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Abstract

An economic agent who is uncertain of her model updates her beliefs in response to the data.
The updating is sensitive to measurement error which, in many cases of macroeconomic interest,
is apparent from the process of data revision. I make this point through simple illustrations and
then analyze a recent model of the Federal Reserve’s role in U.S. inflation. The existing model
succeeds at fitting inflation to optimal policy, but fails to link inflation to the economic trade-off
at the heart of the story. I modify the model to account for data uncertainty and find that doing
so ameliorates the existing problems. This suggests that the Fed’s model uncertainty is largely
overestimated by ignoring data uncertainty. Consequently, now there is an explanation for the
rise and fall in inflation: the concurrent rise and fall in the perceived Philips curve trade-off.
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1 Introduction

A great deal of research has gone towards identifying the causes of the large swings in inflation
in the United States between 1970 and 1985. Omne strand of literature advances the view that
evolving government responses had an important role in these events. Clarida, Gali, and Gertler
(2000) provides evidence of different U.S. monetary policy responses over different parts of the
postwar era. Boivin (2006) elaborates on this finding using a time-varying Taylor rule estimated on
real-time data, as Primiceri (2005) does in a DSGE model using revised data, to characterize the
response without giving explanation for its evolution. Romer and Romer (1990) and Owyang and
Ramey (2004) suggest that the changing response might be explained by changing Fed objectives.
On the other hand, Sargent (1999) suggests that Federal Reserve beliefs alone, evolving in response
to data, can explain the rise and fall of inflation.

This last explanation relies on the idea that agents learn about their economic environment. In
such a model, agents’ prediction errors update their beliefs, represented as the parameters to their
model of their world. Obviously, these prediction errors are based on the observed data. Orphanides
(2001) notes that researchers should carefully attribute to agents the data actually observable at
the time of decision-making.? Because some data is revised, real-time data available to the agent
may be different than the revised data available to the researcher. The point of my paper is
that agents’ data uncertainty, resulting from their knowledge that real-time data is revised, affects
the evolution of their beliefs because they know it can affect their prediction errors. Therefore
researchers miscalculate the volatility of these beliefs, with a tendency towards overestimation, by
ignoring observable data uncertainty.

I explain this point through simple frameworks that have two main ingredients. First, the
agent has model uncertainty represented as a parameter shock or error that explicitly allows the
agent to change their beliefs in response to observed data. Second, the agent has data uncertainty
represented as an error that causes data to be mismeasured. The conclusion from this analysis is
that the researcher’s estimate of the agent’s model uncertainty is biased by ignoring existing data
uncertainty, and that this bias is positive in many simple cases and more complicated cases subject

to empirically-relevant restrictions.

!Orphanides and Williams (2006) and Sims (2006) also argue that policy is sensitive to model uncertainty, and
Nason and Smith (forthcoming) finds instability in the Philips curve relationship since the 1950s.
*Runkle (1998) made a similar point around the same time.



Then I take an example from the fore mentioned literature in order to understand the effect of
this bias in practice. As application I use the framework in Sargent, Williams, and Zha (2006) which
follows the main idea of Sargent (1999). The Federal Reserve optimally controls inflation in light
of unchanging unemployment and inflation targets, however the Fed is uncertain of its economic
model and thus lets its beliefs evolve in response to new data.? Hence, Sargent, Williams, and Zha
(2006) aim to explain the great American inflation as optimal policy given changing estimates of the
Philips curve. However, the model suffers from three key problems. One, the Fed’s unemployment
rate forecasts, the basis for setting inflation, are very inaccurate, much more so than the Greenbook
forecasts they should mimic. Second, the Fed’s estimated model uncertainty is very large, which
undermines the plausibility that the Fed believed in its estimated Philips curve enough to use it
as the basis for policy. Third, the model explains the rise in inflation between 1973 and 1975, but
does not give a good reason for the drastic fall in inflation between 1980 and 1984.

I adapt the Fed’s estimation problem to account for the observable fact that macroeconomic
data is revised.* By accounting for data uncertainty, on which we have actual evidence, the model
explains inflation without the fore mentioned problems. The Fed is confident of its model and makes
accurate unemployment forecasts that resemble Greenbook forecasts. Importantly, the model now
predicts a sharp drop in the Philips trade-off between 1980 and 1984 leading to the concomitant
drastic drop of inflation.

The economic difference from Sargent, Williams, and Zha (2006) is that here the Fed is sluggish
to change its beliefs in response to real-time data because this data might be revised. Since at
least as far back as Zellner (1958) — who admonished readers to be “careful” with “provisional”
data — the reality of data uncertainty has been clearly recognized.” What has been less clear is
the impact this data uncertainty may hold for the purposes of modeling. My paper shows that
data uncertainty can have a large effect in models where agents change their beliefs in response to
incoming data.

In addition to fore mentioned studies on the great inflation, my paper joins literature highlight-

ing the impact of real-time data on economic behavior. This is made possible by the pioneering work

3Model uncertainty in this case is represented by the variance of shocks to time-varying parameters.

4Note that my model reduces to Sargent, Williams, and Zha (2006)’s model when one assumes data is seen without
error and, therefore, later vintages of data are identical to its first report.

5In fact, data uncertainty was recognized by Burns and Mitchell, who revised their business cycle indicators as
data revisions came in, and considered many macroeconomic variables for that reason.



of Croushore and Stark (2001) on the Philadelphia Fed’s Real-Time Data Set for Macroeconomists,
and the St. Louis Fed’s ensuing Archival. Federal Reserve Economic Data (ALFRED) collection.
In early work, Oh and Waldman (1990) used data revisions to identify the effects of real-time
macro announcements on future economic activity, highlighting how data mismeasurement itself
can influence agents’ behavior. Ghysels, Swanson, and Callan (2002) extended this idea by using
multiple data vintages to fit policy rules, some of which are adaptively estimated, forecasting the
Fed Funds rate. These papers suggest that agents’ behavior is connected to the real-time data
they actually saw when making decisions. Within a DSGE framework, Aruoba (2004) analyzed
the welfare consequences of a one-period signal extraction problem motivated by data uncertainty.
Many recent papers by central bank researchers are evidence that macroeconomic data revisions re-
main significant to policy decisions even today; see Cunningham, Jeffery, Kapetanios, and Labhard
(2007) and references therein.

Explicitly modeling data uncertainty is similar in spirit to the macroeconomic learning literature
where the main idea is that agents are themselves econometricians. Whereas much of that literature
focuses on the problem of learning parameters — for instance see Evans and Honkapohja (2001) or
Orphanides and Williams (2006) — I focus attention to the problem of learning the true economic
state measured by imperfect real-time data. In addressing the problematic implications in Sargent,
Williams, and Zha (2006), I join concurrent work in Carboni and Ellison (2007) and Carboni
and Ellison (2008). The first paper changes the Fed’s objective to include the goal of accurate
unemployment forecasts, resulting in a new policy rule sensitive to the accuracy of parameter
estimates; the second paper changes the unemployment forecast estimation to target Greenbook
forecasts. In particular, the second paper achieves success at addressing the problems regarding
unemployment rate forecasts and large model uncertainty.® However, neither paper addresses the
missing explanation for the rise and fall of inflation.

The paper is organized as follows. Section 2 provides a simple explanation of the impact of data
uncertainty when there exists model uncertainty. Section 3 evaluates the impact of data uncertainty
in practice by applying it to the Sargent, Williams, and Zha (2006) framework. Section 4 presents
the estimation results of both the model without data uncertainty and the model including data

uncertainty; it is apparent that the latter remedies the problems of the former, and Section 5

5In contrast to Carboni and Ellison (2008), the model in this paper produces unemployment forecasts that are
statistically indistinguishable from the Greenbook forecasts without using those Greenbook forecasts as data.



explains why. Section 6 concludes.
2 Why Data Uncertainty Matters

Suppose an agent forms a forecast of an economic quantity y. The agent’s model maps observed
data and a parameter vector into this prediction. Model uncertainty is the situation where past
predictions and realized data, at some point in time and through the agent’s economic model,
might change the parameter vector going forward. Data uncertainty is the situation where data is
measured with error perhaps, but not necessarily, observed after the fact. The main question here
is, if the agent is uncertain both of the model and the data, what is the impact of the researcher
ignoring data uncertainty?

