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Abstract

This paper estimates the parameters of a stylized dynamic stochastic general
equilibrium model using maximum likelihood and Bayesian methods, paying spe-
cial attention to the issue of weak parameter identification. Given the model and
the available data, the posterior estimates of the weakly identified parameters are
very sensitive to the choice of priors. We provide a set of tools to diagnose weak
identification, which include surface plots of the log-likelihood as a function of
two parameters, heat plots of the log-likelihood as a function of three parameters,
Monte Carlo simulations using artificial data, and Bayesian estimation using three
sets of priors. We find that the policy coefficients and the parameter governing
the elasticity of labor supply are weakly identified by the data, and posterior pre-
dictive distributions remind us that DSGE models may make poor forecasts even
when they fit the data well. Although parameter identification is model- and data-
specific, the lack of identification of some key structural parameters in a small-scale
DSGE model such as the one we examine should raise a red flag to researchers try-
ing to estimate — and draw valid inferences from — large-scale models featuring
many more parameters.
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1. INTRODUCTION

In the last decade, the monetary and fiscal policy literature has taken a great leap from

calibrating dynamic stochastic general equilibrium (DSGE) models to estimating them,

often using Bayesian techniques. Models were calibrated mainly because researchers were

interested in examining their dynamics and how closely they resembled those of the data,

and in evaluating policy implications under reasonable assumptions about the parameter

values. However, as these models grew in complexity to address misspecification issues

and incorporate more realistic features found in the data, it became less obvious how

to calibrate many of the new deep parameters which emerged. Furthermore, analyses

of calibrated DSGE models are not always robust to alternative calibrations. Bayesian

techniques are well suited to address this calibration problem, since they provide a formal

way to estimate the parameters by combining prior information about them with the data

as viewed through the lens of the model being analyzed. This seems to provide hope that

calibration may no longer be necessary, as long as the data do indeed have something to

say about plausible parameter values. Another useful feature of the Bayesian approach

is that it provides a framework for designing policies that are robust to the estimated

uncertainty surrounding the parameters.1

Calibration can thus be viewed as a means to an end: researchers calibrate models

because they want to analyze them in order to address interesting economic questions.

In this case, Bayesian or maximum likelihood estimation can and should replace calibra-

tion, since they constitute a potentially more accurate way to derive reasonable parameter

values. When maximum likelihood techniques are used to estimate DSGE models (e.g.,

Ireland (2003)), the estimates are coming purely from the data2 and without controversy

over the role of priors. But even if Bayesian techniques are used, if one has confidence in

one’s priors, there is no need to be concerned about whether the posterior estimates are

mainly driven by the prior distribution or the data; it is only important that the posterior

estimates are reasonable, which they will be if the priors and data are reasonable. So far,

1See, for example, Levin, Onatski, Williams, and Williams (2005) and Batini, Justiniano, Levine,
and Pearlman (2004).

2Although, as will be discussed below, if the likelihood function is essentially flat for a parameter,
the precise “maximum” found by numerical maximization may be largely arbitrary.
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most studies featuring Bayesian estimates of DSGE models have focused more on eco-

nomics (e.g., using the model to explain interesting features in the data, or studying the

implications of alternative policies) and less on the estimation itself.3 A few studies, such

as Lubik and Schorfheide (2005) and Onatski and Stock (2000), do perform sensitivity

checks of their baseline estimates to those obtained using diffuse priors and find that,

for some parameters, the two estimates are substantially different.4 In these studies,

Bayesian estimation can therefore be viewed as a more comprehensive way to calibrate a

model, by taking into account both the data and the researcher’s prior information and

beliefs about the parameters.

However, estimating the parameters can also be viewed as an end in itself. In other

words, the ultimate goal may be to make inference about the parameters, given the model

and the data. For example, a researcher may be interested in assessing how aggressively

the central bank is fighting inflation; this can be judged by estimating the parameter

governing the interest rate response to inflation. However, obtaining an accurate pa-

rameter estimate from the data crucially depends on whether or not the parameter is

identified. Specifically, if the likelihood function is nearly flat along the dimension of

a given parameter of interest, the marginal posterior for this parameter would simply

resemble its prior distribution. For example, using a normally distributed prior centered

at 1.70, Smets and Wouters (2003) obtain an estimated posterior mean of 1.69, and the

plot of the estimated marginal posterior is practically identical to that of the assumed

prior distribution. They conclude that their estimation “delivers plausible parameters

for the long- and short-run reaction function of the monetary authorities, broadly in line

with those proposed by Taylor (1993),” and “in agreement with the large literature on

estimated interest rate rules” (p.1148). Given that the data have almost nothing to say

along this dimension of the likelihood function (since the prior and posterior coincide),

the claim that this parameter was estimated is misleading. As stated by Canova and

Sala (2006), when models are under-identified “reasonable estimates are obtained not

because the data [are] informative but because of a priori or auxiliary restrictions, which

3For example, Smets and Wouters (2007) estimate a DSGE model of the U.S. economy in order to
examine the sources of business cycle fluctuations, and to explain the “Great Moderation” phenomenon
that began in the mid 1980s.

4Since parameter estimation was not the ultimate goal of these studies, no further attention was given
to the issue of widely varying posterior estimates when more diffuse priors were used.
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make the likelihood of the data (or a portion of it) informative. ... In these situations,

structural parameter estimation amounts to sophisticated calibration (p. 34).”

If the ultimate goal is to actually learn something about the parameters from the

data, then parameter identification has to be taken seriously. Only a few studies exam-

ine the issue of identification explicitly. Beyer and Farmer (2004) consider identification

issues in a class of three-equation monetary models. The results from their experiments

suggest the policy rule, the Phillips curve and the IS curve are generally not identi-

fied unless arbitrary decisions are made about which variables enter these equations.

In another important contribution, Canova and Sala (2006) examine identifiability is-

sues using an estimation technique known as impulse response matching. This limited

information technique involves minimizing the distance between the model and the esti-

mated impulse response functions. They conclude that DSGE models generally appear

to be under-identified. However, the authors also recognize that identification problems

detected in limited information techniques do not necessarily carry over to full informa-

tion methods. Canova and Sala (2006) suggest using a sequence of prior distributions

with increasing variances to help detect potential identification problems, which is one

of the diagnostics used in this paper. Ruge-Murcia (2007) uses Monte Carlo simulations

to compare standard econometric techniques for estimating DSGE models. The tech-

niques are evaluated based on their ability to deliver consistent parameter estimates in

the presence of weak identification, stochastic singularity, and model misspecification.

The techniques studied are maximum likelihood (also incorporating priors), generalized

method of moments (GMM), simulated methods of moments (SMM), and indirect in-

ference. The moment-based methods (GMM and SMM) are shown to be more robust

to misspecification and are less affected by stochastic singularity. However, achieving

identification in these limited information methods requires choosing the right moments

to match when estimating the model. When using Bayesian techniques, Ruge-Murcia

(2007) finds that having good priors and allowing for measurement errors can improve

the estimates in the presence of these challenges.

