
M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp.16–29, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Effectiveness of T-Way Test Data Generation

Michael Ellims1, Darrel Ince2, and Marian Petre2

1 Pi-Shurlok, Milton Hall, Cambridge, UK
2 Dept. of Computing, Open University

Walton Hall, Milton Keynes, UK
mike.ellims@pi-shurlok.com, {d.c.ince,m.petre}@open.ac.uk

Abstract. This paper reports the results of a study comparing the effectiveness
of automatically generated tests constructed using random and t-way combina-
torial techniques on safety related industrial code using mutation adequacy cri-
teria. A reference point is provided by hand generated test vectors constructed
during development to establish minimum acceptance criteria. The study shows
that 2-way testing is not adequate measured by mutants kill rate compared with
hand generated test set of similar size, but that higher factor t-way test sets can
perform at least as well. To reduce the computation overhead of testing large
numbers of vectors over large numbers of mutants a staged optimising approach
to applying t-way tests is proposed and evaluated which shows improvements in
execution time and final test set size.

Keywords: Software testing, random testing, automated test generation, unit
test, combinatorial design, pairwise testing, t-way testing, mutation.

1 Introduction

How to generate test sets automatically has been the subject of much research and a
wide range of techniques have been proposed ad investigated. These including ran-
dom generation [1], search techniques such as generic algorithms [2] and combinato-
rial techniques [3] based on statistical design of experiments [4] used to identify and
isolate the effects of interactions between factors of interest.

For unit testing the factors of interest are the input variables of the function under
test and the interactions between different values of those variables and how they
effect the outcome of running the code. If we generate vectors that cover all 2-way
(pairwise) interactions between n input variables v1 to vn then there will be a vector in
the test set such that for every value that the variable vi is allowed to take it will be
paired with each value the variable vj is allowed to take for all i and j where i ≠ j.

An important consideration is which values each variable will be allowed to take
on. In general the tester will select data points for each input variable that are of “in-
terest” based on criteria such as data input ranges, domain partitioning and other heu-
ristic rules. Selection all values is impossible except where only a small number of
values are allowed such as for enumerations.

To make this more concrete consider a function with three input variables, v1, v2
and v3 that take on the values a1, a2, a3 and b1, b2 and c1, c2 respectively. Then a 2-way
adequate test set that ensures that a vector exits that contains all values of v1 paired
with all values of v2 and all values of v3 and all pairs of v2 and v3 is shown in Figure 1.

 The Effectiveness of T-Way Test Data Generation 17

a1 a2 a3 a2 a1 a3 a1
b2 b1 b1 b2 b2 b2 b1
c1 c2 c1 c1 c2 c2 c1

Fig. 1. An example seven vector, 2-way adequate test set for 3 variables

Larger values of t can be used, for example t = 3 would involve matching sets of
three variables and t = 4, four variables in the same way. The advantage of taking this
approach is that far fewer vectors are required to construct a t-way adequate test set
than would be required for a test set that contained all combination of values. The
work presented in this paper is an investigation of the utility of t-way test generation
for unit testing and in particular to determine its suitability for safety-related software.

1.1 Contributions of This Work

The work presented here makes the following contributions;

• it provides a direct comparison with t-way adequate test sets against human gener-
ated test sets.

• it provides a practical method of incorporating high factor t-way testing and muta-
tion analysis into a development process which can avoid much of the computa-
tional overhead that may otherwise be encountered.

2 Related Work

2.1 Combinatorial Techniques

The original work on using combinatorial techniques for testing was presented by
Mandl [5] who used orthogonal arrays to select sets of constructs for testing an Ada
compiler. Sherwood [6] developed the Constraint Array Test System (CATS) to gen-
erate test sets algorithmically. This work was extended by Cohen et al. [3] as the
automatic efficient test generator (AETG) system and this algorithm has been the
focus of much later work.

The literature on combinatorial testing can be divided into two major classes, first
algorithms for generating t-way adequate test sets and second, work that evaluates the
technique. The latter in turn falls into two main categories: reports of the tools in field
use, and a small body of experimental work.

