• to K s 
at soil saturation. 

The loss function used by Roddguez-Iturbe et al. [1999] re- 
duces to that used by Milly [1993] in the limit as s* approaches 
zero and K.• approaches infinity. This means that (1) evapora- 
tion proceeds at the maximum rate until the soil is completely 
dry and (2) any excursion of soil water above S l is damped 
instantaneously due to the strong nonlinearity of the soil hy- 
draulic conductivity function. 

2.3. Dimensionless Groups of Milly [1993] 

Let us pause to take stock of the parameters used in the two 
models. The models share the parameters nz, % 3,, E, and s •. 
Roddguez-Iturbe et al. [1999] use the additional parameters s* 
and K,. In Milly's [1993] analysis, it is shown that the control of 
soil water and water balance dynamics can be explained in 
terms of the relative magnitudes of only three water depth 
scales, corresponding to soil water storage capacity, mean 
storm depth, and mean interstorm evaporative depth, which 
collectively can form only two independent ratios. In the 
present notation, these groups are 

= ys, (1) 

• = (s•nz3,)/E. (2) 

In alternate notation, we write [Milly, 1993] 

a = Wo/(h), (3) 

• = Wo/(E(ta)), (4) 

in which w o is the effective water capacity of the soil (nzs 1), 
(h) is the expected value of storm depth (nz/•/), and (ta) is the 
expected value of storm interarrival time (3,-1), so that E(ta) is 
the expected value of cumulative evaporative demand between 
storms. 

Given the symmetry embodied in the parameters a and D, 
we shall use them in further derivations here. In plotting and 
analyzing the results from a dimensionless viewpoint (Figures 
4-6), however, we shall generally use the dimensionless num- 
bers a and a/13 instead. The ratio a/13 (also equal to E(ta)/(h)) 
is known as the index of dryness, and is the climatic ratio of 
potential evaporation to precipitation [Budyko, 1974]. 

3. Derivation of Soil Water Probability 
Density Function 

Milly [1993] formulated the problem in terms of the pdfs of 
soil water immediately before and after any storm. Let us 
define three random variables: S = sis 1, a rescaled soil water 
saturation at a randomly chosen point in time; S-, the value of 
S conditional on the time being immediately before a ran- 
domly chosen storm; and S +, the value of S conditional on the 
time being immediately after a randomly chosen storm. We 
denote the pdfs of these three variables by fs(x), fj (x), and 
fJ (x), respectively. Milly [1993] presented the solutions for the 
last two of these but not for the first; its derivation from the 
others is straightforward and is presented here. 

The variable S + is a simple function of the previous S- and 
the normalized storm depth, which is exponentially distributed; 
S- is a simple function of the previous S + and the normalized 
cumulative interstorm potential evaporation, which is also ex- 
ponentially distributed (by virtue of the constant rate E and 
the Poisson storm arrival process). Because of these similari- 
ties and because of the similarity of the step functions used to 
describe fluxes at the two limits of soil water storage, Milly's 
[1993] analysis led to a symmetric set of relations between 
fj (x) and fJ (x). These were solved to find 

fJ(x) = aqe {•-")x + pS(x - 1) 0 -< x -< 1, (5) 

fj(x) = •pe {"-•)(1-x) + qS(x) 0 -< x <- 1, (6) 

in which 8(z) is the Dirac delta function, p is the probability 
that soil water is at capacity following any given storm, and q is 
the probability that soil is dry at the end of any given inter- 
storm period. These latter two probabilities were shown to be 

p = (a- /3)/(ae "-t• - /3), (7) 

q = (•- a)/(/3e •-"- a). (8) 

One step in the derivation of the solution presented above 
was the expression offj (x) as a derived distribution depend- 
ing on f• (x) and the pdf of normalized storm interarrival time. 
The distributions are linked through the relation 

S-max = (S +- u, 0), (9) 
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Figure 1. Variance of soil water saturation s as a function of storm arrival rate X (events per day) and mean 
storm depth (h) (mm). Here, nz = 400 mm, s* = 0.35, s• = 0.85, K s = 800 mm d -•, and E = 4.5 mm 
d -•. Solid curves are based on (15), and dashed curves ar e from Rodrfguez-Iturbe [2000]. 

in which u is a normalized storm interarrival time. (The nor- 
malized storm interarrival time is defined as the product of 
storm interarrival time and the potential evaporation rate E, 
divided by the available soil void volume nz. Thus it is the ratio 
of storm interarrival time to the time that would be needed to 

deplete the soil water store from capacity to dryness by evap- 
oration.) 

