
SCIENTIFIC INVESTIGATIONS MAP 2902

	COR	RELATION OF	MAP UNITS
	NONGLACIAL DEPOSITS	Qf Qtf	
	YOUNGER GLACIAL DEPOSI		
	Fraser glaciation Vashon stade AAD		
	Erase Vasi		
	OLDER GLACIAL AND NONGLACIA	L DEPOSITS	
24	Qob		18 ka* 70 ka*
Qpf Qpfn			
	Qpo Qpo _c Qpo _f Qpog Qpog _c Qpog _f Qpog _t	Qpon Qpon _c	Qpon _f
			Brunhes chr
R C R	a na an		Qrg _f Qrn Matuyama cl
	boundaries of the Olympia nonglacial interval (Booth and others, 20	004a)	
Age of boundary fro	om Sarna-Wojcicki and others (2000)		
	DESCRIPTION OF MAP UNITS	Qpo	Deposits of pre-Olympia age
Ok Booo	NONGLACIAL DEPOSITS	Qpo _c	mapped as: Coarse-grained deposits—
S	h deposits (Holocene)—Locally well-sorted and, pebbles, silt, and shells; deposited or eworked by wave action. Includes upper-beach	Qpo _f	and sand Fine-grained deposits—Pred
Ċ	leposits above mean high water line and local hin veneer of modern beach sediment that	Qpog	Glacial deposits—Weakly to
i	overlies older deposits. At stream mouths, grades nto unit Qal; in intertidal zone, grades into unit		sand, and rare gravel of gl all Vashon-age deposits an Olympia age
	Rtf and deposits (Holocene)—Peat and alluvium;	Qpog	Coarse-grained deposits-
	boorly drained and intermittently wet Islide deposits (Holocene) —Diamictons	Qpog _f	and sand Fine-grained deposits —P
C	composed of broken to internally coherent surficial deposits that are derived from upslope.	Qpog _t	clay Till deposits —Predominan
	Numerous unmapped areas of both landslide and elated mass-wastage deposits also are found	Qpon	Nonglacial deposits—Abund
C	elsewhere in quadrangle, particularly where coarse deposits (units Qva and Qpog _c) overlie fine	Qpon _c	pumiceous deposits indicati Coarse-grained deposits-
	leposits (particularly units Qvlc, Qpog _f , and Qpfn). Shown by arrows on bluff sketches		and sand Fine-grained deposits —P
2	-wastage deposits (Holocene)—Colluvium, soil, and landslide debris that has indistinct	Qpon _f	clay Reversely magnetized deposits
C	norphology; mapped where sufficiently thick and continuous enough to obscure underlying		Glacial deposits—
V	naterial. Numerous unmapped areas of mass- wastage deposits are found elsewhere in juadrangle along coastal bluffs of Puget Sound.	Qrg _f	Fine-grained deposits—F dropstones, and so of D
I	Deposits, both mapped and unmapped, may nclude discrete landslides 1 to 10 m in lateral		Reversely magnetized and than 774,000 years old
e	extent	Qrn	Nonglacial deposits—Interl gravel, and local pumice c
Ċ	vium (Holocene)—Moderately well sorted leposits of cobble gravel, pebbly sand, and sandy vilt; found along floodplains of lowland streams.		nonglacial origin. Reversel presumably more than 774,
τ	Jnit is gradational with, and locally includes, rediment equivalent to units Qf and Qb		Contact—Dotted where conc
Qf Fan	deposits (Holocene)—Boulders, cobbles, bebbles, and sand; deposited in lobate form where		uncertain (in bluff sketch) Fault—Dotted where conce
S	streams emerge from confining valleys and where reduced gradients cause sediment loads to be		uncertain. U, upthrown block. Arrows (in bluff
C	leposited Fiat deposits (Holocene) —Silt, sand, and organic		motion Strike and dip of beds
S	bediment and detritus; exposed in broad coastal benches at low tide	× ²⁵	Inclined Horizontal
	YOUNGER GLACIAL DEPOSITS	⊕ ▲-▲-▲-▲-	Pre-Vashon till —Mapped with Qrg where exposed on va
-	sits of the Vashon stade of the Fraser glaciation of Armstrong and others (1965)		bluffs. Queried where unce
