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1 Introduction

While applications of automatic differentiation have spread across many different

disciplines, they have remained less common in the field of economics.1 Based on

the successes reported in facilitating optimization exercises in other disciplines, we

deployed AD techniques to assist with the estimation of dynamic general equilibrium

(DGE) models. These models are becoming a standard tool that central banks use

to inform monetary policy decisions. However, the estimation of these models is

complicated by the many parameters of interest. Thus, typically, the optimization

method of choice makes use of derivatives. However, the complexity of the models

does not afford a closed-form representation for the likelihood function. Finite-

difference methods have been the standard practice to obtain numerical derivatives

in this context. Using Tapenade (see (Hascoët 2004), (Hascoët, Greborio, and

Pascual 2005), (Hascoët, Pascual, and Dervieux 2005)), we constructed derivatives

for a general formulation of the likelihood function, which takes as essential input

the linear representation of the model’s conditions for an equilibrium.

The programming task was complicated by the fact that the numerical solution

of a DGE model under rational expectations relies on fairly complex algorithms.2

We use Lapack routines for the implementation of the solution algorithm. In turn,

our top Lapack routines make use of a large number of Blas routines. A byproduct of

our project has been the implementation of numerous AD derivatives of the double

precision subset of Blas routines. Table 1 lists the routines involved.

In the remainder of this paper, Section 2 lays out the general structure of a DGE

model and describes our approach to setting up the model’s likelihood function.

1Examples of AD contributions to the computational finance literature are (C. H. Bischof 2002), (M. Giles

2006), (Giles 2007).
2In this paper we focus on the first-order approximation to the solution of a DGE model. Many alternative

approaches have been advanced. We use the algorithm described by (Anderson and Moore 1985) which has the

marked advantage of not relying on complex decompositions.
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Section 3 outlines the step we took to implement the AD derivatives and how we

built confidence in our results. Section 4 gives an example of a DGE model that

we used to construct Monte Carlo experiments to compare maximum-likelihood

estimates that rely, alternatively, on AD or FD derivatives, reported in Section 5.

Section 6 concludes.

2 General Model Description and Estimation Strat-

egy

The class of DGE models that is the focus of this paper take the general form:

H(θ)




EtXt+1

Xt

Xt−1




= 0. (1)

In the equation above, H is a matrix whose entries are a function of the struc-

tural parameter vector θ, while Xt is a vector of the model’s variables (including

the stochastic innovations to the shock processes). The term Et is an expectation

operator, conditional on information available at time t and the model’s structure

as in equation 1. Notice that allowing for only one lead and one lag of Xt in the

above equation implies no loss of generality.

The model’s solution takes the form:

Xt = S(H(θ))Xt−1, (2)

thus, given knowledge of the model’s variables at time t− 1, a solution determines

the model’s variables at time t uniquely. The entries of the matrix S are themselves

functions of the matrix H and, in turn, of the parameter vector θ.

Partitioning Xt such that Xt =




xt

εt


, where εt is a collection of all the inno-

vations to the exogenous shock processes (and possibly rearranging the system) it
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is convenient to rewrite the model’s solution as

xt = A(H(θ))xt−1 + B(H(θ))εt. (3)

Again, the entries in the matrices A and B are fundamentally functions of the

parameter vector θ. Given a subset of the entries in xt as observable, call these

entries yt, the state-space representation of the system takes the form:

xt = A(H(θ))xt−1 + B(H(θ))εt (4)

yt = Cxt (5)

Without loss of generality, we restrict the matrix C to be a selector matrix, which

picks the relevant entries of xt. Using the Kalman Filter recursions, we can express

the likelihood function for the model as:

L = L(A(θ), B(θ), C, yt−h, ..., yt) (6)

where yt−h and yt are respectively the first and last observation points available.

The routines we developed, given an input H(θ), produce the derivative of the

likelihood function with respect to the structural parameters, ∂L
∂θ

, and as an inter-

mediate product, ∂A
∂θ

, the derivative of the model’s reduced-form parameters with

respect to the structural parameters.

