Abstract E. Kolker, BIATECH "Interdisciplinary Study of *Shewanella oneidensis* MR-1's Metabolism & Metal Reduction"

Since our project became part of the *Shewanella Federation*, we focused our work mostly on analysis of different types of data produced by global high-throughput technologies to characterize gene and protein expression as well as getting a better understanding of the cellular metabolism. Specifically, first year activities include development of:

- **new** labeling technique for quantitative proteomics, so called methyl esterification labeling approach, complementary to currently available methods;
- new algorithm for de novo protein sequencing;
- **new** statistical model for spectral analysis of arbitrary shape data;
- one of the first analyses of the transcriptome of the entire microorganism;
- new approach to predict operon structures and transcripts within untranslated regions;
- the **first** control protein experimental mixtures with known physico-chemical characteristics for high-throughput proteomics experiments;
- the **first** statistical models for peptide and protein identifications for high-throughput proteomics analysis;
- *Shewanella* metabolic capability experiments with minimal media on aerobically & anaerobically grown cells and transformation experiments.

Several collaborations have been established within the *Shewanella Federation* with **PNNL, USC, ORNL,** and **MSU**. The first year of this project, supported by DOE's Offices of Biological and Environmental Research and Advanced Scientific Computing Research, also resulted in 6 published papers.

This is a joint work of **A. Keller, A. Nesvizhskii, A. Picone, B. Tjaden, D. Goodlett, S. Purvine, S. Stolyar,** and **T. Cherny** done at **BIATECH** and **ISB**.

> **Eugene Kolker, PhD** President & Director BIATECH nonprofit research center

Editor-in-Chief OMICS A Journal of Integrative Biology

BIATECH (Kolker et al.)

- •Sequence and data analysis
- Statistical models
- Quality assessments for HT analyses

Protein-Protein Interaction Maps

high-throughput mass spectrometric protein complex identification approach

940,000 MS/MS spectra 35,000 peptide identifications 8,118 potential interactions

Y. Ho *et al.*, Nature 415, 180 (2002), "Systematic identification of protein complexes in *Saccharomyces cerevisiae* by mass spectrometry"

No attempt to estimate confidence levels of protein identifications

- Thousands of spectra from each experiment, but much of the data are of low quality
- Correct peptide identification or false positive? Requires decision from a human analyst

Quality Assessment of MS is needed

Quality Assessment of MS/MS Spectra

Good Spectrum

Bad Spectrum

Spectrum Quality Clustering

Discriminant Function 1

Training set (manually assigned quality): ~ 1,000 spectra, *HI*, LC/MS/MS

How to Mimic Complex Samples & Develop Statistical Models of Peptide & Protein Identifications?

- 20 selected, purified proteins
- Different concentrations
- **1,000:1** dynamic range
- Different database searches
- To Build Statistical Models

Control Protein Mixture

	Protein Name	MW(Daltons)	Conc.(nM)	CL	
1.	Bovine beta-casein	25,107	100	100	
2.	Bovine carbonic anhydrase	e 28,980	100	100	
3.	Bovine cytochrome c	11,572	40	63	
4.	Bovine beta-lactoglobulin	19,883	20	100	
5.	Bovine alpha-lactalbumin	16,246	10	0	
6.	Bovine serum albumin	69,293	40	100	
7.	Chicken ovalbumin	42,750	0.4	0	
8.	Bovine serotransferrin	77,753	10	100	
9.	Rabbit GAPDH	35,688	2	100	
10.	Rabbit glycogen				
	phosphorylase	97,158	1	100	
11.	EC beta-galactosidase	116,351	0.4	18	
12.	Bovine gamma-actin	41,661	0.2	0	
13.	Bovine catalase	57,585	2	100	
14.	Rabbit myosin	241,852	0.2	0	
15.	EC alkaline phosphatase	49,438	20	100	
16.	Horse myoglobin	16,951	4	0	
17.	B. lich. alpha amylase	66,924	4	0	
18.	S. cer. mannose-6-phospha	ate			
	isomerase	48,057	1	0	BIATECH

Filtered and Unfiltered Distributions

DB search score

EM Learns Search Score Distributions

Database search score –

EM Iteration 8

Database search score —

Accuracy of Probability Model: Test Set

Test data: SEQUEST results of known validity; ~36,000 MS/MS spectra generated from the control protein mixture (22 LC/MS/MS runs)

Discriminating Power of Computed Probabilities: Test Data Set

Spot

Sensitivity: fraction of all correct results passing filter. *Error*: fraction of all results passing filter that are incorrect

Future Needs - SF

- Data Integration
- ModelingWGA
- Sequencing of Shewanella strains
- Controls, standards, and quality assessments for sample preps, HT and data analyses
- GtL coordination/updates

ATTENTION:

OMICS J Integr Biol : Integrative Microbiology, 2003 (GtL) issue

and ASM, May 2003, DC : Systems Microbiology

www.biatech.org

Shewanella oneidensis

S. oneidensis is the abbreviated name of the bacterium Shewanella oneidensis, which according to the definitive text, which categorizes bacteria **Bergey's Manual**, belongs to the gram negative gammasubgroup (as E. coli and H. influenzae) Alteromonadales, genus XII Shewanella.

The name *oneidensis* comes from the name of *Lake Oneida* where from our collaborator and friend Ken Nealson first isolated and characterized S. oneidensis fifteen years ago. S. oneidensis is at the very top of the priority list of the <u>US Department of Energy</u>, because of its unique ability to reduce heavy metals like uranium, degrade organic wastes, and sequester a range of toxic metals.

Environments in places like Hanford or Chernobyl can be significantly improved ×

if we would understand Shewanella better.

We are still not there...

More Information on S. oneidensis:

- **DOE's information on** S. oneidensis
- DOE's Genomes to Life
- Shewanella Federation Web site
- Shewanella Genome Annotation (02/03/03)

PIs of *Shewanella Federation*: Eugene Kolker, BIATECH James Fredrickson, Pacific Northwest National Laboratory James Tiedje, Michigan State University Jizhong Zhou, Oak Ridge National Laboratory Kenneath Nealson, University of Southern California