The studies from field use have examined real systems and on the whole report on
the detection of additional errors using combinational techniques. Brownlie et al. [7]
applied the technique to testing of an email system. The effectiveness claimed for the
technique is related to the saving in the number of test cases required and not on a
direct comparison of faults found by applying this and any other technique. Cohen et
al. [8] present information on the AETG tool on two releases of software where it
found more faults than standard test techniques, however what the standard tech-
niques are is not stated. Dalal et al. [9], [10] report briefly on the use of the AETG
tool on a number of systems and the fact that more faults were discovered with its use
than without. Smith et al. [11] discusses the use of the technique (2-way) on

18 M. Ellims, D. Ince, and M. Petre

spaceflight software and compare the number of faults found using the 2-way test sets
vs. test sets constructed by other means. Here 2-way adequate test sets did not fair as
well as expected.

One further set of field studies is of special interest, these looked at variable inter-
actions leading to the activation of faults in several systems. Wallace and Kuhn [12]
looked at software failure modes in data collect by the Federal Drug Administration
(FDA) involving the recall of medical equipment. Kuhn and Reilly [13] examined the
Mozilla and Apache open source projects using their bug tracking databases to deter-
mine the number of conditions required to trigger the fault. Finally Kuhn et al. [14]
looked at a large distributed system being developed at NASA. This work suggests
that in practice small t factor of between four and six was required to reveal all faults
reported.

Given the period of time in which combinatorial testing using covering arrays has
been in use there are surprisingly few controlled experimental studies. There are five
major studies: [15] which addressed coverage, [16], [17], [18]and [19] which ad-
dressed effectiveness at detecting seeded faults.

Dunietz et al. [15] compared the code coverage of random designs without re-
placement vs. the coverage obtained from systematic designs (i.e. t-way adequate test
sets) with the same number of vectors. They concluded that for block coverage low
factor t-way designs could be effective.

Nair et al. [16] investigated random testing without replacement and no partition-
ing vs. partition based testing, and showed that, in general partition testing should be
more effective. The particular case of partition testing was an application of experi-
mental design (t-way) and it showed that the probability of detecting the failure for
simple random testing is significantly lower than partition based techniques.

Kobayashi et al. [17] examined the fault detecting ability of specification based,
random, anti-random [20] and t-way techniques applied to the testing logic predicates
against mutations of those predicates. The authors concluded that 4-way tests were
nearly as effective as specification techniques and better than both random and anti-
random.

Grindal et al. [19] examined the fault detecting power of a number of different
combinatorial strategies including 1-way (each choice), base choice (a single factor
experiment), pairwise AETG and orthogonal arrays. Work was performed on code
with hand seeded faults and data reported for branch coverage is consistent with other
experimental results. However after examining the data the authors concluded that
code coverage methods may also need to be employed. As in [11] it was found that
the base choice technique performed as well as orthogonal arrays and 2-way in 3 out
of 5 problems. However no technique detected fewer than 90% of the detectable
faults.

Schroeder et al. [18] examined effectiveness in terms of code coverage for t-way
vs. random selection with replacement on code with hand seeded faults. While this
produced results that broadly support the results from other experimental work, it was
found that higher values of t were required to reveal some faults. They also concluded
that t-way test sets were no more effective that test sets constructed random selection
for sets of the same size.

Our conclusion is that the literature indicates that there is no overwhelming con-
sensus as to the utility of combinatorial techniques.

 The Effectiveness of T-Way Test Data Generation 19

2.2 Code Mutation

Much of the empirical work that evaluates the effectiveness of the t-way testing tech-
nique is constrained by two main limitations. First the reliance on hand seeded faults.
Second by the inability of common metrics such as code coverage to distinguish be-
tween test sets that reach code but do not stress the code sufficiently to reveal errors
and test sets that do.

Code mutation as proposed by Hamlet [21] and DeMillo et al. [22] has been used
previously in studies to compare test effectiveness [23], [24], [25]. It also has the
advantage that it subsumes conditional coverage techniques [26].

Mutation has recently been applied to evaluating random testing with C programs
[27] with the aim of determining whether faults inserted using the mutation are repre-
sentative of real faults. The conclusion is that they are but that they are also possibly
more difficult to detect.

3 The Experimental Study

3.1 The Data Set

The functions that were used in this study were drawn from a system that controls a
large industrial engine currently employed in safety-critical applications (Wallace).
The system was developed in a manner consistent with IEC 61508 [28] and code has
been subjected to review, unit, integration and system testing.

Hand generated unit test sets were developed using standard techniques such as
boundary value analysis and equivalency partitioning. They also took into account the
structure of conditional statements and attempt to ensure that all clauses are tested for
both TRUE and FALSE. All sets of test vectors are statement, branch coverage ade-
quate and most are also LCSAJ adequate ([29]). Therefore we have some confidence
that the hand generated set of test vectors are of high quality. A full description of
how the unit test process is given in [30].