	Pleistocene)—Consists of: cessional outwash deposits—Stratified sand and	•-•-•-	Peat bed or other organic-rich Paleomagnetic sample localitie
Ę	gravel, moderately well sorted to well sorted; ess common silty sand and silt. Exposed	T7277 • T7280 •	Normal magnetization Transitional magnetization
t	primarily on floors of broad outwash channels hat trend south-southwest between flutes molded	T9058 🔾	Reversed magnetization
t	by glacial flow; also exposed as irregular upland bodies having no obvious channelized form.	Beta- 128806 🔺	14C age locality—See table 1 fo
(Deposits less than about 1 m thick commonly overlie till but are not mapped	WA-25 🔶	Infrared-stimulated lumine localities—See table 2 for a
<u> </u>	-contact deposits—Deposits similar in texture to init Qvr but locally containing much higher		
S	bercentage of silt intermixed with granular rediments; also includes lenses and pods of till. Locally characterized by hummocky topography		GEOLOGIC SUMM
8	and (or) closed depressions I—Compact diamicton containing subrounded to	The O	INTRODUCTION
V	well-rounded clasts; glacially transported and leposited. Generally forms undulating surface a	center of t	lalla 7.5' quadrangle, which lies the Puget Lowland, displays the b ents typical of the region. The u
f	we we ters to a few tens of meters thick. Also found sporadically within areas mapped as unit	the passag	ge of the great continental ice she t 17,000 (14,000 radiocarbon) ye
(Qvi vance outwash deposits—Well-bedded sand and	cut by cha	annel deposits, both late-glacial cleaved even more deeply by one
	gravel; deposited by streams and rivers that ssued from front of advancing ice sheet.	Puget Sou	ind, the Colvos Passage, which h ashon Island from the Kitsap Pen
(Generally unoxidized; almost devoid of silt or elay, except near base of unit. Includes deposits	sequence	th the deposits of the last ice of older Quaternary-age sedime
I	breviously mapped by others as Colvos Sand or he Esperance Sand Member of the Vashon Drift	These old	rs below the modern ground s er sediments are best exposed al
S	wton Clay—Laminated to massive silt, clayey ilt, and silty clay; deposited in proglacial or	maintain	fs of Puget Sound, where wave relatively fresh exposures. are compact, having been weig
1	owland lakes. Unequivocal evidence for glacial or nonglacial origin rarely present. Mapped	more epis	odes of glaciation subsequent to the emented by iron and manganese.
t	leposits are assigned to this unit primarily on the basis of stratigraphic position, but only some	a consequ	ence of many tens or hundreds or g and groundwater movement.
1	ocalities have nearby absolute age control		PREVIOUS MAPPIN
0.1	OLDER GLACIAL AND NONGLACIAL DEPOSITS	Peninsula	Olalla quadrangle, the mapping was based entirely on original fic
(nentary deposits of pre-Fraser glaciation age Pleistocene)—Weakly to moderately well widized sand and gravel: lacustrine sediments	data of B	on dates. On Vashon Island, how ooth (1991) largely was used. contacts were refined by referer
C	oxidized sand and gravel; lacustrine sediments containing local peat layers; and moderately well o strongly oxidized diamicton composed of silty	LIDAR (I	Jght Distance And Ranging) topo DAR Consortium (see <i>http:///</i>
r	natrix and rounded gravel clasts. Locally mapped	Previously	published geologic maps by Sce (65), and Deeter (1979) include
Qpfn No	nglacial deposits—Abundant organic debris or	quadrangl	e at smaller scales; although not esent significant contributions for
F	pumice indicating nonglacial origin	-	able resources for establishing