The original goal of this study was to use the estimated parameter uncertainty to de-

sign optimal monetary policies for a small open economy. As in Levin, Onatski, Williams,

and Williams (2005) and Batini, Justiniano, Levine, and Pearlman (2004), Bayesian es-

timation techniques were chosen as a means to an end, since we initially wanted policy
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makers in our model to respond optimally to uncertainty that was estimated, not as-

sumed. However, we learned that some of the parameter estimates were highly sensitive

to the choice of priors, making economic inference difficult. Further examination of the

likelihood function revealed ridge lines along some dimensions of the parameter space

and regions with little curvature. For these parameters there is a dramatic interaction

between the prior and the likelihood. Therefore, their posterior estimates should be

interpreted differently because the prior swamped the data.

In the next section we discuss a stylized small open economy model that is subse-

quently estimated. Section 3 describes the data used to estimate the model. In section

4 we examine the properties of the likelihood function and use several techniques to di-

agnose identification problems. In section 5 we estimate the model using three sets of

priors; Section 6 employs posterior predictive distributions to examine forecast accuracy.

The last section concludes with a brief discussion.

2. SMALL OPEN ECONOMY MODEL WITH HABIT FORMATION

The model estimated in this study is essentially Monacelli’s (2003) small open economy

model which features deviations from the law of one price. The difference is that we

introduce external habit formation in consumption to better fit the data (Fuhrer (2000);

Christiano, Eichenbaum, and Evans (2005)).

The domestic small open economy is populated by a continuum of infinitely-lived

households whose preferences are given by

(1) E0

∞∑
t=0

βt

[
(Ct −Ht)

1−σ

1− σ
− N1+ϕ

t

1 + ϕ

]
,

where Nt is labor input, 0 < β < 1 is the discount factor, Ht ≡ hCt−1 describes the

external habit formation of the household, σ is the coefficient of relative risk aversion (or

inverse of the intertemporal elasticity of consumption), and ϕ is the inverse elasticity of

labor supply. Ct is a composite consumption index defined as

(2) Ct ≡
[
(1− γ)

1
ηC

η−1
η

H,t + γ
1
ηC

η−1
η

F,t

] η−1
η

,
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where η is the elasticity of substitution between domestic and foreign goods, γ is the

share of foreign-produced goods in the consumption bundle, and CH,t and CF,t are the

usual CES aggregators of the quantities of domestic and foreign goods. Households face

the flow budget constraint

(3)

∫ 1

0

[PH,t(i)CH,t(i) + PF,t(i)CF,t(i)] di+ Et [Qt,t+1Dt+1] ≤ WtNt +Dt ,

where Wt is the nominal wage, PH,t(i) and PF,t(i) are the domestic price of home and

foreign goods respectively, Qt,t+1 is the stochastic discount factor, and Dt+1 is the pay-

ment from a portfolio of state-contingent claims held at the end of period t (assuming

complete domestic and international asset markets).

Optimal allocation of expenditures between domestic and foreign goods implies

(4) CH,t = (1− γ)

(
PH,t

Pt

)−η

Ct and CF,t = γ

(
PF,t

Pt

)−η

Ct ,

where the consumer price index is defined as

(5) Pt ≡
[
(1− γ)P 1−η

H,t + γP 1−η
F,t

] 1
1−η .

The first order condition of the consumer’s problem gives us the intratemporal labor/

leisure choice

(6)
Nϕ

t

(Ct −Ht)−σ
=
Wt

Pt

.

The intertemporal first order condition is given by

(7) Qt,t+1 = β
λt+1

λt

· Pt

Pt+1

,

where λt = (Ct − Ht)
−σ is the marginal utility of consumption; by taking expectations

we obtain

(8) EtQt,t+1 = βEt

[
λt+1

λt

· Pt

Pt+1

]
.
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Since the nominal interest rate it is defined by the pricing equation as

EtQt,t+1 = (1 + it)
−1, the above expression can be rewritten as

(9)
1

1 + it
= βEt

[
λt+1

λt

· Pt

Pt+1

]
.

The representative household in the rest of the world is assumed to face an identical

optimization problem, making the optimality conditions for the world economy analogous

to the ones described above. Also, following Gali and Monacelli (2005), the small open

economy is assumed to be of negligible size relative to the rest of the world. This makes

the world economy equivalent to a closed economy, since the weight of home goods in

the foreign CES aggregator is zero. So for the foreign economy, output equals domestic

consumption, and CPI inflation equals domestic inflation.

Domestic goods indexed by i ∈ [0, 1] are produced by a continuum of monopolistic

competitive firms, owned by consumers and subject to Calvo-style price setting behavior.

Their constant returns-to-scale production function is given by YH,t(i) = ZtNt(i), where

Zt is an exogenous productivity shock.

Firms choose the optimal price for good i by maximizing the expected discounted

value of profits

(10) Et

∞∑
T=t

θT−t
H Qt,TYH,T (i) [PH,t(i)− PH,TMCH,T ]

subject to the demand function

(11) YH,T (i) =

(
PH,T (i)

PH,T

)−ε (
CH,T + C∗

H,T

)
,

where MCH,T = WT/PH,T is the real marginal cost, θT−t
H is the probability that the

domestic firm will not be able to adjust its price during the next (T − t) periods, and

C∗
H,T is the foreign consumption of domestically produced goods. The resulting first order

condition is then

(12) Et

∞∑
T=t

θT−t
H Qt,TYH,T (i)

[
PH,T (i)− θH

θH − 1
PH,TMCH,T

]
= 0 ,
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where θH is the fraction of firms which are not allowed to adjust their prices in any given

period t.

For simplicity, assume that the export price of the domestic good, P ∗
H(i), is flexible

and subject to the law of one price.

The novelty of Monacelli’s (2003) model is that retail firms importing foreign differ-

entiated goods are assumed to have a small degree of pricing power. That is, although

the law of one price holds “at the docks,” when selling imported goods to domestic con-

sumers these retail firms will charge a mark-up over their cost since they are assumed to

be monopolistically competitive. This creates a wedge between the world market price

of foreign goods paid by importing firms (STP
∗
F,t, where St is the level of the nominal

exchange rate) and the domestic currency price of these goods when they are sold to

consumers (PF,t). Monacelli (2003) calls this wedge the law of one price gap, defined as

(13) ΨF,t =
StP

∗
F,t

PF,t

.

Retail firms also operate under Calvo-style price setting, with θF as the fraction of

firms not allowed to set prices optimally in any period t. Their problem is to maximize

the expected stream of discounted profits

(14) Et

∞∑
T=t

θT−t
F Qt,TCF,T (i)

[
PF,t(i)− STP

∗
F,T

]
subject to the demand curve

(15) CF,T (i) =

(
PF,T (i)

PF,T

)−ε

CF,T .

The first order condition associated with this problem yields

(16) Et

∞∑
T=t

θT−t
F Qt,TCF,T (i)

[
PF,T (i)− θF

θF − 1
STP

∗
F,T

]
= 0 .

Since imports from the small open economy are negligibly small in the large foreign

economy’s consumption bundle, they have no effect on the foreign price index P ∗
t and

are thus ignored in the analysis.
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The stochastic discount factors in the two economies have to be equalized under

complete international asset markets, since households will engage in perfect risk-sharing:

(17) β

[
λt+1

λt

· Pt

Pt+1

]
= Qt,t+1 = β

[
λ∗t+1

λ∗t
· P ∗

t St

P ∗
t+1St+1

]
.