3.2 Procedure Employed

The procedure employed in this experiment consisted of the following steps:

• A simple mutation tool was developed that produced operator, variable name,
constant and statement removal mutations [31].

• A set of functions from Wallace was selected with a range of complexities from 12
to 62 executable statements (i.e. excluding comments, blank lines and braces).

• The hand-generated vectors for each function was extracted along with input do-
main information from the detailed designs and data dictionary.

• Each mutant was run on each vector for the automatically and hand generated test
sets. For each complete set of mutants vs. test set executed the number mutants left
alive was recorded.

In previous work [31] we employed our AETG based tool, however the tool is in-
herently inefficient as it performs a liner search to match t-way tuples generated in
candidate vectors with tuples remaining to be covered. Lei et al. [32] reference the

20 M. Ellims, D. Ince, and M. Petre

jenney tool [33] and compared the performance of their tool FireEye against
other available tool sets. In terms of execution time jenny is far more efficient that
our own tool and replaces it in this work.

3.3 Code Selected

Table 1 summarizes the functions examined. Three were selected on the criteria that
they contained known errors discovered running the unit tests (vs. designing tests).
The remainder were selected based on their complexity, e.g. _gov_gen_ffd_rpm was
selected as it contains a large number of conditional statements (eleven).

Table 1. Summary of properties of code used in this study

Function Name Lines Valid

Mutants
Nesting
Factor

Cond’n
Factor

if’s Inputs

_dip_debounce 12 81 2 2 2 17
_aip_median_filter 25 217 1 1 4 3
_sdc_fuel_control 17 213 2 2 5 9
aip_spike_filter 22 178 3 1 4 7
_thc_decide_state 16 386 7 2 7 9
_thc_autocal 33 669 5 2 8 6
_aip_apply_filters 30 311 2 2 4 8
_gov_rpm_err 22 783 2 1 5 9
_sdc_pre_start 51 1297 3 1 8 3
_gov_gen_ffd_rpm 62 1227 4 2 11 16

Properties for each of the functions are shown in Table 2 as follows, the first col-
umn is the function name and the second is the number of executable statements in
the function. Column three gives the number of valid mutants that would actually
compile (ignoring warnings for divide by zero etc). The fourth and fifth columns are
the nesting factor (maximum depth of nesting) and the condition factor (maximum
number of comparisons in a predicate) as used in [34]. The sixth column is a count of
the number of if statements in the code with each case of a switch statement being
counted as one. The final column is the number of inputs to the function. The function
_dip_debounce stands out here, but this is because the underlying data structure is a
set of arrays and the original test set contained data values for the first, middle and
last elements of those arrays.

3.4 Experiment 1

3.4.1 Aims
The aims of this experiment are two fold. First to evaluate the effectiveness of t-way
adequate test sets relative to a set of high quality human generated tests. Second to
compare them with other automatic generation techniques that require a comparable
level of analysis to allow data to be generated.

 The Effectiveness of T-Way Test Data Generation 21

3.4.2 Procedure
The Procedure Employed in this Experiment Consisted of the Following Steps for
Each Function:

• Generate a t-way adequate test set sets for t = 2 to t = 5. For numeric variables the
minimum, median and maximum values in the range were used. For enumeration
variables we used all valid values and one out of range value to exercise the default
statement in the code. For Boolean variables TRUE and FALSE were used.

• Generate a test set of the same size as the t-way test sets using random selection
from the same set of values with replacement using the same values as for t-way.

• Generate a test set of the same size purely random tests . Numeric values were
drawn from the whole range with equal probability and replacement. Enumerations
and Boolean values were selected as above. The generator described in [35] was
used to ensure long sequences.

• For each function one or more sets of “base choice” [36] test vectors were gener-
ated. Base choice is where a base vector is selected, perhaps based on expected or
normal use. Additional vectors are generated from this base by changing a single
value of one variable in each new vector until all values have been used for all
variables.

• For each function, execute each of the valid mutants on each test vector and for
each test set recorded the number of mutants that were killed.

3.4.3 Results
Are shown in Table 2. The first column, gives the function name and the second states
the information given in the next four rows as follows. For each function the first row
(vectors) is the number of test vectors in the set determined by the size of t-way test
vectors. The second row (t-way) is the number of mutants killed by t-way vectors for t
= 2 to 5.

The final two columns (base, hand) gives the number of vectors in the base choice
and hand generated test sets with the number of mutants left alive below it. For each
function the smallest test set that had the best performance is highlighted in bold.

