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Abstract

We show that the general bias reducing technique of jackknifing can be successfully applied to stock
return predictability regressions. Compared to standard OLS estimation, the jackknifing procedure de-
livers virtually unbiased estimates with mean squared errors that generally dominate those of the OLS
estimates. The jackknifing method is very general, as well as simple to implement, and can be applied to
models with multiple predictors and overlapping observations. Unlike most previous work on inference
in predictive regressions, no specific assumptions regarding the data generating process for the predictors
are required. A set of Monte Carlo experiments show that the method works well in finite samples and the
empirical section finds that out-of-sample forecasts based on the jackknifed estimates tend to outperform
those based on the plain OLS estimates. The improved forecast ability also translates into economically
relevant welfare gains for an investor who uses the predictive regression, with jackknifed estimates, to
time the market.
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1 Introduction

Ordinary Least Squares (OLS) estimation of predictive regressions for stock returns generally results in biased
estimates. This is true in particular when valuation ratios, such as the dividend- and earnings-price ratios,
are used as predictor variables. The bias has been analyzed and discussed in numerous articles and a number
of potential solutions have been suggested (e.g., Mankiw and Shapiro, 1986, Stambaugh, 1999, and Jansson
and Moreira, 2006). However, most of the attention in the literature has been directed at constructing valid
tests in the case of a single regressor that follows an auto-regressive process, and much less attention has
been given to the problem of obtaining better estimators, both in the case of single or multiple predictor
variables.!

Although the testing problem is arguably the more fundamental issue from a strictly statistical point of
view, the estimation problem is of great interest from an economic and practical perspective. The statistical
tests answer the question whether there is predictability, but the coefficient estimate speaks more directly to
the economic magnitude of the relationship. Since there is an emerging consensus in the finance profession
that stock returns are to some extent predictable, it is of vital interest to determine the economic importance
of this predictability. In addition, if forecasting regressions are to be used for out-of-sample forecasts, which
is often their ultimate purpose, the point estimate obviously takes on the main role.

In this paper, we propose the application of a general bias reduction technique, the jackknife, to obtain
better point estimates in predictive regressions. Unlike most other methods that have been proposed, this
procedure does not assume a particular data generating process for the regressor and allows for multiple
predictor variables. The jackknifed estimator, which is based on a combination of OLS estimates for a small
number of subsamples, is also trivial to implement and could easily be used with common statistical packages.
In relation to previous work, the current paper contributes to both the emerging literature on bias-reducing
techniques in predictive regressions, such as Amihud and Hurvich (2004) and Eliasz (2005), as well as the
ongoing debate on out-of-sample predictability in stock-returns, as exemplified by Goyal and Welch (2003,
2007) and Campbell and Thompson (2007).

In a series of Monte Carlo experiments, we show that the jackknifed estimator can reduce the bias in the
estimates of the slope coefficients in predictive regressions. This applies both to the standard one-regressor,

one-period regression as well as to the case of multiple regressors and longer forecasting horizons. Although

IThe only bias corrections, in predictive regressions, that have been used to any great extent are ad hoc corrections for the
bias dervied by Stambaugh (1999), for the case of a single regressor that follows an AR (1) process. Amihud and Hurvich (2004)
provide justifications for similar corrections in the case of multiple regressors. Lewellen (2004) provides a ‘conservative’ bias
correction, also based on a single AR (1) regressor, which is primarily useful as a tool for obtaining conservative test statistics,
since in general the corrected estimate will not be unbiased but, rather, underestimate the true parameter value. In fact, one of
the main reasons that testing, rather than estimation, has been the main focus is that most studies on inference in predictive
regressions resort to some conservative test, which does not deliver a unique estimation analogue; e.g., Cavanagh et al. (1995)
and Campbell and Yogo (2006).



the jackknifed estimates have a larger variance than the OLS estimates, the jackknifed estimates still often
outperform the OLS ones in a mean squared error sense. Thus, to the extent that it is desirable to have as
small a bias as possible, for a given mean squared error, the jackknifed estimator tends to dominate the OLS
estimator.

In the empirical section of the paper, we consider forecasting of aggregate U.S. stock returns, using
five different predictor variables: the dividend- and earnings-price ratios, the smoothed earnings-price ratio
suggested by Campbell and Shiller (1988), the book-to-market ratio, and the short interest rate. Although
many other stock return predictors have been proposed (see, for instance, Goyal and Welch, 2007), the above
valuation ratios are of most interest here, since they tend to result in the largest biases in the OLS estimates.
The short interest rate is also analyzed since some recent work by Ang and Bekaert (2007) suggests that it
works well as a predictor together with the dividend-price ratio, which thus provides an opportunity to study
the performance of the jackknifed estimator with multiple regressors.

