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Abstract 
 
 

This report summarizes the technical work of the Mathematical and Computational Sciences Di-
vision (MCSD) of NIST’s Information Technology Laboratory.  Part I (Overview) provides a 
high-level overview of the Division’s activities, including highlights of technical accomplish-
ments during the previous year.  Part II (Features) provides further details on eight particular 
projects of particular note this year.  This is followed in Part III (Project Summaries) by brief 
summaries of all technical projects active during the past year.  Part IV (Activity Data) provides 
listings of publications, technical talks, and other professional activities in which Division staff 
members have participated.  The reporting period covered by this document is October 2006 
through December 2007. 
 
For further information, contact Ronald F. Boisvert, Mail Stop 8910, NIST, Gaithersburg, MD 
20899-8910, phone 301-975-3812, email boisvert@nist.gov, or see the Division’s web site at 
http://math.nist.gov/mcsd/.  
 
 
 
Cover photo. Visualization and analysis of the microstructure a computational model of cement 
hydration showing four distinct phases. This is the result of research performed by William 
George, Steve Satterfield, and Edith Enjolras of MCSD in collaboration with Jeffrey Bullard of 
the NIST Building and Fire Research Laboratory. 
 
Acknowledgement. We are grateful to Robin Bickel for collecting the information and organiz-
ing the first draft of this report. 
 
Disclaimer. All references to commercial products in this document are provided only to docu-
ment how results have been obtained. Their identification does not imply recommendation or 
endorsement by NIST.  
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Parallel Adaptive Multilevel Finite Elements
The numerical solution of partial differential equations 
is the most compute-intensive part of a wide range of 
scientific and engineering applications.  As a result, 
the development of faster and more accurate methods 
for solving partial differential equations has received 
much attention in the past fifty years.  Nevertheless, 
many applications at the cutting edge of research re-
main extraordinarily challenging. These problems 
necessitate the use of the most advanced numerical 
techniques and tools such as self-adaptive methods and 
parallel computers.  This year we released the software 
package PHAML, which serves as a research platform 
to explore, improve, and apply advanced computa-
tional techniques of this type. 

William F. Mitchell 
 

The NIST-developed software package PHAML (Par-
allel Hierarchical Adaptive MultiLevel) can be used to 
solve a broad class of two-dimensional self-adjoint 
elliptic partial differential equations (PDEs), including 
systems of equations and eigenvalue problems, with a 
variety of boundary conditions.  The spatial domain 
may be any connected region in the plane, including 
ones with curved boundaries and holes.  Problems of 
this type are found in an extremely wide range of ap-
plications, from the study of heat diffusion to the 
modeling of fundamental properties of atoms.  

To enable computer solution, the PDE is discretized by 
the finite element method. We first partition the do-
main into a set of triangles (the grid or mesh). We then 
approximate the solution u by a function  

i
i

iu ϕα∑=~  

where the φi form a set of N piecewise polynomial ba-
sis functions defined on the mesh.  Inserting this 
function into a variational formulation of the PDE 
leads to a system of N linear equations (a matrix) that 
determines the N coefficients αi. Considerable skill is 
required in the selection of the mesh, the basis func-
tions, and the linear solver to obtain a practical solution 
procedure.  

Adaptive refinement is a critical extension of the finite 
element method when applied to complex simulations 
where most of the interesting activity is confined to a 
small part of the domain. For such problems a fine 
mesh is necessary to resolve rapidly varying portions 
of the solution.  If such a mesh is applied uniformly 
over the domain the size of the linear system makes the 
problem intractable. An optimal grid is one in which 

small triangles are used where the solution varies rap-
idly and larger ones where it is relatively smooth.  With 
adaptive refinement, such an optimal grid is deter-
mined automatically through an iterative process in 
which, given an initial grid and approximate solution 
on the grid, those triangles with the largest estimated 
error are refined to create a new grid yielding a more 
accurate approximate solution.  Fig. 1 shows an exam-
ple of an adaptively generated grid. 

 
Figure 1.  An adaptively refined grid for a solution that contains a 
sharp circular wave front. 

The solution can be improved by not only reducing the 
size of the triangles but also by increasing the degree of 
the piecewise polynomials.  PHAML allows the use of 
high order polynomials as well as the more common 
piecewise linear basis functions.  Increasing the degree 
of the piecewise polynomial basis functions can be 
done locally, resulting in an approximate solution that 
is not uniform in polynomial degree over the grid.   

When both the size of the triangles, h, and the polyno-
mial degree, p, are determined adaptively, it is called 
hp-adaptive refinement. hp-adaptive methods are at the 
cutting edge of finite element research.  The reduction 
of the error as a function of N can be much faster for an 
hp-adaptive method than for just h refinement, and 
even better than using a fixed high degree, as shown in 
Fig. 2.  PHAML is currently being used to investigate 
various approaches to hp-adaptive refinement. 

Even with using adaptive refinement to reduce N, it can 
still be very large for complex problems, perhaps in the 
millions.  PHAML uses a multigrid solution technique 
for the linear system. Multigrid can solve the system in 
a number of operations proportional to N, which is op-
timal.  PHAML is based on hierarchical bases, both in 
h and p, to give the different multigrid scales which 
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results in rapid convergence.  The use of multiple lev-
els in p is new and is still a topic of active research. 

An additional tool for solving complex problems with 
large N is the use of parallel computers.  PHAML was 
one of the first systems to use both adaptive refinement 
and multigrid on parallel computers.  The research as-
sociated with PHAML brought about a new paradigm 
for parallel implementations called the full domain 
partition.  New algorithms and implementations of 
multigrid and adaptive refinement, along with the nec-
essary load balancing required to make it successful 
have been developed under this paradigm [1, 2].  
PHAML uses message passing parallelism imple-
mented through the Message Passing Interface (MPI). 
PHAML is written in Fortran 90 and designed as a col-
lection of modules.  Each module deals with one aspect 
of the program (grid refinement, error estimation, mul-
tigrid, etc.) and contains data types and associated 
operations. The details, including parallelism, are hid-
den from the user, who simply calls subroutines for 
operations such as solving the PDE or evaluating the 
computed solution. The interface to these subroutines 
contains a very large number of arguments which gives 
the user a great deal of control of the algorithms.  Most 
arguments are optional, with reasonable default values, 
so the interface remains simple and clean for routine 
use.  The specification of the problem to be solved (co-
efficients of the PDE, boundary conditions, domain) 
are defined by a few subroutines that the user writes.  
The PHAML User's Guide [3] provides all the informa-
tion a user of PHAML needs. 

Interactive graphics provide another means of obtain-
ing the results of PHAML's computations.  The 
graphics engine is a separate parallel process which 
receives data from the computational processes by 
message passing.  The user has interactive control of 
the graphics as PHAML is running.  Control includes 
rotate, zoom and pan operations, and selection of what 

is to be displayed (solution, error, grid, parallel parti-
tion, etc.). Figs. 1 and 3 provide two examples of the 
graphics that are available.  PHAML makes use of the 
OpenGL graphics library, which is freely available on 
nearly every computer platform, supporting the goal of 
providing freely available and highly portable tools.   

Version 1 of PHAML was released in May 2007; see 
http://math.nist.gov/phaml.  It has been used by scien-
tists for solving application problems [4, 5], researchers 
in scientific computing for comparing different meth-
ods, and instructors of classes on numerical solution of 
PDEs and parallel computing. 

  

Figure 3.  The computed solution of a model of two interacting at-
oms, as displayed by the PHAML graphics engine. 
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Computable Error Bounds for Delay Differential Equations
A problem of increasing importance in many applica-
tions is how to assess the quality of computed results 
from models involving differential equations. Quite 
often the best error estimates provide only an order of 
magnitude assessment rather than rigorous numerical 
bounds. In the early 1970’s A. P. Stokes developed a 
method of proving the existence of periodic solutions 
for nonlinear differential and functional differential 
equations in the neighborhood of approximate solu-
tions which yields precise error bounds. He 
demonstrated several examples for ordinary differen-
tial equations, but gave no computed error bound in 
the case of functional differential equations. Recently 
D. E. Gilsinn [1] developed the numerical methods 
needed to prove the existence of periodic solutions for 
delay differential equations in the neighborhood of 
approximate periodic solutions and calculating exact 
error bounds. Here we provide some background on 
delay differential equations, outline the argument that 
leads to exact error bounds, and give an example of the 
application of the method to a classic Van der Pol 
equation with delay. 