Table 3 gives indicative information on the amount of time in seconds that it takes
to run each set of t-way adequate test sets data for each function.

The primary concern is which of the techniques is best at killing mutants in the se-
lected functions. One approach is to look at which technique kills the most mutants
for each function. The results are summaries as follows;

• t-way test vectors win or draw in six of the ten cases.
• Test vectors generated via random selection win or draw in half the cases.
• Random data generation wins or draws in four of the ten cases but notably only has

a single win in the second half of the table.

The selection of “a winner” here is arbitrary in that it is the test set that killed the
most mutants regardless of the number of vectors required and for some code only
small numbers of vectors are required. Another way to approach is to examine the
number of cases where a method failed to achieve a result comparable with the hand
generated tests. Here there is one failure for t-way and random selection plus a near
miss (_sdc_fuel_control by one) and four failures for random testing.

22 M. Ellims, D. Ince, and M. Petre

Table 2. Number of mutants killed for each of the sets of test vectors applied

Function Name Proces
s

2-way 3-way 4-way 5-way Base Hand

vectors 19 60 205 634 25 18
t-way 9 9 9 9 28 12

rand sel 14 9 9 9

_dip_debounce

random 11 10 10 9
vectors 12 28 54 7 27
t-way 49 40 40 56 41

rand sel 46 43 40

_aip_median_filter

random 40 40 40
vectors 17 57 174 504 17 15
t-way 101 49 25 22 36 21

rand sel 126 31 24 22

_sdc_fuel_control

random 84 58 25 18
vectors 16 49 146 400 14 40
t-way 42 23 23 23 80 18

rand sel 66 37 32 23

aip_spike_filter

random 82 82 66 16
vectors 73 271 972 2883 28 17
t-way 228 206 100 57 313 60

rand sel 182 146 63 57

_thc_decide_state

random 348 346 307 232
vectors 20 70 181 377 14 6
t-way 333 188 187 187 270 197

rand sel 407 299 264 189

_thc_autocal

random 410 335 299 221
vectors 34 142 562 1949 23 68
t-way 47 46 46 46 64 64

rand sel 46 46 46 46

_aip_apply_filters

random 46 46 46 46
vectors 17 62 208 662 17 17
t-way 443 443 443 443 444 446

rand sel 443 443 443 443

_gov_rpm_err

random 465 462 462 460
vectors 22 79 228 573 13 14
t-way 736 673 673 673 965 675

rand sel 700 673 673 673

_sdc_pre_start

random 742 742 742 742
vectors 21 81 299 1040 29 14
t-way 701 190 158 140 785 152

rand sel 663 270 148 140

_gov_gen_ffd_rpm

random 502 265 152 152

We can also calculate the mean number of vectors required to kill each mutant.
Here the number of vectors required achieve the best result is used and we find that
t-way requires 2.62 vectors per mutant, random selection 2.71 and random 3.70.

 The Effectiveness of T-Way Test Data Generation 23

In no case was base choice the best performing technique and in only two cases
was its performance comparable with the hand generated tests. These results were
surprising given that previous work as [11], [19] found the technique to perform
rather better.

Table 3. Execution times for the t-way adiquate test sets

Function Name Valid
Mutants

2-way 3-way 4-way 5-way Max
(hours)

_dip_debounce 81 76 210 743 1649 0.46
_aip_median_filter 217 64 127 248 0.07
_sdc_fuel_control 213 132 362 808 3667 1.02
aip_spike_filter 178 109 433 858 1665 0.46

_thc_decide_state 311 707 2723 8156 43451 12.07
_thc_autocal 386 139 582 2313 4253 1.18

_aip_apply_filters 669 198 420 675 2788 0.77
_gov_rpm_err 783 212 851 3239 8563 2.34
_sdc_pre_start 1237 906 1506 5083 16,231 4.51

_gov_gen_ffd_rpm 1227 972 2612 17,758 33,653 9.35

3.5 Experiment 2

3.5.1 Aims
There are two obvious issues with the data presented above. First that the execution
times are long for some functions compared with the time it takes to generate the tests
by hand. Timesheet data gives an average of 5.6 hours for AIP functions, 5.7 hours
for DIP and 1.9 hours for SDC function. Second, the number of vectors that would
have to be examined to determine if a test passed or failed is infeasiblely large. In
practice a large part of the problem with generating tests by hand is determining
whether the output is correct. Given the volume of tests generated automatically,
determining whether the code passes or fails places an unacceptable burden on the
tester and significantly reduces the utility of any automatic generation technique.