Lab. No.	Site Name	Location	Approx Elevation (ft)	Sample Type	Sample No.	Conventional Age, in ¹⁴ C yr B.P. ¹	¹³ C/ ¹² C Ratio (0/00)	Calibrated ¹⁴ C Age, in yr B.P. ²	Reference	Map Unit	Pretreatment
Beta-131069	"Maplewood south"	47.3940 N 122.5531 W	70	peat	DB-212-98, KT-13-98	>41,420	-25.03	>41,420	Troost (1999)	Qpon	acid/alkali/aci
W-1515	"Crescent coast"	47.3872 N 122.5488 W	80	peat		>38,000	not avail.	>38,000	Deeter (1979)	Qpon	unknown
W-2028	"Crescent coast"	47.3872 N 122.5488 W	?80	peaty silt		>42,000	not avail.	>42,000	Deeter (1979)	Qpon	unknown
Beta-128806	"Fragaria road"	47.4617 N 122.5372 W	80	peat	DB-235-97	40,660±970	-25.03	42,950- 38,850	Troost (1999)	Qob	acid/alkali/aci
Beta-131071	"Crescent driveway (upper)"	47.3870 N 122.5489 W	140	organic sediment	KT-170-99, S-5	38,790±790	-25.0 ³	40,650- 37,250	Troost (1999)	Qob	acid/alkali/aci (low C require special handlin
Beta-131072	"Crescent driveway (lower)"	47.3870 N 122.5489 W	133	peat	KT-170-99, S-7	>44,290	-25.0 ³	>44,290	Troost (1999)	Qob	acid/alkali/aci
UW-25	"Maplewood coast"	47.3989 N 122.5533 W	125	peat		4	not avail.	4	Dorn and others (1962)	Qob	unknown
W-1982	"Maplewood coast"	47.3989 N 122.5533 W	1255	peat		>42,000	not avail.	>42,000	Yount and others (1980)	Qob	unknown
Beta-128805	"Olalla Creek quarry"	47.4265 N 122.5542 W	70	peat	KT-11-98, DB-78-98	39,050±940	-25.03	41,250- 37,250	Troost (1999)	Qob	acid/alkali/acid

Lab No.	Location	Elevation (ft)	Material	Average IRSL Age, in 1000 yrs	Map Unit
WA-25	Sandford Point	20	Fine sand	127±6	Qpo _c
WA-26	Sandford Point	25	Silt	185±9	Qpo _f

The Olalla quadrangle occupies a region of known Holocene seismicity and surface faulting (Bucknam and others, 1992; Johnson and others, 1996; Brocher and others, 2001). Most apparent displacements and truncations, however, likely are the result of Holocene landsliding, depositional unconformities, or glacial overriding, instead of tectonic movement. One fault of likely tectonic origin is mapped in the beach cliff near Sandford Point, where pre-Fraser-age silt abuts sand along a vertical, extensively sheared (presumably faulted) contact. Bedding is strongly distorted along this (presumed) fault; the deformation

In contrast, the relatively gentle deformation that is widespread throughout the quadrangle almost certainly reflects long-term crustal deformation during the Quaternary period. Pre-Vashon-age deposits in and around the map area define a regional pattern of fold axes striking west to west-northwest (Booth and others, 2004b); the axis of an anticline is expressed by opposing dips just north of Sandford Point on Vashon Island, and a synclinal axis is suggested by dips just south of Fragaria Creek. No deformation has been observed in sediments of Vashon age, but deposits of Olympia age and older exhibit deformation here and throughout the southern Puget Sound region.