David E. Gilsinn 
 

Systematic work with mathematical models in medi-
cine and biology involving differential equations with 
delay terms began in the early 1900’s with the studies 
of R. Ross [5] on problems in malaria epidemiology. 
This early work was extended during the period 1920-
1940 for applications in areas such population ecology, 
business cycles, and control systems [3, 4, 7].  All of 
these studies pointed out the need to consider the 
“transmission time” between when an input is intro-
duced into a system and when a response is expected, 
that is, the delay inherent in the system. 

Such problems have also arisen in manufacturing. Ma-
chine tool chatter is a self-excited oscillation of a 
cutting tool against the surface being machined. It typi-
cally is heard as a high frequency noise in a machine 
shop. In the manufacturing literature it is referred to as 
regenerative chatter. In the 1950’s Tobias and Fishwick 
[8] developed models to explain this self-excited oscil-
lation using delay terms. In the process of a turning 
operation with a lathe, the surface being cut at a certain 
time is affected by the results from the cutting tool dur-
ing the cut at the previous revolution on the same 
surface. Any slight imperfection in this previous cut 
affects the current cut and can start an oscillation that 
could generate chatter.  

Early work in the studies of machine tool chatter led to 
linear delay differential equations of the form 

   ( ),)()()()()( Ttxtxktxtxhtxm −−−=++ λ
ω

    (1) 

where the coefficients are determined from experi-
ments. A linear theory would predict, however, that the 
amplitude of vibration would increase indefinitely once 
the depth of cut exceeded some critical value. In the 
early 1970’s Hanna and Tobias [2] introduced cubic 
nonlinearities in the model and modified the equation 
to the form 
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          (2) 

With this modification some good qualitative corre-
spondence between predictions and theoretical studies 
was obtained. 

Many such problems in biology, population dynamics, 
and machining can be written in the vector form 
             )),(),(()( ωω −= txtxXtx                       (3) 

where we look for periodic solutions with a frequency 
of  w on the interval [0,2p]. Approximate periodic solu-
tion can be found by optimization methods using finite 
trigonometric series of the form 

  [ ]∑
=

−++=
m

n
nnm ntantatax

2
1222 )sin()cos()cos(ˆ     (4) 

The sin(nt) term is often dropped so that one can esti-
mate the frequency ω=1a . To shorten notation one 
usually uses xh = x(t-h). The problem then is to deter-
mine conditions for which equation (3) has an exact 
periodic solution with frequency w and determine nu-
merically computable error bounds for the approximate 
periodic solution and frequency. There exist programs 
that allow you to compute numerical solutions to (3); 
however they usually can only give approximate esti-
mates of error bounds based on grid size.  

The fundamental argument that establishes the exis-
tence and bounds for the approximate periodic solution 
and frequency rests on generalizations of two results, 
one from linear algebra, and one from elementary op-
timization theory. The linear algebra result can be 
stated as follows. The algebraic system Ax=b has a 
solution if and only if 0Tb u = for all solutions of A*u 
= 0, where * TA A= is the adjoint, and the overbar 
represents complex conjugates. This result states that 
the system Ax=b has a solution if and only if the right 
hand side, b, is orthogonal to all solutions of the adjoint 
system. The result is sometimes referred to as the solv-
ability condition. Its extension into the space of 
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functions and operators is often referred to as the Fred-
holm alternative.  The other result comes from 
optimization theory and is called the fixed point theo-
rem. In effect, we are given a function, S(x), defined on 
some space, and we look for a solution to the problem 
x = S(x). 

Assume that one has constructed an approximate 2p-
periodic solution as in (4) and an approximate fre-
quency ω̂ . If you substitute these into (3) you will get 
a system similar to (3) but with an error term 

                     ,)ˆ,ˆ(ˆˆ ˆ kxxXx += ωω                           (5) 

where k(t) is 2p-periodic and bounded by some con-
stant r so that  | k(t) | ≤  r.  In order to study any 
solutions to (3) in the neighborhood of )ˆ,ˆ( xω  one in-
troduces the variational equation about )ˆ,ˆ( xω  

          ,ˆˆ),;ˆ,ˆ(ˆ ˆˆˆ ωωωω BzAzzxxdXz +==          (6) 

where ˆ ˆ1 2
ˆ ˆˆ ˆ ˆ ˆ( , ) , ( , )A X x x B X x xω ω= = .  The adjoint 

equation relative to (6) is given by 

                        .ˆˆˆ ˆ BA ωνννω −−−=                          (7) 

An important relationship between the 2p-periodic so-
lutions of (6) and (7) is that they both have the same 
finite number of 2p-periodic solutions.   

In order to state a property that )ˆ,ˆ( xω  must satisfy we 
define a characteristic multiplier. r is a characteristic 
multiplier of the linear delay equation 

y’(t)  =  A(t) y(t) + B(t) y(t-w)              (8) 
where A(t), B(t) are 2p-periodic, if there is non-trivial 
solution y(t) of (8) such that 

                         y(t + 2p)  =  r y(t)                       (9) 
Note: y(t) would be a 2p-periodic solution of (8) if r=1.   

There is a property that )ˆ,ˆ( xω  must satisfy that gives a 
condition that essentially guarantees that )ˆ,ˆ( xω  is in 
some sense isolated.  In particular, )ˆ,ˆ( xω  is said to be 
non-critical if the variational equation (6) with respect 
to )ˆ,ˆ( xω  has a simple characteristic multiplier, r0, that 
need not be unity, and all other characteristic multipli-
ers are not unity. Next, if n0 is the single solution of the 
adjoint equation (7) associated with r0, then 

                       ( ) 0ˆ,ˆ
2

0 0 ≠∫ dtxJT ων
π

,                  (10) 

where 

( ) ˆ
ˆˆˆ ˆ ˆ,J x x Bxωω = +

 
The form of the Fredholm alternative that is relevant 
here is as follows. The nonhomogeneous system 

                      fxBxAx ++= ωω ˆˆˆ ,                      (11) 
has a unique 2p-periodic solution if and only if 

                          0
2

0 0 =∫ dtfTπ
ν                           (12) 

for all independent solutions n0 of (7). Furthermore 
there exists a constant M>0, independent of f, such that  
                            | x | ≤ M | f  |.                          (13) 
This is just an operator version of the linear algebra 
solvability condition.  

One looks for an exact solution and frequency for (3) 
by perturbing the approximate solution and frequency. 
To do this one can introduce the perturbations 

             .
ˆˆ,ˆ zxx
ω
ωβωω +=+=                 (14) 

If these are substituted into (3), then a perturbed varia-
tional equation about the approximate solution can be 
written in the form 
   ,)ˆ,ˆ(),(),;ˆ,ˆ(ˆ ˆˆ kxJzRzzxxdXz −−+= ωββω ωω   (15) 

where R(z,b) is a rather long error term, but is only a 
function of z and b defined in (14).  Now consider an 
associated equation 
       .)ˆ,ˆ(),;ˆ,ˆ(ˆ ˆˆ kxJgzzxxdXz −−+= ωβω ωω        (16) 

and apply the Fredholm solvability result to (16).  In 
particular, if )ˆ,ˆ( xω is noncritical with respect to (3), 
then there exists a unique b, designated b(g), such that 

                ,)ˆ,ˆ()( 0νωβ ⊥−− kxJgg                   (17) 

where n0  is the solution of the adjoint equation (7) 
corresponding to the characteristic multiplier r0 of 
equation (6). Furthermore there exists a 2p-periodic 
solution of (16), designated by z(g), that satisfies 

               ,)ˆ,ˆ()()( kxJggMgz −−≤ ωβ          (18) 

for some M>0. Finally there exist computable con-
stants, l0, l1, such that  
                        | b(g) |  ≤  l0 ( |g| + r ) 

  | z(g) |   ≤  l1 ( |g| + r )                (19) 
The fixed point property can now be used to obtain the 
final result.  Define a map 

S(g)  =  R(z(g), b(g)).                  (20) 
This map satisfies the following properties that provide 
sufficient conditions for a fixed point. There exist two 
functions E1(d), E2(d) and two positive constants F1,  F2 
so that    

                
,~)()~()(

),()(

2

1

gggEgSgS

gEgS

−≤−

≤
             (21) 

 
  where 
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                             E1(d)  ≤  F1 d2,                     (22) 
E2(d)  ≤  F2 d.   