To answer this, I consider a few instances of prediction error decomposition, which is the
machinery through which agents change their models. The intuition is straightforward that when
the agent’s prediction is correct there is nothing to change about her beliefs.” When such is the
case, the agent has nothing to learn since her model’s performance cannot be improved.

When the prediction error is nonzero, the agent has incentive to evaluate her model and learn
from the error. At this point, the agent needs to understand why the prediction error is nonzero:
is it due to unpredictable additive shocks, is it due to mismeasured data, is it due to the model
(parameter)? We will see that data uncertainty is not negligible when the economic agent is
uncertain of her own model.

In the following, ¢; is a shock on the i parameter, ; is an error on the j data element, and it

is assumed that
E(e;) =E(g;) =0,Var(e;) = 07 > 0, Var (¢;) = J? >0, E(gej) =0 Vi, j

I assume that the data and parameter predictions are almost surely nonzero. The parameter shock
can be interpreted as actual variation in the parameters, for instance considered by Cooley and
Prescott (1976), Primiceri (2005), and Sargent, Williams, and Zha (2006). Alternatively, the shock
can be interpreted as a model error allowed for in each period by the agent, just as an empirical
model used by the researcher includes an error. I will consider linear predictors calculated under

mean squared error loss.

"This follows from the assumptions: the agent has an economic loss function, the agent’s prediction is rational
with respect to that loss function, and the loss function is minimized when the prediction error is zero. See Elliott,
Komunjer, and Timmermann (2005) for more extensive discussion.



One parameter on mismeasured data Suppose that the agent believes that
y=(0b+e)(x+ey)
We call b the parameter prediction and x the data prediction. The agent’s prediction of y is
y=bx
and her forecast error (y — ) is
bey + xep + €pey

When the forecast error is zero the agent trivially decomposes this to imply that both the
parameter shock and the data error are zero because their unconditional means are zero and there
is no more than this information. When the forecast error is nonzero, the decomposition is nontrivial
but simple. The prediction of each shock’s contribution depends on the size of the forecast error

and the average size of the shocks (supposed by the agent). This decomposition is obtained from

the forecast error by noting

~ b2ag A)
€& = p2i.o2\Y—Y
N 72 2 2 2 b2oi4a202
Var (y — 9) = b°05 + 2°0;, — . 2202 .
€z = 2ol ta%0l (y—19)

which are well-known linear prediction equations.

Suppose the researcher thinks that £, = 0 almost surely. This implies that o2 = 0 and therefore
the researcher deduces from the linear prediction equations an estimator 512) of how large on average
the agent regards the parameter shock to be

5_2 — Va’r (y - y)

b 72
Said another way, the researcher would use the LHS of the above equation to uncover the a%
supposedly believed by the agent.

However, since the agent holds data uncertainty, this estimator is actually

~ 2 2
Oy = 0} —i-?al,

which means that

Bias (62) — E 2
ias (63) = poLE (2.1)

Therefore the researcher’s estimate of the agent’s oy, the shock size unit, is biased upwards. The
bias depends on the researcher’s data and parameter prediction and the actual variance of the data

error.



Two parameters, one on mismeasured data Suppose that the agent believes that
Yy = (b—i—eb)(l‘-i-&?g;)-f- (d+6d)

We call d a parameter prediction.® The agent’s prediction of y is again linear and the forecast error
follows naturally.
Again, suppose the researcher thinks that €, = 0 almost surely. Let us suppose ko = o4, k > 0

so oy is the shock size unit being measured. The researcher then calculates

52 — Var (y — 9)
b 22 4 k2 4 20kpy,

where p,,; is the correlation between €, and €; perceived by the researcher.

However, actually
2 2
Bias (57) = Do (2.2)
b7 22 4 k2 4 2akpyy

The numerator is almost surely positive; so is the denominator, as the following shows

To show:

22 + k2 + 22kp,; > 0

Proof: Suppose the contrary. Then 22 + k? < —2xkp,,; and note both sides are positive. Hence

C 4248 < 4p?, WLOG, let #?/k% =146 for 6 > 0. Then 1+ 25 < p2,. But pyy € [~1,1]. W

Therefore the researcher’s estimate of the average size of the agent’s parameter shocks is biased

upwards.

One parameter on mismeasured data, mismeasured target Suppose that the agent
believes that

y—ey=(b+e)(x+ey)

The agent’s prediction of y and forecast error naturally follows. If the researcher thinks e, = ¢, =0

almost surely, then
b o2 + o2 + 2bp,, 0.0
Bias (5’%) =—= ¥ 5 Py (2.3)
x

8We could instead label d/xzo a parameter prediction, €q/xo a parameter shock, and zo be some data measured
without error that is multiplied by (d/zo + €a/20), and the idea here would be the same. Likewise if d = 0 and €4 is
simply an additive error term in which case it might be natural to assume p,; = 0.



where p,,, is the true correlation between ¢, and €,. The RHS is almost surely positive. The proof
is the same as above, noting that one can write o, = ko, for some k£ > 0. Therefore the researcher’s

estimate of the shock size unit is biased upwards.

Two parameters on mismeasured data
y=(b+e)(z+es)+ (ct+e)(z+ez)

Let kop, = 0. and mo, = o, for k,m > 0 so o is the shock size unit being measured. Then

b% + 2m? + 2bemp
. =2\ _ 2
Bias (ab) =0y 22 + k222 1+ 2l<:xzp:Z
C

(2.4)

This bias is positive, following the proof above for both the numerator and denominator.

Three parameters, two on mismeasured data, mismeasured target Suppose that the

agent believes that
y—ey=(b+e)(r+e)+ (ct+e)(z+e:)+ (d+eq)

The agent’s prediction of y and forecast error naturally follows. For the researcher who thinks
€y = €4 = €, = 0 almost surely, let ko, = o, moy, = 04, no, = 0, and po, = o, for k,m,n,p > 0,

so oy, is the shock size unit being measured. Then

52 b% + c?n? + p? + 2benp,, + 2bppgy + 2cnpp,,
Y22 + 22k2 + m? 4 2kxzpy. + 2mappg + 2kmzpy

Bias (62) = (2.5)

Without further restrictions, this bias can be any real number.? Anticipating the model application
below, consider the following empirically-relevant restriction: let the data predictions be nonnega-
tive, the revision errors be uncorrelated, and the parameter shocks be nonnegatively correlated. In

this case the bias is positive.

Discussion These simple examples capture the intuition that a researcher’s estimate of an
agent’s model uncertainty is biased by ignoring data uncertainty. The bias is a function of the true
variances of the parameter shocks and data errors, the true correlation between data errors, and

the perceived correlation between parameter shocks. In the simplest cases, this bias is positive. In

9For instance: if all correlations are zero, it is positive; if p,, = prg = Poqg = 0, Ppr = Puy = Py, = —1, and
b=c=mn=p=1, it is negative.



more complicated cases, the bias may be anything, but under a particular restriction given above
the bias is positive. The point of this section is that data uncertainty cannot necessarily be ignored
without consequence. To evaluate the scale of the consequence in practice, we turn to the following

application.