The in-sample results show that the jackknifed estimates, in some cases, deviate substantially from the
OLS estimates. For instance, the magnitude of the coefficient for the book-to-market ratio is often drastically
smaller when using the jackknife procedure. On average, the OLS estimates often overstate the magnitude
of predictability compared to the jackknife estimates.

In order to evaluate whether these discrepancies in the full-sample estimates actually translate into better
real time forecasting ability, we perform two different out-of-sample exercises. First, we calculate the out-of-
sample R2s for the different predictor variables, and find that the forecasts based on the jackknifed estimates
typically dominate those based on the OLS estimates; this is true also if one imposes some of the forecast
restrictions proposed by Campbell and Thompson (2007). In a second out-of-sample exercise, we estimate
the welfare gains to a mean-variance investor who uses either the OLS estimates or the jackknifed estimates
to form his portfolio weights in order to time the market. In this case, the jackknifed estimates produce even
clearer gains, dominating both the portfolio choices based on the OLS estimates as well as the baseline choice
based on the historical average returns. Overall, the promising results seen in the Monte Carlo simulations
carry over to the real data.

The rest of the paper is organized as follows. Section 2 outlines the jackknife procedure and provides an
explicit example of how it works in a predictive regression. Section 3 presents the results from the Monte

Carlo exercises. The empirical analysis is performed in Section 4 and Section 5 concludes.



2 The Jackknife

Let T be the sample size available for the estimation of some parameter #. Decompose the sample into m
consecutive subsamples, each with [ observations, so that T = m x [. The jackknife estimator, which was

introduced by Quenoille (1956), is given by
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where 07 and ); are the estimates of 6 based on the full sample and the ith subsample, respectively, using
some given estimation method such as OLS or maximum likelihood. In the current paper, we rely only on
OLS for obtaining @)li. Under fairly general conditions, which ensure that the bias of 9T and éli can be
expanded in powers of T~!, it can be shown that the bias of (Z)jack will be of an order O (T’z) instead of
(0] (T*I); Phillips and Yu (2005) provide a longer discussion on this.

Note that 6 may be a single parameter, or a vector of parameters, estimated from some model using any
feasible estimation method. Furthermore, § may also represent a combination, or complicated function, of
estimated parameters. For instance, Phillips and Yu (2005) show how jackknifing bond option prices directly,
rather than the estimated parameters that enters the bond option formula, can help reduce the bias in the
estimated option prices. The jackknife is thus a very generally applicable method. Within the context of
estimating models for stock return predictability, we consider, in addition to the standard single regressor
case, also a case with multiple regressors, as well as overlapping observations. Whereas the bias in the single
regressor case is well analyzed, less is understood about the biases in the case of multiple regressors or the
case of long-run forecasting regressions with overlapping observations. Again, in all three cases the analysis
of the bias is usually restricted to the case where the regressors follow an auto-regressive process; see, for
instance, Amihud and Hurvich (2004) for a discussion on some bias reduction methods for the case of multiple
regressors.

A simple example helps to illustrate how the jackknifing procedure reduces the bias in estimates. Consider

the traditional predictive regression with a single regressor which follows an AR (1) process:
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Suppose u; and v; are bivariate normally distributed with mean zero and covariance matrix [(ai, Uw) , (Uw, 0’3)] ;

the correlation between u; and vy is denoted by 0 in the simulations below. As shown in Stambaugh (1999),



the bias in the OLS estimator of 5 is given by
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The jackknife estimator of 8 for m = 2, based on OLS estimation, is equal to
o ~ 1 /- o
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Taking expectations on both sides and using the expression in (4), it follows that
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Thus, the bias is reduced from O (T‘l) to O (T_Q).

This result would hold for any m, which raises the question of what value m should be set to in practice.
As shown by the simulations in the following section, setting m = 2 works very well and usually eliminates
almost all of the bias. However, the simulations also show that an increase in m (to 3 or 4) can reduce the
variance of the jackknife estimate without any substantial increase in the bias. In general, the root mean
squared error is smallest for m = 4 in the simulations presented below. Phillips and Yu (2005) present
results along similar lines and provide some brief theoretical arguments that support these findings. In a
given context, an optimal choice of m may therefore exist, although there appears to be no studies on how
to choose this optimal m. The empirical section, which presents results for m = 2,3, and 4, suggests that
m = 3 may be the best choice on average, although the differences are generally not great between the three

alternatives, and there appears to be no choice of m that strictly dominates empirically.