The final result can then be stated as follows. If 
)ˆ,ˆ( xω is noncritical with respect to (3) and d is selected 

so that 

              { }021 4/ˆ,2/1,/1min λωδ FF≤               (23) 

With r≤ d  , then there exists an exact frequency w, and 
solution of (3) such that 

                             
.2ˆ

,4ˆ

0

1

δλωω

δλ

≤−

≤− xx
                          (24) 

Although there seems to be a large number of parame-
ters to compute, they can all be estimated. Of all the 
parameters the one that tends to be the most critical is 
M in (18). 

This result was applied to the classic Van der Pol equa-
tion with delay in the form 

  ( ) 0)(1)( 22 =+−−−+ xtxtxx ωωλωω     (25) 

For tœ[0,2p]. An approximate solution and frequency 
were estimated by a Galerkin projection method as 

   

,0012.1ˆ
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      (26) 

where only the first few harmonics have been dis-
played. The residual was estimated by substituting (25) 
into (24) and computing the maximum value over the 
interval [0, 2p]. The result was r = 3.1086ä10-15. The 
distribution of errors is shown in Fig. 1 and the ap-
proximate solution if shown in Fig. 2. Some lengthy 
estimates yield the following parameter values M = 

2.7618ä102, l0 = 8.4091, l1= 6.6736ä103. One can then 
compute F1 = 2.5941ä109, F2 = 1.0798ä1010, d = 
4.6305ä10-11. With these values (21) and (22) will pro-
duce a convergent fixed point iteration. One can then 
finally estimate the error between the approximate fre-
quency and solution and the exact as 

                
.107877.7ˆ

,102361.1ˆ
10

6

−

−
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Figure1.  Residual error of approximate solution for the Van 
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Figure 2. Phase plot of approximate solution for the Van der 
Pol equation 
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Making Optical “Schrödinger Cat” States
We are developing technologies that exploit exotic 
quantum effects in optical systems for practical use. 
For example, photons may be useful for encoding in-
formation as quantum bits (qubits) for quantum 
computation and communication. Quantum entangle-
ment between photons can also be used to enhance the 
sensitivity of interferometers. The ability to prepare 
and measure a particular class of photon states called 
“Schrödinger cat” states is a prerequisite to develop-
ing applications of this type. We have completed an 
analysis of many cat creation schemes, and are work-
ing with the NIST Electronic and Electrical 
Engineering Lab (EEEL) to build an experiment that 
will produce them. 

Scott Glancy 
 

Quantum optics is a field rich with potential for devel-
oping new technologies and fundamental physics 
experiments. There is a strong history of optical ex-
periments testing and verifying some of the 
foundations of quantum theory such as superpositions 
of states and entanglement. Researchers are now de-
veloping useful technologies that exploit these 
quantum phenomena. Some examples include quantum 
computation, communication, and cryptography, inter-
ferometry, and lithography. Because of the extreme 
fragility of the quantum systems, creating and main-
taining superpositions of states of many photons and 
entangling them is still very challenging. We are de-
veloping strategies for optical state preparation, 
manipulation, and measurement, and we are building 
experiments to implement these strategies. 

We have completed a thorough analysis of many 
schemes for making a class of optical states, which we 
call “Schrödinger cat” states [1].  These states contain 
an equal superposition of two coherent states of oppo-
site phase.  We have made significant progress toward 
making cat states in the laboratory. 

A classical beam of light, produced for example by a 
laser, is composed of oscillating electric and magnetic 
fields. As a classical light wave travels through space 
its electric field vector oscillates up and down between 
two extreme positive and negative values. However, 
for light beams in “Schrödinger cat” states the electric 
field vector exists in a coherent superposition of point-
ing both up and down. At each of the wave’s anti-
nodes one may measure a large positive or negative 
electric field, each with probability 1/2, as shown in 
Fig. 1. At the node, one expects to find zero electric 
field, but instead we see a probability distribution cen-
tered at zero with some interesting structure. This is 

caused by quantum interference between the electric-
field-up and the electric-field-down parts of the cat 
state. In Schrödinger’s thought experiment a diabolical 
device produces a cat which is in superposition of dead 
and live. Our cat states are analogous in that they exist 
in a superposition of two distinct electric field configu-
rations. Of course they are quite different from 
Schrödinger’s original cat because they contain only a 
few photons and do not purr. 

 
Figure 1.  Part (a) shows the probability distribution for measuring 
electric field E at an anti-node of a light beam in a cat state. (b) 
shows the probability distribution at a node. The electric field units 
are arbitrary. 

Cat states are extremely fragile, because the absorption 
of a single photon destroys the superposition, washing 
out the interference seen in Fig. 1(b). Cat states con-
taining many photons are very sensitive to absorption, 
because the probability that zero photons are lost de-
creases exponentially with the number of photons.  

Cat states are necessary for several future technologies. 
One proposal for an optical quantum computer repre-
sents its quantum bits with beams of light whose 
electric fields are pointing up (logical 1) or down (logi-
cal 0). The cat state is an equal superposition of these 
states. This scheme also requires cat states as a re-
source for logic operations and teleportation of qubits.  

Cat states may also be useful for precision measure-
ments of small distances. When interferometry is 
performed with classical light, a laser beam is split in 
two; the two parts are then recombined and allowed to 
interfere with one another, creating a pattern of light 
and dark fringes spaced every λ/2, where λ is the light's 
wavelength.  If the difference in the path lengths trav-
eled by the two beams changes, then the pattern of 
fringes will shift.  The uncertainty in the measured dis-
tance is proportional to λ/√N, where N is the mean 
number of photons in the beam.  If instead cat states 
are used in the interferometer, the distance between 
fringes (similar to that in Fig. 1(b)) is proportional to 
λ/√N, and the uncertainty of the distance measurement 
is λ/N. However, to take advantage of this enhanced 
interference in the cat state, one must ensure that none 
of the cat’s photons are absorbed. Furthermore, current 
experiments struggle to create cat states with N>1.5, 
while conventional lasers can easily produce classical 
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beams with N>1010. The enhanced measurement preci-
sion is likely to be useful only in environments with 
low photon loss and limited laser power.  

The creating of cat states remains an experimental 
challenge. The original proposal for transforming clas-
sical laser light into a cat requires a “Kerr” material 
that has both a strong nonlinear interaction and low 
photon absorption. Unfortunately our calculations 
show that the best currently available material (fused 
silica fibers) has a ratio of nonlinear strength to photon 
absorption that is nearly 300 times too small. Progress 
is being made in engineering Kerr materials, for exam-
ple using photonic crystals and electromagnetically 
induced transparency. 

In the meantime, we require a more clever method to 
make cats. Several methods exist which exploit a gen-
eral strategy of using an “easier” nonlinear interaction, 
splitting off part of the light, and making a measure-
ment. Depending on the measurement result one may 
infer that a cat has been created in the remaining light 
beam. Each scheme exploits some trade-offs in the 
experimental requirements such as the type of nonlin-
earity used and the efficiency and noise level of photon 
detectors.  These choices impact the degree to which 
the created state approximates an ideal cat, the number 
of photons the cat contains, the probability with which 
a cat is produced in each attempt, etc. 

