

APC172

APC166

APC10

APC1005 Structural Genomics Exploring Protein Structure and Function PC172 APC234

Andrzej Joachimiak APC Structural Biology Center and Midwest Center for Structural Genomics

ORNL, July 12/13, 2005

APC172

TraR, a pheromonebinding transcriptional factor

Cyanase, a homo-oligomeric enzyme

The Protein World

IoII, a monomeric enzyme

Protein with a knot

Ribosomal 50S subunit, multi-protein/RNA complex

TrpR and its Complex with L-Trp and *trp* Operator DNA

trp Operator Double Mutant Binds TrpR Specifically

TraR/Pheromone/DNA Complex at 1.9 Å

Pheromone Binding Pocket – HSL is Fully Embedded within the Protein

Genomic Information is Being Accumulated Rapidly

2632

2742

712 (27.0)

782 (28.5)

326

78

- Staphylococcus aureus
- Vibrio cholerae

Hsp10/60 Operon Codes for Protein Folding Machine

AAGCGCCAACCCCCTTGACAAAGGGGGCGCCAGGG GACACTCTCACCCTTTGGGCGTCAA GGGTGGTGGTGAAGCGCATTGAG AGGAGGGAGTGGATATGGCCGCG CCAGAAGGGCAAGGTGATCGCGGT GAGGAGCCCAAGACCAAGGGCGG GGGCACGGGCCGCGTCTTGG .GGGGGACATCGTGGTCTTCGCCAAGT GAGCGCGACCTGCTTGCGGTCCTGCAG ACGGCGGCACCGAGATTGAG TAAAGGAGGTGAACCATGG CGCCCTGGAGCGCGGGGGTCAACGCGGT GGCCAACGCGGTGAAGGTC GAAGAAGTTTGGCTCCCCCACCATCA CCAAGGACGGGGTGACGG ATCGGGGCCCAGCTCCTCAAGGAG GTGGCCTCCAAGACCAACG TCGCCCAGGCCATCGTCCGGGAGGG CCTGAAGAACGTGGCCGC GAAGGCGGTGGAGGCCGCGGTGGAGA AGATCAAGGCCCTCGC CGCCAACGATCCCGAG CCACC GTCGGCAAGC AGTCCAAGAGCCTCGA GACCGAGCTCAAG GTCACCAACCCCGAGACGA TGGAGGCGGTCCT GAGCTCCTCCCCATCCTG CGAGGA TTTGGCCACCTGGTGGT GAGCAGGTGCGCCAGACGGCC GAACAAGCTCCGGGGCAC GGAAGGAGATGCTCAAGG GCCACCCTCTCCATGCTG ACATCGCGGCCGTCAC CGG CTTCAAGC ACCACCATCO CAAGAAGGAGGACATTGAGGC GGCCGGGCCGAGCGGGTGCG CCGGATCAACGGCATCAAGA TCCAGGAGCGCCTGGCGA **A CGAGAGAAGAAGCACCGCTTTGAG** AGCTCGCGGGTGGCGTGG **DEGCK CCGCGTGACCCTCCTCCGGGCCATCAG** GACGCCCTGAACGC CACGAGGCCACGGCCCAAGATCGTGCGCCGGGCCCTGGAGGAAC CGCCGTGGAGGAGC GTCATCOTCOAGCAGATCCTGGCCGAGACCAAGAACCCC CCGCCCGCCAGATCGCCGAG GACCONCRATEGTTGACCCCGCCAAGGTGACCCG CGCTACGGCTTCAACG CACCOLOGICACTEGTGGCGGAGAAGCCCCGAGAAGA CTCtGCCCTGCAGAACGC GCCCTACCGGCTAAGGGGGCCCGGGCCTTCAAGG AGGAGTCCACCCCCCCCC AGCOGTAGAGGGCGGGGGGGGCGTACTTTTTCTCCAGGTAGGCCAGGAAGGGC CCCGGCCCCTTTCTAAGTGC