Having summarized the pertinent points from Milly [1993], 
we are now ready for the brief derivation of the pdf of S. The 
value of S at any randomly chosen time can be viewed as a 
function of two independent random variables, 

S = max (S + - U, 0), (10) 

in which U is the normalized time since the most recent storm. 

For a randomly chosen point in time and given the Poisson 
storm arrival model, however, the pdf of U is identical to the 
pdf of normalized storm interarrival time. It follows that the 
pdf of S, f(S), is identical to the pdf of S-, so 

rs(x) = 13pe ("-•)(1-x) + qiS(x) O_<x_<l (11) 

or, equivalently, 

rs(x) = 13qe (•-")x + qiS(x) 0 -< x -< 1. (12) 

In the limit of the special situation where a =/3, this is simply 

/3 a(x) 
rs(x) = (1 +/37 + (1 +/3) a =/3 0 _< x -< 1. (13) 

4. Mean and Variance of Soil Water 

Expressions for the mean and variance of soil water follow 
by direct computation from (12). The mean is 

(S/S1) -" (S): -1/(/3 - 0/) + (1 + •e13-a)/(•e 13-øt - 0/), (14) 

and the variance is 

Var IS/S1] = Var [S] = 1/(/3 - a) 2 

- [1 + (a + 2)/3e•-"]/(/3e •-"- a) 2. (15) 

Results for the special case where a = /3 cannot be evaluated 
directly by (14) or (15). In the limit as/3 - a --> 0 we find 

(S/S1)-- O//[2(1 n t- 0/)] 0/ = /3, (16) 

Var [s/s1] = (0/2 + 40/)/[12(0/ + 1) 2] 0/= /3. (17) 

5. Illustration and Interpretation of Solution 

5.1. Comparison with Examples of More General Solution 

Rodrfguez-Iturbe [2000] showed the dependence of variance 
of saturation s on mean storm arrival rate and mean storm 

depth for all other parameters fixed. Here we evaluate the 
variance of s by means of (15), using the parameter values of 
Rodrfguez-Iturbe [2000]. The simpler model produces a maxi- 
mum variance that is about twice that in the de,tailed model 

(Figure 1). This is not surprising because the simpler model 
allows soil water to vary freely to low values, without reduction 
of losses when s drops below s*, but only when s reaches 0. 
Given the ambiguity in definition of the datum for zero soil 
water in both models, this discrepancy in scale Should possibly 
not be given great emphasis. Also, despite the overall scale 
difference both solutions share essential qualitative character- 
istics, such as the shape and relative positions of curves. In- 
deed, the simpler model eyen reproduces the locations of vari- 
ance maxima quantitatively. 

Figure 2 compares probability distributions from this anal- 
ysis and from the more general analysis, using the examples of 
Rodriguez-Iturbe et al. [1999]. To facilitate the comparison in 
the presence of th,e delta function pdf,. the plots are in terms of 
the integral of the pdf, or the cumulative density function (cdf). 
The differences in solutions are readily understood in terms of 
the approximations of the simpler model. For cases a and d, in 
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Figure 2. Cumulative density functions (cdf) of soil water saturation s for various combinations of param- 
eters. Solid curves are based on (12), and dashed curves are from Rodrfguez-Iturbe [2000]. For case a, nz = 
450 mm, s* = 0.3, sa - 0.85, Ks - 900 mm d -a, (h) = 15 mm, ;t -a - 1.5 days, and E = 6 mm d -a. 
For case b, nz = 100 mm, s* - 0.45, sa - 0.8, Ks = 5000 mm d -a, (h) = 20 mm, ;t -a = 10 days, and 
E - 6 mm d -a. For case c, nz - 200 mm, s* = 0.3, sa - 0.9, Ks - 200 mm d -a, (h) - 10 mm, ;t -a = 
6 days, andE - 2.5 mm d -a. For case d, nz - 300 mm, s* - 0.3, sa = 0.85, Ks = 300 mm d -a, (h) = 
15mm,;t -a =3days, andE = 4mmd -a. 

which soil tends to be wet, very close agreement is found over 
a wide range of soil water. However, the more general solution 
allows s to exceed sa temporarily after a storm, whereas the 
simpler solution simply takes s a as an upper bound on storage. 

