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ABSTRACT

The mean circulation in large lakes is nearly nondivergent in character. This paper takes advantage of
this fact to represent the flow field in terms of the transport streamfunction. The horizontal velocity vec-
tor (v) and the vertical component of vorticity are then givenby v = k X H™'Vyand { = V-H'Vis, where
¥ is the transport streamfunction, V the horizontal gradient, and H = H(x, y) the equilibrium depth of
the lake. If the vorticity field {(x, y) is known, ¢ can be determined from the above inhomogeneous
equation with H~'y = 0 on the boundary. The current vector is then obtained from the other equation. In
practice, however, currents are measured and not vorticity. Therefore, the proposed objective analysis
procedure expands the transport streamfunction in terms of the eigenvectors of the self-adjoint problem
V-H™ 'V, = pp, with H1, = 0 on the boundary. The eigenvalues u, and eigenvectors i, are character-
istic of the particular lake and are determined numerically by a Lanczos procedure. The expansion coeffi-
cients are determined by minimizing the squared error between the calculated v field and available cur-
rent meter data. Since the y, functions for the entire domain of the basin are known, the currents can be
reconstructed at any point. This method has been applied to data gathered in Lake Ontario during the

winter months of 1972-73 as part of the International Field Year for the Great Lakes (IFYGL).

1. Introduction

The development and use of methods to analyze
data objectively is a fundamental practice in geo-
physical sciences. Objective analysis in the present
context is a systematic procedure that makes it pos-
sible to extrapolate data gathered at irregular inter-
vals (in space or time) onto regularly spaced grid
points. Objective analysis techniques eliminate the
personal biases involved in subjective analysis, help
to minimize the effect of instrument errors and
remedy sampling limitations.

In meteorology, various methods of objective
analysis have been used. The reader may refer to
Gandin (1965) for a comprehensive review. A com-
mon method is to use weighting factors that are
inversely dependent on the distance of a grid point
from a set of observations within a region of in-
fluence (Cressman, 1959). Other methods of objec-
tive analysis for irregularly spaced data use empiri-
cal orthogonal functions derived from covariance
analysis of data sets (Lorenz, 1956) or orthogonal
polynomials generated by the Gram-Schmidt pro-
cedure (see e.g., Jalickee ef al., 1974). Even though
some of the above techniques are amenable to
extensions in three- and even four-dimensional
analyses, they are restricted to scalar fields.

! GLERL Contribution No. 215.
2 Present affiliation: Laboratory for Atmospheric Sciences,
Goddard Space Flight Center, Greenbelt, MD 20771.

Objective analysis of vector wind fields has been
developed in meteorology for tropical circulation
patterns (Hawkins and Rosenthal, 1965), for initiali-
zation of numerical models (Brown and Neilon,
1961) and to take account of mesoscale orographic
effects in the wind field (Liu and Goodin, 1976).
Schwab (1977) developed a simple scheme for
analyzing current meter data in Lake Ontario that
was based on the Hawkins and Rosenthal (1965)
method for winds. The iterative method he devel-
oped, however, is not completely objective in that
the results depend on the choice of certain param-
eters for the initial guess at the interpolated current
field and the region of influence of each data point.

The method we propose uses orthogonal functions
that are characteristic for a given basin and permits
a completely objective analysis of vector current
fields. These orthogonal functions correspond to
streamfunction modes determined by the topography
of the basin. The set of streamfunction modes are
orthogonal over regularly spaced grid points. In us-
ing them for analysis of irregularly spaced data
points, one can generate a set of Gram-Schmidt type
orthogonal functions from the streamfunction modes
so that orthogonality at irregular points is satisfied.
We have, however, used an alternative procedure in
which the data are represented as a series in the
streamfunction modes and the coefficients of expan-
sion are directly determined to satisfy least-square-
error requirements through matrix inversion tech-
niques. The advantage of this procedure is that new
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sets of Gram-Schmidt functions need not be gener-
ated each time there is a change in the spatial dis-
tribution of the observation points.

In the following sections we present a discussion
of the basis for the objective analysis technique,
comparison of the results from spectral and finite
difference methods for the steady-state circulation
patterns in Lake Ontario, application of the objec-
tive analysis technique to data taken from theoretical
simulations and finally the application to real data
to examine monthly mean circulation patterns in Lake
Ontario during the fall to winter period. During this
period the lake is nearly homogeneous and the cur-
rents are uniform throughout the depth of the lake.
Even though such a condition is not a prerequisite
for the application of the proposed objective analysis
technique, as will be pointed out later, it offers a

convenient simplification in this initial attempt to

evaluate the results.