Equation (17) allows us to derive the uncovered interest rate parity condition

(18) (1 + it) = (1 + i∗t )Et

[
St+1

St

]
.

Finally, goods market clearing in the domestic and foreign economies requires that

(19) YH,t = CH,t + C∗
H,t and Y ∗

t = C∗
t .

The model is log-linearized around a deterministic steady state so that it can be

estimated empirically. The log-linear equations are listed in Appendix A. The model

assumes that the foreign economy shares the same preferences and technology as the

domestic economy. However, we could also estimate the foreign block as an unrestricted

vector autoregression (VAR) since it is exogenous to the domestic economy (recall that

the small open economy is assumed to be infinitely small relative to the large foreign

economy). In addition to relaxing the assumption of common preferences and technology,

estimating the foreign block as a VAR gives more flexibility to the reduced form dynamics

of these variables. Under this specification, the foreign observables are generated by the

process Z∗
t = AZ∗

t−1 + ε∗t where Z∗
t = [y∗t , π

∗
t , i

∗
y]
′, A is a (3× 3) coefficient matrix, and ε∗t

is a vector of independent and identically-distributed (IID) random errors. We estimated

the model under both specifications for the foreign block, but we obtained implausible

parameter estimates under the literal interpretation of the model.5 Therefore, only the

results from treating the foreign block as an exogenous VAR process are reported.

5Justiniano and Preston (2004) also obtain implausible results when estimating the literal interpre-
tation of this model for Canada, New Zealand, and Australia.

9



3. DATA

The model is estimated using quarterly data from Switzerland and the European Union.

The sample period is 1970:Q1-2005:Q2.6 For Switzerland the data consist of the discount

rate (International Financial Statistics), import price inflation (Swiss National Bank),

log detrended real per capita GDP (IFS and WDI), annualized CPI inflation (IFS), and

log detrended real exchange rate (OECD). For the Euro-Area, the observed variables are

annualized CPI inflation (OECD), log detrended real GDP per capita (OECD), and short

term interest rate (Area Wide Model updated by Euro Area Business Cycle Network).

The log real exchange rate and log real GDP per capita series are demeaned. Inflation

and interest rates are expressed as decimals.

4. EXPLORING THE LIKELIHOOD FUNCTION

To determine how informative the data are we first try to estimate the parameters using

maximum likelihood. The sample log likelihood function is derived using the Kalman

filter.7 Since we cannot analytically derive the likelihood as a function of the model’s

structural parameters, the maximization has to be performed numerically. We found that

numerical gradient methods are unable to find the maximum when the likelihood function

is nearly flat along several dimensions (as shown later).8 Another complication arises

from the presence of “cliffs” in the likelihood function at extreme parameter values, as

well as regions in which the likelihood function is undefined because the model’s solution

is indeterminate for certain parameter combinations. After experimenting with many

different algorithms, we developed our own, which proved to be extremely reliable in

our experiments. This algorithm is described in Appendix C. After finding the global

maximum, we use Metropolis-Hastings Markov Chain Monte Carlo (MCMC) simulations

to determine the 95 percent likelihood intervals. The estimates are shown in Table I. The

6The first 12 out of 142 observations (corresponding to three years of data) are used to initialize the
Kalman filter.

7More details on how to derive the likelihood function can be found in Appendix B.
8In other words, the inverse of the Hessian is very large and the direction of the search gets blurred.
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relatively wide confidence bounds for the parameters ϕ, ρz, ψπ, and ψỹ suggest that the

data are not very informative about them.

Figure 1 plots the marginal likelihood densities for the key structural parameters. The

plots suggest that the inverse elasticity of labor supply (ϕ), the elasticity of substitution

between domestic and foreign goods (η), the persistence of the productivity shocks (ρz),

and the interest rate response to inflation and the output gap (ψπ, and ψỹ) are weakly

identified by the data. The parameter ρz also appears to have a bimodal distribution.

We can also examine the properties of the likelihood function along several dimensions.

In what follows we examine surface plots of the sample log-likelihood as a function of a

given parameter pair. In generating these plots, all other parameters are fixed at their

estimated likelihood means shown in Table I.

The top-left panel of Figure 2 depicts the sample log-likelihood as a function of the

parameters γ (degree of openness), and σ (coefficient of relative risk aversion). The

likelihood function displays a prominent and well-defined peak around γ = 0.2 and

σ = 0.1, consistent with the estimates reported in Table I. In contrast, the top-right panel

of Figure 2 illustrates that the sample log likelihood function displays little curvature

along the dimensions of ψπ and ψỹ, which explains why the Monte Carlo likelihood

intervals are wide for them. The bottom panel of Figure 2 shows the log likelihood

as a function of the inverse elasticity of labor supply (ϕ) and the persistence of the

productivity shock (ρz). This plot confirms that ρz indeed has a bimodal distribution

when ϕ is low enough, and that the slope along ϕ is fairly flat.

Another way to visualize weak parameter identification is to plot the likelihood as

a function of three parameters, holding the others fixed at their estimated means. The

left panel of Figure 3 shows a heat plot of the sample log-likelihood as a function of the

parameters h, θH , and θF , which are well identified by the data. The volume depicts pa-

rameter combinations which yield log-likelihood values in the top 1%. For well identified

parameters, we would expect to see the top 1% of likelihood values to be restricted to a

narrow range of parameter combinations, as is the case for h, θH , and θF . The right panel

of Figure 3 shows a heat plot of the log likelihood as a function of ϕ, ρz, and ψỹ, with the

other parameters fixed at their estimated likelihood means. The maximum log-likelihood

value occurs at ϕ = 0.66, ρz = 0.8, and ψỹ = 3.2. However, the dark region (in red)

spanning log-likelihood values close to the global maximum is large, demonstrating that
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Table I
Maximum Likelihood Estimates

Parameter 2.5% 97.5% Mean MCSE
γ Degree of openness 0.1387 0.2497 0.1906 0.00090
σ Relative risk aversion 0.0439 0.1476 0.0915 0.00082
h External habit 0.9927 0.9975 0.9951 0.00004
ϕ Inverse elast. of labor supply 0.0545 6.0019 1.4420 0.08333
η Elast. domestic vs. foreign goods 0.3301 0.7184 0.4964 0.00309
θH Calvo domestic prices 0.9326 0.9659 0.9506 0.00027
θF Calvo imported prices 0.9857 0.9988 0.9947 0.00010
ρz Productivity persistence 0.6089 0.9897 0.8403 0.00310
ρi Policy, lagged interest rate 0.9391 0.9930 0.9781 0.00064
ψπ Policy, inflation 1.0141 3.2129 1.5318 0.02206
ψỹ Policy, output gap 1.1989 9.4666 4.6244 0.08520
ω11 VAR, y∗ response to lag y∗ 0.8967 0.9958 0.9496 0.00087
ω12 VAR, y∗ response to lag π∗ −0.0445 0.0413 −0.0012 0.00064
ω13 VAR, y∗ response to lag i∗ −0.0558 0.0500 −0.0041 0.00078
ω21 VAR, π∗ response to lag y∗ 0.0184 0.0776 0.0474 0.00048
ω22 VAR, π∗ response to lag π∗ −0.0146 0.0453 0.0112 0.00048
ω23 VAR, π∗ response to lag i∗ 0.9438 1.0153 0.9846 0.00059
ω31 VAR, i∗ response to lag y∗ 0.0457 0.1135 0.0796 0.00053
ω32 VAR, i∗ response to lag π∗ 0.9071 0.9745 0.9439 0.00052
ω33 VAR, i∗ response to lag i∗ 0.0224 0.1053 0.0601 0.00063
σi St.dev. policy shock 0.0011 0.0032 0.0019 0.00002
σz St.dev. productivity shock 0.0093 0.0509 0.0242 0.00033
σi∗ VAR, shock to i∗ 0.0046 0.0074 0.0058 0.00002
σz∗ VAR, shock to y∗ 0.0061 0.0088 0.0074 0.00002
σπH