 
Figure 2.  Diagram of photon subtraction scheme to make cat states. 
Red laser light enters from the left. The red light is converted to blue 
through frequency doubling in the green KNb03 crystal. The blue 
light is then converted back to red during downconversion, creating 
the squeezed light. When the photon counter registers n photons, we 
know a cat has been created, which we verify in a final measurement. 

The simplest of these schemes, “photon subtraction”, is 
shown in Fig 2. We first create a squeezed state of light 
through the lower order nonlinear process of frequency 
downconversion. During downconversion photons of 
frequency ω are split into two photons with frequency 
ω/2. We then use a mostly silvered mirror (with trans-
missivity 99%) to split off a small fraction of the 
squeezed beam, which is then sent to a photon detector. 
When the photon detector clicks, we know that a pho-
ton has been subtracted from the squeezed beam, which 
has now been transformed into a state that closely ap-
proximates a cat state. 

In collaboration with members of the EEEL, we are 
implementing a photon subtraction experiment in the 
laboratory. The current optics arrangement appears in 
Fig. 3. Two crucial elements for the experiment’s suc-
cess are the purity of the squeezed state created during 
downconversion and the efficiency of the photon detec-
tor. Our collaborators in EEEL have developed a high-
efficiency, low noise photon detector which is capable 
of counting the number of photons. Our simulations 
show that subtracting multiple photons will signifi-
cantly enhance the fidelity and size of the cat. We are 
also investigating innovative methods for high purity 
squeezing and algorithms for inferring what state our 
experiment has created from measured data. 

 
Figure 3.  Photograph of cat making laboratory experiment. Light 
enters at the lower right, and the final cat verification measurement 
occurs at the top, where the cat and reference beams are combined 
and then split. 

This work is a component of the Quantum Optical Me-
trology Innovations in Measurement Science project, 
the goal of which is to create a “test-bed” of quantum 
optical state preparation (including cat state and oth-
ers), manipulation, and measurement. Such a test-bed 
and the competence we have gained building it will 
allow us to explore and evaluate new technologies that 
exploit the quantum nature of light, including quantum 
information and measurement applications. 
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Modeling the Rheological Properties of Suspensions 
Understanding the mechanisms of dispersion or ag-
glomeration of particulate matter in complex fluids, 
such as suspensions, is of technological importance in 
many industries such as pharmaceuticals, coatings, 
and concrete. These fluids are disordered systems con-
sisting of a variety of components with disparate 
properties that can interact in many different ways.  
Modeling and predicting the flow of such systems 
represents a great scientific and computational chal-
lenge requiring large-scale simulations.  

Our goal in this project is to advance our un-
derstanding of the flow properties (rheology) of a 
specific suspension, fresh concrete, which is composed 
of cement, water, sand, and stones. Concrete rheology 
has a tremendous impact on the construction of con-
crete structures, an industry with a $110B per year 
impact on the US economy. In collaboration with sci-
entists in the NIST Building and Fire Research 
Laboratory (BFRL), we are developing a dissipative 
particle dynamics code, called QDPD, which is capa-
ble of performing large scale simulations of 
suspensions.  QDPD is highly parallel and has been 
shown to efficiently scale up to at least 1,000 proces-
sors when running on the NASA supercomputer 
Columbia. .  

William George 
 

Background.  Fluids can be characterized by proper-
ties known as yield stress and viscosity, each of which 
is a function of shear rate. Yield stress is the force ap-
plied per unit area to initiate the flow. Viscosity is the 
applied force per unit area needed to maintain a shear 
rate. Shear rate is the velocity gradient perpendicular to 
the flow direction. Many factors control viscosity and 
yield stress.  In building materials like concrete (a 
combination of water, cement, sand, and stones) vis-
cosity and yield stress depend on the ratio of water to 
cement, the volume of sand or stones used, as well as 
their shape and size distribution. In addition, there can 
be great variability in each of the component materials 
themselves. As a “concrete” example, rocks mined in 
quarries are usually angular because they are crushed 
when processed, while rocks taken from river beds are 
typically rounded due to erosion. It turns out that the 
more uniform the size of the rocks the harder it is to get 
a concrete suspension composed of those rocks to 
flow.  In this case, the concrete fluid may actually jam 
when poured through a narrow opening thus causing 
delays in construction. Clearly, to optimize the flow 
properties of complex suspensions, one needs to under-
stand the relationship between flow and properties of 
the fluid's constituents. 

QDPD.  Modeling and predicting the flow of complex 
disordered systems of this type represents a great scien-
tific challenge. Simply accounting for the size and 
shape variation of the solid components of the suspen-
sion (cement particles, sand or rocks) presents difficult 
computational problems.  Modeling a representative 
system may entail keeping track of up to 100,000 sol-
ids of varying shape and size. Further, many of the 
forces between rocks (aggregate) depend on the local 
surface curvature of the aggregate at points close to 
neighboring aggregates. This requires keeping track of 
the location, orientation and shortest distance between 
neighboring solids. Clearly, predicting the properties of 
such systems based upon modeling of such fundamen-
tal interactions necessitates large-scale simulations.  

We have adopted and developed some novel modeling 
approaches originally based on cellular automata which 
can successfully take into account many of the com-
plex features of a suspension.  QDPD [1], which stands 
for Quaternion-based Dissipative Particle Dynamics 
(DPD), uses the recently developed DPD technique [2] 
to simulate the fluid and its interaction with the inclu-
sions of the suspension. We have added other forces 
are to this system to better account for the interaction 
between the large particles in the suspensions, the in-
clusions, e.g., lubrication forces that help keep the 
inclusions separated and van der Waals forces that in-
troduce an attractive inter-particle force.  Brownian 
forces are also added to maintain system temperature. 
Our original (serial) code was validated by both theory 
and experiments on idealized systems and has been 
extended to account for random-shaped objects with 
different inter-particle interactions.  

We have recently enhanced QDPD to utilize the power 
of large parallel machines, regularly using 500+ proc-
essors, and sometimes using 1,000 or more processors, 
to simulate systems composed of over 32,000 inclu-
sions and one million fluid particles.  QDPD remains 
under constant development to improve its capabilities, 
such as ability to simulate non-Newtonian fluids, as 
well as to improve its parallel performance.  

NASA's Columbia supercomputer.  During the past 
year we were awarded 1 million CPU-hours of com-
pute time on the NASA supercomputer Columbia to 
perform simulations with QDPD.  Located at NASA‘a 
Ames Research Center in California, Columbia is a 
10,240-CPU system based on SGI's NUMAflex archi-
tecture. Not only has this access enabled us to perform 
very large simulations, it has allowed us to analyze the 
effect of varying system parameters such as the density 
of inclusions in the suspensions, the applied shearing 
speed, and the distribution of inclusion sizes.  With the 
added compute power we were also able to move from 
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spherical inclusions to realistically shaped inclusions 
for a more accurate simulation.   

Results. We have developed a new scalable parallel 
algorithm that has enabled us to make advances in un-
derstanding the influence of finite size effects, stress 
transmission, time scales and system equilibration. 
Through numerical modeling and visualization, this 
research has provided greater insights into the physical 
mechanisms associated with the onset of flow. Aspects 
of yield stress and viscosity can be linked to spatio-
geometric properties of suspensions including the num-
ber of neighboring rocks and their relative orientation. 
Further, by examining the very long time scale behav-
ior of the rocks, we can link their motion to visco-
elastic properties of the suspension.   