3 Implementing AD Derivatives

To obtain AD derivatives of the likelihood function, we used Tapenade in tangent

mode. Tapenade required limited manual intervention on our part. This is re-

markable given that the code to be differentiated consisted of approximately 80

subroutines for a total of over 17,000 lines of code. The derivative-augmented code

produced by Tapenade covers approximately 25,000 lines (the original code has a

size of 554 kilobytes and the differentiated code is 784 kilobytes in size).

Recoding became necessary when the Lapack or Blas routines we called did not

explicitly declare the sizes of the arguments in the calling structure and instead
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allowed for arbitrary sizing (possibly exceeding the storage requirements). A more

limited recoding was required when we encountered the use of “GOTO” statements

in the Fortran 77 code of the Blas library, which Tapenade could not process.

More substantially, two of the decompositions involved in the model solution,

the real Schur decomposition and the singular-value decomposition, are not always

unique. Parametric restrictions of the models we tested could ensure uniqueness

of these decompositions. In those cases, we verified that AD derivatives obtained

through Tapenade satisfied some basic properties of the decompositions that we

derived analytically, but our test failed whenever we relaxed those parametric re-

strictions to allow for more general model specifications

In particular, we relied on the Lapack routine DGEESX to implement the real

Schur decomposition. For a given real matrix E, this decomposition produces a

unitary matrix X, such that T = XHEX is quasitriangular. Given ∂E
∂θ

, we need

that the derivative ∂X
∂θ

satisfy ∂T
∂θ

= ∂XH

∂θ
EX + XH ∂E

∂θ
X + XHE ∂X

∂θ
, where ∂T

∂θ
is

itself quasitriangular. This property failed to be met by our AD derivatives when

our choice of E implied a non-unique Schur decomposition. To obviate this prob-

lem, we substituted the AD derivative for the DGEESX routine with the analytical

derivative of the Schur decomposition as outlined in (Anderson 1987).

Similarly, the singular value decomposition, implemented through the DGESVD

routine in the Lapack library, given a real matrix E, produces unitary matrices

U and V and a diagonal matrix D, such that E = UDV T . Given ∂E
∂θ

, it can be

shown that UT ∂E
∂θ

V = UT ∂U
∂θ

D + ∂D
∂θ

+ D ∂V
∂θ

V , where ∂D
θ

is diagonal and UT ∂U
∂θ

and

∂V
∂θ

V are both antisymmetric. Our AD derivative of the routine DGESVD failed to

satisfy this property when the matrix E had repeated singular values (making the

decomposition non-unique). We substituted our AD derivative with the analytical

derivative derived by (Papadopoulo and Lourakis 2000).

To test the derivative of the likelihood function, we used a two-pronged approach.

For special cases of our model that could be simplified enough as to yield a closed-
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form analytical solution, we computed analytical derivatives and found them in

agreement with our AD derivatives, accounting for numerical imprecision. To test

the derivatives for more complex models that we could not solve analytically, we

relied on comparisons with centered FD derivatives. Generally with a step size of

10−8 we found broad agreement between our AD derivatives and FD derivatives.

Plotting AD and FD side by side, and varying the value at which the derivatives

were evaluated, we noticed that the FD derivatives appeared noisier than the AD

derivatives. We quantify the “noise” we observed in an example below.

4 Example Application

As a first application of our derivatives, we consider a real business cycle model

augmented with sticky prices and sticky wages, as well as several real rigidities,

following the work of (Smets and Wouters 2003). Below, we give a brief description

of the optimization problems solved by agents in the model, which allows us to

interpret the parameters estimated in the Monte Carlo exercises that follow.