Therefore this experiment has two aims. First to investigate the potential of reduc-
ing the amount of time required to exercise all the mutants. Second to determine if a
minimal test set can be extracted from the process to reduce the oracle problem to a
manageable level.

3.5.2 Procedure
For this experiment we modified the test driver to record which vectors killed which
mutants for each set of test vectors. After all vectors had been run over all mutants the
optimisation routine determines which vector killed the most mutants and it is
selected to be retained, mutants it killed are removed from further consideration. This
is repeated until there are no new vectors that kill more than one mutant left.

The run with the next set of vectors excludes from consideration those mutants that
were previously killed by all preceding test sets but otherwise the optimisation proc-
ess is identical. This continues until the final set of vectors is run when the restriction
on not selecting vectors that only kill a single vector is removed.

24 M. Ellims, D. Ince, and M. Petre

Other procedures have been made to reduce the number of vectors that need to be
considered. A suggestion by Offutt [37] was to simply ignore vectors that do not kill
any mutants. However these experiments suggest that savings may not be great as
large number of vectors kill at least one mutant which is why we delay selecting these
until the final pass. Offutt et al. [38] suggest mechanism for selecting minimal sets of
vectors that again removes mutants as they are killed but runs the set of vectors in
different orders.

3.5.3 Results
From experiment 2 are shown in Table4 which for each function reports the time to
run the largest t-way test set (max), the time using the optimisation procedure outlined
above (min) and the percentage time saving for the optimisation (gain). Information
on vectors given is the number of hand generated vectors (hand), the size largest
single t-way adequate test set (max) and the size of the optimised test set (min). For
reference the t value of the test set that first resulted in the maximum number of
mutants killed is shown in the second column headed t.

Table 4 shows that in terms of time saved the optimisation procedure can deliver
significant saving for possibly the majority of functions, with an average saving of
close to 53%. However it is also clear that for functions that show no increase in mu-
tants killed at higher values of t the process can be counter productive e.g.
_dip_debounce but that it is not always the case e.g. _aip_apply_filters. The benefits
where high t values do show improvement are more supportive of the idea that the
optimisation scheme trialled here is worth while.

Table 4. Summary data for t-way optimisation runs

Function Name t Time (seconds) Vectors
max min gain hand max min

_dip_debounce 2 1649 2029 123 % 18 634 6
_aip_median_filter 3 248 67 27 % 27 54 9
_sdc_fuel_control 5 3667 1144 31 % 15 504 12
aip_spike_filter 2 1665 628 37 % 40 400 9
_thc_decide_state 5 43451 6942 16 % 17 2883 13
_thc_autocal 4 4253 1276 30 % 6 377 13
_aip_apply_filters 2 2788 2029 73 % 68 1949 7
_gov_rpm_err 2 8563 6118 71 % 17 662 4
_sdc_pre_start 2 16231 18212 112 % 14 573 12
_gov_gen_ffd_rpm 5 33653 5767 17 % 14 1040 22

Results for the size of the test sets from the optimisation routine are less ambiguous,
in eight of the ten cases the test sets are smaller than the hand generated test sets. In the
remaining two cases they are not significantly larger in terms of total tests required.

There is however one down side, as reported in [11] vectors that were selected by
the optimisation procedure were not very user friendly. That is, it takes a significant
effort to understand what is being tested. Here none of the test cases contained tests
that would be obvious to an engineer producing the test cases by hand (the first author

 The Effectiveness of T-Way Test Data Generation 25

was the engineer in charge of Wallace) and many, especially those for the function
_aip_apply_filters contained data that in practice would not be used and would be
disallowed by the tool that vets the engine control unit calibration data.

3.6 Investigations

There are a small number of interesting features present in Table 2 as follows;

• why is it so difficult to obtain a good kill rate for the _sdc_pre_start function?
• is the fault detecting ability of random testing really static for _sdc_pre_start?
• can we improve on the results for _gov_gen_ffd_rpm if we use more random tests?

Examination of live mutants _sdc_pre_start code revels the fact that the majority of
live mutants are connected with manipulating variables that have Boolean values. As
has been noted in other work [31] and in a large amount of research on searched
based test data generation [34], [39]. Boolean data appears to be intrinsically difficult
to deal with.