From Gene to Structure and Function

cagcggaagag gaccgtaaccag tgaagttctga ttgagcaaggt tttggtgacgtt cggtgctgattt ccaaagagatco aaaccaggtaca gcgccagggttt tgatcaaagat

ccd

tggc

aqtttt sacctgacecgctaaaatcatgctctttctgtttt

Structural Genomics and Protein Structure Initiative

- Exploring Protein Folding Space
 - Experimental determination of novel proteins using X-ray crystallography or NMR
 - Computer homology modeling of protein structures using protein folds database
- Approach
 - Cluster protein sequences (ORFs) in all known genomes into homologous groups (superfamilies and families)
 - Determine structure of few members of each family
 - Computer model all other members of family
- Using this approach it is believed that we need to determine structures of 15,000 20,000 members of protein families to cover 90% of protein fold space

W. Anderson, A. Edwards, D. Fremont, A. Joachimiak, W. Minor, Z. Otwinowski, C. Orengo, J. Thornton,

How Many Targets Are There?

- A novel protein family landscape protocol was developed at UCL by C. Orengo and allowed clustering of ORFs:
 - >1,000,000 sequences from 150 completed genomes.
 - These genes were clustered into >50,000 protein families.
 - There were >150,000 singleton sequences unique to specific organisms (10-15%/genome).
 - >14,500 genes in these genomes were labelled as 'priority 1' targets and share no detectable sequence similarity to a sequence of structure in the PDB.
 - 6,190 Pfam families, 2,108 with homologue in PDB.
 - 1,200 very large Pfam families with no structural homologue cover 70% of sequence space.
- Currently there are ~2,500,000 ORFs in public databases and ~27,000 protein structures (~4,300 nonredundant)

Target Selection Databases: TaSel, Gene3D, and **TargetDB**

Gene Cloning and Protein Expression Pipeline **Plasmid plates** Amplification **Express Primer Tool Fragment Amplification Picogreen Analysis Expression** 1-8 9-16 1-24 25-32 33-40 41-48 49-56 57-64 LIC Fragment Preparation **Annealing Reaction** 1-8 9-16 1-24 25-32 33-40 4 **Plasmid Isolation Cryovials** Immuno Analysis **Solubility Expression** Analysis Solubility Analysis **Distribution and Storage**

Vectors Constructed for HTP Production of Proteins

Vector	Base Vector	Encoded Leader Sequence	Use					
pMCSG7	pET21a	N-His-TEV-LICs-	Routine protein productio	n				
pMCSG8	pMCSG7	N-His-Sloop-TEV-LICs	Improve solubility	рМС	SG19			
pMCSG9	pMCSG7	N-His-MBP-TEV-LICs	Improve solubility	IMA	C1			
pMCSG10	pMCSG7	N-His-GST-TEV-LICs	Improve solubility	-	0	0	1	F
pMCSG11	pACYCDuet-1	N-His-TEV-LICs	Coexpression	-	2	3	4	5
pMCSG12	pACYCDuet-1	N-His-Sloop-TEV-LICs	Coexpression					
pMCSG13	pACYCDuet-1	N-His-MBP-TEV-LICs	Coexpression	1				
pMCSG14	pACYCDuet-1	N-His-GST-TEV-LICs	Coexpression					
pMCSG17	pMCSG7	N-Stag-TEV-LICs	Coexpression	-				
pMCSG20	pMCSG7	N-Stag-GST-TEV-LICs	Coexpression		=			
pMCSG16	pMCSG7	N-His-AviTag-TEV-LICs	Phage display		-		-	
pMCSG15	pMCSG7	LICs-TEV-AviTag-His-C	Phage display	-	•		-	С
pMCSG18	pMCSG7	N-His-TEV-LICs-GFP	Screening					
PMCSG19	pMCSG7	N-MBP-TVMV-His-TEV-LICs	Purification					
pMCSG21	pDONR/zeo	attL1-TEV-LIC-attL2	Gateway cloning	. 2	-			