3 Monte Carlo Simulations

We analyze the finite sample performance of the jackknife method by simulating data from the model defined
by equations (2) and (3). The assumption that the predictor variable follows an AR (1) process is probably
the most common one in the analysis of stock-return predictability. This stems primarily from the relative
ease with which the properties of estimators of 5 can be analyzed in this setup, and because the model

captures the most salient features of typical forecasting variables such as valuation ratios and interest rates.



The results from the AR (1) specification should also be qualitatively similar to those from a more general
AR (p) model. In general, the jackknife procedure should help reduce bias in other setups as well, but we
focus on its properties for this familiar model which is easy to parametrize in a realistic manner, such that
the OLS estimator will be biased in finite samples. In addition to considering the case with a single regressor,
we also simulate from a model with two forecasting variables, where each of these follows an AR (1) process
as specified in detail below. Finally, we also consider the case when forecasts are formed at a horizon different

from that at which the data were sampled.

3.1 The single regressor case

Equations (2) and (3) are simulated for the case when z; is a scalar. The innovation terms u; and v; are drawn
from a multivariate normal distribution with unit variances. The correlation between u; and v;, denoted ¢,
takes on three different values: —0.9,—0.95, and —0.99. The auto-regressive root p is set equal to either
0.9,0.95, or 0.999. The sample size, T, is equal to 100 or 500 observations. The parameters pu, 3, and y are
all set to zero, although an intercept is still estimated in the predictive regression; since the bias in the OLS
estimator is not a function of the values of these parameters (e.g. Stambaugh, 1999), this standardization
does not affect the results. Campbell and Yogo (2006) show that values such as these for ¢ and p are often
encountered empirically, when using valuation ratios as predictors.

Note that, if § = 0, so that the error terms u; and v; are uncorrelated, the OLS estimator is unbiased
and equal to the full information maximum likelihood estimator. Furthermore, for p close to zero, the OLS
estimator will also be unbiased, even when § # 0. In general, the bias for the OLS estimator is thus greater
as p gets closer to unity, and the closer the absolute value of § is to one. We therefore restrict the analysis to
the part of the parameter space where there actually is a bias to correct in the OLS estimator. Results for
0 < 0 are shown since this is the empirically most relevant case and the case of § > 0 is completely analogous.

The Monte Carlo simulation is conducted by generating 10,000 sample paths from equations (2) and
(3), for each combination of parameter values. From each set of generated returns and regressors, the OLS
estimate of § and the jackknife estimates for m = 2,3, and 4, are calculated. The average bias and root-
mean-squared errors (RMSE) for these estimators are then calculated across the 10,000 samples. The results
are reported in Table 1, which shows the bias and the RMSE in parentheses below, for each parameter
combination.

An inspection of the results in Table 1 quickly reveals three distinct findings: (i) the OLS estimates are
upward biased for all of the parameter combinations under consideration, (ii) the jackknife estimates are

virtually unbiased in all cases, and (iii) the RMSEs for the jackknife estimates are always less than or equal



to the RMSE for the OLS estimates for m = 3 and 4, and fairly similar to the RMSE for the OLS estimates
for m = 2. These simulation results thus suggest that the jackknifing procedure reduces the bias without
inducing enough variance to inflate the RMSE.

Figure 1 provides some additional insights into the workings of the jackknifed estimator. It shows density
plots for the OLS estimator as well as the jackknife estimators for m = 2,3, and 4. The densities are estimated
with kernel methods from 100,000 samples, with 7' = 100, p = 0.999 and § = —0.99. The density of the
OLS estimate is almost completely to the right of the true value for 5, and is also highly skewed towards the
right. The jackknifed estimates are both more centered around the true value as well as more symmetric.
For m = 2, the jackknife estimator has a distribution that is centered almost exactly at the true value and is
also fairly symmetric. For m = 3 and 4, the densities are more peaked, reflecting the lower RMSEs shown in
Table 1, but also slightly less centered at the true value; these densities are also somewhat more skewed. As
mentioned in the previous section, these results indicate that there is a trade off between bias and variance
in the choice of m, and an optimal choice of m in terms of RMSE may therefore exist. However, no formal
results along these lines appear to be available.