2. Method of analysis

In common with the properties of large-scale flows
in the atmosphere and oceans, the large-scale hori-
zontal currents in a lake are also nearly non-diver-
gent. Hence, the rotational component of the currents
is dominant over the divergent component. If we
represent the transport streamfunction by ¢, then
the rotational part of the current is given by

v=H% x Vy, Q2.1
and the vertical component of vorticity is given by
{=k'VXv=VHVY, 2.2)

where V is the horizontal gradient operator, H
= H(x, y) is the equilibrium depth of the lake and k
the vertical unit vector. If the vorticity field ¢(x, y)
is given, Eq. (2.2) represents an inhomogeneous
elliptic equation. In the context of closed water
bodies such as the Great Lakes, the requirement
for a vanishing normal component of the transport
on the boundaries yields the condition that

H~% = 0 on the boundary.

Hence, if the { field is available from observations
at a certain number of points, one can objectively
analyze the scalar { field inside the domain of the
lake with standard techniques and then solve for the
transport streamfunction ¢ from Eqs. (2.2) and (2.3).

The vector current field is then recovered from .

Eq. (2.1) by use of the computed streamfunction
field y«(x, y). This is the essence of the procedure
followed by Schwab (1977) in his objective analysis
of Lake Ontario’s November mean circulation.
Vorticity, however, is not measured directly. It has
to be obtained by differentiating the current meter
data, which is an undesirable feature.

The objective analysis procedure described below
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is a more rigorous one and takes advantage of
specially constructed orthogonal functions that are
specific to a given basin. These orthogonal func-
tions are characteristic solutions associated with
the elliptic operator in Eq. (2.2); i.e., they represent
the solutions of the eigenvalue problem

V'H_IVlllu = —Mad’u
H~ %, = 0 on the boundary

Eq. (2.3) represents a self-adjoint problem. Conse-
quently, the characteristic values u, are real. The
characteristic functions ¢, form an orthogonal and
hence a complete set. The scalar index « is used to
order the functions ¢, in some manner. In view of the
completeness of the functions ys,, they can be used as
a basis to represent any arbitrary streamfunction
field v,

(2.3

=3 ol (2.4)
If the orthonormality condition for s, functions is
chosen as pu, [ Y gdA = 8,5, where 8, is the
Kronecker delta, the expansion coefficients a, are
given by

R [wadA, (2.5)

where the integration is performed over the area of
the basin. When the sum on the right-side of Eq.
(2.4) spans the complete spectrum of the elliptic
operator in Eq. (2.3), Eq. (2.4) represents a least-
square approximation to {s with the usual restrictions
as to quadratic integrability and continuity of ¢ and
its derivatives. ’

The streamfunction ¢ in Eq. (2.4) determines the
transport field in the lake under consideration. The
convergence of the series depends on the expansion
coefficients a,. Since the Great Lakes are essentially
barotropic from late fall through winter, baroclinic
effects are negligible and the forcing function gener-
ating the transports is mainly the atmospheric wind
stress. The resulting circulation is governed by the
nature of the wind stress and topographic properties
of the basin. In the spectral representation given
in Eq. (2.4), the basin properties are accounted for
by the spectral functions i,. The wind stress prop-
erties then determine the expansion coefficients a,.
The Kkinetic energy associated with the currents is
given by

KE =

v [Hv-vdA =1 % a,’

Hence, the distribution of energy among the modes
is determined by the wind stress characteristics. The
energetically dominant spectral functions change
with different winds. Consequently, the choice of
spectral functions to be included in the representa-
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tion of Eq. (2.4) is an important aspect determining
the rate of convergence of the series—a question
that will be considered later.

In this investigation, we have applied the objec-
tive analysis technique to current meter data ob-
tained during the IFYGL (International Field Year
for the Great Lakes—a program conducted during
the International Hydrological Decade) experiment
of 1972-73. In particular, we examined the mean
circulation patterns in Lake Ontario on a monthly
basis during November 1972-March 1973. Gener-
ally, the lakes exhibit mean circulation patterns on
a seasonal cycle due to the variability in the associ-
ated atmospheric forcing. Within each season, there
are high frequency variabilities in the atmospheric
forcing caused by the storm cycles (typically with
5-7 day periods). The transient effects produced by
storms in the circulation patterns are complicated.
Even though these effects are important in them-
selves, the mean circulation resulting from the im-
pact of several storms over a given period of time
is also of practical importance. Pickett (1977) has
chosen one month as a reasonable averaging period
to define a mean circulation that is unaffected by
transient effects. His analysis revealed that there
appear to be significant changes in the mean circula-
tion patterns between different months, which must
be related to the corresponding differences in the
pattern of atmospheric forcing. In studying these
mean circulations, Pickett used a combination of
subjective analysis and results from a numerical
steady-state circulation model. We have reanalyzed
the data using the present objective analysis pro-
cedure.