St.dev. domestic inflation shock 0.0273 0.0391 0.0326 0.00009
σπF

St.dev. imported inflation shock 0.0766 0.0987 0.0867 0.00017
σq St.dev. U.I.P. shock 0.0011 0.0081 0.0037 0.00006
σπ∗ VAR, shock to π∗ 0.0029 0.0060 0.0043 0.00002
σR St.dev. measurement error 0.0104 0.0119 0.0112 0.00001

For a given parameter θj , the Monte Carlo standard error of the mean (MCSE) is calculated as:

M̂CSE(θ̄∗j ) =
σ̂θj√

m

√
1+ρ̂θj

1−ρ̂θj
, where m is the number of iterations in the chain, σ̂θj is the estimated

standard deviation, and ρ̂θj
is the estimated first order autocorrelation Draper (2007).
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Figure 1. – Density plots of the likelihood function using 200,000 draws of the MCMC sampler.
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Figure 2. – Log likelihood expressed as a function of γ and σ (top left); ψπ and ψỹ (top right);
ϕ and ρz (bottom).

the maximum is not well-defined along these dimensions.

Is the lack of identification coming from model misspecification, a small time period

sampled in the data, or a small number of state variables observed? To answer this

question, we conducted a series of Monte Carlo simulations that estimated the param-

eters of the model using artificial data. Since the artificial data are generated by the

model, this allows us to check if the model could be identified even in the absence of

model misspecification. For the data generating process (DGP) we choose a particular

calibration of the model parameters, denoted by θDGP . The artificial data were then

generated by simulating the random draws for the IID shocks and feeding them into

the state space representation of the model equations. Using this artificial data, we then

found the parameter vector θ̂ that maximized the sample log-likelihood. If θDGP≈θ̂, then
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Figure 3. – “Heat” plots of log-likelihood as a function of θH , θF , and h (left panel); as a
function of ϕ,ρz, and ψỹ (right panel). Only the top 1% of likelihood values are made visible, with
darker regions (in red) denoting the values closest to the maximum.

we are confident that the parameters are locally identified by the model structure.9

The first artificial data set consisted of 142 simulated observations for the same eight

state variables observed in the actual data (i.e., domestic and foreign interest rates,

real output, CPI inflation, import price inflation and the real exchange rate). Can we

accurately estimate all the parameters using this artificial data set? Unfortunately, the

answer is no. As shown in Table II, when we try to jointly estimate all 29 parameters,

ϕ is very far from its “true” value (in θDGP ), while σ, η, θH , and ψỹ are somewhat far

from their “true” values. If the sample size of the artificial data is increased to 1000

observations, then, as shown in the last column of Table 2, all the estimates become

quite accurate. These tests reveal that even if our model was perfectly specified, we

would still need many more observations than are actually available to obtain accurate

estimates of ϕ, σ, η and ψỹ.

9The goal here to is determine which parameters do not pass the local identification test. Testing for
global identification is not feasible given the number of parameters and the wide range of possible values
they can take.
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Table II
Monte Carlo Tests Using Artificial Data

Sample size
142 1,000

Parameter θDGP θ̂ θ̂
γ 0.300 0.332 0.291
σ 1.500 1.336 1.513
h 0.850 0.854 0.844
ϕ 0.700 0.183 0.660
η 0.500 0.430 0.520
θH 0.750 0.688 0.754
θF 0.650 0.684 0.661
ρz 0.970 0.954 0.966
ρi 0.860 0.852 0.865
ψπ 1.450 1.396 1.503
ψỹ 0.120 0.184 0.129
ω11 0.400 0.435 0.428
ω12 −0.100 −0.098 −0.061
ω13 −0.010 −0.053 −0.052
ω21 0.100 −0.057 0.097
ω22 0.500 0.439 0.496
ω23 −0.020 −0.045 −0.020
ω31 0.100 0.098 0.092
ω32 0.500 0.513 0.505
ω33 0.800 0.808 0.796
σi 0.001 0.001 0.001
σz 0.020 0.034 0.023
σi∗ 0.050 0.041 0.053
σz∗ 0.020 0.021 0.021
σπH

0.040 0.034 0.037
σπF

0.050 0.052 0.049
σq 0.020 0.001 0.018
σπ∗ 0.010 0.008 0.011
σR 0.010 0.010 0.010

The artificial data set consists of 1,000 observations generated by the model equations using random
draws for the IID shocks. The log likelihood function is maximized using the algorithm described
in Appendix C.
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5. BAYESIAN ESTIMATES

Fortunately, Bayesian analysis can help identify these parameters, since we can incor-

porate prior information on plausible values for the parameters based on past studies.

However, the benefit comes at a cost. As noted by Poirier (1998),

A Bayesian analysis of a nonidentified model is always possible if a proper

prior on all the parameters is specified. There is, however, no Bayesian free

lunch. The price is that there exist quantities about which the data are un-

informative, i.e., their marginal prior and posterior distributions are identical

(p. 483).

If our goal is to learn about these parameters from the data, then at the very least we

should know which parameters are accurately estimated by the data.

For most parameters in our model, the priors are based on past empirical studies

using both micro and macro data. One should not place too much confidence in the

prior means obtained from previous studies since these estimates crucially depend on the

model assumptions, the econometric techniques and the data that are used. For example,

there is a large empirical literature on estimating the coefficients of interest rate rules.

The coefficients from single-equation estimates will vary for different countries, sample

periods, and functional forms assumed for the interest rate rule (e.g., to which variables

the interest rate is allowed to respond). When the interest rate rule coefficients are

estimated in the context of a general equilibrium model, the estimates will depend on

the equations and lag structure of that model. Different estimates will also result from the

use of real-time data versus ex-post revised data in the estimation. For other parameters

such as the coefficient of relative risk aversion or the elasticity of labor supply, economists

are still trying to reconcile estimates obtained using micro data with those obtained using

aggregate macro data.

The only parameter in our model which is not estimated is the discount factor β.

As shown in previous studies, the discount factor is not well-identified from the cyclical

dynamics of the data. We calibrate β = 0.99, which corresponds to an annual steady-

state real interest rate of about 4 percent. For the other 29 parameters, we estimate

the model under three sets of priors: uniform, somewhat informative, and informative.
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The prior distributions and 95% prior intervals are specified in Table III. Details on prior

specification are given in Appendix D.