Automated Protein Purification for Structural Genomics

HTP Protein Crystallization

Nanoliter Crystallization in 96-well Format

Third Generation Synchrotron Beamlines for Macromolecular Crystallography

Dedicated X-ray Beamlines for Macromolecular Crystallography - SBC 19ID and 19BM Beamlines at the Advanced Photon Source – 851 PDB Deposits

Structures of Proteins in PDB

- Single crystal x-ray crystallography ~23,000
- Nuclear magnetic resonance ~4,000
- Single crystals neutron crystallography ~few
- For x-ray data collection at the synchrotron cryofreezing is 40 essential extends crystal life facilitating better data

Aldose Reductase at 0.66 Å – Protonation of His110 – a Key Catalytic Residue

Red Contours: Fo-Fc 0.36 e/A3)

Blue Contours:

2Fo-Fc

4.77 e/A3

Hydrogen Atoms of Hys110 in the Active Site

Multi- and Single-wavelength Anomalous Diffraction Using Synchrotron Sources Creates an Opportunity for Automation of Structure Determination

- All "heavy N>50" and "light 20 < N < 50" atoms show good anomalous signal associated with K, L and M edges
- "Heavy" atoms can be readily introduced into proteins (SeMet, Br, I, Xe, Ar, As, metal ions (Rb etc)) and DNA/RNA (Br)
- MAD/SAD does not require a native crystal
- Anomalous signal does not decay with resolution
- Use of anomalous signal simplifies approach to structure determination and improves isomorphism
- The anomalous signal is weak (1-6%)
- Optimal data collection requires a synchrotron facility

MAD/SAD for PROTEINS

- *In vivo* protein labeling with SeMet
- Standard protocol for data collection and structure determination
- High-resolution and high quality allows auto-tracing

MAD/SAD Phasing Provides Higher Quality Electron Density Maps, Allows Automated Interpretation and Improves Structure Quality

APC009, 1.7 Å SAD Map 1σ, 1 Se/297 AA (32 kDa)

Integration of Data Collection Experiment with HTP de novo Structure Determination Tools

Effect of Synchrotron Sources on Protein Structure Determination

MCSG Progress, July 8, 2005

14,266

1,258

5,475

4,052

3,211

2,120

824

324

273

281

24

- Targets (genes)
- Stopped projects
- Cloned genes
- Expressed proteins
- Soluble proteins
- Purified proteins
- Crystals
- Diffracting crystals
- New structures in PDB
- Total structures in PDB
- New folds

July 8, 2005 – 273 MCSG Structures in PDB

- In 2004 MCSG has deposited 112 structures to PDB (103 in the past 10 months).
- Full lengths proteins:
 - Average gene size 319 AA (range 97 783AA).
 - MW~33 kDa (range 11 kDa 90 kDa, 11kDa/AU - 330 kDa/AU).
 - On average proteins are dimers (range 1-16 subunits).
 - Average resolution 1.94 Å (range 1.1- 3.2 Å).
 - Average R=20.0%, Rfree=23.9%.
 - 79% structures are unique
- All structures determined using anomalous signal and synchrotron radiation:
 - 250 (91%) MAD/SAD with SeMet substituted proteins (range 1Se/297 108 Se/2720),
 - Six proteins were crystallized using mutagenesis (Derewenda)
 - Fifteen proteins were crystallized after reductive methylation
 - 22 SAD/MIR with other HA (Hg, Pt, Zn, Cd, I).
 - 1 molecular replacement.