Hybrid Realistic / Non-Photorealistic Visualization. 
Visualization has proven to be critical to understanding 
the nature of the results generated from large-scale 
simulations of this type. We visualize the rocks di-
rectly, but augment the visualization with embedded 
data to provide additional information on interactions 
between rocks and the per-rock stress (see Fig. 1). The 
addition of these values allows quantitative observa-
tions and measurement, as opposed to the purely 
qualitative insight provided by most visualizations. In 
addition, blue dots show the points of interaction be-
tween rocks in the simulation. As the suspension 
becomes denser, it becomes increasingly difficult to 
find the high-stress particles in a visualization, much 
less chains of such particles. While a smaller system 
may be simple enough to understand without further 
visualization tools, the larger system in Fig. 1 and our 
biggest system to date, 2025 rocks, require extra tools, 
such as culling the less interesting rocks, in order to 
allow the scientist to find potential jamming. 

In some cases the user would like to focus on the high-
est stress rocks, but still have some indication of the 
surrounding rocks. To achieve this, we turn to non-
photorealistic rendering techniques to show these rocks 
in a sketchy style. The result, shown in Fig. 2, is quite 
effective, especially when seen in motion. The coherent 
motion of each low-stress rock's silhouette enhances 
the ability to recognize and distinguish individual 
rocks. Here we can clearly see a diagonal chain of 
rocks from the upper right, wrapping briefly to the op-
posite side (the simulation wraps toroidally). 

In addition, it is useful to track the high-stress rocks 
from a single frame of through the entire simulation. 
That allows the scientist to see how those specific 
rocks move into gridlock, and how they escape, and 
continue on afterwards. For example, in some simula-
tion runs, a small rock can be seen to move and twist to 
a new location while larger rocks remain locked in 
place. Then the larger rocks release, the stress goes 
down, and the aggregate motion continues.  

 
Figure 1.  Frame 63 in a simulation of the flow of rocks in a suspen-
sion. The per-rock stress is shown with a gray-yellow color scale, 
and also with a numeric value printed on the face for each rock. 

 
Figure 2. Same frame 63 in a simulation of the flow of rocks in a 
suspension. Lower stress rocks are shown in sketch mode. 

In addition, it is useful to track the high-stress rocks 
from a single frame of through the entire simulation. 
That allows the scientist to see how those specific 
rocks move into gridlock, and how they escape, and 
continue on afterwards. For example, in some simula-
tion runs, a small rock can be seen to move and twist to 
a new location while larger rocks remain locked in 
place. Then the larger rocks release, the stress goes 
down, and the aggregate motion continues.  

The sparse visualization of Fig. 2 makes it much easier 
to see and understand the per rock digital stress meas-
urements. The stress value is centered on the face of 
the rock closest to the viewer, so as the system is ro-
tated and manipulated, whether on the desktop or in the 
immersive visualization environment, the text always 
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remains at the correct orientation. Some interactive 
rotation is generally necessary to see the values on hid-
den rocks, but with many fewer rocks displayed as 
solid photo-realistic entities, it is straightforward to 
find a suitable view to read the data from each rock. 

To assist the scientist in choosing a frame to display, 
we created an input analysis tool providing a graph of 
the total system stress per frame, with a slider to indi-
cate a frame of interest (Fig. 3). For example, frames 
just before a steep drop-off in stress are of particular 
interest since they may indicate a time when the rocks 
in the aggregate were binding, but then moved sud-
denly to release the pressure. Other interactions with 
the GUI enable controlling other visual features. 

 
Figure 3. GUI for interactive exploration of the visualization. 

Shading-based visualization environment. This set 
of visualizations was created with a procedural-
shading-based add-on to our visualization environment. 
A shader is a procedure which determines the color 
(i.e. shading) and opacity of each point on a surface. 
Our shaders are written in the OpenGL Shading Lan-
guage and run in the graphics hardware at each pixel 
on each rock. To determine the color and opacity of 
each pixel, the shader refers to the current rock and 
frame number, position of the pixel on the rock, and 
data packed into floating point texture variables. This 
procedure is responsible for creating the sketchy ap-
pearance for less important rocks, the stress color scale 
for solid rocks, placing the spots on the rock surface, 
and writing the numeric values on each rock. 

This shading framework provides a very flexible 
mechanism for experimenting with new visualization 
ideas. The shading procedure can be modified and re-
loaded while the application is running. It can use an 
arbitrary number of slider-controllable parameters for 
interactive manipulation of the shader’s behavior. For 
example, we can interactively change the frame used to 
decide which rocks are solid, and the stress level at 
which we show a blue closest point and the level to 
show a solid rock rather than an outline. 

Graphics hardware has a number of limitations that 
impact shaders. Some, like the maximum available 
texture memory, are hard limits (512 MB on our sys-
tem), while others, like the number of texture accesses 
made by the shader, are soft limits affecting the frame 
rate and interactivity of the resulting visualization. For 
both reasons, we must process our sometimes multi-
gigabyte raw data into a compact form to be stored in 
the limited texture memory for use by the shader. We 
keep the total stress for each rock on each frame, as 
well as the closest point location and stress for the 
highest-stress closest points for each rock on each 
frame. In each case, we need to turn a 3x3 stress tensor 
into a single scalar stress value for use and comparison, 
and combine these to produce a single stress value per 
rock. There are two principal choices, referred to as 
shear stress and normal stress, although in some cases 
we have performed visualization using distance or log 
stress. Rather than make a single choice, our software 
takes an arbitrary expression to guide texture creation. 

These visualization methods provide insight by com-
bining several quantitative methods to reveal spatial-
temporal relationships. The user can find regions of 
interest rocks by visualizing lines of stress and embed-
ded numerical values. They can graphically ask 
interactive questions and easily reduce their search for 
areas of interest. Our scientific collaborators report that 
the visualizations enable them to validate the physical 
correctness of the simulation, to detect problems, and 
to tune parameters of the model.  
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Computation, Visualization of Nano-structures and Nano-optics 
Research and development of nanotechnology, with 
applications ranging from smart materials to quantum 
computation to biolabs on a chip, has the highest na-
tional priority. Semiconductor nanoparticles, also 
known as nanocrystals and quantum dots, are one of 
the most intensely studied nanotechnology paradigms. 
Nanoparticles are typically 1 nm to 10 nm in size with 
a thousand to a million atoms. Precise control of parti-
cle size, shape and composition allows one to tailor 
charge distributions and control quantum effects to 
tailor properties completely different from the bulk and 
from small clusters. As a result of enhanced quantum 
confinement effects, nanoparticles act as artificial, 
man-made atoms with discrete electronic spectra that 
can be exploited as light sources for novel enhanced 
lasers, discrete components in nanoelectronics, qubits 
for quantum information processing, and enhanced 
ultrastable fluorescent labels for biosensors to detect, 
for example, cancers, malaria or other pathogens, and 
to do cell biology. We are working with the NIST Phys-
ics Laboratory to develop computationally efficient 
large scale simulations of such nanostructures. We are 
also working to develop immersive visualization tech-
niques and tools to enable analysis of highly complex 
computational results of this type. 

James Sims 
 

We study the electrical and optical properties of semi-
conductor nanocrystals and quantum dots such as the 
pyramidal dot shown in Fig. 1. We also study more 
complex nanocrystal structures, with the nanocrystal 
coordinated with capping molecules and functionalized 
with linker molecules, and nanodevice architectures 
formed by linking together complex dot structures, also 
shown in Fig. 1. In the most complex structures this 
entails modeling on the order of a million atoms.  
Highly parallel computational and visualization plat-
forms are critical for obtaining the computational 
speeds necessary for systematic, comprehensive study 
of such structures. 