Because soil generally drains rapidly down to s a, this incurs 
only a small error overall. A more significant difference arises 
in connection with treatment of evaporation when s is below 
s *. The simple model attaches no significance to s* and allows 
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Figure 3. Evaporation ratio (mean evaporation as a fraction of mean precipitation) as a function of storm 
arrival rate ;t. Here nz = 150 mm, s* - 0.35, sa = 0.85, Ks - 1000 mm d -a, and E = 5 mm d -a. Solid 
curves are based on (18), and dashed curves are from Roddguez-Iturbe [2000]. 
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Figure 4. The cdf of normalized soil water saturation s/s • for various values of dimensionless storage 
capacity a and index of dryness a/13; (top) a = 50; (bottom) a = 10. 

evaporation to continue unabated until the soil is dry. The 
more general model suppresses evaporation in this range, 
tending to keep soil relatively wet when water is scarce. In 
situations where the detailed shape of the pdf or cdf is a 
concern, especially under arid conditions, one might prefer to 
employ the more general model. 

Milly [1993] has shown that the fraction of precipitation lost 
to evaporation is given by 

(e •-• - 1)/(e •-• - /3/a). (18) 

The partitioning of precipitation into runoff and evapotrans- 
piration by the two models is compared in Figure 3 using the 
examples of Roddguez-Iturbe et al. [1999]. Differences are very 
small. 

Roddguez-Iturbe et al. [1999], having introduced the param- 

eter s* as a level of saturation below which water stress re- 

duces evapotranspiration, are able to quantify also the parti- 
tioning of total evapotranspiration into that which occurs while 
the plants are under stress s < s* and that which does not. In 
contrast, Milly [1993] makes the minimalist assumption that 
water stress is absent until all the water is gone, so none of the 
evaporation occurs under stress. The inability to caculate 
meaningful values of the measure of stress used by Rodriguez- 
Iturbe et al. might appear to be a decided disadvantage for 
"ecohydrological" studies. However, a more physically relevant 
measure of water stress, which can be obtained from either 
model, is the temporal mean of difference between stressed 
and unstressed evaporation rates (that is, between actual and 
potential evaporation rates). As already shown, actual evapo- 
ration rates differ little between the two models. 
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Figure 5. Mean normalized soil water (s/s•) as a function of dimensionless storage capacity a and index of 
dryness a/13. 

5.2. Solutions for the Full Parameter Space 

An attractive characteristic of (14) and (15) is that they 
depend only on the parameters a and/3, facilitating illustration 
of the full parameter space of the solution. Figure 4 shows the 
dependence of the cdf on these dimensionless parameters. For 
a large dimensionless water capacity (a = 50), soil water is 
almost always at or near its maximum when the index of dry- 
ness a//3 is <1 and almost always at or near its minimum when 
the index of dryness is > 1. It is only when the index of dryness 
is very close to 1 that soil water is likely to be found at any level. 
Indeed, for the interesting case where the index of dryness is 1 

and a is large, the soil water pdf reduces to a uniform distri- 
bution, as is clear also directly from the form of (13). 