Becitig/ Prizay Motor	Midwest Center Structural Genomics	ę	Ρ	SI	Structure	5000 4000			
	• XML Files • Target List • Progress • Statistics • Log in • Site 9	Search:		Go		.3000			
Consortium	Progress as of Tranker, 12th of April 2005 01,04,27 DM					2000			
Project	riogiess as of Tuesday 12th of April 2005 01:04:27 PM					1000			
Investigators	Progress of the project, only started targets are displayed MCSG				~				
Targets	ID AccCode Clone Expression Solubility Purified Crystals Diff	raction Method	1	PDB ID	Status	600 cloned			
3-D Structures	APC006 NP 370689 + + + + + + +	MAD	-42 -42 1S	QE In PDB		500 express	soluble	unfied mized	
Related Publications	APC007 NP 645835 + + + + + + +	MAD	<u>1X</u>	BW In PDB		.400	, e	crystallic diffracting inpdb and	
SG Sites	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MAD MAD	1P9	99 In PDB		300		newius	
SG Progress	APC010 BAB42231 + + + + + +	MAD	<u>1N</u>	G5 In PDB		.200		100	
NIH	APC011 P37650 + + APC012 AAD36133 + + + + + + +	MAD	18	Active R4 In PDB		.100		80	
MC5G Resources	APC014 CAC11321 + + + + + +	MAD	<u>1K</u>	YT, 1L6R In PDB		0		60	
Job opportunities	APC015 NP 813852 + + + +			Stoppe	1 1 homolog	clones estimate and a set		40	
Collaborators	APC019 <u>Q9WZY7</u> + + + + + +			solved b	y others	purfled purfled		20	
Internals	APC020 <u>Q9WZZ9</u> + + + + + + +/-			Stopped	1	diffrast inpation			U 0 0 -1 -1 02 02 10
	APC022 <u>RCJ00412</u> + + + + +			Stopped	l (failed trials)			.00	.00
	APC023 <u>NP 281856</u> + + + +			Active				5.50 4.50 4.00 3.50 2.50 2.50 1.50	9.50 9.00 8.50 8.00 7.50 7.50 6.00
Target APC007			C079	<u>G69065</u>	<u>ncbi</u>	Putative protein	113	Methanobacterium	In PDB
PDB <u>1xBW</u> <u>PDBSUM</u> <u>P</u> 1	rofunc	3 M	C080	<u>P30747</u>	<u>ncbi,swprot</u>	Molybdenum cofactor biosynthesis moaC protein	160	Escherichia coli	Stopped-homolog solved by others
Protein: isdG (<mark>nck</mark>	oi, 107 aa) <u>COG2329</u> <u>related proteins</u>		C081	P08323	ncbi.swprot	Glycogen synthase	477	Escherichia coli	Active
Chan balla a consta currente		1XBW	C083	RBB00441	ncbi	Cell division protein ftsA	413	Borrelia burgdorferi	Stopped
Deposited: 31 Aug 2004			C084	<u>NP 344870</u>	<u>ncbi</u>	cell division protein FtsL	105	Streptococcus pneumoniae	Active
Authors: Zhang, R., Wu, R., Joa	chimiak, G., Schneewind, O., Joachimiak, A.,		C085	NP 345070	<u>ncbi</u>	conserved hypothetical protein	97	Streptococcus pneumoniae	In PDB
T I ADCIDIO			C086	NP 346101	ncbi nchi	yimH protein Ref2 family protein	261	Streptococcus pneumoniae	Active
Target APC009		n Alexan	C089	RCJ00595	wit	Transcription antitermination protein NUSG	177	Campylobacter jejuni	Active
PDB <u>1P99</u> <u>PDBSUM</u> <u>P</u> 1	rofunc	Man	C090	RCJ00223	wit	Hypothetical transcriptional regulator	221	Campylobacter jejuni	Active