Parallelization. Often it is easy to define the simple 
nanosubsystems that make up a complex, heterogene-
ous nanosystem. However, it may be difficult to 
explicitly define the entire structure. A novel feature of 
our code is the ability to link together heterogeneous 
nanostructures (also referred to here as nanosubsys-
tems).  For example, when a nanoparticle nanostructure 
includes conjugating and linker molecules, these mole-
cules can be assigned separately to different 
computational nodes to take advantage of the paralleli-
zation. If the nanosystem includes multiple smaller 

nanosubsystems linked together, then each smaller 
nanosubsystem can be parallelized on a different set of 
nodes with only minimal communication required be-
tween different nodes. Since we can do multiprocessor 
runs routinely, we have the basic building blocks for 
making larger structures by “stitching” together dispa-
rate subsystems into composite structures, each 
separate subsystem to be stitched together being a 
smaller multiprocessor run.  The basic idea is to con-
sider each smaller nanosubsystem as its own cluster, 
using the same input data as before, but at each itera-
tion in the computation, information about atoms in the 
cluster that are intercluster neighbors (see Fig. 2) has to 
be distributed to the appropriate processors for the 
neighboring clusters, thereby “stitching” the calcula-
tions on the nanosubsystems in the heterogeneous 
structure together. 

Now that we can routinely model nanosystems, our 
focus has shifted to modulating and controlling the 
optical properties of these self-assembled quantum dots 
using external strain which is modeled using an em-

 

 
Figure 1.  A pyramid structure and a double pyramid structure 
of InAs quantum dots embedded in GaAs. The surrounding ma-
trix of GaAs is not shown, but would be included in calculations. 
Coupling between InAs dots is done through the intervening 
GaAs matrix. 
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pirical valence force field. External strain leads to an 
internal lattice relaxation which manifests itself in a 
modification of the electron and hole states which are 
computed for the quantum dots. In this way the optical 
properties of the quantum dots are modified. A paper 
on this new development has been recently delivered at 
the Material Research Society meeting in Boston [3].  

Visualization. Visual models of laboratory experi-
ments and computational simulations to explore the 
nanoworld can be critical to comprehension. However, 
increasing amounts of data are being generated. For 
example, in one of our calculations, the region consid-
ered has nearly 700,000 atoms. Since each atom has 5 
orbitals, there are 3.5 million pieces of data to describe 
one state. Both high performance computing and ex-
periment must be augmented by high performance 
visualization. At NIST our visual analysis capabilities 
include both coarse grain capabilities and finer grain 
capabilities (which are more demanding of CPU and 
visualization resources), as well as static graphical rep-
resentations and fully 3D immersive capabilities. 

In our quantum dot simulations we visualize the atomic 
scale structure of the lattice and the charge density of 
the electrons and holes at both the fine grain and 
coarser grain levels. At the finer grained level, we 
visualize the charge density. For example, by display-
ing the contribution of s and p orbitals to the charge 
distribution of an eigenstate of a triple quantum dot 
structure, we are able to visualize when and how tun-
neling occurs between the structures and what orbitals 
are involved. 

Finer detail can be represented in our visualizations. 
Fig. 3 shows the charge density of the lowest hole state 
in a CdS nanocrystal. In this case, much greater detail 
is apparent. The contributions from pz orbitals (green) 
and px orbitals (blue) are shown. The contributions of 

py and s orbitals are not visible in this example. The 
orbitals are centered on the corresponding atom. The 
shape, size, and color represent the orbital type and the 
magnitude of its contribution. The different colors of 
the orbital lobes (for example, lighter and darker blue 
for px) indicate the phase of the orbital. In this way, 
complete information about electron and hole states 
can be obtained. For example, state symmetries can be 
discerned immediately from these visualizations. Such 
symmetries are more difficult to discern otherwise. 
 

 

 
Even for these examples, the amount of data to be 
visualized can be prohibitive. Coarser grained visuali-
zations can avoid that problem. Fig. 4 shows contours 
and transparent surfaces which illustrate charge densi-
ties in a coarser grained way. The figure shows the 
atomic scale charge density of an electronic state 
trapped in the well region of a CdS/HgS/CdS 
core/well/clad nanoheterostructured nanocrystal. 

Figure 4. Two different views of atomic state density of an elec-
tronic state trapped in the well region of a nanoheterostructured 
nanocrystal. 

Figure 3. Charge density of the lowest hole state in a CdS 
nanocrystal. 

 

Figure 2.  Illustration of intercluster nearest neighbors in a nano-
system with four subsystems: two quantum dots (QD1 and QD2)
and two conjugating molecules (M1 and M2). 
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We can do much more with the output of our nanos-
tructure calculations. Our visual analysis capabilities 
include an immersive environment that allows scien-
tists to interact with data by navigating through a three-
dimensional virtual landscape of the data rather than by 
simply viewing pictures of the data. Our nanostructure 
calculations output detailed charge distributions which 
are transferred to the NIST immersive environment 
where they can be studied interactively. One can move 
through space, going inside the structure and moving 
around inside the structure. In this way one can visual-
ize the structure looking in from the outside, or looking 
out from the inside.  One can visualize both the nanos-
tructure (see, for example, Fig. 5), and the atomic scale 
variation of calculated nanostructure properties from 
any orientation and position in space. This is not possi-
ble with any static graphical representation.  

Such representations are tremendously helpful. They 
encapsulate the physics and allow one to easily see 
features that might be missed by just perusing the vo-
luminous output from a supercomputer size calculation. 
Such insights are very helpful and greatly speedup the 
extraction of useful understanding and insights as we 
explore the properties of new and unfamiliar systems.  
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Figure 5.  Snapshot from an immersive visualization of a quantum dot.  The spheres represent s orbitals, 
which also are representative of the atoms in the structure. 
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Error Correction for Electromagnetic Motion Tracking Devices
MCSD researchers have developed algorithms for cor-
recting both location and orientation errors in motion 
tracking devices.  Such devices are used in a variety of 
fields such as immersive visualization, military, and 
medical applications.  Positional errors in the data 
produced by these tracking devices compromise their 
utility.  We present techniques for measuring and cor-
recting these errors.  In particular we use a method for 
interpolating orientation corrections that has not pre-
viously been used in this context.  This method, unlike 
previous ones, is rooted in the geometry of the space of 
rotations.  It is used in conjunction with a Delaunay 
tetrahedralization to enable both location and rotation 
correction based on scattered data samples.  Our re-
sults show large improvements in both types of errors 
while imposing minimal computational burden. 

John Hagedorn 
 

Motion tracking devices are used in a wide variety of 
applications.  At NIST we use an electromagnetic mo-
tion tracking system as a critical part of our immersive 
visualization environment (Fig. 1).  Motion tracking is 
essential because the location and orientation of the 
user's eyes must be tracked continuously so that the 
system can render images of a spatially stable virtual 
world, in stereo, and in real-time.  In addition, motion 
tracking is also used on hand-held devices that operate 
as tools in the virtual world. 

Fig. 1 illustrates several important components of the 
environment: three screens that provide the visual dis-
play, an electromagnetic motion tracker transmitter, 
and sensors.  The screens are used to display a single 
three-dimensional scene.  Motion trackers are very 
commonly used in such systems.  Unfortunately, errors 
in motion tracking have substantial deleterious effects, 
such as: virtual objects move inappropriately as the 
user moves; straight lines appear bent when they cross 
screen boundaries; and virtual objects tied to the 
tracked hand-held device appear incorrectly positioned. 

Fig. 2 illustrates one of these effects.  Here, the grid 
lines should all be straight.  To the user in the immer-
sive environment, the lines appear bent at the points 
where they cross the boundaries between screens be-
cause the images are being drawn based on an incorrect 
tracked location for the eyes of the observer.  This fig-
ure is based on actual errors observed in the motion 
tracking system at NIST.  It is by no means the worst 
case that could have been provided.  In informal obser-
vations made before initiating this project, we observed 
location errors in excess of 50 cm and orientation er-
rors that appeared to be more than 15 degrees. 

transmitter

sensors

screen 3

screen 1
screen 2

 
Figure 1.  The NIST immersive visualization system.  A single 3D 
scene is being displayed across the three screens.  Note the tracker 
transmitter, a tracker sensor on the user's stereo glasses, and an-
other sensor on a hand-held pointing device. 

Our approach to correcting the tracker was to collect 
data at known locations and orientations and then to 
use these data to construct functions that represent the 
error [1].  This approach was simplified by verifying 
that errors were dependent on location, but not on ori-
entation.  This enabled us to construct correction 
functions based on measurements at a large number of 
locations using a fixed orientation at each location. 