The _sdc_pre_start code was executed with a number of different randomly gener-
ated test sets using different seed for 288, 573, 1200 and 2400 values. While some of
the vector sets showed some improvement the best result returned was only 717 killed
mutants and all data sets showed the same flat pattern as shown in Table 2.

Code for _gov_gen_ffd_rpm was run with a test set of 2000 and 5000 vectors tak-
ing 12 and 32.4 hours to execute. The test set of size 2000 showed no improvement
while the test set of 5000 vectors killed only an additional 2 mutants.

4 Threats to Validity

Threats to external validity are that code being tested may not be representative of
other code though a variant of aip_median_filter has been used by other researchers
[40, 41] and the function itself in [42]. This however is a general problem in testing
research and code from different application domains is likely to have different. The
code used here is thought to be representative of fixed point integer code real-time
embedded applications domain.

A novel threat is that as the code development process was strongly controlled that
code actually may be easier to detect faults in than more typical code. The implication
is that the results presented here are possibly optimistic. The only approach is to use
other data sets, however often these do not have the necessary hand generated test
vectors available. Another threat is that code mutation may not be representative of
real faults. Results in [27] strongly suggest that test sets that are adequate for mutation
will also be effective for real faults.

The major threat to internal validity comes from the way that the data points were
used in the t-way and random selection data sets, being limited to minimum, median
and maximum values. This is simplistic however it should tend to bias the results
against success, resulting in a false negative. However the data selection process does
follows examples in books such as [43] which will possibly provide the primary
source of information on combinatorial techniques for practitioners.

The tool used to insert faults into the code may also presents a risk, while it avoids
the bias associated with hand seeded faults it is a relatively simple tool and is not

26 M. Ellims, D. Ince, and M. Petre

capable of introducing mutants over multiple lines. Analysis by one of the authors [44]
however suggests that the majority of effective operators have been implemented.

5 Conclusions

The results of these experiments have been surprising. At the start of this study we all
thought that 2-way techniques offered a valid way of testing critical software. How-
ever our results show that:

• 2-way (pairwise) combinatorial techniques using simple selection criteria for selec-
tion data points are not adequate with respect to hand generated tests for the more
complex functions as measured by mutants generated, nesting level and number of
condition statements.

• Test sets that involve higher values of t-way adequate tests appear to be as effec-
tive as hand generated tests at killing mutants. However this statement holds only
relative to being able to distinguish mutated from original code. We have not as-
sessed the relationship with “real” faults. However as noted above results from
[27] suggest that a test set for one will be effective on the other.

• Random testing can be surprisingly effective but is not reliable in the sense that it
may often provide good results, but this cannot be counted on.

6 Future Work

There are some obvious avenues of work that the authors are either currently pursuing
or intend to pursue in the near term. Firstly some initial work has been done using a
small number of hand generated vectors as the first step in the optimisation process.
This has been done by drawing small random samples from the existing hand gener-
ated tests. Initial results suggest that while the number of mutants killed is only mini-
mally affected there may be further savings to be made in execution time.

The Wallace code base contains functions with higher level of complexity than
those involved in this study. However these have as inputs large arrays of one or more
dimensions and it is not clear how to effectively deal with these data structures. Does
one treat them as a collection of individual variables or as a complete unit?

As noted above the data selection model used is possibly too simplistic. Previous
work [45] shows that there can be an advantage in using more complete data models.
This work should be repeated with higher t-way test sets.

The unit tests for the Boar project reported in [30] have been extracted from the
project archive and these may provide an interesting comparison. The unit testing for
this project was outsourced and it is known that there is a significant difference be-
tween Wallace and Boar in what activity in the unit test process (test design vs. test
run) errors were revealed.

One area of interest is the effect that the mutant comparison function has on
the ability to detect faults. The current comparison functions are derived directly from
the hand generated tests and compares not only the output values but in most cases the
majority of other input data to check for invalid modification. It would be interesting
to determine what effect changing these functions has on the ability of vectors to kill
mutants.

 The Effectiveness of T-Way Test Data Generation 27

Acknowledgments

Our thanks to J. H. Andrews for making his mutation tool available for evaluation.