3 Federal Reserve Model

The question of why inflation rose and fell so dramatically in the United States between 1973 and
1984 has received much attention. One strand of research emphasizes the evolution of the Federal
Reserve’s beliefs over this time period. Representing Fed beliefs as parameters in its model, Sargent,
Williams, and Zha (2006) reverse engineers an optimal control framework that explains the time
path of inflation very well. In light of the previous section, it is worth asking if ignored data
uncertainty has an impact on the model’s estimates. We will see in Section 4 that the clear answer

to this question is: yes, very much.
3.1 Model

Sargent, Williams, and Zha (2006) assume that the Federal Reserve’s economic model can be
usefully approximated by a Philips curve with time-varying parameters. By specifying that the
Fed believes the parameters follow a random walk we introduce persistent model uncertainty, as
discussed in Cooley and Prescott (1976) and Primiceri (2005). In this context, inflation is the
solution to an optimal control problem with a law of motion that changes according to the evolution
of filtered parameter estimates. The Federal Reserve’s objective remains the same while new data
alter its best estimate of the effects of its actions, represented by the Philips curve trade-off.

The direct effect of Fed activity is the rate of inflation in the economy — it sets inflation up to
some exogenous shock beyond its control. This control shock could be thought of as unpredictable
market reaction to Fed policy. Therefore the annual inflation rate my is

1
T = X1 + — Wi (3.1)
C1

where x;_ is the part of inflation controllable by the Federal Reserve using information through
time ¢ — 1, and wy; ~ #id(0, 1) is the exogenous control shock.
The Fed uses a Philips curve to understand the relationship between unemployment and infla-

tion. However, the Fed is always uncertain of its estimated model — a way of accomplishing this is



by assuming the parameters follow a random walk:

Tt
Tt—1

/ ut—l 1 12 1
U = O +—w=a; P+ —w 3.2
t Sl = et T (3.2)

Ut—2
1

a = o1+ A (3.3)

where wo; ~ id(0,1) and A; is a vector with E(A;) = 0, E(A¢A}) =V, and E(Awy) = 0.

The reason why the Fed estimates the relationship between unemployment and inflation is
because the Fed has inflation and unemployment targets. The objective function, which Sargent
(1999) calls the Phelps problem, is written

)
min B, ((mj — )2 4 Augg) — u*)2> (3.4)

leeidize 15
where 6 € (0,1) is a time discount factor, A > 0 gives the Fed’s relative weighting of its two
objectives, and 7*, u* > 0 are inflation and unemployment targets. [ is expectation with respect to
the probability model formed by equations (3.1), (3.2), and (3.3). Because the parameters follow a
random walk whose steps are independent of everything else, the Fed’s estimate of a1 is also its
estimate of ayyj, Vj > 0. Hence, the time ¢ solution to the dynamic programming problem {(3.4)
s.t. (3.1), (3.2), (3.3)} is found after plugging the time ¢ estimate of a;_1 into the law of motion
(3.2) for all j > 0. I set parameters in line with Sargent, Williams, and Zha (2006): § = .9936,
A =1, =2, u* = 1. They note that the results are unaffected by letting u* be closer to typical
“natural unemployment” rates and I have confirmed that this is indeed the case for both the model

with and without data uncertainty.
3.2 Without Data Uncertainty

If the Fed holds no data uncertainty, then the model is completed by assuming that the Fed
observes the true values of both inflation and unemployment each period.'® If this is the case, the
Fed estimates the relationships (3.2) and (3.3) through a linear filtering problem whose solution

is given by the Kalman filter. The notation o(-) denotes the information set (o-algebra) formed

0ne might suppose that an Orphanides (2001)-type critique might matter here: this critique would say that the
model should use preliminary inflation and unemployment rate data, but would not allow the Fed’s filtering problem
to recognize the fact that data is revised. In fact, this does not substantially change the problems I discuss below —
see Appendix A.IV.2.



by random variables within the parentheses. Let E(cw|Zs) = ays and Var (ou|Zs) = Py for
Is = o(u1,m1,...,us, 7). Given initial conditions a;y and Py, the Kalman updating occurs
using the formulae:

Pt|t—1‘I’t(Ut - @;at\t—l)
(&)2 + Py 1 Py
Py PP Py
(é)z + @ Py Py

A1)t = Q-1+ (3.5)

Py = Pyq— +V (3.6)

3.3 Including Data Uncertainty

The modification I make to the model is motivated by the following. Policy-makers base decisions on
their model of the economy. Data revisions alter the statistics that inform the policy-makers’ model.
Hence, the existence of revisions implies that a savvy policy-maker associates some uncertainty to
the latest observations of the most recent data vintage. I propose that the policy-maker optimizes
accordingly and discipline my analysis with actual evidence on the characteristics of that data
uncertainty.!!

Graphs of the data show that while the unemployment rate experiences revisions, the CPI
inflation rate actually does not. Therefore I only model revisions on unemployment and assume
12-month-ended inflation rates are not subject to revision.'? Hence, for each month’s true un-
employment rate u; we have: a preliminary observation made in month ¢ denoted uY; the next
observation made in month ¢ + 1 denoted u}; the observation made in month ¢ + 2 denoted u?; and

so on. Define the revision or revision error as
i el

i i— '
Vi = Up — Uy , >0

To reduce the problem’s dimension, every revision does not explicitly enter the model and a final

vintage horizon f = 72 months is chosen.!® Therefore, for each u; I assume that revisions are

11 As will be apparent, the key aspect of data uncertainty in this model is that the data is observed with error:
one could then disregard data revisions, instead assume data measurement error. I explicitly consider data revisions
for two reasons. One, data revisions are evidence that motivate the idea that data is measured with error; two, data
revisions have demonstrable statistical properties that discipline data uncertainty’s role. This second point is made
clearer in Section 4.2.

12Some in the Federal Reserve system have noted that policy-makers hold more uncertainty over the inflation rate
than the unemployment rate. I am extremely sympathetic to this criticism, but continue to ignore inflation rate
uncertainty for the following reason: I only have real-time data on the CPI, which is not revised. Some part of
policy-maker’s inflation rate uncertainty has to do with the theoretical issues concerning inflation, including the issue
of Core versus non-Core measures, which are distinct from the data uncertainty I focus on here. Nevertheless, it
should be noted that PCE and GDP deflator inflation are subject to revision.

13The results presented below are not sensitive to this. In fact, changing f to 36, which accords with the horizon

10



possible one month, two months, three months, and 72 months later.'* By grouping all revisions
past the third into the final revision, we are relabeling the sum Z£= 4 Vf’ ', as simply 1/{ s This
assumption reduces the dimension of the (augmented) state vector and has no effect on the results.

Therefore the unemployment measurement vector is

f 3 2 1

uf Ut = Vi — Vigs ~ Vieo ~ Vi

1 3 2
Ué Ut—1 — V§—1+f T V143 T Viti42

_ 3

ug T | W27 Vioyy T Vio43 (3.7)
Ut _
o Ut—3 — Vi 345

t

Ut_f

In any modification that accounts for both data revision and time-varying parameters, both the
latent economic quantities (u;) and the time-varying parameters (o) are state variables. Therefore,

the state transition equation is nonlinear:

B = 9:(Bi—1,M:) (3.8)

Ignoring trivial equations that merely shift the position of elements from one state vector to

the next, (3.8) is the compact notation for the system of equations

1
T = x—1() + —wie (3.9)
C1
1
Uy = aé_l'I)t—i——th (310)
Co
ap = at_1+At (311)
Vt2+2 = ’7;:2
Vigs = U}
V{-‘rf - ’;{
where
v}
v} | ~iid(0,V)
of
t

of historical values included in the Greenbook, delivers similar results while increasing f does very little. It is only
a small f such as 12 or below — where most revisions are ignored and so data is not very uncertain — that affects
the results, pushing them back towards the model that ignores data uncertainty altogether. It is unimportant to the
results whether u{ = us or u{ = us + error.

“The first revision allows for inference on the preliminary report of unemployment. The middle two revisions
allow for inference on the latent value of the two lags of unemployment that enter the policy rule emerging from the
dynamic programming problem. The final possible revision, which is the largest, acknowledges that data revision
happens even after two months.