Our correction method is distinguished from prior work 
partly in our handling of the interpolation of orientation 
corrections.  Our orientation interpolation method 
works entirely within the space of rotations and does 
not assume that the space of rotations is Euclidean.  We 
use a quaternion representation of rotations, and we 
interpolate orientation corrections directly from meas-
ured orientation errors. 

To correct the raw tracker data, we first record the 
tracker's measurements at a large set of known loca-
tions (and a fixed orientation) that encompass the 
volume that we need to accurately track.  This enables 
us to calculate corrections at each of these points.  We 
then perform a Delaunay tetrahedralization of the 
points based on the measured locations.  Then, in real 
time, as the tracker reports each location and orienta-
tion, we find the tetrahedron that contains the measured 
location and generate barycentric coordinates for this 
location relative to the containing tetrahedron.  The 
barycentric coordinates (which sum to 1 by construc-
tion) are used as weights for averaging the corrections 
at the vertices of the containing tetrahedron. 
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Figure 2.  Distortions due to tracker miscalibration.  The grid lines 
should be straight; they bend at the points where they cross the 
boundaries between screens in the immersive environment. 

 
Figure 3. The scene shown in Fig. 2 with tracker data corrected by 
the methods described here. 

For orientation averaging, we use these weights with a 
spherical weighted averaging technique [2] to average 
the correction rotations at each of the four vertices of 
the tetrahedron.  This use of barycentric coordinates 
with spherical weighted averaging has a much clearer 
geometric rationale than previous methods. 

In order to validate our methods, we collected raw 
tracker data at a second set of known locations and 
orientations; we refer to these as the validation points. 
We apply the correction algorithm to the validation 
points and compare the corrected data to the true loca-
tions and orientations.  Table 1 reports the results.  We 
see a 95.5% reduction in location errors and an 87.0% 
reduction in orientation errors.  These improvements, 

as best we can determine, equal or substantially surpass 
previous motion tracker correction methods. 
 

 Location Errors Orientation Errors 
 Ave Std Dev Ave Std Dev 
Uncorrected 37.51 19.30 19.57 8.96 
Corrected 1.69 1.30 2.55 0.63 

Table 1. Location errors (cm) and orientation errors (in degrees) for 
validation points before and after applying corrections.   

When we apply this correction to the tracker data in 
our immersive visualization environment, the differ-
ence is clear to the user.  Objects that should be stable 
appear to be stationary as the user moves through the 
virtual scene, the displayed pointer tracks the tracked 
hand-held device accurately, and there are no visual 
artifacts when objects cross the divisions between 
screens. The real-time correction causes no significant 
performance degradation of the interactive system.  
Fig. 3 shows the scene depicted in Fig. 2 after correc-
tion of the viewer's tracked position with our method.  

Bringing together the use of spherical weighted aver-
ages with Delaunay tetrahedralization and barycentric 
coordinates provides a valuable approach to correcting 
tracker data based on samples at scattered points.  The 
correction methods described here are in daily use in 
our immersive visualization environment and have 
yielded substantial improvement to the immersive ex-
perience.  In addition to the qualitative benefits of this 
correction, this effort is an important step toward the 
assessment of uncertainty of virtual measurements of 
models and experimental data that are made in the in-
teractive immersive visualization environment [3]. 
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Automated Combinatorial Testing for Software Systems 
Most often, outages in modern business, industrial, 
medical, scientific, and transport systems are caused 
by unexpected faults in the underlying software, which 
is becoming increasingly complex.  In complex soft-
ware, failures are often the result of interaction bugs.  
An interaction bug is a fault that causes failure only 
when particular values of certain input parameters are 
specified in combination with particular values of other 
parameters.  Interaction bugs may remain dormant 
until the unfortunate combination of parameter values 
is encountered in practice.  Combinatorial testing is an 
approach to detect interaction bugs. Generally, combi-
natorial testing is used in functional or black-box 
testing where specifications of the functionality of the 
software system are given. It may also be useful in 
structural or white-box testing (i.e., when information 
about the software architecture and the internal struc-
ture is available).  Much of the recent practice of 
combinatorial testing is focused on detecting interac-
tion bugs involving two parameters.  Many interaction 
bugs do involve two parameters only; however, a NIST 
investigation of actual faults suggests that up to six 
parameters do occur in practice. This NIST/ITL inter-
divisional project has produced several algorithms and 
a combinatorial testing tool that advance the technol-
ogy of combinatorial testing for complex software 
systems from detecting interaction bugs involving two 
parameters to six or more parameters. 

Raghu Kacker 
 

Combinatorial testing is a relatively new approach, 
becoming popular beginning in the 1990s, for testing 
software systems.  The initial focus was on pair-wise 
(2-way) testing in which all interaction bugs involving 
two parameters are sought.  A NIST study [1] of actual 
faults in medical devices, browsers, servers, and a 
NASA application indicated that about 95 % of interac-
tion bugs involved four or fewer parameters and no 
faults involved more than six parameters (Table 1).  
Thus, while interaction bugs typically involve a rela-
tively small number of parameters, 2-way testing may 
not be adequate.  On the other hand, a t-way testing 
strategy, for t from 2 to 6, may be adequate for many 
practical applications.  The goal of this project is to 
advance the technology from pair-wise to multi-way 
testing and to demonstrate successful application to one 
or more applications. 

The first step in combinatorial testing is to map the 
problem of detecting interaction bugs to a combinato-
rial framework.  The parameters to be tested are 
defined.  A finite subset of the (possibly infinite num-

ber) of input values is selected as test values.  The 
number of test values for a parameter is its domain 
size.  A test run can then be represented as a row con-
sisting of one test value for each parameter.  If there 
are k parameters with domain sizes v1, v2, …, vk, re-
spectively, then the test space consists of v1 × v2 ×…× 
vk test runs (rows).  Some knowledge of the functional-
ity or of the structure of the software system is needed 
to specify the parameters and their test values such that 
the test space includes potential interaction bugs.  Even 
for modest software the number v1 × v2 ×…× vk (size 
of test space) could be very large to exercise all test 
runs in the test space.  A combinatorial test suite is a 
subset of test runs selected from the test space such that 
all t-way combinations between the k parameters are 
exercised, for a chosen value of t. 
 

 Cumulative percent of actual faults 

Parameters M B S N 
1 66 29 42 68 

1 - 2 97 76 70 93 
1 - 3 99 95 89 98 
1 - 4 100 97 96 100 
1 - 5 100 99 96 100 
1 - 6 100 100 100 100 

Table 1. Cumulative distribution (expressed as percent) of the num-
ber of parameters involved in actual faults which occurred in 
software in medical devices (M), browsers (B), servers (S), and a 
NASA application (N) 

Covering arrays. A covering array of strength t  is a 
subset of N rows out of v1 × v2 ×…× vk rows (test runs) 
that includes, at least once, each possible t-way combi-
nation of the test values of every possible subset of t 
parameters out of the k parameters.  If t is less than k 
then the covering array size N is a fraction of the size 
of the test space.  Table 2 shows a covering array of 
strength t = 3 for k = 10 where each parameter has v = 
2 test values (indicated by 0 and 1).  The size of the test 
space is 210, i.e., 1024 test runs would be necessary to 
exhaustively run all combinations of input parameters. 
Yet N = 13 test runs include all 3-way combinations. 
(Note that there are 960 3-way combinations for ten 2-
valued parameters).  Thus, a test suite of 13 test runs 
based on this covering array will exercise all 3-way 
combinations among the values of k = 10 parameter 
each having v = 2 test values. 

Construction of covering arrays of strength t (for t = 2, 
… , 6 or more) with N as small as possible for practical 
number of parameters k  and domain sizes v1, v2, …, vk 
is a challenging problem.  The state-of-the art in com-
binatorial mathematics deals with the special case in 
which each parameter takes on the same number of 
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values, i.e., v1 = v2 = …, = vk = v, and even then yields 
covering arrays of minimum possible size N only for 
very few special values of k, v, and t.  In devising com-
putational methods one must determine the entry in 
each cell such that the combinatorial property of the 
covering array is satisfied, but doing so with the small-
est possible value of N is a difficult combinatorial 
optimization problem.   