There is a continuum of households of measure 1, indexed by h, whose objective

is to maximize a discounted stream of utility according to the following setup:

max
[Ct(h),Wt(h),It(h),Kt+1(h),Bt+1(h)]

Et

∞∑

j=0

βj (U(Ct+j(h), Ct+j−1(h))

+V (Lt+j(h))) + βjλt+j(h) [Πt(h) + Tt+j(h) + (1− τLt)Wt+j(h)Lt+j(h)

+(1− τKt)Rkt+jKt+j(h)− 1

2
ψIPt+j

(It+j(h)− It+j−1(h))2

It+j−1(h)

−Pt+jCt+j(h)− Pt+jIt+j(h)−
∫

s
ψt+j+1,t+jBt+j+1(h) + Bt+j(h)

]

+βjQt+j(h) [(1− δ)Kt+j(h) + It+j(h)−Kt+j+1(h)] .

The utility function depends on consumption Ct(h) and labor supplied Lt(h). The

parameter β is a discount factor for future utility. Households choose streams for

consumption Ct(h), wages Wt(h), investment It(h), capital Kt+1(h) and bond hold-

ings Bt+1(h), subject to the budget constraint, whose Lagrangian multiplier is λt(h),
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capital accumulation equation, whose Lagrangian multiplier is Qt(h), and the la-

bor demand schedule Lt(h) = Lt

(
Wt(h)

Wt

)− 1+θw
θw . Households rent to firms (described

below) both capital, at the rental rate RKt, and labor at the rental rate Wt(h),

subject to labor taxes at the rate τLt and to capital taxes at the rate τKt. There

are quadratic adjustment costs for investment, governed by the parameter ψI , and

capital depreciates at a per-period rate δ. We introduce Calvo-type contracts for

wages following (Erceg, Henderson, and Levin 2000). According to these contracts,

the ability to reset wages for a household h in any period t follows a Poisson dis-

tribution. A household is allowed to reset wages with probability 1 − ξw. If the

wage is not reset, it is updated according to Wt+j(h) = Wt(h)πj (where π is the

steady-state inflation rate), as in (Yun 1996). Finally, Tt(h) and Πt(h) represent,

respectively, net lump-sum transfers from the government and an aliquot share of

the profits of firms.

In the production sector, we have a standard Dixit-Stiglitz setup with nominal

rigidities. Competitive final producers aggregate intermediate products for resale.

Their production function is

Yt =
[∫ 1

0
Yt(f)

1
1+θp

]1+θp

(7)

and from the zero profit condition the price for final goods is

Pt =
[∫ 1

0
Pt(f)

− 1
θp

]−θp

. (8)

where Pt(f) is the price for a unit of output for the intermediate firm f .

Intermediate firms are monopolistically competitive. There is complete mobility

of capital and labor across firms. Their production technology is given by

Yt(f) = AtKt(f)αLd
t (f)1−α. (9)

Intermediate firms take input prices as given. Ld
t (f), which enters the intermediate

firms’ production function, is an aggregate over the skills supplied by each household,
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and takes the form Ld
t (f) =

(∫
h Lt(h)

1
1+θw

)1+θw

. At is the technology level and

evolves according to an autoregressive (AR) process:

At − A = ρA (At−1 − A) + εAt, (10)

where εAt is an iid innovation with standard deviation σA, and A is the steady-state

level for technology. Intermediate firms set their prices Pt(f) according to Calvo-

type contracts with reset probabilities 1− ψP . When prices are not reset, they are

updated according to Pt+jt(f) = Pt(f)πj.

Finally, the government sector sets a nominal risk-free interest rate according to

the reaction function:

it =
π

β
− 1 + γπ(πt − π) + γY (log(Yt)− log(Yt−1) + εit, (11)

where inflation πt ≡ Pt

Pt−1
, and εit is itself an AR process of order 1. For this

process, we denote the AR coefficient with ρi; the stochastic innovation is iid with

standard deviation σi. Notice that, in this setting, households are Ricardian, hence

the time-profile of net lump-sum transfers is not distortionary. We assume that

these transfers are set according to:

τLtWtLt + τKtRKtKt = Gt + Tt. (12)

Labor taxes, τLt, and capital taxes, τKt, follow exogenous AR processes

τLt − τL = ρL (τLt−1 − τL) + εLt, (13)

