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MALDI-TOF Mass Spectrometer

We will consider data sets obtained via Matrix Assisted
Laser Desorption/Ionization Time Of Flight Mass
Spectrometer.

I Analyte sample is placed in a matrix solution.

I Pulsed laser fired at mixture, ionizing analyte.

I Analyte ions travel along a path of known length,
striking a detector.

I Time of flight can be used to determine mass to charge
ratio.
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Mass Spectrum
Resulting data is a set of 50,000-100,000 data pairs
(time/mass-to-charge ratio and intensity). Our spectra will
be from SRM 2881, a polystyrene, obtained from NIST.
Noise from various sources can lead to uncertainty (see
Guttman, Flynn, Wallace, and Kearsley 2009).

Figure: Analyte(red) and corresponding background(blue), low
noise
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Figure: Analyte(red) and corresponding background(blue), with
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Overview

I Fit background spectrum to stochastic differential
model

I Determine the mean and variance of noise

I Segment spectrum

I Use Tikhonov regularization on each segment
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Background Model

We fit the analyte-free spectrum to a Stochastic Differential
Equation with time dependent coefficients

dXt = (a0(t) + a1(t)Xt)dt + b0(t)Xt(t)dWt

{Wt} is a Wiener Process, Wt −Ws ∼ N(0, t − s), s < t
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Discretization

Given the background data {X (i)} at discrete points, we use
Euler-Maruyama discretization:

∆X (i) = (a0(i) + a1(i)X (i)δ + b0(i)X (i)∆Wi (1)

Given a window size for regression h, we use the
Epanechnikov Kernel

Kh(z) =
3

4h
(1− z2)

for z ∈ (−1, 0) and Kh ≡ 0 off (−1, 0).
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Estimating a0, a1

In order to estimate a0, a1 at each i , we look to minimize

min
a0,a1

N∑
j=1

(
X (j + 1)− X (j)

δ
− a0(i)− a1(i)X (j))2Kh(

δ(j − i)

h
).

(2)

For Y (j) = X (j + 1)− X (j), τij = δ(j−i)
h
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Estimating a0, a1

In order to estimate a0, a1 at each i , we look to minimize

min
a0,a1

N∑
j=1

(
X (j + 1)− X (j)

δ
− a0(i)− a1(i)X (j))2Kh(

δ(j − i)

h
).

(2)

For Y (j) = X (j + 1)− X (j), τij = δ(j−i)
h

ã0(i) =

∑
Y (j)Kh(τij)− δa1(i)Kh(τij)

δKh(τij)
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In order to estimate a0, a1 at each i , we look to minimize

min
a0,a1

N∑
j=1

(
X (j + 1)− X (j)

δ
− a0(i)− a1(i)X (j))2Kh(

δ(j − i)

h
).

(2)

For Y (j) = X (j + 1)− X (j), τij = δ(j−i)
h

ã1(i) =
1

δ(
∑

Kh(τij)
∑

Kh(τij)X (j)2 − (
∑

Kh(τij)X (j))2)

∗ (
∑

Kh(τij)
∑

Y (j)X (j)Kh(τij)

−
∑

Y (j)Kh(τi j)
∑

X (j)Kh(τij))
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Estimating b0

Therefore ∆X (i)− (ã0(i) + ã1(i)X (i))δ ≈ b0(i)X (i)∆Wi ,
We set

Ẽi =
∆X (i)− (ã0(i) + ã1(i)X (i))δ

δ

Then we find b̃0(i) by maximizing at each i

−1

2

N∑
j=1

Kh(τij)(log(b2X 2(i)) +
Ẽ 2

i

b2X 2(i)
. (3)

b̃0(i) =

∑N
j=1 Kh(τij)Ẽ

2
i |X (i)|−2∑N

j=1 Kh(τij)
(4)
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Mean and Variance

E [X (t)] solves the initial value problem

y ′(t) = a0(t) + a1(t)y(t), y(0) = X (0)

which we solve using a first order forward Euler scheme. The
variance of the noise is given by

δ(b0(t)X (t))2
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Segmentaton

I We want to use denoising algorithms that take
advantage of knowledge about the noise.

I Many assume constant variance of the noise.

I We partition the data and take an approximation of the
variance on each segment.
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Segmentation

Given a number L we partition the background spectrum
into L intervals, I`, such that

||σ(t)|I` ||1 =
1

L
||σ(t)||1 (5)

where σ is the variance of the background spectrum.
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Tikhonov Regularization

We look to minimize

fλ,L(xest) = ||xest − xobs||22 + λ||Lxest||22
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Parameter Selection and Segmentation

UPRE is an unbiased estimator of the mean squared error of
predictive error Pλ of,

1

N
||Pλ||2 =

1

N
||xλ − xtrue ||2,
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UPRE Cont’d

We use the following UPRE functional,

U(λ) = E (
1

N
||Pλ||2)

=
1

N
||rλ||2 +

2σ2

N
trace(Aλ)− σ2,

where rλ is the residual and Aλ = (I + λI )−1. We can take
the mean of σ(t) for the above σ

The optimal λ is defined
to be,

λopt = min
λ
{U(λ)} .
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Algorithm Summary

Given h, ε, L, background spectrum, and analyte spectrum:

1. Fit background spectrum to discreted stochastic model,
using h for regression

2. Partition time/mass-per-charge interval into segments

3. Use UPRE to establish on each corresponding segment
of analyte spectrum an optimal λ and use Tikhonov
regularization

4. Repeat (2) and (3) with increased number of segments
until improvement in normalized L1 is less than ε or
number of segments is equal to L.
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Noise Model

Figure: Simulated Background Spectrum from Noise model for
2nd Noisy Spectrum
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Denoising Results

With h = 10, tolerance at .001, and max iterations 20,

Figure: 1st Noisy Set
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Denoising Results

With h = 10, tolerance at .001, and max iterations 20,

Figure: 2nd Noisy set
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Normalized Denoised Results

Figure: Low Noise Spectrum divided by its L1

Figure: 1st Noisy Spectrum, Denoised, similarly normalized
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Normalized Denoised Results

Figure: Low Noise Spectrum divided by its L1

Figure: 2nd Noisy Spectrum, Denoised, similarly normalized
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Normalized Denoised Results

Normalized L1 distance from Best Set and Noisy Spectrum

Noisy Denoised

1st Set .5720 .5682

2nd Set .4950 .4912
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Strategic Points

We create a set of strategic points using the following
algorithm

1. Set first and last data points as strategic points

2. Find data point with maximum orthogonal distance
from line segment connecting two consecutive strategic
points

3. This point becomes a new strategic point

4. Repeat until maximal orthogonal distance is below
prescribed tolerance
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Strategic Points
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Conclusions

I Modeled noise by SDE

I Created an algorithm to denoise spectrum by
segmentation

I Smoothes without moving peak locations
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Future Work

I Peak height is reduced, possibly fit strategic point
height to pre-denoised level

I Investigate other regularization techniques

I Filter strategic points to remove insignificant peaks for
better estimation of oligomer peaks
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Thank You!
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