Collaboration between NIST/ITL and the University of 
Texas at Arlington has led to a tool, called FireEye, to 
generate covering arrays.  FireEye [2] includes several 
algorithms.  The basic algorithm, called IPOG, is de-
scribed in [3].  The principle performance criteria for 
constructions of covering arrays are that the covering 
array size N should be as small as possible and the time 
taken for construction should also be as small as possi-
ble.  On both criteria, FireEye using IPOG performs 
better than other publicly available tools.  We are con-
tinually improving the algorithms.  A faster version of 
IPOG, called IPOG-D, is described in reference [4].  
Another algorithm, called Paintball, which can use a 
cluster of processors, is under development.  A refine-
ment of IPOG, called IPOG-F, is also under 
development.  Using IPOG-F, a catalog of covering 
arrays of smaller covering array size N than indicated 
in the literature is being developed [5].   

Combinatorial testing based on covering arrays gener-
ated using IPOG has also been shown to be useful for 
reachability testing in concurrent (parallel processing) 
programs [6].  We are investigating approaches to ex-
tend known covering arrays is various directions such 
as changes in domain sizes, increase in number of pa-
rameters, and increase in strength. 
 

 Parameters 
Rows 1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 0 1 0 0 0 0 1 
4 1 0 1 1 0 1 0 1 0 0 
5 1 0 0 0 1 1 1 0 0 0 
6 0 1 1 0 0 1 0 0 1 0 
7 0 0 1 0 1 0 1 1 1 0 
8 1 1 0 1 0 0 1 0 1 0 
9 0 0 0 1 1 1 0 0 1 1 

10 0 0 1 1 0 0 1 0 0 1 
11 0 1 0 1 1 0 0 1 0 0 
12 1 0 0 0 0 0 0 1 1 1 
13 0 1 0 0 0 1 1 1 0 1 

Table 2.  A covering array of 13 rows includes all eight triplets (000, 
001, 010, 011, 100, 101, 110, and 111) between two possible values 
(0 and 1) for every three of the 10 parameters represented by col-
umns (for example, see colored entries) 

Test oracles. A covering array of strength t yields a 
combinatorial test suite for t-way testing.  The next 
task is to determine the expected correct output of each 
test run against which the actual output may be com-
pared.  A test suite along with the correct output for 
each test run is the test oracle.  We are investigating 
use of the model-checking tools, such as NuSMV (ini-
tially developed by Carnegie Mellon University and 
then improved by others), to create a test oracle.  De-
termination of the expected correct outputs for test runs 
requires either complete specification of the functional-
ity, a reference implementation of the software, or 
some model for the software.   

We are investigating application of combinatorial test-
ing for assurance of access control systems and for 
firewall policy testing.  In these applications, functional 
specifications are available to construct test oracles.  
Other potential applications include communication 
protocol and process control systems.  In these, specifi-
cations using finite state automata are common and 
could be used in constructing test oracles.  We are also 
investigating the integration of our combinatorial test 
methods with modeling tools such as SIMULINK. 
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Math Search
As digital libraries of mathematical and scientific con-
tents become widely available, it is essential to have 
search systems that empower users to search not only 
for text but also for equations and other mathematical 
constructs. To do this, the system must be math-aware, 
that is, it must recognize math symbols and structures 
in queries and contents, and it must present search 
results in a way that facilitates finding the desired in-
formation rapidly. We have developed a math-aware 
search system for the NIST Digital Library of Mathe-
matical Functions (DLMF). This search system is 
general enough to be easily adapted to other math digi-
tal libraries.  

Abdou Youssef 
 

When it is released in 2008, the NIST Digital Library 
of Mathematical Functions (DLMF) will be a freely 
available, interactive, online resource providing refer-
ence information on the special functions of applied 
mathematics. As such, it is designed to be a modern 
successor to the Handbook of Mathematical Functions 
published by NBS in 1964 [1].  This classic handbook 
has become an indispensable resource for those doing 
research in the physical sciences and engineering.  
With nearly a million copies in print, the Handbook has 
become the most cited work in the mathematical litera-
ture. The DLMF is expected to become the new 
authoritative reference work on this subject.  Updated 
to reflect developments in applied mathematics and 
computer science in the ensuing 40+ years, the DLMF 
will contain more than twice as much the technical 
material as the original Handbook. 

As a mathematical reference work built on the same 
general model as the Handbook, the DLMF will con-
tain some 36 chapters with mathematical definitions, 
identities, relations, information on computational 
methods and software, graphs, tables, and extensive 
references, but very little traditional text.  To provide 
online support for users to locate the equations and 
expressions they need, the DLMF search system must 
be able to recognize mathematical symbols and struc-
tures, a requirement that is fundamentally different 
from Google-like text search.  Field-based search sys-
tems have been built for math content providers, such 
as Zentralblatt [5] and MathSCiNet [6], but they are 
based on text search and are unable to recognize 
mathematical notation. What is needed in all these 
cases is a math-aware, fine-grained, general-purpose 
search system. We have pioneered such a system for 
the DLMF [2, 3], which stands as the most advanced 
math search system to date. This tool is intended for 

students, educators, researchers, and professionals in 
mathematics, physical sciences, and engineering. With 
minor adaptations, it is deployable by math/science 
publishers, professional societies, and other public and 
private math/science contents providers. 

Features of Math Search.  The following are essential 
components and features that we believe math search 
systems must have.  

• Math awareness. This is the ability to recognize 
mathematical notation and structures, both in user 
queries and the digital library contents being 
searched. For example, the symbols “–” and “/” in 
“x–y/z” are recognized as the subtraction and divi-
sion operators (text search ignores such symbols), 
and the “2” in “x2” is recognized as the power of x. 
(See Fig. 1.) 

• Query language and processing. Users should be 
able to express their queries easily and intuitively, 
and the system must recognize the user’s intent, and 
process the query to satisfy that intent. In particular, 
the user’s query can be math fragments, where 
much information is implicit or expressed in wild-
cards. DLMF search analyzes the query and 
transforms it to a more explicit form that can be 
searched for effectively. 

• Ranking of search results. To locate the needed 
information among hits, hits must be rank-ordered 
by relevance not only to the query but also to the 
general needs of math users. Math-specific factors 
unbeknown to text search ranking such as defini-
tions, theorems, proofs, and names of certain 
mathematical concepts, carry more weight than 
other types of contents. Ranking of hits by the 
DLMF search engine takes such factors into ac-
count.  (See Fig. 2.) 

• Hit description. Each hit must be accompanied with 
a descriptive, query-relevant summary of the con-
tents. The summary can be a combination of 
equations, graphs, portions of tables, or text. The 
DLMF search provides this important feature. 

DLMF search has other features. These include speci-
fying types of hits and highlighting math keywords 
(see Fig. 3). Also, we have enriched the math contents 
with metadata to enhance the ability of search systems 
to find relevant matches.  

In the future, math search will be used in other applica-
tions and extended in different directions [4]. For 
example, it can be used for finding similarity of pat-
terns and thus for scientific data mining (knowledge 
discovery). It can be synergistically combined with 
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instructional systems, proof assistants, and computa-
tional systems. Federated search against multiple, 
geographically distributed math digital libraries is an-
other important direction worth pursuing. We fully 
expect that as math search becomes more widely used, 
other unforeseen opportunities will emerge that warrant 
further research. 
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Figure 1. Search results of query cos^2-sin^2, showing math-awareness & intent-understanding. 
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Figure 2.  Search results of query “tan” (for the tangent function), showing good ranking and informative hit-description. 

 
Figure 3.  Limiting the search to graphs. It also illustrates highlighting of the search keyword “tan”. 