11



(3.9), (3.10), and (3.11) repeat (3.1), (3.2), and (3.3), respectively. Note that = has been written
as a function in (3.9) in order to point out that it will be a policy rule depending on the best
estimate of 3,. Furthermore, (3.9) is an element of the vector ®; in (3.10). Hence, (3.9) and (3.10)
demonstrate the nonlinear parts of the transition equation.

Turning to the observation equation, the observed vector is

_ 0,1 ,2 .3 fv
yt_(ﬂtvut’ut’ut’utvut)

so that the state is measured

0
Yy, = HB, +e=HEB, + ’7t1 (3.12)
0

where 7} ~ d.i.d. (0,(1/¢.)?). H gives the linear combinations written in (3.7).
3.4 Estimation

While (3.12) is linear, (3.8) is nonlinear. The Extended Kalman filter approximates the state space
model using a taylor-expansion about the linear prediction of the state, as suggested by Anderson
and Moore (1979) and following Tanizaki (1996). Considering (3.9)-(3.11), the second-order expan-
sion completely represents the function; however, I have found little difference in practice between
the first-order and second-order expansions and use the former since it does not require computing
second derivatives numerically. Having a method of approximating the optimal predictions and
updates that relies only on matrix multiplication makes the entire estimation procedure computa-
tionally reasonable. In the interest of exposition, discussion of the Extended Kalman filter and the
likelihood is put in Appendix A.II.

The parameter estimated is

o= (gl, vech (Chol (V) , vech (Chol (Pyyo))’, )'

where Chol(-) is the Cholesky factor of positive definite matrix A such that Chol(A)Chol(A) =
A5

Because of W’s large dimension, I follow Sargent, Williams, and Zha (2006) and use a Bayesian

empirical method discussed in Appendix A.IV. This procedure assumes the shocks are Gaussian.

15 A key point that V and ¢, are not estimated is addressed below in Section 4.2.

12



From the simulated posterior distribution I report medians as my point estimates and quantiles as
probability intervals for the parameters. Following Sargent, Williams, and Zha (2006), a|y is set
to a regression estimate from presample data and (5 is set to be 59, indicating the Fed believes its
Philips curve, if the parameters were known, would deliver forecasts with one-tenth the RMSE of
naive random walk forecasts; see Appendix A.I for a detailed discussion.!6
Given a prior p(¥) and the likelihood £(Y7|¥) (in Appendix A.II), the posterior distribution
is
p(¥|Vr) o< L(Vr|¥)p(¥) (3.13)
I sample from (3.13) using a Metropolis algorithm with random walk proposals (cf. Robert and

Casella (2004)).17

4 Empirical Results

The outline of this section is as follows. The first subsection presents the estimation results for
the model without data uncertainty, which are essentially identical to those in Sargent, Williams,
and Zha (2006). I describe three problems that emerge from these results. The next subsection
explains the importance of disciplining my model with the observed characteristics of data revisions.
The significance of this discipline is straightforward after one understands the problems that must
be addressed. The last subsection presents the estimation results for the model including data

uncertainty which fixes the fore mentioned problems.
4.1 Without Data Uncertainty

Data on inflation and the civilian unemployment rate for ages 16 and older comes from the BEA

and BLS, respectively, as reported in December 2003.'® The data begins in 1960 and I end the

The parameter ¢, is unidentified in in the model without data uncertainty and so Sargent, Williams, and Zha
(2006) normalize ¢, such that é is one-tenth the standard deviation of the shock in an additional equation for the
“true DGP” of the unemployment rate. As Carboni and Ellison (2008) discuss, apart from this choice the “true
DGP?” equation does not influence the belief-generating mechanism I have described; thus, it is not part of my model.
In the interest of making a clear comparison to its results, I take the value of {, from Sargent, Williams, and Zha
(2006).

17T must use a accept/reject simulation technique because, due to the effects of ¥ on the whole sequence of forecasts,
the form of (3.13) is not known. Further details are in Appendix A.IV.

'8 The inflation rate data, following Sargent, Williams, and Zha (2006) is the annual rate of change of the seasonally-
adjusted Personal Consumption Expenditure chain price index from the BEA, as reported in December 2003. T use
PCE inflation here in the interest of making a direct comparison although I must use real-time CPI inflation for
the model including data uncertainty. Estimates of the model without data uncertainty using current vintage non-
seasonally-adjusted or seasonally-adjusted CPI inflation are very similar and so this does not drive the difference
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Table 1: PARAMETER ESTIMATES, WITHOUT DATA UNCERTAINTY

¢ 424 (3.96, 4.47)

V. standard deviations and correlations
0.2871 -0.9517 0.1860 0.9708 -0.1256 -0.2835
0.2844 0.002 -0.9976 0.2953 0.47
0.1723 0.0426 0.9442 0.8187
0.1769 -0.256 —0.4346
0.2274 0.8712
5.0817

Notes: at median of posterior distribution. For top panel, Cf is the precision of wi:, the additive shock to the
Fed’s inflation control, and 95% probability intervals in parentheses. The bottom array is comprised as follows:
the main diagonal are the square roots of the main diagonal of V'; the off-diagonal elements are the correlations
derived from V'; V is the covariance matrix of the A: shock to the time-varying parameters a;. The vector ®; =
(e, Te—1,Ut—1, Tt—2, Ut—2, 1)’ multiplies ;.

sample at December 1995.'° Table 1 shows estimates from 75,000 draws derived from 100,000
MCMC iterations where the first 25% are burned in hopes that the Markov Chain has, for practical
purposes, converged to its ergodic distribution.?’ The estimates in Table 1 are virtually identical
to those of Sargent, Williams, and Zha (2006).%!

Figure 1 shows the predicted inflation control choices. Figure 1 shows the Fed choosing to
set inflation high in the two high-inflation episodes of the mid 1970s and early 1980s. With (;
estimated at about 4.24, the standard deviation of the wq; is around 0.2, reflecting the Fed’s belief
that it has rather tight control of inflation.

The Philips curve beliefs a;_;;_; are used to forecast the next month’s unemployment rate for
any inflation control setting. According to the model, the Fed sets inflation with this forecast in
mind. Therefore an important aspect of the model-predicted Fed beliefs are what they deliver in

terms of unemployment forecasts: these are plotted in Figure 2.2? These forecasts have some neg-

between the models’ estimates; see Appendix A.IV.1.

9The results are the same if the data runs through December 2003; I end the sample at 1996 in order to ensure
comparability between all the models I have estimated for robustness (one of which assumes final data is seen 10
years after the fact) and because I consider the model to be descriptive of Fed beliefs only through the 1980s.

20Sargent, Williams, and Zha (2006)’s results come from a sequence of 50,000 draws with an unspecified burn-in
interval.

2!They also accord with results in Carboni and Ellison (2008) who also estimate this model. Appendix A.IV
contains the estimates of P;|o — this parameter is far less important than V' since the influence of Py on the gain
(which imputes shocks from forecast errors) dies out within a dozen or so periods, while V' dictates the steady-state
gain.

22The information displayed in Figure 2 is implied by Sargent, Williams, and Zha (2006)’s Figure 7. The difference
is that in their Figure 7 the inflation control is replaced by the “Ramsey” inflation rate policy of 2, the graph is
shifted downward by the estimate of the true natural rate of unemployment, and the parameter estimate used for
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Figure 1: ACTUAL INFLATION VS. FED CONTROL, WITHOUT DATA UNCERTAINTY

Notes: Top panel: Actual inflation and model predicted Fed inflation control. Bottom panel: prediction errors.
NBER recessions shaded. Figures 1 and 3 are on the same scale.

ative bias and a Root Mean Squared Error of 3.3 percentage points. Roughly speaking, every four
months the Fed expects its month-ahead unemployment rate forecasts to be off by 3.3 percentage
points.