In order to understand the magnitude of the bias in the OLS estimator, and the importance of the bias
reduction achieved with the jackknife estimators, it is useful to consider typical values of the estimates of 3
in actual data. The results in Campbell and Yogo (2006) are particularly convenient for such a comparison
since they present their estimates in a standardized manner conforming with the model simulated here; that
is, they scale the estimate of § to correspond to a model with unit variance in u; and v;. Campbell and Yogo
(2006) consider stock return predictability for aggregate U.S. stock returns. They show that OLS estimates
of B are typically in the range of 0.1 to 0.2 in annual data and most often in the range of 0.01 to 0.02 in
monthly data. Thus, if one uses 100 years of annual data, the bias in the OLS estimate may be between 20
and 50 percent of the actual parameter value, as seen from the results in Table 1. If one relies on a shorter
(in years covered) monthly series with 500 observations, the bias could easily be as large as the parameter
value itself. In proportion to the size of the parameter value, the bias reduction in the jackknifing procedure

is therefore at least substantial and potentially huge.

3.2 Multiple regressors

Although the simple forecasting regression with just one predictor is by far the most studied and commonly
used in the literature, there are instances when the use of several forecasting variables may be advantageous.
For instance, Ang and Beekaert (2007) argue that the dividend-price ratio works much better as a predictor

when used jointly with the short rate, rather than on its own.



In order to evaluate the properties of the jackknife estimator in the multiple regressor case, we restrict
the attention to the case with two forecasting variables and follow a similar setup to the one used in the
single regressor case. In particular, it is assumed that the data is generated by a multivariate version of the
model described by equations (2) and (3). The auto-regressive matrix for the two predictor variables is set
to A =[(a11,0), (0, a22)]/ and the innovations u; and v; = (v14,v9;) are again normally distributed with unit
variance. The correlation vector between u; and v; is labeled w,, and the correlation between vi; and vo; is
labeled 7, such that the variance-covariance matrix for v, is equal to Q,, = [(1,7), (1,1)]’. Table 2 shows the
results for the estimates of the two coefficients, 5, and (5, that correspond to the first and second predictor
variable, for various values of A and different correlations between the innovations. Results for T = 100 and
T = 500 are presented and the results are based on 10,000 repetitions.

The first two columns of results in Table 2 represent perhaps the most empirically interesting case. For
these results, a;; = 0.999, age = 0.95, wy, = (—0.9, 0)/ and n = 0.4. That is, the first predictor is the most
persistent one and is also highly endogenous, whereas the second predictor is exogenous and less persistent.
This setup corresponds fairly well to the case with the dividend-price ratio and the short interest rate as
predictors, since the dividend-price ratio is highly endogenous whereas the short rate is nearly exogenous, and
usually somewhat less persistent than the dividend-price ratio (Campbell and Yogo, 2006). The correlation
of 0.4 between the innovations to the two regressors results in an average correlation of around 0.25 between
the levels of the regressors, which is similar to the empirical correlation between the dividend-price ratio and
the short interest rate observed in the data used in this paper.2

Intuitively, given the results for the single regressor case, one would expect the OLS estimate for the
coefficient for the first regressor (8;) to be highly biased whereas the second estimate (35) should perform
better, since it is only indirectly affected by the endogenity bias through the correlation of the two regressors.
This intuition is bourne out to some extent by the simulation results, which show a large bias for the first
predictor but a smaller, although still substantial, bias for the second. The jackknife works very well for
B4, resulting in almost unbiased estimates with only a small increase in RMSE for m = 2 and a significant
reduction in RMSE for m = 3, and 4. Jackknifing the estimates for 3, also results in unbiased estimates, but
with a slight increase in RMSE, particularly for T = 100.

The following two sets of results in Table 2 represent cases where both regressors are endogenous. In order
for the overall covariance matrix between u; and v; to be well defined, this forces v1; and vy to be fairly highly

correlated as well. In particular, w,, = (—0.7, 70.7)/ and 7 = 0.5 in the first case and w,, = (—0.9, 70.9)/

2The case when the regressors are completely orthogonal to each other is obviously most desirable in empirical specifications,
although it is not often likely to hold. In that case, however, there will be little to no difference between the individual coefficient
estimates from separate regressions on each regressor and the estimates obtained from a multiple regression. Thus, there is little
point in analyzing this case, since it would merely confirm the results obtained in the previous section.



and 7 = 0.8 in the second case. The peristence parameters are set to a;; = 0.999 and age = 0.95 in the
first specification, and to a;; = ags = 0.999 in the second one. Thus, both variables are highly endogenous
and highly co-linear. In the first specification, the first predictor is more persistent than the other, whereas
in the latter specification both have the same persistence. These parametrizations could correspond to, for
instance, various combinations of valuation ratios, which may have somewhat different degrees of persistence
and endogeneity, and may also have different correlations with each other.