Table IV and Figure 4 examine the posterior means and Bayesian 95% intervals for

the estimated parameters under the three sets of priors. As we would expect, the results

using the uniform priors are virtually identical to the likelihood estimates reported in

Table I. For most of the parameters, the results look remarkably consistent across the

three sets of priors, suggesting they are well informed by the data.

The parameter that is least informed by the data is ψỹ. The range of its 95% posterior

interval is very wide when the uniform priors are used (1.4 to 9.5). When the informative

priors are used, the range narrows sharply to just (0.5 to 1.1). The common practice of

inferring that the data is informative about a given parameter by just checking that the

prior and posterior means differ from one another would be misleading in this case. Even

though the informative prior mean of 0.5 is different than the posterior mean estimate

of 0.75, this tells us little about how informative the data truly are. As evidenced by

the likelihood estimates, the estimates under the uniform priors, the Monte Carlo tests

and the surface and heat plots shown in the previous section, the data have little to say

about ψỹ. The lack of identification is perhaps due to the fact that we do not observe the

output gap. To conclude, using the informative prior for ψỹ amounts to a complicated

way of calibrating it; the data have virtually nothing to say about this parameter, and

the posterior estimate is therefore mainly driven by the prior.

Similarly, the policy response to inflation (ψπ), the inverse elasticity of labor supply

(ϕ), and the persistence of the productivity shocks (ρz) have fairly wide posterior intervals

when the uniform priors are used. These estimates vary moderately when the somewhat

informative and informative priors are used in the estimation. It is perhaps fair to say

the data are only moderately informative about these parameters.

Finally, the data are informative about the other 25 parameters in our model, so we

can safely claim that their estimates were mainly determined by the data and not the

priors.
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Table III
Prior Distributions

Uniform Somewhat informative Informative
Percentiles Percentiles

θ f(θ) lb ub f(θ) E[θ] 2.5% 97.5% f(θ) E[θ] 2.5% 97.5%
γ U 0.001 0.999 B 0.3 0.06 0.63 B 0.3 0.13 0.51
σ U 0.001 50 W 10 0.25 36.9 G 1 0.03 3.69
h U 0.001 0.999 B 0.6 0.09 0.98 B 0.8 0.44 0.99
ϕ U 0.001 10 G 2 0.5 5.83 G 3 1.37 5.25
η U 0.001 10 G 3 0.43 8 G 3 1.02 6.03
θH U 0.001 0.999 B 0.75 0.3 0.99 B 0.75 0.53 0.92
θF U 0.001 0.999 B 0.75 0.3 0.99 B 0.75 0.53 0.92
ρz U 0.001 0.999 B 0.9 0.67 1 B 0.9 0.78 0.98
ρi U 0.001 0.999 B 0.7 0.23 0.99 B 0.7 0.44 0.9
ψπ U 1.001 10 IG 2 1.06 3.73 IG 1.5 1.09 2.06
ψỹ U 0.001 10 E 0.5 0 1.82 G 0.5 0.25 0.83
ω11 U −1 2 N 0.4 −2.54 3.34 N 0.4 −1.56 2.36
ω12 U −2 2 N 0 −2.94 2.94 N 0 −1.96 1.96
ω13 U −2 2 N 0 −2.94 2.94 N 0 −1.96 1.96
ω21 U −2 2 N 0 −2.94 2.94 N 0 −1.96 1.96
ω22 U −1 2 N 0.4 −2.54 3.34 N 0.4 −1.56 2.36
ω23 U −2 2 N 0 −2.94 2.94 N 0 −1.96 1.96
ω31 U −2 2 N 0 −2.94 2.94 N 0 −1.96 1.96
ω32 U −2 2 N 0 −2.94 2.94 N 0 −1.96 1.96
ω33 U −1 2 N 0.4 −2.54 3.34 N 0.4 −1.56 2.36
σi U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σz U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σi∗ U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σz∗ U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σπH

U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σπF

U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σq U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σπ∗ U 0.001 3 E 0.5 0 1.85 E 0.13 0 0.46
σR U 0.001 1 E 0.5 0 1.85 E 0.13 0 0.46

For the density functions, U represents the uniform distribution, with lower and upper bounds
shown under the column headings lb and ub, respectively. The other distributions are: W =Weibull,
B=Beta, G=Gamma, IG=Inverse-gamma, N=Normal, and E=Exponential. The analytical forms
for these distributions are outlined in the appendix of Gelman, Carlin, Stern, and Rubin (2004a).
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Figure 4. – Parameters weakly identified by the data. Solid lines represent estimated kernel
densities using 200,000 draws from the posterior distribution. Shaded regions are histograms using
200,000 draws from the uniform, somewhat informative, and informative prior distributions.
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Table IV
Posterior Estimates

Uniform Somewhat informative Informative
2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean

γ 0.135 0.251 0.192 0.122 0.245 0.183 0.079 0.173 0.124
σ 0.043 0.145 0.091 0.045 0.148 0.092 0.03 0.17 0.09
h 0.9927 0.9976 0.9951 0.9929 0.9975 0.9952 0.9922 0.9985 0.9956
ϕ 0.1 5.4 1.3 0.1 3.7 1.3 1.5 5.0 3.0
η 0.33 0.74 0.49 0.35 0.82 0.53 0.54 1.28 0.83
θH 0.932 0.966 0.951 0.933 0.968 0.953 0.917 0.955 0.937
θF 0.985 0.999 0.995 0.986 0.999 0.995 0.957 0.989 0.975
ρz 0.57 0.99 0.84 0.72 0.99 0.90 0.79 0.98 0.92
ρi 0.949 0.993 0.980 0.922 0.980 0.956 0.887 0.947 0.921
ψπ 1.0 3.6 1.6 1.01 1.72 1.22 1.01 1.25 1.08
ψỹ 1.4 9.5 5.0 0.8 3.3 1.7 0.48 1.09 0.75
ω11 0.897 0.994 0.948 0.900 0.995 0.953 0.940 1.008 0.981
ω12 −0.047 0.039 −0.002 −0.042 0.047 0.004 −0.024 0.055 0.017
ω13 −0.055 0.051 −0.004 −0.062 0.045 −0.010 −0.064 0.027 −0.021
ω21 0.019 0.075 0.046 0.022 0.080 0.051 0.040 0.106 0.071
ω22 −0.015 0.044 0.011 −0.010 0.058 0.018 −0.006 0.076 0.028
ω23 0.946 1.015 0.985 0.929 1.010 0.977 0.914 1.011 0.972
ω31 0.047 0.114 0.080 0.042 0.108 0.075 0.020 0.083 0.053
ω32 0.906 0.976 0.944 0.899 0.968 0.936 0.899 0.962 0.933
ω33 0.021 0.104 0.060 0.028 0.112 0.068 0.043 0.122 0.079
σi 0.0011 0.0033 0.0020 0.0011 0.0035 0.0021 0.0011 0.0044 0.0026
σz 0.009 0.053 0.024 0.010 0.044 0.021 0.009 0.026 0.015
σi∗ 0.0046 0.0073 0.0059 0.0047 0.0076 0.0060 0.0043 0.0071 0.0056
σz∗ 0.0061 0.0088 0.0074 0.0061 0.0090 0.0074 0.0061 0.0089 0.0074
σπH