An important aspect of these unemployment rate forecasts is how well they explain actual
Federal Reserve unemployment rate forecasts. There is evidence of the latter from the Greenbook
forecasts over this time span.?> An appropriate statistical test of the similarity between the model-
predicted forecasts and the Greenbook forecasts is that of Diebold and Mariano (1995). Their

statistic S is a two-sided test of the null hypothesis that the model’s unemployment forecasts have

time t is the updated estimate a;; (which is identically a;y1¢).
23 Appendix A.ITT discusses these forecasts and provides more details on the test statistic.
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Figure 2: AcTUAL UNEMPLOYMENT VS. FED FORECASTS, WITHOUT DATA UNCERTAINTY
Notes: Top panel: step-ahead unemployment forecasts come from the Philips curve (3.2) using the Fed’s inflation

setting and actual unemployment and inflation data. Bottom panel: predicted forecast errors. NBER recessions
shaded. Figures 2 and 4 are on the same scale.

accuracy equal to the Greenbook forecasts and S7 has an asymptotic standard normal distribution.
Here |§1| = 2.5044, so we can reject the null of equal forecasting accuracy at the 99% level. This
means that in terms of accuracy the model-predicted forecasts are statistically different than actual
Greenbook forecasts.

Given the large value of (, (equivalently, the small variance of wy;), volatile and inaccurate
unemployment forecasts are evidence of greatly varying parameters. Hence the estimate of the
parameter shock’s covariance matrix is large. In particular, notice that the estimated V(66 implies
that the Fed believes that every month the Philips curve’s intercept experiences an i.i.d. shock

with a standard deviation of about 5 unemployment rate points. This approximately means the

16



Fed believes that every month there is a 30% chance the natural rate of unemployment jumps by
5 percentage points in either direction, even if inflation is kept at target. In other words, the Fed
believes its model of the world is wildly unstable.

These results render the optimal policy story very problematic. On the one hand, the estimates
imply the Fed regarded its unemployment forecasting tool as subject to large unpredictable shifts
that cause its forecasts to be erratic and inaccurate. On the other hand, the model’s main point
is that the Fed’s estimated Philips trade-off was motivation for inflationary policy in hopes of
lowering unemployment. Given the large estimate of V' and its poor forecasting performance, it
is implausible that the Fed believed its Philips curve enough to take on the pain of high inflation
in hopes of decreasing unemployment. Moreover, even if the Fed did believe its estimated Philips
curve enough to use it as basis for policy, we will see below that the evolution of the Philips curve

trade-off does not explain inflation’s rise and fall.
4.2 Observing Revision Errors

At this point it is clear that my modification introduces a new shock called the data revision
error. Moreover, note that data revision errors and time-varying parameter shocks both affect the
Fed’s unemployment forecast performance: the Fed would expect these forecasts to be poor if the
data is imprecisely observed or the time-varying parameters are jumping around a lot. This idea
emerges in the Fed’s filtering problem that decomposes unemployment forecast errors into predicted
parameter shocks and predicted data revision errors.?* Thus, by simply introducing another shock
into the model, we might soak up some of the force driving the previous section’s results, where
large forecast errors went hand-in-hand with large parameter shocks. However, we would be doing
so by simply adding another latent variable, and the degree to which the forecast errors were
attributed to parameter shocks versus data revision errors would be mostly due to our priors on
their respective sizes.

I avoid this problem by specifying the properties of the data revision errors instead of estimating
them. The variances and covariances of the revision errors (‘7, (.) are set to values independently

estimated on the data; basically, there is no correlation between revision errors and the largest

24T am ignoring the role of the additive shock wa; because its variance is set so small and, in any case, is identical
across the models.
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revision error by far is the final one whose standard deviation is about 0.11.?° This is tantamount
to imposing that the Fed knows the data uncertainty surrounding the unemployment rate in the
same way it knows its own objective function parameters. This assumption is reasonable since
data revisions are observable and their statistical properties are easily known. This way, model
estimation does not deliver results that necessarily drive down the size of parameter shocks by at-
tributing an exaggerated role to data uncertainty. Instead, the model takes as given and observable
the characteristics and realizations of the data revision errors, and estimates the size and time path

of the parameter shocks in light of this data.
4.3 Including Data Uncertainty

Multiple vintages of real-time data on inflation and the civilian unemployment rate for ages 16
and older comes from the ALFRED archive maintained by the Federal Reserve Bank of St. Louis,

downloaded in 2007.26 Table 2 reports estimates from 700,000 MCMC iterations from two separate

Table 2: PARAMETER ESTIMATES, INCLUDING MODEL UNCERTAINTY

¢;: 223 (2.21, 2.25)

V': standard deviations and correlations
0.0192 0.1749 -0.523 0.5294 0.83461 -0.8742
0.0227 -0.2719 -0.69 0.329 -0.1155
0.0478 —-0.1857 -0.9727 0.2646
0.0242 -0.0012 -0.3808
0.0436 —-0.0682
0.1953

Notes: at median of posterior distribution. For top panel, ¢? is the precision of wy;, the additive shock to the
Fed’s inflation control, and 95% probability intervals in parentheses. The bottom array is comprised as follows:
the main diagonal are the square roots of the main diagonal of V'; the off-diagonal elements are the correlations
derived from V'; V is the covariance matrix of the A; shock to the time-varying parameters a;. The vector ®; =
(74, Tt—1, Ut—1, Tt—2, Ut—2, 1)" multiplies a;.

runs of 400,000 with different initial conditions where the first 50,000 of each run is burned.
Figure 3 shows that the Fed’s inflation control explains the rise and fall of American inflation.
The estimated standard deviation of the inflation control shock is 0.4 and the fit of the model-

predicted inflation to actual inflation is a little poorer than in Section 4.1 and Sargent, Williams,

25The matrix V is diagonal with main diagonal (0.0007, 0.0004, 0.0121)’ and ¢, is 45.273.

25T use non-seasonally-adjusted CPI inflation because real-time PCE inflation is not available for the time span
under consideration. If we assume current vintage PCE inflation data was known in real-time and underwent no
revisions, the results presented here are virtually identical.
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Figure 3: ACTUAL INFLATION vS. FED CONTROL, INCLUDING DATA UNCERTAINTY

Notes: Top panel: Actual inflation and model predicted Fed inflation control.

Bottom panel: prediction errors.
NBER recessions shaded. Figures 1 and 3 are on the same scale.

and Zha (2006). However, since the point of the model is to explain low frequency movements in
inflation (the Great Inflation), I argue that this deterioration in high-frequency fit is not a problem.

Turning now to the Fed’s unemployment rate forecasts in Figure 4, we find a far different picture
than in the model without data uncertainty. The Fed’s forecasts are considerably more accurate
than before, with no bias and a RMSE of 0.24 percentage points.2”

Again, seeing as the model forecasts are intended to predict the Fed’s actual forecasts, we can
directly compare them to Greenbook unemployment rate forecasts. Using the Diebold and Mariano
(1995) test of equal accuracy between model forecasts and Greenbook forecasts, |S1| = 0.4858 and

we accept the hypothesis that the model forecasts and Greenbook forecasts are equally-accurate.

2"The other measurement equation forecasts are pictured in Appendix A.IV.
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Figure 4: ACTUAL UNEMPLOYMENT VS. FED FORECAST, INCLUDING DATA UNCERTAINTY

Notes: Top panel: step-ahead unemployment forecasts come from the Philips curve (3.2) using the Fed’s inflation
setting and actual unemployment and inflation data. Bottom panel: predicted forecast errors. NBER recessions
shaded. Figures 2 and 4 are on the same scale.

Therefore in terms of accuracy the model-predicted unemployment rate forecasts are statistically

indistinguishable from Fed unemployment rate forecasts.