As seen in Table 2, both of these parametrizations result in OLS estimates that are biased, both for 3,
and (B5. The jackknifing reduces the bias substantially, although there is a little bias left in the jackknifed
estimates when using the first parameter specification for 7" = 100, as seen in the middle columns of Table
2. For m = 3 and 4, the RMSE for the jackknifed estimates are similar to the OLS ones. The second
specification, shown in the last two columns of Table 2, is symmetric for the two regressors and the OLS
biases for the two coefficients are virtually identical. For T' = 100, the jackknifed estimates are now virtually
unbiased, with only a small increase in the RMSE relative to the OLS estimates. For T' = 500, the bias is
completely removed by the jackknifing.

In summary, the jackknife appears to work well in the multivariate case and generally results in virtually
unbiased estimates. Given the multitude of possible parameter combinations that arise as soon as one leaves
the simplicity of the single regressor case, the results presented in this section are far from exhaustive but

hopefully capture some of the more salient features of biases in multivariate regressions.

3.3 Overlapping observations

Finally, we consider the performance of the jackknife estimator for predictive regression with overlapping ob-
servations. Inference with overlapping observations is a topic that has a long history in the finance literature,
but most of the effort has been directed at constructing valid test statistics rather than reducing the bias
in OLS estimates.? The jackknife procedure provides a simple but flexible way of addressing the estimation
problem.

To keep things tractable, the single regressor case is analyzed. The data is generated in exactly the same
manner as described in Section 3.1, generating sample paths from equations (2) and (3). However, instead
of estimating equation (2), the sums of future g—period returns are now regressed on the value of z;. The
forecasting horizon ¢ is set equal to 10 for 7" = 100 and equal to 12 for T" = 500. These two cases capture
common applications of long-run forecasts using a century of annual data and annual forecasts based on

monthly data.

3See, for instance, Hansen and Hodrick (1980), Richardson and Stock (1989), Richardson and Smith (1991), Goetzman and
Jorion (1993), Campbell (2001), Valkanov (2003), Torous et al. (2004), and Boudoukh et al. (2006). Nelson and Kim (1993)
briefly discuss the magnitude of the Stambaugh (1999) bias in regressions with overlapping observations.



The results are shown in Table 3. The bias in the OLS estimates is of an order of magnitude larger than
the ones shown in Table 1. This is entirely in line with the analytical results of Bodoukh et al. (2006), who
show that one should expect the estimate, and hence the bias, to increase almost linearly with the forecasting
horizon. The jackknifing reduces the bias substantially in all cases, although not always completely. The
RMSEs for the jackknifed estimates is slightly larger than those for the OLS estimates in some cases, although
there are also substantial reductions for some parameter combinations.

It is evident that the jackknife is also applicable in long-horizon regressions. From the results presented
here, it appears to be most useful when the overlap is not too large relative to the number of observations; the
results for ¢ = 12 and T" = 500 are generally stronger than those for ¢ = 10 and 7" = 100. Overall, however,
the results are very promising and the jackknife clearly presents a simple way of alleviating estimation biases

in long-horizon regressions, an issue which is often ignored in applied work.

4 Empirical Analysis

We next apply the jackknife method to real stock market data. Since the purpose of the jackknife method is
to obtain better point estimates, we primarily evaluate its usefulness by an out-of-sample (OOS) forecasting
exercise. However, it is also of interest to analyze the full sample point estimates, since they directly show
the differences between the plain OLS estimates and the bias corrected jackknifed estimates.