As mentioned earlier, the choice of the appropri-
ate spectral functions is important in ensuring a rapid
convergence of the series (2.4). Since there is no
a priori basis on which such a selection can be made,
it is necessary to simulate steady-state circulation
patterns for typical wind fields by solving the
dynamical equations in the spectral domain. Then
the most energetic spectral functions can be tabu-
lated as a function of wind direction for future use.

a. Steady-state spectral model

The dynamical equations governing the steady-
state circulation of a homogeneous lake are

Sk XM= —gHVy — AH M + p~'7
VM=90

In the above equations, M is the transport vector

0
[ vdz.
-H

The free surface fluctuation is represented by » and
7 is the wind stress vector. In Eq. (2.6), the bottom

(2.6)

M =
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friction is assumed to depend linearly on the trans-
port M and inversely on the depth H. The constant
coefficient A is equal to ¢, where cj is the drag
coefficient and » is some constant mean current
value. The constant of gravitational acceleration is
represented by g and f is the Coriolis parameter.
In view of the continuity equation, the transport
field can be defined in terms of a streamfunction

M =k X Vy.
The vertical component of vorticity is given by
{=k'VXH = V-H V.

The dynamical equation governing the vorticity
field obtained from the first equation of (2.6) may
be shown to be

V-H-'Vy — H2VH-Vy + fF(NH)J(H, §)
= A\Uk-V X p7lr — H'p~'rk x VH). (2.7)

In Eq. (2.7), J represents the Jacobian operator.
This equation shows that circulation is governed by
two distinct forcing terms. One is due to the curl of
the wind stress and is usually negligible for water
bodies of the size of the Great Lakes. The second
term is due to the interaction between wind stress
and bottom slope. It is the latter term that is domi-
nant in determining the circulations in the Great
Lakes (see Pickett and Rao, 1977).

Eq. (2.7) has been solved by finite-difference
relaxation methods, for example, by Rao and
Murty (1970), to examine the circulation patterns in
Lake Ontario. We now attempt to solve the vorticity
equation by using a spectral expansion procedure.
Such methods have been commonly used in mete-
orology, for example, by Baer and Platzman (1961)
and Kasahara (1977). Substitute the expansion (2.4)
into Eq. (2.7) and use the orthogonality condition
of the s, functions. The result is

—Adq + 2 bﬂBaB = Da> (28)

B
where the inhomogeneous term P, is given by

Do = \7! J(k-v X p~lr — H'p~'v-k X VH)dA.
The coefficients b,z are coupling coefficients
given by

bog = fH-*wutrlfﬂH, ¥e)

~ H'VH -Vy;ldA. (2.10)

If the wind stress = and the depth H are constants,
the coefficients p, and b, are zero. Hence all values
for a, are zero, indicating that there is no vertically
integrated circulation in a basin of uniform depth
under the influence of uniform wind stress. In this
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case, the wind stress is simply balanced by a free
surface slope. In the case of the Great Lakes, = may
be taken to be uniform, as mentioned earlier, and the
circulation features are governed primarily by the
topographic characteristics of the basin. Eq. (2.8)
leads to a matrix equation .

(I + B)a = p, 2.11)

where | is the identity matrix. The elements of
matrix B are ’
B = |byg]

and a and p are column vectors with elements
a = col(a,), p = col(py).

The matrix equation (2.11) can be solved by standard
matrix inversion methods. The coupling elements
b.s are calculated from finite-difference approxima-
tions to Eq. (2.10).

b. Calculation of the spectral functions

The characteristic value problem (2.3) can be
solved directly by representing the continuous dif-
ferential operator in a discrete finite-difference form
- on a grid covering any lake. The depth can be pre-
scribed from a bathymetric chart of the lake. The
size of the resulting matrix is proportional to the
number of grid squares. Hence, if a small grid size
is chosen in order to resolve the topographic effects
accurately, the matrix size will be very large. Even
though the matrix is banded in structure, it lacks
any symmetric properties and consequently must be
stored in the computer to solve for the character-
istic values and the functions. Hence, an alternative
procedure is used for determining the solutions of
Eq. (2.3). This procedure is called the Lanczos
procedure. [See Platzman (1975) for a complete dis-
cussion.] The procedure consists of first expanding
P, in terms of a set of functions W, that satisfy
the same boundary conditions as ,,

ba= S @5, 2.12)

=1

The W; functions represent an orthonormal set over
the area of the basin, i.e., ,

IWledA = 81']'.