0.0271 0.0386 0.0323 0.0265 0.0382 0.0318 0.0229 0.0329 0.0273
σπF

0.077 0.099 0.087 0.077 0.099 0.087 0.077 0.100 0.088
σq 0.0012 0.0087 0.0037 0.0012 0.0090 0.0037 0.0012 0.0083 0.0036
σπ∗ 0.0029 0.0060 0.0043 0.0030 0.0064 0.0045 0.0034 0.0077 0.0051
σR 0.0105 0.0120 0.0112 0.0104 0.0119 0.0111 0.0105 0.0120 0.0113
Due to space limitations, Monte Carlo standard errors (MCSE) are not reported in this table. In
general, they are of the same order of magnitude as those presented in Table I. The actual MCSEs
are used in an approximate manner to determine the level of accuracy with which the estimates are
displayed.
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6. POSTERIOR PREDICTIVE DISTRIBUTIONS

One way to assess the ability of a time series model to fit the data is to compute posterior

predictive distributions for future data values given past data Gelman, Carlin, Stern, and

Rubin (2004b). That is, after observing the data Yt ≡ (y′t, y
′
t−1, . . . , y

′
1), we can predict

an unknown observable ŷt+j for any forecast horizon j according to

(20) p(ŷt+j|Yt) =

∫
p(ŷt+j|θ)p(θ|Yt)dθ ,

where p(θ|Yt) is the posterior computed using information until period t, and p(ŷt+j|θ) is

the likelihood of the j-period ahead forecast computed with the Kalman Filter ( Hamilton

(1994))10.

Figure 5 compares the out-of-sample forecasts under the informative priors and the

uniform priors. The shaded regions denote the 95% intervals from the posterior predictive

distributions, and the solid lines denote the ex-post realizations of the data. The choice

of prior has little influence over the model’s forecasts. As we would expect, our highly

stylized model generates rather poor out-of-sample forecasts. The model cannot generate

the volatility found in the inflation data, nor can it explain the persistent deviations of

output from its trend. The poor forecasting ability of micro-founded macro models is well

known, and is a result of model misspecification (i.e., the rigid cross-equation restrictions

and lag structure in the dynamic equations) and overparametrization. Even though our

model fits the data quite well11, it does a rather poor job of forecasting the data into the

future, particularly at short horizons.

Smets and Wouters (2007) compare the forecasting performance of their DSGE model

to that of a VAR and Bayesian VAR (BVAR) and find that overall the DSGE model

does a better job at forecasting. As pointed out by Litterman (1986), both VAR and

BVAR are overparametrized, yielding good in-sample fit but poor out-of-sample forecast

performance. But one may also argue that our DSGE model, featuring 29 parameters,

is overparametrized. Although comparing forecasting performance of alternative models

10We first thin Gelman, Carlin, Stern, and Rubin (2004a) the posterior distribution, by selecting every
twentieth draw from the chain of 200,000 draws (for a total of 10,000 draws).

11The Kalman filtered variables track the data closely; see Beltran (2007) for details.
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Figure 5. – Posterior predictive distributions for the data. Output is expressed as percent
deviation from its linear trend. Inflation, the nominal interest rate, and imported inflation are expressed
as decimals.
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is useful, it is still important to be able to judge whether the model does a good job at

forecasting the data or not. A DSGE model may forecast better than a VAR or BVAR,

but it still may be a poor forecasting model. Comparing the posterior predictive plots to

the ex-post realizations of the data is a useful way to assess the model’s out-of-sample

forecast performance.

7. CONCLUSIONS

In attempting to estimate the parameters of a small open economy model, we find that

several of the key structural parameters are weakly identified by the data. Some of

these parameters, such as the interest rate response to inflation and the output gap,

are of considerable interest to economists performing policy analysis. We find that the

posterior intervals for the policy parameters are narrow when an informative prior is

used, but extremely wide when the prior distribution is diffuse. Thus, the final estimates

for these parameters are mainly being driven by the assumed prior distributions, and not

the data, and it would be misleading to claim that they can be estimated. Our Monte

Carlo simulations demonstrate that having more observations would fix the identification

problem in our model. Posterior predictive distributions of future data given the past

provide valuable information about out-of-sample performance of econometric models,

which is not at all the same thing as in-sample fit of such models. Finally, our diagnostic

tools — including surface plots, heat plots, likelihood estimates, and Bayesian estimates

under three sets of priors — provide an easy way to verify which parameters are poorly

informed by the data.
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Appendix - A. LOG LINEAR EQUATIONS

After log-linearization, the variables will be interpreted in terms of their log deviations

from their respective steady-state values. There are 8 exogenous IID shocks: επH ,t (shock

to domestic inflation), επF ,t (shock to imported goods inflation), εq,t (risk premium shock),

εi,t (domestic monetary policy shock), επ∗,t (shock to foreign inflation), ε∗i,t (foreign mon-

etary policy shock), εz,t (domestic productivity shock), and ε∗z,t (foreign productivity

shock). The log-linearized equations that fully characterize the domestic and foreign

economies are listed below.12

(1′) Domestic inflation: πH,t = βEtπH,t+1 + κHmct + επH ,t ,

where κH ≡ (1−θH)(1−βθH)
θH

(2′) Imported inflation: πF,t = βπF,t+1 + κFψF,t + επF ,t ,

where κF ≡ (1−θF )(1−βθF )
θF

(3′) CPI inflation: πt = πH,t + γ∆xt

(4′) Marginal cost: mct = ϕyt − (1 + ϕ)zt + γxt+

σ(1− h)−1(ct − hct−1)

(5′) Real exchange rate: qt = (1− γ)xt + ψF,t

(6′) Law of one price gap: ∆ψF,t = ∆st + π∗t − πF,t

(7′) Terms of trade: ∆xt = πF,t − πH,t

(8′) “Link” equation: (ct − hct−1) = (y∗t − hy∗t−1) + 1
σ
(1− h)·

[(1− γ)xt + ψF,t]

(9′) UIP condition: (it − Etπt+1)− (i∗t − Etπ
∗
t+1) = Et[∆qt+1] + εq,t

12For more details on deriving the log-linearized model and the expression for the output gap, see
Beltran (2007).
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(10′) Market clearing: (1− γ)ct = yt − γη(2− γ)xt − γηψF,t − γy∗t

(11′) Monetary policy: it = ρiit−1 + (1− ρi)(ψππt + ψỹỹt) + εi,t

(12′) Output gap: ỹt = yt − yflex
t , where

yflex
t = 1+ϕ

ϕ
(zt − z∗t )−

xflex
t

ϕ
+ y∗flex

t ,

xflex
t = Axflex

t−1 +B[zt − hzt−1 − (z∗t − hz∗t−1)] ,

A = hσ[ϕγη(2−γ)+1]
σ[ϕγη(2−γ)+1]+(1−h)(1−γ)2ϕ

, and

B = σ(1+ϕ)
σ[ϕγη(2−γ)+1]+(1−h)(1−γ)2ϕ

(13′) Productivity shock: zt = ρzzt−1 + εz,t

(14′) Foreign output: y∗t − hy∗t−1 = Et(y
∗
t+1 − hy∗t )− 1

σ
(1− h)·

(i∗t − Etπ
∗
t+1)