As the dependent variable, we use monthly total excess returns on the S&P 500 index, starting in February
1872 and ending December 2005. Five separate forecasting variables are used: the dividend- and earnings-
price ratios (D/P and E/P), the smoothed earnings-price ratio of Campbell and Shiller (1988), the book-
to-market ratio (B/M), and the short term interest rate as measured by the three-month T-Bill rate. The
smoothed earnings-price ratio is defined as the ratio of the 10-year moving average of real earnings to the
current real price. Although many other stock return predictors have been proposed (see, for instance, Goyal
and Welch, 2007), the above valuation ratios are of most interest here since they tend to result in the largest
biases in the OLS estimates (e.g. Campbell and Yogo, 2006). The short interest rate is also analyzed,
since recent work by Ang and Bekaert (2007) suggests that it works well as a predictor together with the
dividend-price ratio, which provides an opportunity to study the performance of the jackknifed estimator
with multiple regressors; the short interest rate is generally negatively related to future stock returns, and we
therefore flip the sign on this predictor variable in all regressions so that the expected sign is always positive.
All data are recorded on a monthly basis and regressions are run either at this monthly frequency or at an
annual frequency, using overlapping observations based on the original monthly data. The annual results thus

provide an illustration of the jackknifed procedures applied to regressions with overlapping observations. In



all cases, excess stock returns are regressed on the lagged predictor variable(s) and an intercept, following
the basic structure of equation (2).

These are a subset of the same data as those used by Campbell and Thompson (2007) in their study of
out-of-sample return predictability.* The jackknifed OOS predictions can thus be directly compared to their
results. In line with Campbell and Thompson, we use the level, and not logs, of the predictor variables as

well as simple rather than log-returns.

4.1 In-sample results

The first set of empirical results is given in Table 4 and shows the full sample OLS estimates, t—statistics and
R?, along with the jackknifed estimates; the ¢—statistics for the annual data with overlapping observations
are formed using Newey and West (1987) standard errors. Results for the monthly and annual frequencies are
displayed, and two different sample periods are considered: the longest available sample for each predictor
variable, as well as the forecast period used in the out-of-sample forecasts below.

As is well established, predictive regressions like these tend to generate significant t—statistics but fairly
small R?, which increase with the horizon. Inference based on the t—statistics is generally subject to pitfalls,
as documented in, for instance, Stambaugh (1999) and Campbell and Yogo (2006), and they are primarily
shown here for completeness. The focus in this paper is on the point estimates in the predictive regression,
which are also shown in Table 4. Four sets of estimates are shown: the standard OLS ones and the jackknifed
ones using m = 2,3, and 4 subsamples. Within the standard stock return predictability model, where the
regressors follow an auto-regressive process, the OLS estimates for the valuation ratios are generally upward
biased, whereas for the short interest rate the OLS estimator should be nearly unbiased. This suggests that
the jackknifed estimates, which attempt to correct the OLS bias, should generally be smaller than the OLS
estimates. Overall, this is the case, especially when using m > 2. This is particularly true for the book-to-
market ratio in the shorter sample, and for the coefficient on the dividend-price ratio in the regressions that
include the dividend-price ratio and the short rate jointly. The jackknifed estimates using m = 2 are often
close to the OLS estimates, although they sometimes deviate substantially as well. Qualitatively, the results
are similar for the monthly and annual data.

The results in Table 4 suggests that standard OLS estimates are likely to exaggerate the size of the slope
coefficient in these predictive regressions. However, from these full sample estimates alone, it is difficult to
tell whether the jackknifed estimates are actually more accurate than the OLS estimates and we therefore

turn to out-of-sample exercises to evaluate this question.

4The data were obtained from Professor John Campbell’s website and are described in more detail in Campbell and Thompson
(2007).

10



4.2 Out-of-sample results

In order to evaluate the OOS performance of the jackknifed estimates, we calculate an OOS R?, defined as

S, (e —i)”
Rpg=1-St=t 1 (8)

t—s (Tt — Tt

where 7 is the fitted value from a predictive regression estimated using data up till time ¢ — 1 and 7; is the
historical average return estimated using all available data up till time ¢ — 1. The out-of-sample forecasts
begin in 1927, at which point high quality monthly CRSP data becomes available, or 20 years after the
first available observation for a given predictor variable, whichever comes later. Thus, s, in equation (8),
represents the length of this initial ‘training-sample’, which is used to obtain the estimates on which the first
round of forecasts is based. Note that the historical average forecast, 7+, is always based on all the data back
to 1872, which preserves its real world advantage. The R g statistic is positive when the conditional forecast
based on the predictive regression outperforms the historical mean. Thus, the out-of-sample R? is positive
when the root mean squared error of the conditional forecast is less than that of the historical mean forecast.
Given that the out-of-sample R? and a comparison of the root mean squared errors yield identical qualitative
results, we focus on the out-of-sample R? since it is measured in comparable units to the in-sample R? and
thus allows for more direct comparison.