The specification of W; functions will be considered
later. Substitute the expansion (2.12) into Eq. (2.3),
multiply by W, and integrate over the area of the
basin. The result, on using the orthonormality con-
dition, is
z rijq;" = “’uq?a i = 1, 2’ se vy (213)
J .

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 11
where the coefficients r;; are given by
ri; = J WiV'H_IVWjdA.

Eq. (2.13) can be expressed in a matrix form as
Rg® = u.q°%, (2.14)

which represents a standard matrix eigenvalue prob-
lem. In Eq. (2.14), the elements of R are |ri,-T and
the elements of q* are |g¢|.

In the Lanczos procedure, the W, functions are
chosen so as to make the matrix R a symmetric
tridiagonal matrix. Special numerical procedures
that involve storing only the main diagonal and the
first off-diagonal elements in the computer can then
be used to compute the eigenvalues and vectors. In
order to make R a symmetric tridiagonal matrix, let

v, = J W,V -H-1VW,dA
Wi = (V-H'V — ) W:'/; ;Wi (2.15)
Oiy = ([ WjHWJ'“dA)

Wi = Wini/0544

Given a normalized W,, Eqs. (2.15) represent a re-
cursion relation for W;, v; and 6;. The function W,
is chosen so as to satisfy the necessary boundary
condition on i,. In addition, W, is assumed to be
zero in the above equations. We now have [from
Eqgs. (2.19)] :

V-HI'VW; = y;W; + 6, Wiy + 6,W;_,. (2.16)

Mutltiplication by W, and integration over the area
of the basin yields

J leH_IVW]dA =%; I W,WjdA

+ 044 j W,W;.,dA + 6 J W, W,_dA.
Hence, the diagonal elements of R are given by
| Py = I WV-H'VW,dA = v,
The first off-diagonal element is
Fiie1 = Fj—1,j = J W;o.V-H'VW,dA = 6;.

Thus, the matrix is symmetric and tridiagonal since
all other r;;’s are zero.

The Lanczos procedure to obtain the solutions for
problem (2.3) then consists of (1) selecting a trial
function W,, (2) recursively applying the relations in
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(b)

Y

F1G. 1. Structures of four of the basic streamfunction modes used in the ob-
jective analysis. Dashed lines indicate negative values and solid lines posi-
tive values.
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Spectral method
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FiG. 2. Steady-state circulation in Lake Ontario using spectral expansion
procedure (top panel) and finite-difference relaxation procedure (bottom panel)

for a southwesterly wind stress.

Eq. (2.15) to generate v;, 6; and W;, (3) solving for
the eigenvalues u, and eigenvectors g® and (4) con-
structing the spectral functions s, from Eq. (2.12).
These computations are done with central differ-
ences for the gradient operator and summations for
the integrals. Even though all W, functions are
orthogonal in theory, truncation errors creep into
the calculations after a certain number of itera-
tions, resulting in a W, ; function that is no longer
orthogonal to a W, function. The value for n gener-
ally is dependent on the length of W;. The W, func-
tions, nevertheless, do exhibit orthogonality in a
“‘local’’ sense such that any W, function is orthogonal
to all other W,; functions in the range W, ,, to
Wirne(i = n), and this local orthogonality is found
to be sufficient to determine several of the lowest
eigenvalues and vectors (Platzman, 1975).

c. Spectral functions for Lake Ontario

The S km grid employed by Rao and Murty (1970)
was used to calculate the spectral functions for Lake