The estimate of V' in Table 2 is much smaller than before. For instance, the estimated V' (6:6)

implies that the Philips curve’s intercept has a monthly shock with a standard deviation of about

1

= as opposed to the 5 points estimated with data uncertainty left out.?® Roughly speaking, the

shocks are smaller by about 8 times for inflation parameters, 5 times for unemployment parameters,

28Tt might be suggested that one could adopt part of the model without data uncertainty ad hoc and include
unemployment forecast errors as part of a modified version of an estimation procedure resembling the model with data
uncertainty. Doing so might by itself lead to smoother TVP estimates and better fitting inflation and unemployment
forecasts. Looking into this, I found that while the unemployment forecasts errors do improve, the fit of the model-
predicted inflation control deteriorates greatly; see Appendix A.IV.3. This is somewhat similar to, but without the
success of, what Carboni and Ellison (2008) does.
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and 20 times for the constant parameter. The Fed is now confident that its Philips curve is not
hopelessly unstable. It is now plausible that the Fed believes (3.2) and sets inflation in light of an
existing Philips curve trade-off.

Let us turn now to the predicted evolution of the Fed’s beliefs about the Philips curve trade-off.
As seen in the top panel of Figure 5, the trade-off in Sargent, Williams, and Zha (2006) experiences
a large jump between 1973 and 1975 which explains the great rise in inflation over those years.
Thereafter the trade-off shows a gradual decline, with no sharp activity around the disinflation of
the early 1980s.2° But this does not bear out the main story, which is that the evolution of the
Philips curve trade-off led to the rise and fall of inflation. In the model without data uncertainty, the
dramatic fall of inflation from 14.4% to 2.2% between 1980 and 1984 occurs without any concurrent
sharp change in the Fed’s beliefs.

On the other hand, consider the bottom panel predicted by the model including data uncertainty.
I predict a drastic drop in the Philips curve trade-off starting around 1980. As this perceived trade-
off falls by 98% off its peak, inflation falls by than 80% off its peak, and both bottom out in 1984.
Moreover, the lull in inflation in the late 1970s corresponds to the fall in the negative Philips curve
relationship starting in 1975. 3° Thus, the model including data uncertainty describes a strong and
consistent connection between the Fed’s inflation control and the Fed’s beliefs about the Philips
curve trade-off.

In sum, we have explicitly allowed for some data uncertainty that the Fed might have held about
the unemployment situation. Since this data is revised, it seems natural to suppose the Fed wouldn’t
regard real-time observations as exact. By so doing, we drastically but constructively change the
results in Sargent, Williams, and Zha (2006). Now the model reverse engineers a plausible story

that the Fed’s evolving Philips curve beliefs were directly tied to its control of inflation.

5 Why Data Uncertainty Matters Here

An obvious question is, how can such small data revision errors cause such large changes in the

model performance and estimates? The answer lies in understanding that the errors are not small

29The estimated trade-off evolution in Carboni and Ellison (2007) and Carboni and Ellison (2008) is qualitatively
similar, the latter with a much smaller magnitude but a very similar shape.

390ver the sample period there is a strong correlation of —0.75 between the low-frequency fluctuations of the
trade-off and inflation. Low-frequency fluctuations as those with a period between 1 and 10 years, as estimated using
the bandpass filter. For the model without inflation this correlation is —0.14.
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Figure 5: EVOLUTION OF THE PHILIPS CURVE TRADE-OFF
Notes: Top panel: time series of Philips curve inflation response estimates from model without data uncertainty.

Bottom panel: time series of Philips curve inflation response estimates from model including data uncertainty.
NBER recessions are shaded.
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Figure 6: PERCENTAGE BIAS OF ESTIMATED PARAMETER SHOCK SIZE
Notes: at each point in time, bias determined by inflation and unemployment predicted values, perceived correlation

and relative size of parameter shocks from model without data uncertainty, and actual relative size of unemployment
errors to unemployment parameter shocks from model including data uncertainty. NBER recessions shaded.

in comparison to the unemployment parameter shocks.

In standard deviation terms, the data errors are about three times larger than the shocks to
the unemployment parameters. On the other hand, by ignoring data uncertainty the researcher
perceives the correlations between unemployment parameter shocks and the other parameter shocks
as predominantly positive —see Table 1. This situation is reminiscent of the last example in Section 2
under the particular restriction that data predictions are nonnegative, data errors are uncorrelated,
and parameter shocks are nonnegatively correlated. Hence, we might expect that the researcher’s
estimated parameter shock size unit would be biased upwards, and indeed this is the case.

Figure 6 shows the bias on estimates of the parameter shock size unit. This bias, which recall
is important for decomposing the forecast error into the part contributed by parameter shocks, is
time-varying because it depends on the value of each period’s data and time-varying parameter
predictions. During the sample period, this bias is always greater than 10% and attains values as
high as 146%.

In essence, the overestimate of the unemployment parameters’ shocks leads the model to overes-

timate the shocks to the inflation and constant parameters in order to explain inflation, and these
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Figure 7: EVOLUTION OF THE PHILIPS CURVE CONSTANT

Notes: Left panel: time series of Philips curve constant estimates from model without data uncertainty. Right panel:
time series of Philips curve constant estimates from model including data uncertainty. NBER recessions are shaded.

greatly varying parameters rot the unemployment rate forecast performance; the explanation of
this is as follows. By ignoring the Fed’s data uncertainty, we overestimate the size of the shocks to
the parameters on unemployment in the Philips curve (3.2). Because of this, the unemployment
beliefs are adjusted too much in response to an unemployment rate forecast error. Recall that these
parameters are key ingredients to the optimal policy rule governing inflation. But since inflation
over this period is rather persistent, ceteris paribus next period’s optimal policy rule should be
(to fit the data) somewhat near to this period’s policy rule. Therefore, the size of shocks to the
parameters on inflation and the constant are overestimated: this allows them to shift a lot too,
period to period, in order to smooth out the path of the policy rule. This is clearly seen in the time
path of Philips curve constant, plotted in Figure 7, which moves around a lot in order to fit the
policy rule to actual inflation. The constant term belief moves much more sluggishly when data
uncertainty is explicitly modeled.

This example suggests that ignored data uncertainty can seriously influence a model’s results.
In particular, estimates of the agent’s model uncertainty are positively biased. For this bias, the
size of the data uncertainty relative to the relevant model uncertainty — here the size of shocks to
the parameters on unemployment — is important. Moreover, the process of fitting the model to the

data can exacerbate the issue.
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6 Conclusion

This paper analyzes the effects of data uncertainty in models with agents who update their beliefs.
Ignoring data uncertainty can seriously bias estimates of agents’ model uncertainty. After illustrat-
ing this point through simple examples, I apply it to the more sophisticated framework of Sargent,
Williams, and Zha (2006). I show that accounting for data uncertainty remedies problems having
to do with overestimates of the Fed’s model uncertainty and the dissimilarity of model-predicted
unemployment rate expectations to actual Greenbook evidence. The Federal Reserve is more slug-
gish to change its beliefs in response to new data when this data may be revised. Once this is the
case, the model predicts that the inflation of the 1970s and 1980s can be strongly tied to evolving

beliefs about the Philips curve trade-off between inflation and unemployment.
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A Appendix

A.I Federal Reserve Model Comparison

I have dropped Sargent, Williams, and Zha (2006)’s “true” Lucas natural-rate Philips curve from
my model presentation. The estimation of the Sargent, Williams, and Zha (2006) Lucas natural-
rate Philips curve does not affect the estimates of the belief-formation parameters apart from ¢,
because the relevant priors are independent and, otherwise, the likelihood does not tie the two
together: this relates to Carboni and Ellison (2008)’s statements that including the “true” curve
in the overall model gives an ‘informational gain [that] is low’ and that the belief-formation results
‘are robust to embedding’ the model of Section 3.1 ‘in a “true” model.’

Note that ¢, is unidentified by the model without data uncertainty. Sargent, Williams, and Zha
(2006) deals with this problem by normalizing it such that é is one-tenth the standard deviation
of the shock in the Lucas natural-rate equation. In practice, that paper’s assumption implies that
(5 = 59.7108 which means that the Fed thinks that, if it knew the parameters, the Philips curve
would forecast unemployment up to an exogenous error with standard deviation m = 0.0167.
That paper describes the assumption as implying that the Fed believes “that the standard deviation
of the [its] regression error is smaller by a factor of ten than the standard deviation exogenous
unemployment shocks.”