τKt − τK = ρK (τKt−1 − τK) + εKt, (14)

as does Government spending (expressed as a share of output)

Gt

Yt

− G

Y
= ρG

(
Gt−1

Yt−1

− G

Y

)
+ εGt. (15)

In the equations above, the exogenous innovations εLt, εKt, εGt are iid with standard

deviations σL, σKt, and σG, respectively. The parameters τL, τK , and G
Y

, without a

time subscript, denote steady-state levels.
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The calibration strategy follows (Erceg, Guerrieri, and Gust 2005) and parameter

values are reported in Table 2. By linearizing the necessary conditions for the

solution of the model, we can express them in the format of Equation (1).

5 Monte Carlo Results

Using the model described in Section 4 as the data-generating process, we set

up a Monte Carlo experiment to compare maximum-likelihood estimates obtained

through two different optimization methods. One of the methods relies on our

AD derivative of the model’s likelihood function. The alternative method, uses a

two-point, centered, finite-difference approximation to the derivative.

In setting up the likelihood function, we limit our choices for the observed vari-

ables in the vector yt of equation (5) to four series, namely: growth rate of output

log(Yt)− log(Yt−1), price inflation πt, wage inflation ωt ≡ Wt

Wt−1
, and the policy inter-

est rate it. For each Monte Carlo sample, we generate 200 observations, equivalent

to 50 years of data given our quarterly calibration, a sample length often used in

empirical studies. We attempt to estimate the parameters ρi, σi, governing the

exogenous shock process for the interest rate reaction function; ψP , ψW , the Calvo

contract parameters for wages and prices; and γπ, and γY the weights in the mone-

tary policy reaction function for inflation and activity. In the estimation exercises,

we kept the remaining parameters at their values in the data-generating process as

detailed in Table 2. We considered 1,000 Monte Carlo samples.3 The two exper-

iments described below differ only insofar as we chose two different initialization

points for the optimization routines we used to maximize the likelihood function.

Figure 1 shows the sampling distribution for the parameter estimates from our

3Our maximum-likelihood estimates were constructed using the MATLAB optimization routine FMINUNC.

When the optional argument “LargeScale” is set to “OFF”, this routine uses a limited memory quasi-Newton

conjugate gradient method, which takes as input first derivatives of the objective function, or an acceptable FD

approximation.
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Monte Carlo exercise when we initialize the optimization routine at the true param-

eter values used in the data-generating process. The black bars in the various panels

denote the estimates that rely on AD derivatives, while the white bars denote the

estimates obtained with FD derivatives. The optimization algorithm converged for

all of the 1,000 Monte Carlo samples.4 We verified that the optimization routine did

move away from the initial point towards higher likelihood values, so that cluster-

ing of the estimates around the truth do not merely reflect the initialization point.

For our experiment, the figure makes clear that when the optimization algorithm is

initiated at the true value for the parameters of interest, reliance on FD derivatives

minimally affects the maximum-likelihood estimates for those parameters.5

Of course, the true value of the parameters do not necessarily coincide with the

ML parameter estimates for small samples. Yet, it is unrealistic to assume that a

researcher would happen on such good starting values. Figure 2 reports the sampling

distribution of estimates obtained when we initialize the optimization algorithm at

arbitrary values for the parameters being estimated, away from their true values. For

the estimates reported in Figure 2, we chose ρi = 0.6, σi = 0.4, ψP = .5, ψW = 0.5,

γπ = 3, γY = 0.15. The bars in Figure 2 show the frequency of estimates in a

given range as a percentage of the 1,000 experiments we performed. We excluded

results for which our optimization algorithm failed to converge. The figure makes

clear that the convergence rate is much higher when using AD derivatives (47.2%

instead of 28.3% for FD derivatives). Moreover, it is also remarkable that the

higher convergence rate is not accompanied by a deterioration of the estimates (the

4For our MATLAB optimization routine, we set the convergence criterion to require a change in the objective

function smaller than to 10−4, implying 6 significant figures for our specific likelihood function. This choice

seemed appropriate given the limited precision of observed series in practical applications.
5We experimented with a broad set of Monte Carlo experiments by varying the choice of estimation param-

eters, so as to encompass the near totality of parameters in the calibration table, or so as to study individual

parameters in isolation. We found results broadly in line with the particular Monte Carlo experiments we are

reporting below. Our results also appear robust to broad variation in the calibration choice.
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increased height of the black bars in the figure is proportional to that of the white

bars).