Protoin: SA0422 /	whi 280 and COG1464 related proteins	1000	C091	RCJ00475	wit	Transcriptional regulatory protein HYPF	729	<u>Campylobacter jejuni</u>	Active
ABC transporter	COSTO AN COSTON TETALED PLOTEINS	1P99	C092	<u>RNG00001</u>	<u>ncbi</u>	Transcription termination factor RHO	213	<u>Neisseria gonorrhoeae</u>	Stopped-homolog solved by MCSG
Staphylococcus aureus			C093	<u>NP 345223</u>	<u>ncbi</u>	conserved hypothetical protein	230	Streptococcus pneumoniae	Active
Deposited: 09 May 2003	continuists C. Schwamping O. Taratimists A		C094	<u>NP 346330</u>	ncbi	msm operon regulatory protein	286	Streptococcus pneumoniae	Active
references	oachinnak, G., Schneewind, O., Joachinnak, A.,		C095	NP 345789	ncbi ncbi	transcriptional regulator, putative	269	Streptococcus pneumoniae	Active
			0020	111 545765		phosphosigal childing a anscriptional regulator, parallel	205		Heave
Target APC010 - NEW F	OLD	EST.		Sec. Sec. Sec.					
PDB <u>1NG5</u> PDBSUM P1	rofunc		42.0						
Protein: SA0982 (r	uchi 244 aa) COG4509 related proteins			2		*	No.	a factor	
	<u>iciti da, <u>icition</u> <u>relatea proteino</u></u>	1NG5	APC22	838	AP	C22846 APC22880	APC22	886	cloned (1403)
Transpeptidase		11,05	IYLF	ident: 41.1%	<u>1R</u>	L New Fold 1XR4 ident: <20%	1R8K	ident: 92.5%	expressed (828) soluble (1080)
<u>Staphylococcus aureus</u> Deposited: 16 Dec 2002			annota	<u>itten</u>	<u>anı</u>	<u>iotation</u> <u>annotation</u>	annota		e purified (1448)
Authors: Zhang, R., Joachimiak,	G., Joachimiak, A.,							Changes	crystallized (335) diffracting (58)
references 5. APCOD6 Wu R, Skaar EP, Zhano R. Joz	schimiak G, Gornicki P, Schnoewind O, Joachimiak (2004)		3	&. 2027 - • • •		The second			In PDB (252)
Staphylococcus aureus IsdG and IsdI, i J Biol Chem, in press. [PubMed] [PDB]	heme degrading enzymes with structural		2	No and a start of the start of			.64	Salar,	
 APC012 Savchenko A, Skarina T, Evdo X-ray crystal structure of CutA from The Protocol 54, 152-5, Do blood [2000] 	kimova E, Watson JD, Laskowski R, Arrowsmith CH, Edwards AM, Joachimiak A, Zhang RG (2004 srmotoga maritima at 1.4 A resolution.	0		and and		Contraction of the second s	40	1 and 1	
 APC014 Kim Y, Yakunin AF, Kuznetsov Structure- and function-based characte J Biol Chem. 279, 517-26. [PubMed] [PD 	a E, Xu X, Pennycoske M, Gu J, Cheung F, Proudfoot M, Arrowsmith CH, loachimiak A, Edwards A ritzation of a new phosphoghcolate phosphatase from Thermoplasma acidophilum. BJ (2008)	M, Christendat D (2004)	APC23	375 New Fold	AP	C23398 APC23655	APC23	686 ident: <20%	
 APC1138 Rajan SS, Yang X, Collart F, Novel Catalytic Mechanism of Gircoside Structure (Camb), 12, 1619-29. [PubMe 	Yip VL, Withers SG, Varrot A, Thompson J, Davies GJ, Anderson WF (2004) Hydrolysis based on the Structure of an NAO(+)/Mn(2+)-Dependent Phospho-alpha-Glucosidas d1 (EDE)	e from Bacillus subbils.	annota	ution .	<u>anı</u>	notation annotation	annota	tion	