Since the Philips curve is used by the Fed to forecast its affects on unemployment, consider a
very common forecasting rule: the random-walk unemployment forecast. I can make an assumption
relative to random-walk unemployment forecast errors that is similar to Sargent, Williams, and Zha
(2006)’s assumption relative to Lucas natural-rate Philips curve shocks. This assumption is: “the
Fed believes that the standard deviation of its Philips curve forecast error is smaller by a factor of
ten than the standard deviation of random-walk unemployment forecast errors.” This assumption
in practice implies that (5 = 54.9753 since the standard deviation of random-walk unemployment
forecast errors is 0.1819. Hence I arrive at choice for ¢, that is similar to Sargent, Williams, and
Zha (2006)’s, but without the Lucas natural-rate Philips curve.

To ensure that my results are robust to these factors, I have done the following. I have re-
produced the results of Sargent, Williams, and Zha (2006)’s entire model. I have estimated the
Section 3.2 model while setting ¢, = 59.7108 (calculated from Sargent, Williams, and Zha (2006)’s
estimate of 35.6538 as the precision of the shock to the Lucas natural-rate Philips curve). And I
have estimated the Section 3.2 model by using {, = 54.9753 based on assumed Fed beliefs as to
its forecasting ability relative to random-walk forecasts. The results (parameter estimates, beliefs,
inflation choices, and unemployment forecasts) are virtually the same.?! In order to provide a clear
comparison to previous literature, I simply set (5 = 59.

As an aside, (, is identified in the model including data uncertainty: the affect of V' on the
first derivative of the optimal control policy rule allows that parameter to be pinned down apart
from (o, eliminating the identification problem that exists in the totally linear model without data
uncertainty. However, I do not estimate this parameter so as to make as clear as possible my
results’ comparison to Sargent, Williams, and Zha (2006).

A.I1 Extended Kalman Filter and Likelihood

Extended Kalman Filter To implement, we first approximate the state space model by
first-order expansions. Let E(8,|Ys) = by, and Var (8,]Ys) = 2y s for Vs = 0(y,,Ys_1,---). The

31The value of log-likelihood (multiplied by the prior) for my reproduction of Sargent, Williams, and Zha (2006) is
555.0586, comparable to the 564.92 they find.
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expansion of (3.12) about (B, &t) = (by;—1,0) is exact:
hi(B;,€t) = Hby_y + H(B;, — by;_1) + &t (A1)

The expansion of (3.8) about (8;_1,7m;) = (b;—_1}¢1—1,0) is approximate:

9:(Bi—1:M) = g1 + Top—1(Be — bi_1jp-1) + Rype1my (A.2)
where
gijt—1 = gt(bt—1|t—1a0)
99, (B¢—1,M1)
Ty, = %
t—1 (bs—1)t-1,0)
99,(Bi—1,m
Ry, = t(at ,1 ¢)
e (br—1j¢-1,0)

I motivate the derivation of optimal prediction and updating for the approximating system
(A.1) and (A.2) by assuming Gaussian shocks, as in Howrey (1978), Watson and Engle (1983), and
Harvey (1989).3? In this case, the relevant conditional expectations have the known forms given
below. In particular, I assume

n, ~ 1id N (0,Q), gt ~ iid N(0,N), n,Les, Vt, T

The Extended Kalman Filtering equations are

b1 = Gy (A.3)
-1 = Tt|t712t71|t71T;\t71 + Rt\tleRatfl (A4)
Yejt—1 = Hby; (A.5)
Fy, = HS, H +N (A.6)
Mt\t—l = Hzt\t—l (A-7)
K, = ;‘t_lF;tl_l (A.8)
By = By — KiFy K (A.9)
byr = by1+ Kie(Yr — Ygpe—1) (A.10)

Conditional on the data Yr, parameters {G,H,Q, N}, and initial conditions {by)o, X0}, the
sequences of left hand side variables (A.3)-(A.10) are found by matrix multiplication.

Q is a block diagonal matrix composed of V', (1/¢;)?,(1/¢5)%, V, and zeros otherwise. N only
has one nonzero entry: N(22) = (1/¢.)2. by|o is comprised of the true values of the revisions and
economic variables, along with the estimate of the time-varying parameters from the model without
data uncertainty for the starting time period of the model including data uncertainty.

3)0 is a block diagonal matrix composed of Py and the remaining elements specifying the
initial uncertainty over the revisions and unemployment values. The off-diagonal elements are set
to zero and the relevant diagonal elements are set to V(3:3),

32Technically, I must assume that the vector 7, appearing in (A.2) is Gaussian; assuming a Gaussian 7, for the
general nonlinear case (3.8) does not assure that the shock in the first-order expansion would be Gaussian.
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Likelihood The likelihood is

T

1
(yT“I’ H‘Ft\t 1‘ eXp{_2(yt_ytt—1) t|t 1( ~ Y- 1)}

t=1

where the F'y;_; come from (A.6).

A.JIT Greenbook Forecasts

The main issue with comparing the model predicted unemployment forecasts to Greenbook forecasts
is the difference in the frequency of observation. The model forecasts the monthly unemployment
rate one month into the future. The Greenbook forecasts quarterly unemployment rates and are
released without rigid frequency. For example, there are Greenbook forecasts published monthly
through the 1970s, but into the 1980s and 1990s these forecasts are published almost at a bimonthly
frequency. I take the following steps to make the comparison.

First, I form a quarterly unemployment rate series as the average of unemployment rate for the
three underlying months. It is against these series that the forecasts produce forecast errors.

Second, I form a quarterly model-forecast series as the average of the step-ahead forecasts for
the three underlying months. That is, the model’s quarterly unemployment forecast for quarter ¢
composed of months m1,meo, ms is

7(um1|m1—1 + Umg|my + um3|m2)

3

where wu;;_; is the forecast made at time j — 1 pertaining to time j
Third, I form the quarterly Greenbook-forecast series as an average of all the forecasts made
the month before or anytime during a quarter. That is, the Greenbook quarterly forecast for ¢

composed of months m1,mo, m3 and immediately preceded by month my is

(9bmo + gbmy + gbmy + gbms)
Nobs
where gb; is the Greenbook forecast for quarter ¢ published in month j. It should be noted that all
four of these forecasts do not exist for every quarter, in which case only those observed are summed
and ngps adjusts to however many forecasts are observed.
The Diebold and Mariano (1995) statistic S takes forecast error series {e;;} and {ej;}

d

QWE(O\)
T

S1 =

where
T
1
T § ezt - ejt
t=1

and I take m to be Andrews (1991) quadratic-spectral HAC estimator. The errors under con-
sideration run from 1970 through 1995 so that T' = 104. The forecast errors from the Greenbook
and the two models are graphed in Figure A.1 (note different vertical scales).
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Figure A.1: FORECAST ERRORS ENTERING EQUAL-ACCURACY TEST.

Table A.1: REMAINING PARAMETER ESTIMATES

Model without Data Uncertainty — P;)o: standard deviations and correlations

0.3273 0.9875 0.9187 -0.9953 -0.6626 -0.9959
0.4412 0.9237 -0.9978 -0.6624 -0.9972
0.0748 -0.9182 —0.9134 -0.9191
0.7743 0.6545 0.9996
0.0424 0.6515
0.3111
Model including Data Uncertainty — P|o: standard deviations and correlations
1.573 -0.2426 -0.3637 -0.2986 -0.4698 0.8426
0.4379 -0.6326 -0.8529 0.6846 -0.1535
0.7839 0.8357 -0.5750 0.0095
0.4790 -0.4403 -0.0264
0.5759 -0.5757
0.2482

Notes: The arrays are comprised as follows: the main diagonal is the square roots of the main diagonal of Pjo; the
off-diagonal elements are the correlations derived from Pjo; Po is the Fed’s initial step-ahead uncertainty over the
initial Philips curve parameter estimate ajo.