To quantify the difference between AD and FD derivatives of the likelihood

function for one of our samples, we varied the parameters we estimated one at a

time. Figure 3 shows the percentage difference in the magnitude of the AD and

FD derivatives for ρi and σi. We discretized the ranges shown using a grid of

1,000 equally spaced points. The differences are generally small percentage-wise,

although, on occasion, they spike up, or creep up as we move away from the true

value, as in the case of σi. For the other parameters we estimated, we did not observe

differences in the magnitudes of the AD and FD derivatives larger than 10−4 over

ranges consistent with the existence of a rational expectations equilibrium for our

model.

6 Conclusion

Given that the approximation error for a first derivative of the likelihood function

of a DGE model computed through FD methods depends on the size of the second

derivative, which itself is subject to approximation error, we view having an inde-

pendent check in the form of automatic derivatives as a major contribution of our

work. As an example application, we showed that AD derivatives can facilitate the

computation of maximum-likelihood estimates for the parameters of a DGE model.
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Table 1: List of library functions

Blas Functions

daxpy.f dcopy.f ddot.f dgemm.f dgemv.f dger.f dnrm2.f drot.f

dscal.f dswap.f dtrmm.f dtrmv.f dtrsm.f

Lapack Functions

dgebak.f dgebal.f dgeesx.f dgehd2.f dgehrd.f dgeqp3.f dgeqr2.f dgeqrf.f

dgesv.f dgetf2.f dgetrf.f dgetrs.f dhseqr.f dlacn2.f dlacpy.f dladiv.f

dlaexc.f dlahqr.f dlahr2.f dlaln2.f dlange.f dlanv2.f dlapy2.f dlaqp2.f

dlaqps.f dlaqr0.f dlaqr1.f dlaqr2.f dlaqr3.f dlaqr4.f dlaqr5.f dlarfb.f

dlarf.f dlarfg.f dlarft.f dlarfx.f dlartg.f dlascl.f dlaset.f dlassq.f

dlaswp.f dlasy2.f dorg2r.f dorghr.f dorgqr.f dorm2r.f dormqr.f dtrexc.f

dtrsen.f dtrsyl.f dtrtrs.f
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Table 2: Calibration

Parameter Used to Determine Parameter Used to Determine

Parameters governing households’ and firms’ behavior

β = 0.997 discount factor φI = 3 investment adj. cost

τL = 0.28 steady state labor tax rate τK = 0 steady state capital tax rate

ψP = 0.75 Calvo price parameter ψW = 0.75 Calvo wage parameter

δ = 0.025 depreciation rate

Monetary Policy Reaction Function

γπ = 1.5 inflation weight γY = 0.5 output weight

Exogenous Processes

AR(1) Coefficient Standard Deviation

ρL = 0.98 labor tax rate σL = 3.88 labor tax rate innovation

ρK = 0.97 capital tax rate σK = 0.80 capital tax innovation

ρG = 0.98 govt spending σG = 0.30 govt spending innovation

ρi = 0.95 monetary policy σi = 0.11 monetary policy innovation

ρA = 0.95 technology σA = 0.94 labor tax innovation
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Figure 1: Sampling Distribution of Parameter Estimates; the Initial Guesses Coincided with

the True Values in the Data-Generating Process.
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Figure 2: Sampling Distribution of Parameter Estimates; the Initial Guesses Did Not Coincide

with the True Values in the Data-Generating Process.
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