Armstrong, J.E., Crandell, D.R., Easterbrook, D.J., and Noble, J.B., 1965, Late Pleistocene stratigraphy and chronology in southwestern British Columbia and northwestern Washington: Geological Society of America Bulletin, v. 76,

Booth, D.B., 1987, Timing and processes of deglaciation along the southern margin of the Cordilleran ice sheet, in Ruddiman, W.F., and Wright, H.E., Jr., eds., North America and adjacent oceans during the last deglaciation: Boulder, Colorado, Geological Society of America, The Geology of

_1991, Geologic map of Vashon and Maury Islands, King County, Washington: U.S. Geological Survey Miscellaneous Field Studies Map MF-2141, scale 24:000. ___1994, Glaciofluvial infilling and scour of the Puget Lowland,

Washington, during ice-sheet glaciation: Geology, v. 22, p.

subglacial water: Observations and reconstruction in the eastern Puget Lowland of Washington: Geological Society of America Bulletin, v. 105, p. 671-683.

Booth, D.B., Troost, K.G., Clague, J.J., and Waitt, R.B., 2004a, The Cordilleran ice sheet: Chapter 2 in Gillespie, A., Porter, S.C., and Atwater, B., eds., The Quaternary Period in the United States: International Union for Quaternary Research,

Booth, D.B., Troost, K.G., and Hagstrum, J.T., 2004b, Deformation of Quaternary strata and its relationship to crustal folds and faults, south-central Puget Lowland, Washington State: Geology, v. 32, no. 6, p. 505-508.

Washington Geological Survey Bulletin 8, 244 p. Brocher, T.M., Parsons, T., Blakely, R.J., Christensen, N.I.

Fisher, M.A., Wells, R.E., and the SHIPS Working Group, 2001, Upper crustal structure in Puget Lowland, Washington: results from the 1998 Seismic Hazards Investigation in Puget

Bucknam, R.C., Hemphill-Haley, E., and Leopold, E.B., 1992, Abrupt uplift within the past 1700 years at southern Puget Sound: Science, v. 258, p. 1,611-1,614.

Clague, J.J., 1981, Late Quaternary geology and geochronology of British Columbia, Part 2: Geological Survey of Canada

Crandell, D.R., Mullineaux, D.R., and Waldron, H.H., 1958, Pleistocene sequence in the southeastern part of the Puget Sound lowland, Washington: American Journal of Science, v.

Deeter, J.D., 1979, Quaternary geology and stratigraphy of Kitsap County, Washington: Bellingham, Western Washington

Dorn, T.F., Fairhall, A.W., Schell, W.R., and Takashima, Y. 1962, Radiocarbon dating at the University of Washington I:

Easterbrook, D.J., Crandell, D.R., and Leopold, E.B., 1967, Pre-Olympia Pleistocene stratigraphy and chronology in the central Puget Lowland, Washington: Geological Society of

Fairhall, A.W., Schell, W.R., and Young, J.A., 1966, Radiocarbon dating at the University of Washington III: Radiocarbon, v.

Garling, M.E., Molenaar, D., van Denburgh, A.S., Fiedler, G.H., and Bailey, E., 1965, Water resources and geology of the Kitsap Peninsula and certain adjacent islands: Washington State Water-Supply Bulletin, no. 18, 309 p.

Hagstrum, J.T., Booth, D.B., Troost, K.G., and Blakely, R.J., 2002, Magnetostratigraphy, paleomagnetic correlation, and deformation of Pleistocene deposits in the southcentral Puget Lowland, Washington: Journal of Geophysical Research, v. 107, no. B4, 10.1029/2001JB000557, paper EPM 6, 14p.

Johnson, S.Y., Potter, C.J., Armentrout, J.M., Miller, J.J., Finn

Geologic Map of the Olalla 7.5' Quadrangle, King, Kitsap, and Pierce Counties, Washington

By Derek B. Booth and Kathy Goetz Troost

and does not imply endorsement by the U.S. Government.

proportions may not be true on plots of this map.

Denver, CO 80225, 1-888-ASK-USGS

Any use of trade, firm, or product names in this publication is for descriptive purposes only

This map was printed on an electronic plotter directly from digital files. Dimensional calibration may vary between electronic plotters and between X and Y directions on the same plotter, and paper may change size due to atmospheric conditions; therefore, scale and

For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center,