PCR Analysis

PCR (polymerase chain reaction) enhances DNA analysis and has enabled laboratories to develop DNA profiles from extremely small samples of biological evidence. The PCR technique replicates exact copies of DNA contained in a biological evidence sample without affecting the original, much like a copy machine. RFLP analysis requires a biological sample about the size of a quarter, but PCR can be used to reproduce millions of copies of the DNA contained in a few skin cells. Since PCR analysis requires only a minute quantity of DNA, it can enable the laboratory to analyze highly degraded evidence for DNA. On the other hand, because the sensitive PCR technique replicates any and all of the DNA contained in an evidence sample, greater attention to contamination issues is necessary when identifying, collecting, and preserving DNA evidence. These factors may be particularly important in the evaluation of unsolved cases in which evidence might have been improperly collected or stored.

STR Analysis

Short tandem repeat (STR) technology is a forensic analysis that evaluates specific regions (loci) that are found on nuclear DNA. The variable (polymorphic) nature of the STR regions that are analyzed for forensic testing intensifies the discrimination between one DNA profile and another. For example, the likelihood that any two individuals (except identical twins) will have the same 13-loci DNA profile can be as high as 1 in 1 billion or greater. The Federal Bureau of Investigation (FBI) has chosen 13 specific STR loci to serve as the standard for CODIS. The purpose of establishing a core set of STR loci is to ensure that all forensic laboratories can establish uniform DNA databases and, more importantly, share valuable forensic information. If the forensic or convicted offender CODIS index is to be used in the investigative stages of unsolved cases, DNA profiles must be generated by using STR technology and the specific 13 core STR loci selected by the FBI.

Mitochondrial DNA Analysis

Mitochondrial DNA (mtDNA) analysis allows forensic laboratories to develop DNA profiles from evidence that may not be suitable for RFLP or STR analysis. While RFLP and PCR techniques analyze DNA extracted from the nucleus of a cell, mtDNA technology analyzes DNA found in a different part of the cell, the mitochondrion (see exhibit 1). Old remains and evidence lacking nucleated cells—such as hair shafts, bones, and teeth—that are unamenable to STR and RFLP testing may yield results if mtDNA analysis is performed. For this reason, mtDNA testing can be very valuable to the investigation of an unsolved case. For example, a cold case log may show that biological evidence in the form of blood, semen, and hair was collected in a particular case, but that all were improperly stored for a long period of time. Although PCR analysis sometimes enables the crime laboratory to generate a DNA profile from very degraded evidence, it is possible that the blood and semen would be so highly degraded that nuclear DNA analysis would not yield a DNA profile. However, the hair shaft could be subjected to mtDNA analysis and thus be the key to solving the case. Finally, it is important to note that all maternal relatives (for example, a person's mother or maternal grandmother) have identical mtDNA. This enables unidentified remains to be analyzed and compared to the mtDNA profile of any maternal relative for the purpose of aiding missing persons or unidentified remains investigations. Although mtDNA analysis can be very valuable to the investigation of criminal cases, laboratory personnel should always be involved in the process.

Y-chromosome Analysis

Y-chromosome analysis Several genetic markers have been identified on the Y chromosome that can be used in forensic applications. Ychromosome markers target only the male fraction of a biological sample. Therefore, this technique can be very valuable if the laboratory detects complex mixtures (multiple male contributors) within a biological evidence sample. Because the Y chromosome is transmitted directly from a father to all of his sons, it can also be used to trace family relationships among males. Advancements in Y-chromosome testing may eventually eliminate the need for laboratories to extract and separate semen and vaginal cells (for example, from a vaginal swab of a rape kit) prior to analysis. Cooperative efforts with the crime laboratory are essential to deciding which analysis methods will be most valuable in a particular case. It is important to note, however, that while RFLP and mtDNA testing may be valuable to the investigation of an old case, current DNA databases are being populated with DNA profiles that are generated using STR analysis. RFLP and mtDNA profiles are not compatible with the convicted offender or forensic indexes of CODIS. (CODIS has a missing persons index that exclusively contains mtDNA profiles; the convicted offender and forensic indexes of CODIS exclusively contain STR DNA profiles.)



Some or all of the content on this page was excerpted from the Special Report Using DNA to Solve Cold Cases, developed under an award from the Office of Justice Program's National Institute of Justice. See award product disclaimer.

U.S. Government's Official Web Portal
United States Department of Justice