~13% of MCSG Structures Have Been Determined at 1.5 Å or Higher Resolution

Structural Genomics can Contribute at Least Three Tools

- A comprehensive dictionary of high-resolution protein structures determined experimentally by x-ray crystallography and NMR
- A comprehensive library of recombinant protein expression clones representing protein structures and functions
- Methods for automated, HTP implementation of the currently powerful but tedious and labor-intensive protocols of molecular biology
- Some functional information derived from structure

APC #	AA/Subunit	Sub/AU	AA/AU	# HA/AU	R (%)	Rfree (%)	Res (Å)
042	170	16	2,720	Hg-32	19.9	24.7	2.0
27836	345	6	2,070	Se-72	20.3	23.5	2.15
35865	249	8	1,992	Se-36	14.5	17.5	1.7
5057	147	12	1,764	Se-12	20.7	26.9	2.5
127	160	10	1,600	Se-40	14.6	18.1	1.7
24638	186	8	1488	Se-32	In prog.	In prog.	2.3
22852	164	9	1,476	Se-18	22.5	27.0	2.5
172	358	4	1,432	Se-36	23.3	26.5	2.0
4470	343	4	1,372	Se-36	23.9	29.8	2.6
26686	337	4	1,348	Se-64	In prog.	In prog.	2.35
35880	248	5	1,240	Se-40	15.8	19.4	1.75
5046	310	4	1,240	Se-28	14.3	17.8	1.6
047	296	4	1,184	Se-40	19.9	21.3	1.5
24328	292	4	1,168	Se-12	19.2	24.0	1.8
1068	184	6	1,104	Se-18	25.6	27.8	2.7
5029	134	8	1,072	Se-56	20.0	23.0	1.7
23620	292	4	1,168	Se-24	23.0	27.0	2.0
22880	509	2	1018	Se-24	19.3	23.5	2.4
50001	783	1	783	Se-17	19.7	23.6	2.0

Surface Conformational Entropy Reduction

- A surface conformational entropy reduction was applied to a set of 20 *B. subtilis* proteins that failed in the initial crystallization screens.
- Two double mutants of YkoF a thiaminbinding protein - (K112A/E114A and K33A/K34A) were designed. The K33A/K34A mutant crystallized readily and showed a strong requirement for divalent ions.
- The crystal structure was determined to 1.65 Å.
- The mutagenesis created an intermolecular Ca²⁺ binding site, essential for the formation of the crystal lattice.
- From a set of 20 *B. subtilis* targets we were able to crystallize 11 proteins, 7 as native and 6 mutated (2 proteins crystallize both as native and mutated).

Derewenda et al.

Orthologue Scanning Approach

- 48 presumed essential genes in *B. anthracis* were used to identify orthologues in 18 genomes.
- 233 genes were cloned and screened for expression and solubility.

B. Anthracis targets

			Orthologs			Orthologs														
Organism	Strain	GC Con							Ħ								H		F	Ē
Enterococcus faecalis	V583	37.53%									-									
Streptococcus pyogenes	SF370	38.51%																	F	
Pyrococcus horikoshii	JCM 9974	41.88%																		╧╧╋┚
Bacillus subtilis	168	43.52%																	F	╪╼┲┩
Shewanella oneidensis	MR-1	45.96%														H			Œ	
Archaeoglobus fulgidus	DSM 4304	48.58%																		╧╋╧
Escherichia coli	W1485	50.79%									÷						++		F	╪╪╪
Aeropyrum pernix	JCM 9820	56.31%																	Ē	$+ \square$
Haemophilus influenzae	Rd [KW20]	38.15%																	H	╈
Helicobacter pylori	J99	39.19%									+				+				F	╇
Streptococcus pneumoniae	TIGR4	39.60%																		
Pyrococcus furiosus	DSM 3638 [Vc1]	40.77%																	\blacksquare	
Vibrio cholerae	N16961	47.69%				++	++										++		⊨	╧╪╤╛
Porphyromonas gingivalis	W83	48.29%				++	++						+	+	+	Ħ	+		F	╤╤┲┩
Shigella flexneri	2457T	50.80%																		\mp
Neisseria meningitidis	MC 58	51.40%									+				+				Þ	╧╋╝
Salmonella choleraesuis	LT2	52.22%																	F	╪╪╪
Thermoplasma acidophilum	DSM 1728	45.99%																	Ē	
									\pm		\mp			+		Ħ	+		Ħ	╪╋╛
		-	Expression			Solubility														

B. Anthracis targets

Crystal Structures of Δ 1-Pyrroline-5-Carboxylate Reductase from Neisseria meningitides and Streptococcus pyogenes