References

1. Duran, J., Ntafos, S.: An Evaluation of Random Testing. IEEE Trans. Softw. Eng. 10(4),
438–444 (1984)

2. Gallagher, M.J., Narasimhan, V.L.: ADTEST: A Test Data Generation Suite for Ada Soft-
ware Systems. IEEE Trans. Softw. Eng. 23(8), 473–484 (1997)

3. Cohen, D.M., et al.: The AETG System: An Approach to Testing Based on Combinatorial
Design. IEEE Trans. Softw. Eng. 23(7), 437–444 (1997)

4. Diamond, W.J.: Practical Experiment Design For Engineers and Scientists. John Wiley &
Sons, New York (2001)

5. Mandl, R.: Orthogonal Latin Squares: an Application of Experiment Design to Compiler
Testing. Commun. ACM 28(10), 1054–1058 (1985)

6. Sherwood, G.: Effective Testing of Factor Combinations. In: Third Int’l Conf. Software
Testing, Analysis and Review, Software Quality Eng. pp. 151–166 (1994)

7. Brownlie, R., Prowse, J., Phadke, M.S.: Robust Testing of AT&T PMX/StarMAIL Using
Oats. AT&T Technical Journal 71(3), 41–47 (1992)

8. Cohen, D.M., et al.: The Automatic Efficient Test Generator (AETG) System. In: Proceed-
ings 5th International Symposium on Software Reliability Engineering, pp. 303–309. IEEE
Computer Society, Los Alamitos (1994)

9. Dalal, S., et al.: Model-based Testing of a Highly Programmable System. In: Proc. of the
Ninth International Symposium on Software Reliability Engineering. IEEE Computer So-
ciety, Los Alamitos (1998)

10. Dalal, S.R., et al.: Model-based Testing in Practice. In: Proc. of the 21st Int’l Conf. on
Software Engineering, pp. 285–294. IEEE Computer Society, Los Alamitos (1999)

11. Smith, B., Feather, M.S., Muscettola, N.: Challenges and Methods in Testing the Remote
Agent Planner. In: Proceedings of the Fifth International Conference on Artificial Intelli-
gence Planning Systems, pp. 254–263. AAAI Press, Menlo Park (2000)

12. Wallace, D.R., Kuhn, D.R.: Failure Modes in medical device software: an analysis of 15
years of recall data. International Journal of Reliability, Quality and Safety Engineer-
ing 8(4), 351–371 (2001)

13. Kuhn, D.R., Reilly, M.J.: An Investigation of the Applicability of Design of Experiments
to Software Testing. In: Proceedings of the 27th Annual NASA Goddard Software Engi-
neering Workshop (SEW-27 2002). IEEE Computer Society, Los Alamitos (2002)

14. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software Fault Interactions and Implications for
Software Testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

15. Dunietz, I.S., et al.: Applying Design of Experiments to Software Testing: Experience Re-
port. In: Proc.of the 19th Int’l Conf. on Software Eng., pp. 205–215. ACM Press, New
York (1997)

16. Nair, V.N., et al.: A Statistical Assessment of some Software Testing Strategies and Ap-
plication of Experimental Design Techniques. Statistica Sinica 8, 165–184 (1998)

17. Kobayashi, N., Tsuchiya, T., Kikuno, T.: Non-Specification-Based Approaches to Logic
Testing for Software. Information and Software Technology 44(2), 113–121 (2002)

28 M. Ellims, D. Ince, and M. Petre

18. Schroeder, P.J., Bolaki, P., Gopu, V.: Comparing the Fault Detection Effectiveness of N-
way and Random Test Suites. In: ISESE 2004: Proceedings of the 2004 International
Symposium on Empirical Software Engineering, pp. 49–59. IEEE Computer Society, Los
Alamitos (2004)

19. Grindal, M., et al.: An Evaluation of Combination Strategies for Test Case Selection, in
Technical Report, Department of Computer Science, University of Skövde (2003)

20. Malaiya, Y.K.: Antirandom testing: getting the most out of black-box testing. In: Proceed-
ings, Sixth International Symposium on Software Reliability Engineering, pp. 86–95
(1995)

21. Hamlet, R.G.: Testing Programs with the Aid of a Compiler. IEEE Trans. Softw.
Eng. 3(4), 279–290 (1977)

22. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on Test Data Selection: Help for the
Practising Programmer. Computer, 34–41 (1978)

23. Daran, M., Thevenod-Fosse, P.: Software Error Analysis: a Real Case Study Involving
Real Faults and Mutations. SIGSOFT Softw. Eng. Notes 21(3), 158–171 (1996)

24. Frankl, P.G., Weiss, S.N., and Hu, C.: All-uses vs. mutation testing: an experimental com-
parison of effectiveness. J. Syst. Softw. 38(3), 235–253 (1997)

25. Zhan, Y., Clark, J.A.: Search-Based Mutation Testing for Simulink Models. In: Proc. of
the 2005 Conference on Genetic and Evolutionary Computation, pp. 1061–1068. ACM
Press, New York (2005)

