

U.S. DEPARTMENT OF ENERGY
OFFICE OF FOSSIL ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY

CONTACTS

Abbie Layne

Director - Separations and Fuels Processing Division National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4603 abbie.layne@netl.doe.gov

George Richards

Focus Area Leader
National Energy Technology
Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507
304-285-4458
george.richards@netl.doe.gov

Sean Plasynski

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

SOLID SORBENTS FOR CO₂ CAPTURE FROM POWERPLANT EXHAUST STREAMS

Background

Current commercial CO₂ capture technology (e.g., gas absorption by solutions of carbonates and alkanolamines) is expensive and energy intensive. It is important to develop low-cost processes that utilize materials with high CO₂ adsorption capacity, high selectivity for CO₂, high diffusivity, high rates of adsorption, and high rates of regenerability.

Primary Project Goal

The primary goal of this research project is to develop regenerable sorbents that can capture CO₂ from coal combustion systems and are superior to existing commercial technologies.

Objectives

The major objective of this work is to develop solid regenerable sorbents that have high rates, high selectivity, high regenerablity, and high adsorption capacity for postcombustion CO₂ capture in suitable conditions. Specific objectives include:

- Develop sorbents for various reactor designs.
- Evaluate the feasibility of sorbent preparation in commercial-scale units and bench-scale reactor tests.
- Develop regeneration schemes to obtain a concentrated CO₂ stream.
- Optimize the sorbent formulation to improve sorbent performance.
- Conduct long-term tests to determine the chemical and physical stability of the sorbents.
- Study the effect of trace contaminants on the sorbent performance.
- Test the sorbent in a pilot-scale reactor unit.

NETL CO₂ sorbent extrudates prepared at a commercial facility (Süd-Chemie Inc.)

PARTNERS

Süd-Chemie Inc. (Louisville, KY) Georgia Instute of Technology

ADDRESS

National Energy Technology Laboratory

1450 Queen Avenue SW Albany, OR 97321-2198 541-967-5892

2175 University Avenue South Suite 201 Fairbanks, AK 99709 907-452-2559

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4764

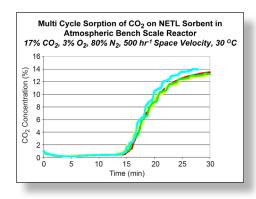
626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687

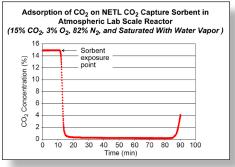
One West Third Street, Suite 1400 Tulsa, OK 74103-3519 918-699-2000

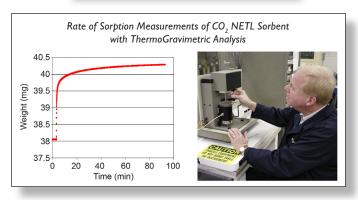
CUSTOMER SERVICE

1-800-553-7681

WEBSITE


www.netl.doe.gov


Accomplishments


During the project, solid sorbents suitable for CO₂ capture from coal combustion gas streams were developed. Different types of sorbents are being evaluated for use. In one approach, liquid impregnated solid sorbents that capture CO₂ in the presence of water vapor at temperatures from 30–60 °C have been developed. In another approach, amines compounds capable of capturing CO₂ have been attached to various substrates, and the capture capacity for CO₂ has been measured in laboratory experiments. The sorbents showed better CO₂ capture capacities and lower regeneration temperatures than the conventional amine-based liquid solvent scrubbing process. A largescale preparation of one of the sorbents at a commercial company was conducted successfully, and the sorbent showed promising results during bench-scale flow reactor tests with simulated coal combustion gas streams. The sorbent has CO₂ removal efficiency of 99% with good removal capacity. Continuing studies are quantifying how the sorbents perform in simulated operating cycles for both absorption and regeneration, with the goal of optimizing the sorbent performance for specific reactor configurations. A separate NETL study is evaluating the options for designing a reactor to use these sorbents in an actual reactor configuration.

Benefits

The majority of coal combustion power plants do not capture CO_2 and the current adaptable commercial processes are very expensive. Development of a cost-effective CO_2 technology is necessary to achieve the President's Global Climate Change Initiative with minimal increase in the cost of electricity from coal.