In addition to the standard forecasts based on the predictive regression and the historical mean, we also
analyze the effects of imposing some of the forecast restrictions proposed by Campbell and Thompson (2007).
That is, Campbell and Thompson argue that rather than mechanically forecasting stock returns based on the
estimated forecasting equation, it is reasonable to impose the following restrictions: if an estimated coefficient
does not have the expected sign, it is set equal to zero, and if the forecast of the equity premium is negative,
the forecast is set equal to zero. These restrictions rule out some of the perverse results that can otherwise
occur in the rolling regressions that are used in the out-of-sample forecasts.?

Table 5 shows the OOS R2s for the OLS estimator and the jackknifed estimator with m = 2,3, and 4, for
both the restricted forecasts, which impose the Campbell and Thompson restrictions, and the unrestricted
ones. For each predictor, the highest OOS R? is shown in bold type. In general, the results show that the
forecasts based on the jackknifed estimates tend to outperform the ones based on the plain OLS estimates,

although there is no given value of m that consistently produces the highest OOS R%. The jackknifing

50One could consider various ways of implementing the restrictions on the jackknife estimates. Here we take the simplest
approach and set the parameter estimate equal to zero if it has the wrong sign. Alternatively, one could restrict the individual
sub-sample estimates in the jackknife estimator to have the right sign. Since the first approach immediately generalizes to the
case of multiple regressors, unlike the second one which would become complicated to implement for more than one regressor,
we use the first approach. In all cases, the intercepts are calculated to line up with the, potentially restricted, slope coefficient
such that the residuals have mean zero. In the regressions with two predictor variables, each coefficient is restricted separately
and the intercept is again estimated to produce zero mean residuals.
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procedure appears to be somewhat more useful on the monthly, rather than the annual data, in line with the
simulation results above, although the results are somewhat mixed. Qualitatively, the results are similar for
both the unrestricted and restricted forecasts. As might be expected from the full-sample coefficient estimates
in Table 4, where the full-sample jackknifed estimates were drastically different from the OLS estimate, the
advantages of the jackknifing are particularly clear for the book-to-market ratio.

With regards to the choice of m, there is no value that clearly produces the best results. However,
using m = 3 in the restricted forecasts consistently dominates the OLS forecasts in the monthly data and
is close to, or better, in the annual data; only for the smoothed earnings price ratio in the annual data is
there a material difference in favor of the OLS forecasts. In the unrestricted case, there is no m for which
the jackknifed estimates consistently dominate the OLS ones for all predictor variables. This is clearly a
drawback, since, as mentioned before, there are no clear guidelines for choosing m. However, as shown in the
section below, the results become clearer when one considers the implementation of actual portfolio strategies.

In summary, the jackknifed estimator often improves upon the OLS estimator in out-of-sample forecasts.
This seems to be particularly true when one also imposes the forecast restrictions proposed by Campbell and
Thompson (2007), in which case the jackknifed estimator with m = 3 almost completely dominates the OLS

estimator.

4.3 Portfolio strategies

Campbell and Thompson (2007) discuss how the OOS R? can be translated into gains in economic terms for an
investor that attempts to time the market using these predictor variables. However, practical considerations
such as short selling constraints may render such theoretical relationships less accurate; a more reliable
approach to gauging the economic importance of the improvement in out-of-sample forecasts is to directly
simulate a portfolio choice strategy. To keep the calculations tractable, consider an investor with a single-
period investment horizon and mean-variance preferences; that is, in each period the investor myopically
chooses the optimal portfolio based on his quadratic preferences. The investor’s utility function is the
expected excess return minus (v/2) times the portfolio variance, where 7 can be viewed as the coefficient of

relative risk aversion. The weight on the risky asset for this investor is given by

1 E|r
o= (2) (el ). o)
v ) \Var, (re41)
where E; [ry41] and Varg (r¢11) represents the expected value and variance of the excess returns over the

next period, conditional on the information at time ¢. If the investor does not use the predictive regression
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(2), it follows that

o=e=(3) (7). )

where 02 = Var (z;) and 02 = Var (uy). If the investor does use regression (2),

- ()(:52)

The out-of-sample economic gains of the predictive ability of equation (2) are evaluated by comparing the
utilities from an investor who uses the weights in (11) to one who disregards the predictability in returns and
uses the weights in (10).

