Time-of-flight Neutron Diffraction as an Aid to Elucidating Enzyme Mechanisms: D-Xylose Isomerase

Jenny P. Glusker, Amy Katz, H. L. Carrell, Xinmin Li, B. Leif Hanson, Paul Langan, Benno P. Schoenborn, Gerard J. Bunick

Work supported by NIH grants CA-10925, CA-06927, GM-29818 and NASA NAG8-1826, the Office of Science, the Office of Biological and Environmental Research of the US Department of Energy.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

What information can be obtained from neutron diffraction?

- Location of hydrogen atom positions in proteins, nucleic acids and water molecules at modest resolution (~2 Å).
- Protonation states of active-site residues since these play critical roles in enzyme mechanisms.
- Information on labile and mobile hydrogen atoms since these indicate rigid or flexible interatomic interactions in the structure.
- The locations of hydrogen atoms in hydrogen bonds, particularly those connecting water with biological macromolecules or with other water molecules.
- Estimation of the local pH, for example in the active site.
- Multiple conformations of proton-containing groups may be detectable by neutron diffraction studies.

What information is available from neutronbut not X-ray diffraction?

- Water, hydrogen bonding networks (where are the H atoms?)
- Lysine, arginine, ammonium groups (location of H's on N?)
- Histidine ring nitrogens (is the histidine doubly, singly or not protonated?)
- Threonine, serine, tyrosine hydroxyl groups (how does the H of the OH group lie?)
- Cysteine thiol group (how does the H of the SH group lie, is the H there or is the thiol ionized?)

Neutron versus X-ray scattering

•Element	neutron (X ray (electrons)		
•H	- 3.8		1	
•D	6.5		1	
•C	6.6		6	
•N		9.4	7	
•0	5.8		8	
•Mg	5.3		12	
•Ca	4.6		20	
•Mn	- 3.6		25	
•Fe		9.5	26	
•Ni		10.0	28	
•Zn	5.6		30	

* fm = neutron scattering length in femtometers (10⁻¹⁵ m)

Interactions around water molecules from neutron diffraction studies

Savage and Finney, Nature 322, 717 (1986)

D-xylose isomerase, an eightfold (β/α) barrel

Carrell, Rubin, Hurley, Glusker J. Biol. Chem. 259, 3230 (1984)

Interpreting neutron maps

2.0 Å neutron map, Blue positive, Red negative. (2 σ contour)

Neutron density shows multiple positions for OG1 proton whereas proton is unseen in electron density

Thr133 - neutron

Thr133 – X ray

Doubly protonated histidine – neutron versus X ray

His220 - neutron

His220 – X ray

Comparison of neutron (1.8 Å) and electron density (0.94 Å)

Lys183 - neutron

Lys183 – X ray

Comparison of neutron (1.8 Å) and electron density (0.94 Å)

Trp137 - neutron

Note the H on the N in the neutron map.

Trp137 – X ray

Neutron example of a water molecule originally reported (X ray) to be a metal ion

The active site of D-xylose isomerase

Active site of D-xylose isomerase showing bound xylulose (solid bonds), two histidines and two tryptophanes defining the substrate channel. The two large filled circles are the metal ions (Mg++, Mn++, or Co++).

Interactions between His54 and Asp57 in the active site of D-xylose isomerase

Comparison of neutron (1.8 Å) and electron density (0.94 Å)

His54 - neutron Note the H on NE2 in the neutron map His54 – X ray

Singly protonated (proton located on either ND1 or NE2)

His	ND1 to	%D	NE2 to	%D	ND1 B	NE2 B	ND1 e.d.	NE2 e.d.
	neutron				X ray			
49	Pro-7 O	37		-	15.8	14.4	2 σ	none
71	W1204 (D2)	0	W1281 (O)	46	18.9	19.8	none	none
96	Val-98 N	0	W1210 (O)	32	10.8	13.3	none	1.5 σ

Doubly protonated (proton located on both ND1 and NE2)

His	ND1 to	%D	NE2 to	%D	ND1 B	NE2 B	ND1 e.d.	NE2 e.d.
142.		12					UFRICA INC	
	neutron				X ray			
54	Asp-57	67	W1022	50	10.6	10.7	2 σ	none
198	Thr-195 DG1	54	W1023	52	8.4	9.2	2 σ	2 σ
220	Pro-182 O	64	metal	57	14.4	17.7	none	none
230	W1065	67	W1214	87	8.9	9.5	2 σ	none
243	Asn-215 OD1	91	W1026	32	13.2	14.1	2 σ	none
285	Asp-245	100	Thr-52 DG1	34	10.3	10.4	2 σ	none
382	W1109	69	Asp-323	49	10.6	10.7	none	none

Surroundings of glucose in a complex with D-xylose isomerase (Carrell, Hoier, Glusker. Acta Cryst. D 50:113-123, 1994). Note the interconnecting water molecules.

Environment of His54

His54 and the ring-opening mechanism

The serine-protease motif in D-xylose isomerase.

Serine-protease catalytic triad found in D-xylose isomerase

The active site of D-xylose isomerase

Proposed mechanisms for D-xylose isomerase

cis-ene diol

hydride shift

metalassisted hydride shift

Modes of ligand binding to D-xylose isomerase

xylose

Below: Active site showing product xylulose replacing bound water

Above: Active site showing bound water

The power of the combination of X-ray diffraction and neutron diffraction

Environment of proposed catalytic water

X ray structure 1XII, xylulose

X ray structure, apoenzyme

X ray structure, 0.94 Å

Neutron structure, 1.8 Å

Metal ion-carboxylatewater motifs in D-xylose isomerase. Note how two motifs are shown by neutron diffraction to tie up the two protons on the metal ion-bound water molecule.

The information not previously known that we found using neutron diffraction

- Location of protons on metal-bound waters
- The protonation state of His54
- The type of hydrogen bonding between water and Asp287
- The locations of protons on Lys183
- The protonation state of His220

The ultra-high resolution X-ray study did not provide clear evidence on proton locations. Neutron diffraction did!