(15′) Foreign inflation: π∗t = βEtπ
∗
t+1 + κHmc

∗
t + επ∗,t

(16′) Foreign marginal cost: mc∗t = ϕy∗t − (1 + ϕ)z∗t + σ(1− h)−1(y∗t − hy∗t−1)

(17′) Foreign monetary policy: i∗t = ρ∗i i
∗
t−1 + (1− ρ∗i )(ψπ∗π

∗
t + ψỹ∗ ỹ

∗
t ) + ε∗i,t

(18′) Foreign output gap: ỹ∗t = y∗t − y∗flex
t , where

y∗flex
t = Cz∗t +Dy∗flex

t−1 ,

C = (1+ϕ)(1−h)
ϕ(1−h)+σ

, and D = σh
ϕ(1−h)+σ

(19′) Foreign productivity shock: z∗t = ρ∗zz
∗
t−1 + ε∗z,t

In estimating the model, the foreign block is treated as exogenous, and equations

(14′ − 19′) above are replaced with the following VAR process: Z∗
t = AZ∗

t−1 + ε∗t , where

Z∗
t = [y∗t , π

∗
t , i

∗
y]
′, A is a (3×3) coefficient matrix, and ε∗t is a vector of normally distributed

IID errors. The elements of the coefficient matrix A are the parameters ωi,j, ∀i, j ∈
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{1, 2, 3}.

Appendix - B. LIKELIHOOD FUNCTION

AND POSTERIOR DISTRIBUTION

The linear model is solved using the algorithm of Sims (2002), which relies on matrix

eigenvalue decompositions. Then, in order to derive the likelihood for the data, the

model’s solution is written in state-space form,

(21)

{
xt = Fxt−1 +Qzt

yt = Hxt +Rvt

}
,

where zt is the IID system noise and vt is the IID measurement noise. The H matrix

links the observed variables (yt) to the state variables (xt). F and Q are functions of the

model’s parameters. The disturbances zt and vt are assumed to be normally distributed

with mean zero and variance-covariance QQ′ and RR′, respectively. This is a dynamic

linear model West and Harrison (1999), of which the Kalman Filter is a special form. As

shown in Hamilton (1994), the Kalman Filter can be used to derive the distribution of

the data yt , conditional on past observations Yt−1 ≡ (y′t−1, y
′
t−2, . . . , y

′
1). The likelihood

function for the data is given by

fYt|Yt−1(yt|Yt−1) = (2π)−n/2
∣∣H ′Pt|t−1H +RR′∣∣−1/2

exp

[
−1

2
(yt −H ′x̂t,t−1)

′·[
(H ′Pt|t−1H +RR)′

]−1
(yt −H ′x̂t,t−1)

]
,(22)

where x̂t|t−1 ≡ Ê(xt|Yt−1) is the linear least squares forecast of the state vector based on

the data observed through time (t − 1) and Pt|t−1 is the associated mean squared error

(MSE) matrix, defined as Pt|t−1 ≡ E
[
(xt − x̂t|t−1)(xt − x̂t|t−1)

′].
Having specified a prior density for the model parameters, p(θ), where θ is the pa-

rameter vector, the posterior distribution of the parameters is given by

(23) p(θ|y) =
p(θ) p(y|θ)

p(y)
=

p(θ) p(y|θ)∫
p(γ) p(y|γ) dγ

,

where y is the observed data and p(y|θ) is the likelihood function derived above. With
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fixed y, the denominator in (23) does not depend on θ and can therefore be treated as a

constant; thus the unnormalized posterior density can be expressed as

(24) p(θ|y) ∝ p(θ)p(y|θ) .

The likelihood function can only be evaluated if we have at least as many structural

shocks as observable variables13. As described in Appendix A, the 8 exogenous shocks

are: domestic and foreign productivity shock, domestic and foreign monetary policy

shocks, domestic and imported inflation shocks, a shock to the uncovered interest parity

condition, and a shock to the large foreign economy’s inflation equation. To allow for

model misspecification, we include measurement errors in all of the 8 observables. These

measurement errors are meant to capture movements in the data that the model cannot

explain. They are characterized by the R matrix in equation (21). The variance of the

measurement errors σ2
R is estimated from the data.

Appendix - C. NUMERICAL MAXIMIZATION ALGORITHM

The following algorithm is used to find the maximum of the likelihood function and the

posterior mode. First, an initial guess for the parameter vector is chosen from 1,000 func-

tion evaluations using random values chosen from a uniform distribution with very wide

bounds for each parameter. Of these 1,000 random draws, the parameter vector which

generated the highest function value is chosen as the starting value for the algorithm.

The algorithm then loops through the following gradient-based and non-gradient

based optimization routines: simulated annealing Belisle (1992), quasi-Newton “BFGS”

method (Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970)), the

Nelder and Mead (1965) simplex method, and the conjugate-gradient method of Fletcher

and Reeves (1964). The optimized end value from one method is used as the starting

value for the next method, and the entire loop is repeated until the improvement is less

than 0.1.

Finally, the entire process is repeated 20 times using 20 different starting values.

Although this algorithm provides a good guess for the likelihood mode or posterior mode,

13If there are more observable variables than structural shocks, it is as if some of the shocks are
perfectly correlated, and the matrix H ′Pt|t−1H in the likelihood function is singular.

28



convergence to the true mode is achieved by using an adaptive Markov Chain Monte Carlo

(MCMC) simulation, similar to that suggested by Browne and Draper (2006). Appendix

E discusses the adaptive MCMC algorithm in detail.

Appendix - D. PRIORS

In this appendix we examine the background literature used in designing the priors for

each parameter. The exact prior specifications are reported in Table III of the paper.

Many economists prefer to use a CRRA value of unity as suggested by Arrow (1971),

implying that a constant-relative-risk-aversion utility depends on the log of income, thus

keeping the utility function bounded. Most Bayesian studies estimating DSGE models

use a prior for σ which is centered at this theoretically-based value of 1, with varying

degrees of uncertainty. By doing this, they are ignoring a plethora of empirical studies

which have estimated this parameter. In specifying a prior for σ, we considered empirical

estimates from the financial economics literature, as well as estimates of the income

elasticity of the value of statistical life (VSL) derived from labor and product markets14.

As reviewed in Kaplow (2005), VSL estimates are typically below 1, whereas more recent

CRRA estimates from the financial economics literature often exceed 10. Since the two

estimates should in theory be roughly the same15, the prior is specified to allow for

the possibility of a low CRRA consistent with the VSL literature, and a high CRRA

consistent with the financial economics literature.

The degree of habit persistence is bounded between 0 and 1. Most empirical studies

have found h to be greater than 0.6. Christiano, Eichenbaum, and Evans (2005) estimate

an h of 0.63 for the United States. Fuhrer (2000) finds somewhat higher estimates of 0.8

and 0.9, and the highest estimates found in the literature are those of Bouakez, Cardia,

and Ruge-Murcia (2005), who estimate a value of 0.98.

14By not using Epstein-Zin preferences Epstein and Zin (1989), which disentangle the elasticity of
intertemporal substitution from the degree of risk aversion in the utility function, some of the CRRA
estimates from the finance literature are probably biased.