- L-proline plays an important role in proteins
- The last step of proline biosynthesis, the conversion of $\Delta 1$ -pyrroline-5-carboxylate (P5C) to L-proline is catalyzed by $\Delta 1$ -pyrroline-5-carboxylate reductase (P5CR) using NADPH as cofactor
- P5CR is a member of a very large family (>400 family members)
- To increase the chance of obtaining a crystal structure from a member of this large and important family of enzymes, orthologues from 14 organisms have been cloned.
- 9 P5CR enzymes expressed, 3 crystallized and 2 produced x-ray quality crystals
- The catalytic unit of P5CR is a dimer composed of "three" functional domains
- The N-terminal domain of P5CR shows an alpha-beta-alpha sandwich – a Rossman fold
- The C-terminal dimerization domain is rich in α-helical structure and shows domain swapping

Binding NADP⁺ and L-Proline

- Comparison of the P5CR native structure with structures P5CR complexed with Lproline and NADP⁺ provides unique information about key functional features, the active site and the catalytic mechanism
 - Each ligand is bound to a distinct domain
 - Hydrite is transferred from pro-S face of nicotinamide ring and is unidirectional
 - Crystal structure shows how product L-Pro inhibits reaction

P5CR Basic Catalytic Unit is a Dimer, but it can Assemble into Larger Structures that Seems Species Specific

- P5CR from *N. meningitides* is a dimer
- P5CR from *S. pyogenes* is a decamer (pentamer of dimers)

Structural Genomics Results

- New structures confirmed the hypothesis that the structure-based classification of proteins contains far fewer protein families than sequence-based classifications:
 - Protein structure is better conserved than amino acid sequence, and
 - Can reveal distant evolutionary relationships that are undetectable by sequence comparisons
- Structures of singletons and proteins from very small families showed familiar folds, contradicting the hypothesis that these families may represent a rich reservoir of new folds
 - Sequence-based methods have major limitations for identifying proteins with potentially new folds

Ligands Found in some of MCSG Structures

Functional Analysis

Analysis of a protein's 3D structure to help identify its likely biochemical function

The aim of the ProFunc server is to help identify the likely biochemical function of a protein from its three-dimensional structure. It uses a series of methods, including fold matching, residue conservation, surface cleft analysis, and functional 3D templates, to identify both the protein's likely active site and possible homologues in the PDB.

Some of the methods take minutes to run; others take hours. You will be notified by e-mail when the entire process is complete, but can check on preliminary results as they become available.

From this page you can submit your own structure, analyse an existing PDB entry, or retrieve the results of a previously submitted run.

Choose option A, B or C:

Predicting Function from Structure

(189 active site templates)

(~600 templates)

Proof of 3D Template Concept: BioH

- BioH protein in *E. coli* involved in biotin metabolism – function unknown
- Crystal structure determined
- Catalytic triad identified
- Now proven experimentally to be correct
- BioH is carboxyesterase

Template shown in thin bonds, actual side chains in thick

- Ser-His-Asp catalytic triad (rmsd = 0.26Å)
- All 3 residues highly conserved
- At site of ligand binding

A Model for Isd-mediated Heme-iron Transport in Gram Positive Pathogens

Structure of B. anthracis Sortase B is Similar to Sortase B from S. aureus

Active site contains Catalytic triad Cys-His-Asp

Active Site of Sortases B from S. aureus and B. anthracis Shows Catalytic Trial (with a Caveat)

::*.*.: .. ** : ILYGH RMKDGSMFGSL Ba ILYGH RMKDGSMFGSL Sa ILYGH RMKDGSMFGSL ILYGH RMRDGSMFAQL IIYGH RMRDGSMFADL IYGH NMKDGSMFADL VYGH NMRNDTMFAQI LIYGH HMAGNAMFGEI LIYGH HMAGNAMFGEI LIYAH HMAGNVMFGEL VIYGH HIKGGKMFGAL

:::: ** *::: IVTLSTCDYALDPEAGRLVV Ba IMTLSTCEDAYSETTKRIVV Sa IVTLSTCDYALDPEAGRLVV IITLSTCDYRLDRDRGRLVV IITLSTCDTEKDYEKGRMVI IITLSTCDTEKDYEKGRMVI ILTLITCGYDFVN--ARIVV FVAFSTCENFSTDN--RVIV FVAFSTCENFSTDN--RVIV FVALSTCEDMTTDG--RIIV LITLFTCEYSAQNG--RLVV