The weights «a; are calculated using only information available at time ¢. When the predictive regression

is not used, the weights at each time t are estimated by

-()(3)

where 7; is the historical average return estimated using all available data up till time ¢ and 52 is the variance

of returns estimated using a five year rolling window of data; i.e. &2 is estimated using the last five years of

data before time ¢t. The weights based on the predictive regression are given by

- ()(52)

where i and B are the estimates of the intercept and slope coefficient in the predictive regression, using the
data up till time ¢, and Erz is the variance of the residuals, again estimated using a five year rolling window of
data.% In order for the portfolio weights to be compatible with real world constraints, we impose a no short
selling restriction and a maximum of 50% leverage, so that the portfolio weights are restricted to lie between
0 and 150%. Finally, the risk aversion parameter v is set equal to three.

Table 6 reports the welfare benefits from using the weights &y, using either the OLS estimator or the
jackknifed estimators, instead of the weights a;. The utility differences are expressed in terms of expected
annualized returns and can thus be interpreted as the (maximum) management fee that an investor would
be willing to pay a portfolio manager that exploits the predictive ability of equation (2). As in Table 5,
we consider both the forecasts that impose the Campbell and Thompson restrictions and those that do not.

Qualitatively, the results in Table 6 tell the same story as those in Table 5. The portfolio strategies based

6The use of a five-year window to estimate the variance of the (unexpected) returns conforms with the approach taken by
Campbell and Thompson (2007). It can be justified by the fact that it is easier to calculate the variance of returns, as opposed
to the expected value, over shorter time horizons, and there is a large literature that shows that variances change over time.
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on the jackknifed estimates tend to outperform those based on the OLS estimates, and, importantly, offer
welfare gains over the strategies based purely on historical average returns. Again, the jackknifed estimator
appears to work best for the monthly data.

The portfolio results in Table 6 provides even stronger support of the benefit of the jackknifed estimates
than the OOS R?s reported in Table 5. In the monthly data, the results for the OLS portfolio weights are
dominated by the jackknife weights, for any m, in almost all cases. This is true both for the restricted and
unrestricted forecasts. If one were to choose a single m for all predictors, m = 3 would appear to be the best
choice; in the monthly data, it dominates the OLS results in all cases.

Compared to the OLS weights, the utility gains from using the jackknife procedure are relatively large,
often between 50 and 100 basis points. Although this may not sound that large in absolute terms, the gains
from using the predictive regression (with OLS estimates) in the first place, instead of the historical average
return, are typically no larger than 50-60 basis points. In fact, the welfare gains from the OLS weights are
quite often negative, whereas the jackknife weights, especially for m = 3, are almost always positive. The
welfare gains from the jackknife weights are also similar to those reported by Campbell and Thompson (2007)
based on their completely restricted forecasts where the coefficient in the predictive regression is totally pinned
down by theoretical arguments and not estimated at all. The results here thus suggest that improving the
estimation procedures can lead to at least as big an improvement as the imposition of theoretical constraints.
These result also add further evidence to the case that returns are predictable out-of-sample, in contrast to

the conclusions of Goyal and Welch (2003, 2007).

5 Conclusion

A simple bias reducing method, the jackknife, is proposed for predictive regressions of stock returns. Unlike
most previous work on inference in stock return predictability regressions, this paper puts the focus on
obtaining good point estimates rather than correctly sized tests, a task which has become increasingly more
important as the focus in the literature has shifted towards out-of-sample forecasts and practical portfolio
choice based on return forecasts. In addition, the jackknife is a general method that does not rely on specific
assumptions on the data generating process.

Monte Carlo simulations show that the jackknife method works well in finite samples and virtually elim-
inates the bias in OLS estimates of predictive regressions. Most importantly, it also works well on actual
stock returns data, and leads to substantial improvements in out-of-sample forecasts. This is illustrated not
only by purely statistical measures such as out-of-sample R2, but also through simulated portfolio strategies,

which often perform significantly better when the forecasts are based on the jackknifed estimates rather than

14



the OLS ones.
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Figure 1: Density plots for the OLS and jackknife estimates, based on 100,000 simulations for 7" = 100,
p = 0.999 and 6 = —0.99. The graphs shows the kernel density estimates of the bias in the OLS and
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jackknifed estimates, with m = 2,3, and 4. The vertical solid line indicates a zero bias.
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