15As explained in Kaplow (2005), the income elasticity of VSL depends on how the marginal utility
cost of expenditures to protect one’s life changes with income, or the rate at which marginal utility of
income falls as income rises, which is essentially the same as the CRRA. In theory, though, since the
value of preserving one’s life increases with income, the income elasticity of VSL should exceed CRRA,
making the discrepancy in the empirical estimates even more puzzling.
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Economists have devoted a great amount of effort to estimating the intertemporal

elasticity of labor supply, which plays an important role in explaining business cycles.

However, the estimates are still much lower than required by Real Business Cycle models

to match certain “stylized facts” in the economy. In a meta-analysis of 32 micro-based

empirical estimates of labor supply elasticities covering 7 European countries and the

United States, Evers, de Mooij, and van Vuuren (2006) find a mean of 0.24 (with a

standard deviation of 0.42) for the elasticity of labor supply. Using a contract model,

Ham and Reilly (2006) obtain much higher estimates ranging from 0.9 to 1.3.

The elasticity of substitution between domestic and foreign-produced goods is a key

parameter in all open-economy macro models, since it governs the trade balance and

terms of trade relationships, and affects the degree to which shocks can be transmitted

across countries. Once again, the micro- and macro-based empirical studies provide quite

different estimates for this parameter. The micro-econometric studies using sector-level

trade data usually report higher estimates, ranging from 5 to 12, whereas the several

available macro studies report estimates of 1–2 for the United States, and slightly lower

estimates for Europe and Japan16.

Using monthly CPI databases from 9 European countries, Dhyne, Alvarez, Bihan,

Veronese, Dias, and Hof (2005) estimate a median price duration of 10.6 months in

Europe, compared to only 4.6 months in the U.S. Similarly, a study by Angeloni, Aucre-

manne, Ehrmann, Gali, Levin, and Smets (2004) finds that European firms on average

change prices once a year. This translates into a θH coefficient of 0.75. These empirical

estimates of price durations do not distinguish between domestic firms and importing

firms, so the priors for both θH and θF are the same. Since there are no studies esti-

mating this parameter for Switzerland, it is assumed that Swiss firms change prices on

average with the same frequency as European firms.

Ever since Taylor (1993) published his celebrated paper “Discretion Versus Monetary

Policy Rules in Practice,” in which he showed that actual monetary policy in the United

States can be characterized by a simple interest rate feedback rule, economists and central

bankers have estimated similar reaction functions for many countries and time-periods.

Even though the original Taylor rule does not include a lagged interest rate term, most

16For examples of micro-based studies, see Harrigan (1993), Hummels (2001), and Baier and
Bergstrand (2001). Some macro studies include Stern, Francis, and Schumacher (1976), Deardorff and
Stern (1990), and Whalley (1985)
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empirical studies of monetary policy rules have found a large degree of interest rate

smoothing. For example, Clarida, Gali, and Gertler (1998) estimate lagged interest rate

coefficients ranging from 0.91 to 0.95 for Germany, Japan, U.S., France, Italy and the

United Kingdom. For the case of Switzerland, Neumann and von Hagen (2002) also find

a very strong and statistically significant reaction of the interest rate to its own lag.

Empirical studies have shown that the conduct of monetary policy in Europe (as

described by the coefficients of an interest rate feedback rule) is not much different than

in the United States. For example, Gerlach and Schnabel (1999) estimate the coefficient

on the output gap to be 0.45 and the coefficient on inflation to be 1.58, values that

are statistically indistinguishable from those suggested by Taylor for the United States.

For Switzerland, Neumann and von Hagen (2002) do not find that overnight interest

rates react to the output gap, but they do find a strong and significant reaction to

inflation, similar in magnitude to that of Germany. Similarly, Cecchetti and Ehrmann

(2000) find evidence of a high aversion to inflation variability in Switzerland, similar

in magnitude to Germany’s17. In 1999, the Swiss National Bank (SNB) abandoned

monetary targeting and instead decided to target a forecast of inflation. Kugler and

Rich (2002) find evidence that even during the monetary targeting period, the path of

short-term interest rates frequently agreed with that derived from a Taylor rule. To

summarize, there is some evidence that the SNB’s behavior can be characterized by a

Taylor rule with a higher response to inflation than to the output gap, and a strong

degree of interest rate smoothing.

The existing literature provides little information on the magnitude of the standard

deviation of the IID shocks, so in general we allow for a wide range of values in all prior

specifications.

There is ample evidence in the literature that productivity shocks are highly per-

sistent in both Europe and the United States. For example, Gruber (2002) conducts

augmented Dickey-Fuller tests to the productivity series of each of the G7 countries and

in all cases fails to reject the hypothesis of a unit root at conventional significance levels18.

Backus, Kehoe, and Kydland (1992) estimate autoregressive coefficients of 0.904(0.073)

and 0.908(0.036) for the U.S. and Europe, respectively. This suggests that ρz and ρz∗ are

17They do not however, estimate Taylor rules directly.
18Baxter and Crucini (1995) find the same results for the U.S. and Europe.
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either 1 or close to 1.

The parameter γ could in principle be calibrated directly from the data as the average

ratio of imported goods to Switzerland’s GDP over the entire sample period. Using data

from the Swiss National Bank, we find that this ratio is approximately 0.3, and is fairly

constant over the entire sample period. To allow for some flexibility when estimating this

parameter, we use a Beta distribution with mean 0.3 for the somewhat and informative

priors. The less informative uniform prior is bounded by the unit interval.

Appendix - E. ADAPTIVE MCMC ALGORITHM

When using Bayesian simulation to summarize the posterior density, one must be careful

to ensure that the target distribution is well represented by the simulated draws, and

that the results are not influenced by the chosen starting values of the MCMC chain.

Convergence of each chain was first checked by calculating the diagnostics of Geweke

and Heidelberger and Welch, available in the R-CODA package. After verifying that the

individual chains converged with 200,000 draws, Gelman and Rubin’s convergence diag-

nostic was calculated using four parallel chains with dispersed starting values19. These

diagnostics are discussed in Cowles and Carlin (1996) and Brooks and Gelman (1998).

Following Browne and Draper (2006), the MCMC algorithm has three stages: adap-

tation, burn-in, and monitoring. The adaptation stage begins at our estimate of the

posterior mode, and adjusts the covariance matrix of the jumping distribution every

2,500 iterations to be proportional to the covariance matrix estimated from these itera-

tions, with the scale factor adapted to achieve a target acceptance rate of 0.25 Gelman,

Roberts, and Gilks (1995). The adaptation stage consists of 300,000 iterations, after

which we fix the covariance matrix of the jumping distribution to that of the estimated

covariance of the last 150,000 draws20. The scale factor is then re-calibrated and fixed to

achieve a target acceptance rate of 0.25. Following a burn-in period of 100,000 iterations,

we then monitor the chain for 200,000 iterations. All of the inferences we make about the

parameters come from this last chain of 200,000 iterations from the monitoring phase.

19If the starting value is too far away from the mode, convergence may be impaired because of cliffs
in the likelihood function or regions of indeterminacy.

20During the first 150,000 iterations of the adaptive stage, the chain is still converging.
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