Impact of Structural Genomics

- Structural genomics will map protein folding space and provide insight into relationship between amino acid sequence and 3D structure
 - New technology for cost-effective molecular biology and protein purification will evolve from the project
 - SG will enhance crystallographic capabilities by significantly reducing the time and cost required to determine protein 3D structures
 - Bottlenecks will be identified and practical solutions will be establish
 - All "easy" structures will be solved rapidly
 - The HTP technologies will be developed to handle challenging biological systems and will benefit biology and biotechnology
- Structural information will provide new insight into protein function
- We will gain complete structural understanding of many processes and pathways in the cell
- New hypothesis will be formulated
- New functional proteins will be created through rational design
- Libraries of genes, expression clones and proteins will be produced and will be available to public

Why Neutron Crystallography?

- The protein neutron structures can reveal number of important (and often unexpected) details:
 - Hydrogen atoms (~1% of the protein mass but critical for understanding protein packing, enzyme catalysis and interactions),
 - Protonation states and H-bonds,
 - Solvent structure can distinguish water from other solvent components (Cl, Na, Mg, etc),
- Can define accurately atomic positions (unexpected stereochemistry, distortion of bond lengths)
- No radiation damage native structure can be observed at wide range of temperatures,
- Hydrogen exchange with deuterium solvent accessibility and dynamics,
- All these issues are critical to understand catalytic mechanism, interactions, solvent structure and potentially may have impact on structure-based drug design,
- Thus far low flux did not allow for large scale effort,
- With construction of the SNS there is an unique opportunity to build neutron crystallography beam line that can make an important contribution to biology, highly complementary to x-ray data

	Univ of Virginia	MCSG and C	Collaborators	5
ANL/MCSG J. Abdullah,	W. Minor,	Univ. College		ANL/APS
A. Binkowski, C-s. Chang.	M. Chruszcz, M. Cyborowski,	London	Univ. of Toronto	C. Preissner,
S. Clancy, F. Collart,	M. Grabowski, P. Lasota,	J. Thornton,	A. Edwards, C. Arrowsmith,	Y. Han, P. Lee.
M. Cuff, I. Dementieva,	P. Miles, Hj. Ouiu,	M. Bashton,	E. Evdokimova, J. Guthrie,	Z. Cai,
M. Donnelly, C. Giometti,	M. Zimmerman, H. Zheng,	R. Laskowski, D. Lee, D. Monadon	A. Khachatryan, M. Kudrytska,	Univ of Town
C. Hatzos, D. Holzle, G. Joachimiak		D. McKenzie,	A. Savchenko, T. Skarina,	SWMC
L. Lezondra, S-s. Li,	Northwestern	J. Watson,	X.(Linda) Xu,	D. Borek, A. Kudlicki.
H. Li, Y-c. Kim,	W. Anderson,	Univ. of Virginia 7. Derewenda	ANL/SBC R. Alkire.	A. Q. Mei, M. Rowicka,
N. Maltsev, L. Marland,	J. Brunzelle,	GE Health Systems	N. Duke, S. Ginell,	J. Zelinka,
S. Moy, B. Nocek,	D. Miller, G. Minasov,		K. Lazarski, M. Molitski,	
J. Osipiuk, P. Quartey,	S. Rajan, X. Yang,	CNRS, Strasbourg A. Podjarny,	F. Rotella,	Univ. of Chicage O. Schneewind,
M. Schiffer, L. Stols,	S. Weigand, L. Shuvalova,	A. Mitschler, T. Petrova,	ANL/GMCA N. Sanishvili,	D. Missiakas, P. Gornicki,
K-y. Wu, Q-z. Zhang,	D. Still, Y. Tang,			E. Skaar, T. Kossiakoff,
M. Zhou,	X. Yang,	Funding: NIH an	d DOE	V. Tereshko, Q. Yang,