26. Offutt, A.J., Voas, J.M.: Subsumption of Condition Coverage Techniques by Mutation
Testing, in Tech. Report, Dept. of Information and Software Systems Engineering, George
Mason Univ., Fairfax, Va (1996)

27. Andrews, J.H., Briand, L.C., Labiche, Y.: Is Mutation an Appropriate Tool for Test Ex-
periments? In: Proc. of the 27th Int’l Conf. on Software Engineering, pp. 402–411. ACM
Press, New York (2005)

28. Anon.: Functional Safety of Electrical/Electronic/Programmable electronic safety-related
systems, Part 1: General Requirements, BS EN 61508-1:2002, British Standards (2002)

29. Woodward, M.R., Hedley, D., Hennel, M.A.: Experience with Path Analysis and Testing
of Programs. IEEE Trans. Softw. Eng. 6(6), 228–278 (1980)

30. Ellims, M., Bridges, J., Ince, D.C.: The Economics of Unit Testing. Empirical Softw.
Eng. 11(1), 5–31 (2006)

31. Ellims, M., Ince, D., Petre, M.: The Csaw C Mutation Tool: Initial Results. In: Mutation
2007. IEEE Computer Society, Los Alamitos (2007)

32. Lei, Y., et al.: IPOG: A General Strategy for T-Way Software Testing. In: 14th Annual
IEEE Int’l Conf. and Workshops on the Engineering of Computer-Based Systems (ECBS
2007), pp. 549–556. IEEE Computer Society, Los Alamitos (2007)

33. Jenny (accessed June 2007), http://www.burtleburtle.net/bob/math
34. Michael, C.C., McGraw, G., Schatz, M.A.: Generating Software Test Data by Evolution.

IEEE Trans. Softw. Eng. 27(12), 1085–1110 (2001)
35. Wichmann, B.A., Hill, I.D.: Generating Good Pseudo-Random Numbers. Computational

Statistics & Data Analysis 51(3), 1614–1622 (2006)
36. Ammann, P.E., Offutt, J.: Using Formal Methods to Derive Test Frames in Category-

Partition Testing. In: Proc. of 9th Annual Conf. on Computer Assurance (COMPASS
1994), pp. 824–830. IEEE Computer Society, Los Alamitos (1994)

37. Offutt, A.J.: A Practical System for Mutation Testing: Help for the Common Programmer.
In: Proc. of the IEEE Int’l Test Conference on TEST: The Next 25 Years, pp. 824–830.
IEEE Computer Society, Los Alamitos (1994)

 The Effectiveness of T-Way Test Data Generation 29

38. Offutt, J.A., Pan, J., Voas, J.M.: Procedures for Reducing the Size of Coverage Based Test
Sets. In: Twelfth Int. Conf. on Testing Computer Software, pp. 111–123 (1995)

39. Bottaci, L.: Instrumenting Programs with Flag Variables for Test Data Search by Genetic
Algorithms. In: Proc. of the Genetic and Evolutionary Computation Conference. Morgan
Kaufmann Publishers, San Francisco (2002)

40. Gotlieb, A.: Exploiting Symmetries to Test Programs. In: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering, p. 365. IEEE Computer Society,
Los Alamitos (2003)

41. Offutt, A.J., et al.: An Experimental Determination of Sufficient Mutant Operators. ACM
Trans. Softw. Eng. Methodol. 5(2), 99–118 (1996)

42. Dillon, E., Meudec, C.: Automatic Test Data Generation from Embedded C Code. In:
Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp.
180–194. Springer, Heidelberg (2004)

43. Copeland, L.: A Practitioner’s Guide to Software Test Design. Artech House Publishers,
Boston (2004)

44. Ellims, M.: The Csaw Mutation Tool Users Guide, in Technical Report, Department of
Computer Science, Open University (2007)

45. Ellims, M., Ince, D., Petre, M.: AETG vs. Man: an Assessment of the Effectiveness of
Combinatorial Test Data Generation, in Technical Report, Department of Computer Sci-
ence, Open University (2007)

	The Effectiveness of T-Way Test Data Generation
	Introduction
	Contributions of This Work

	Related Work
	Combinatorial Techniques
	Code Mutation

	The Experimental Study
	The Data Set
	Procedure Employed
	Code Selected
	Experiment 1
	Experiment 2
	Investigations

	Threats to Validity
	Conclusions
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