A.IV MCMC Implementation and Robustness

Priors The prior for ¥ is multivariate normal with a non-zero mean and a diagonal covariance
matrix — so equivalently, the priors for each parameter are independent normals. The exact speci-
fications are listed below where ¢ = (vech (Chol (V'))", vech (Chol (P1|0)))/ following the notation
of Sargent, Williams, and Zha (2006):

N (5)

¢ Follows Sargent, Williams, and Zha (2006). For each element on the diagonal of Chol (V') or
Chol (P1|0) the prior is A (0,52 x 0.5); for those elements off the diagonal, it is A" (0, 2.5% x 0.5)

Convergence of the MCMC To address the convergence of the MCMC algorithm to its
posterior distribution, I computed the number of iterations required to estimate the 0.025 quantile
with a precision of 0.02 and probability level of 0.950 using the method of Raftery and Lewis
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(1992). For each chain (with different initial conditions) the max of these across ¥ was below the
3.5E5 iterations taken from each chain, suggesting that mixing the two chains (after burn-in) yields
satisfactory precision.

Metropolis Algorithm An important part of the MCMC algorithm sampling from the pos-
terior in a reasonable number of iterations is the covariance matrix of the proposal random step in
the Metropolis algorithm. The Metropolis algorithm is

1. Given WPV propose a new value
‘I,proposal — ‘I,previous + 5

where § is normal with mean zero and covariance matrix cX¢

P (‘I,proposal‘yT)
q = min — , 1
P (\I,prewous‘yT)

2. Compute

3. Randomly draw w ~ U(0, 1)
4. If w < ¢, accept WP a5 current draw; otherwise, set WP™VOU a5 the current draw

Given the manner in which all parameters affect the optimal policy, I arrived at this proposal
covariance matrix X¢ by doing the following. Using the covariance matrix for ¢ numerically solved
for as described in Sargent, Williams, and Zha (2006)’s Appendix D and the prior covariance terms
for all other elements of ¥ given above, the MCMC was started. For tens of thousands of iterations
based on one initial condition, I considered only elements of the MCMC chain where a proposal
had been accepted. From these chain elements I calculated the sample covariance matrix of the
successful proposal shocks and set ¥¢ equal to this. I tried different initial conditions and took
the weighted average of the Cholesky factors of these sample covariance matrices. The tuning
parameter ¢ was adjusted to achieve an acceptance rate of around 25-35% during the first 20,000
iterations: after this, it was unadjusted, as continual chain-dependent adjustment of Metropolis
step-size can negate the ergodicity upon which MCMC methods are based (see Robert and Casella
(2004)).

Remaining y;;_; forecasts Figure A.2 shows the remaining measurement equation predic-
tions: current, 1-lag, 2-lag, and 72-lag unemployment report forecasts.

A.1V.1 Using Current Vintage CPI Inflation and Unemployment Rate Data

The plots in Figure A.3 are produced with inflation data as current vintage of CPI inflation (made
available by those authors). The V' and P,y estimates are close to those reported in Table 1 for
the model without data uncertainty while the estimate of (; is about one-half as large — they are
available upon request.

A.IV.2 Using Preliminary Inflation and Unemployment Rate Data

The plots of Figure A.4 are produced by instead using preliminary CPI inflation and unemployment
rate data. The V' and Py estimates are close to those reported in Table 1 for the model without
data uncertainty while the estimate of {; is about one-third as large — they are available upon
request.
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Figure A.2: FED UNEMPLOYMENT FORECASTS

Notes: now, one-step past-, two-step past-, and 72-step past-casts. NBER recessions are shaded. These figures are
all on the same scale, but not on the scale of Figures 2 and 4.
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Figure A.3: FED INFLATION CONTROL AND UNEMPLOYMENT FORECASTS, CURRENT VINTAGE
CPI

Notes: using current vintage seasonally-adjusted CPI inflation data. NBER recessions are shaded.
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Figure A.4: FED INFLATION CONTROL AND UNEMPLOYMENT FORECASTS, PRELIMINARY CPI

Notes: using preliminary CPI inflation data (non-seasonally-adjusted). NBER recessions are shaded.
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Figure A.5: FED INFLATION CONTROL AND UNEMPLOYMENT FORECASTS, MODIFIED LIKELI-
HOOD

Notes: using the model without data uncertainty and a modified likelihood placing more weight on the unemployment
rate forecasts. NBER recessions are shaded.

A.IV.3 Modified Likelihood

It has been suggested on earlier drafts of this paper that the results may stem not so much from
the data revisions as much as only the modified likelihood function taking account of revisions.
This modification involves having the unemployment forecasts enter the likelihood, which might do
most of the “smoothing” that is evident.

Doing this, we indeed see smoother Fed unemployment forecasts in the right panel of Figure
A.5. As expected, the likelihood penalizes unemployment forecast errors and delivers far better
ones. However, in order to accomplish this the time-varying Philips curve estimates are such that
inflation is far from target far too often, as the left panel shows.
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Figure A.6: MAXIMUM MODULUS EIGENVALUE, TIME-VARYING PARAMETER MODEL

Notes: maximum modulus of eigenvalue of characteristic polynomial of (3.2) coming from filtered time-varying
parameter estimates in Section 3.3. NBER recessions are shaded.

A.V Autoregressive Stability

One issue that has been raised, for instance by Sims (2007), with the estimated beliefs coming
from Sargent, Williams, and Zha (2006) is that they imply autoregressive instability for more than
a dozen months around 1973. The model including data uncertainty addresses this “problem”
— see Figure A.6. This section explains what exactly this issue is and also argues that it is not
problematic to the purposes of using the Philips curve as a state transition equation.

Consider the autoregressive structure of the Philips curve the government is estimating over
time. The estimates a;_;;_; determine the perceived transition law for the Fed’s optimal control
problem.

Strictly-speaking, unemployment is not an explosive process: it must certainly take on values in
[0,100]. Nonetheless, its high persistence, especially during the 1970s and 1980s, certainly makes it
appear not “very” covariance-stationary. Consider estimating a bivariate VAR on the final data (f
periods after the preliminary data) over rolling windows of varying sizes; Figure A.7 shows this for
windows of 2, 3, 4, or 5 years.?? If the Fed was concerned with breaks, a rolling window estimation
procedure would be a straightforward way of picking this up. Notice that this eigenvalue condition
is close to the unstable region most of the time. Hence, without positing a more sophisticated
mechanism of Fed belief formation, we see that simple estimation methods would also have given
evidence of unemployment instability.

Nonetheless, it is not clear that autoregressive instability would have led the Fed to reject

33The window sizes are chosen with Friedman (1968) page 11 in mind: “[T]here is always a temporary trade-off
between inflation and unemployment...I can at most venture a personal judgment, based on some examination of
the historical evidence, that the initial effects of a higher and unanticipated rate of inflation last for something like
two to five years.”
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Figure A.7: MAXIMUM MODULUS EIGNEVALUE, BIVARIATE VAR

Maximum modulus of eigenvalue of characteristic polynomial of (3.2) coming from bivariate VAR; aligned so that
the maximum modulus is at the time when it could be estimated with data at least f months ago. NBER recessions
are shaded.

(3.2) as unemployment’s dynamic structure for the purposes of setting optimal policy, given the
accurate unemployment one-step-ahead predictions it yields (in the case where data uncertainty is
acknowledged). To the optimal controller, what is important from forecasts are accuracy, not the
description of the world they engender. The Fed had little reason to adjust its Philips curve just on
the basis of these forecast errors. So the Fed may have done well to forecast unemployment using
a rule which implied unemployment was not stationary, if the rule performed better.?*

34For a related point, see the modeling motivation given in Primiceri (2005).
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