As the dimensionless soil water capacity is reduced from a 
very large value, the strong sensitivity of the cdf to the index of 
dryness a/13 in the area of a/[3 = 1 is successively reduced. In 
the case where R is slightly <1 (e.g., a/[3 = 0.9, a slightly humid 
climate), the cdf plotted for a = 10 in Figure 4 indicates that 
the pdf is bimodal. One mode is associated with the finite 
probability at total dryness. The second can be inferred from 
the concave upward cdf, indicating pdf increasing with satura- 
tion. In fact, the conditions for bimodal pdf of soil water are 
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Figure 6. Variance of normalized saturation as function of dimensionless storage capacity and index of 
dryness. 
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immediately obvious from (12). The pdf will have two maxima 
if and only if the index of dryness is <1, and the modal values 
of normalized soil water are 0 and 1 in all cases. 

Figure 5 shows the dependence of the mean soil water on 
the dimensionless water capacity and the index of dryness. As 
we would expect, the larger the value of the index of dryness, 
the drier the mean state of soil water. For the typical case 
where water capacity is large, the soil is near its maximum 
possible wetness for most humid climates and near its mini- 
mum wetness for most arid climates. Only in a narrow range of 
climates characterized by an index of dryness near 1, repre- 
senting a near balance between water supply and evaporative 
demand, are intermediate values of mean soil water found. 

This result is easily understood in terms of the model as- 
sumptions. When a and/3 are large, it is very unlikely that soil 
water will change much during an individual storm or inter- 
storm event. If, for example, the climatic tendency is for an 
excess of precipitation over evaporative demand, then each 
pair of events is more likely to raise than to lower soil water, 
given some intermediate state of wetness. Over time, the wet- 
ness will approach its maximum, and because/3 is large, soil 
water will very rarely drop far below the maximum. A similar 
argument applies to the arid case. In the limit of infinite a and 
/3 the curves in Figure 5 approach a step function, with zero 
mean soil water for all arid climates (index of dryness > 1) and 
maximum possible soil water for all humid climates (index of 
dryness <1). 

If, however, water capacity is not small in comparison to the 
characteristic water depths of climatic forcing (mean storm 
depth and mean interstorm evaporative depth), then regard- 
less of the level of soil water at a given time, it is quite possible 
that soil water may take any value in the near future. Thus, 
when a and/3 are not large, a wider range of states is experi- 
enced, and as a result, the dependence of the mean state on 
index of dryness is spread over a wider range of climates, as 
seen in Figure 5. 

Figure 6 illustrates the dependence of variance on water 
capacity and index of dryness. The large-capacity case exhibits 
a sharp peak in variance around the boundary between arid 
and humid climates. The peak broadens and shifts toward 
lower index of dryness as the water capacity is reduced. The 
general pattern of the variance curves is readily understood in 
terms of the means already shown and discussed in Figure 5. 
For a given value of a, the greatest variance occurs under those 
conditions that support an intermediate value for the mean soil 
water. It is only when the mean state of soil water is not 
"pinned" against one of its two limiting values that it is free to 
vary up and down most widely. 

The peaks in variance grow broader with decreasing values 
of a and /3. Small values of these parameters allow larger 
changes in normalized wetness during a given storm or inter- 
storm event. This, in turn, allows a wider range of soil water 
values to be experienced under a given set of climatic condi- 
tions. 

The variance of a uniform distribution on the interval [0,1] is 
0.0833. This is the maximum variance in the case of large a. As 

a decreases, the maximum variance rises above this value, 
indicating the presence of the bimodal distribution mentioned 
earlier. It can be seen that the increase in maximum variance 

is significant only when a is much less than 10. Natural eco- 
systems tend to have root zones deep enough to make values of 
a much larger than 1, probably as a result of the tendency to 
maximize water use [Milly and Dunne, 1994; Milly, 1994]. Given 
this observation and the results of Figure 6, it can be con- 
cluded, for most practical purposes, that soil water variance is 
maximized when the index of dryness is in the neighborhood of 
1, that is, when the atmospheric supply of water is approxi- 
mately balanced by the evaporative demand for water. 

6. Summary 
The implications of a previously published analysis of the 

probabilistic response of soil water to random precipitation 
have been explored. Expressions for the cumulative distribu- 
tion function, the mean, and the variance of soil water have 
been derived, presented, and interpreted. Despite the simplic- 
ity of the problem considered the solution shows a richness of 
behavior. Because of the simplicity of the analysis, that rich- 
ness can be interpreted easily. 
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