The effects of flash-freezing on the structure of β -galactosidase

ASA Buried at Crystal Contacts

β-Galactosidase Initial Diffraction Cycle 1

(~3 second melt time)

A State of the state of the

Cycle 12

I/Sig(I) & Mosaicity vs Cooling Cycle

I/Sig(I)

Unit Cell Volume vs Freeze Cycle (Humidity Dependence)

Systems Studied

	β-Galactosidase	Thermolysin
Space Group	$P2_{1}2_{1}2_{1}$	P6 ₄ 22
Unit Cell	154 x 174 x 204 Å	94 x 131 Å
Fraction Solvent	58 %	49 %
Precipitant	PEG 8000	Water
UC Vol Change	- 5.2 %	- 3.6 %
Cryoprotectant	30 % (v/v) DMSO	60 % (w/v) glucose with
	40 % (v/v) PEG 400	external oil

Specific Volume Change of Bulk Solvent with Cooling (RT -> 77 K)

Relation Amongst Parameters - Solvent Extrusion

$$v_{exit} = \Delta_{sol} + \frac{(v_{prot} \Delta_{prot} - \Delta_{cell})(1 - \Delta_{sol})}{1 - v_{prot}}$$

Protein	v_{exit} (at optimal cryoprotectant)
β-gal / DMSO	0.038 - 0.010
β-gal / PEG 400	0.018 - 0.004
Thermolysin / glucose	0.020

Overall Summary

- 1. The optimal cryoprotectant concentration for cryocooling appears to be that which allows the bulk solvent contraction to best compensate for the protein and lattice contraction.
- 2. 'In situ' annealing involves, at least in part, tuning of the thermal contraction of the bulk solvent by transporting water into or out of the crystal during the room temperature phase.

Acknowledgment

Doug Juers