Structural Opportunities

Systems where H's perform function, but.....

Structural details of protein packing are a surprisingly fertile area.

H/D exchange is an underutilized method to study protein dynamics and spatial organization of secondary structure

Hydroxyl orientations are the most valuable probe to assess electrostatic/van der Waals forces in protein packing.

Assignment of charge distributions using X-N synthesis

Kossiakoff, A.A., et. al. Proteins (1992) 12, 223-236.

D_2O-H_2O Solvent difference maps

A powerful and UNBIASED method to locate exchangeable H's.

For protonation states, hydroxyl rotors, H/D exchange, water orientations, deamidation

Easier said than done. Perdeuteration to the rescue

D20 - H20 SOLVENT MAPS

Need: 1 data set D₂O, 1 set H₂O (H₂O set much more difficult incoherent scattering)

Success based on:

- 1) Scattering difference D vs. H (6.7 vs. -3.8)
- 2) Protein region identical in D_2O and H_2O , therefore in map density = $\underline{0}$
- 3) All ordered water no further than 4Å from protein surface.

Apply density modification:

- a) protein=0 } bulk=constant } 60% of cell
- b) no solvent density < bulk average

Strong restraints- lots of feedback

Kossiakoff, A.A., et. al. Proteins (1992) 12, 223-236.

Kossiakoff, A.A., et. al. Proteins (1992) 12, 223-236.

Finer-Moore, J.S. et. al. Proteins (1992) 12, 203-222.

Tyr 234 Hydroxyl Rotor

Kossiakoff, A.A., et. al. Proc. Natl. Acad. Sci. USA (1990) 87, 4468-4472.

McDowell, R. S. and Kossiakoff, A.A. "A comparison of neutron diffraction and molecular dynamics structures: Hydroxyl group and water molecule orientations in trypsin. J. Mol. Biol. (1995) 250, 553-570.

Crambin at high resolution

Data from M. Teeter

Table 1. Crystal data and refinement statistics

Space group	P 2 ₁	Unit cell parameters	a=41.01 b=18.69 c=22.64 β =90.63°
Resolution,	25-1.1		
Unique reflections	11,256	Completeness, %	82.9
R factor, %	15.6	R-free, %	21.2
No.of a.a. residues in refinement	46	No.of solvent mole- cules in refinement:	290D ₂ +370=66
Protein non- hydrogen atoms	337	Protein H/D	322
Rmsd bonds ()	0.02	Rmsd angles (°)	2.4
Average B-factor, ²	10.9		

^{b)} Restrained anisotropic refinement was performed in Refmac5. The D and H atoms were included in the refinement. ^{b)} R factor = $\Sigma ||F(obs)| - |F(calc)| |\Sigma|F(obs)|$, R-free is the same calculated with 5% data withheld from refinement

В

First hydration shell

1.1 Å Neutron data, room T
0.54Å X-ray data, 100K

2Fo-Fc at 1.2σ level

Omit Fo-Fc at 2.5σ level

The ammonia channel- Bob Stroud et. al.

The ammonia/ ammonium channel?