Ontario. The grid has a total of 647 squares. In

starting the Lanczos procedure, the trial function
W, is made proportional to the depth of the lake.
The calculated spectral functions , are ordered
sequentially with respect to decreasing values of the
parameter u,. As an illustration, Fig. 1a-1d shows
the structures of the functions s, s, ¥, g, respec-
tively, corresponding to characteristic values u,,
Moy pa and pg (g < po < pg < pg). The first func-
tion (y,) consists of a single gyre. The streamfunc-
tion mode s, consists of two counterrotating gyres,
one in the eastern and the other in the western part
of the lake. A nodal line, oriented in the north-south
direction and located in the eastern part of the lake,
separates these gyres. The streamfunction mode s,
has four gyres with three north-south oriented nodal
lines separating the gyres. Finally, the streamfunc-
tion iz essentially shows two gyres. In contrast
to the gyres of i, these gyres are elongated in the
east-west (longitudinal) direction. A nodal line
oriented in the longitudinal direction separates the
northern and southern gyres of this mode. We have
computed 25 of these characteristic values and func-
tions for use in the simulation of steady-state circula-
tions and objective analysis.
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TABLE 1. Energy of the spectral modes for
a southwest wind stress.

Percent

Spectral function of total Cumulative
number _ energy percentage

8 23.6 23.6

4 19.2 42.8

2 12.6 55.4

16 7.8 63.2

12 6.1 69.3

3 4.7 74.0

6 4.7 78.7

22 4.0 82.7

13 38 86.5

d. Steady-state circulation in Lake Ontario

During fall and winter, the monthly mean winds
over Lake Ontario are primarily from the west, but
exhibit a directional variation that ranges between
the northwest and southwest sectors, with an oc-
casional shift to the northeast sector. It is necéssary
to examine steady-state circulation patterns in re-
sponse to wind stress applied from different compass
directions in order to determine the most energetic
spectral components. Fig. 2 shows, as an example,
the steady-state circulation for a southwesterly
wind stress obtained from the spectral expansion
method using 25 functions (top panel) and that ob-
tained by a relaxation method applied to the finite-
difference equations resulting from Eq. (2.7) (bottom
panel). The coefficient of friction in both these cal-
culations is taken to be A = 5 x 1072 cm s~ It is
seen that the agreement between the two methods
is good. The circulation is characterized by two
gyres. A large anticyclonic gyre occupies the north-
western part of the Lake Ontario basin. A nodal line
stretching down the middle of the lake separates this
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anticyclonic gyre from a more narrow cyclonic gyre
in the southeastern part of the lake. The sense of
flow is such that along the north and south shores
the flow is in the direction of the wind, while in the
middle of the lake there is a return flow against the
wind in response to the longitudinal pressure
gradient produced by the wind. It is found that as
the friction value is reduced, a larger number of
spectral functions is required to obtain a closer
agreement between the finite difference and spectral
procedures. This, of course, is a consequence of the
fact that the finite-difference model has a higher
degree of resolution than the spectral one. The higher
harmonics in the spectral model are less damped in
the low-friction case, thereby requiring more func-
tions in the expansion. However, several of the most
energetic modes remain the same over a wide range
of friction values.

Table 1 shows the convergence of the spectral
series in terms of total kinetic energy. In this table,
the spectral components are arranged in descending
order according to their contribution to the total
energy. The series converges fairly rapidly as seen
from the fact that the nine most energetic functions
account for almost 90% of the total energy. By
carrying out similar computations with other wind
directions, the most important modes governing the
circulation are obtained and tabulated for future use.

3. Objective analysis procedure

If the streamfunction for the lake’s circulation is
represented spectrally by Eq. (2.4), the transport
field can be written as

M= 3 ak X Vi, 3.1

a=1

The spectral series has been truncated at » modes and

§ X 1010 cm3 sec-1
SW wind
Steady state

—

10 cmsec™1

Fic. 3. Circulation pattern given by the objective analysis of currents
taken at nine selected locations from the theoretical spectral circulation
model (top panel of Fig. 2). In this and the following figures, the arrows
indicate the direction and magnitude of the currents at the selected locations.
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TABLE 2. Monthly mean wind statistics for Lake Ontario.
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Average speed Direction
Month (m s™) (deg) .
Nov 1972 4.9 43
Dec 1972 43 241
Jan 1973 4.7 255
Feb 1973 4.3 215
4.2 150

Mar 1973

the n expansion coefficients ¢, are unknowns and
need to be determined from the data. Now the east-
west and north-south components of the transport,
M; and N;, respectively, can be computed at each
station for which current data is available. In Lake
Ontaric the currents were measured at either 15 or
16 m depth and at 75 m depth at each station. Since
the data do not show any significant vertical shear in
the currents, the transport at each station is taken
to be the product of the mean current and the total
depth at the station. Let Vi, represent the gra-
dient of streamfunction mode « at station i. Then
Eq. (3.1) becomes

Mi=3 dk X Voo i=1,2,...m. (3.2)

a=1

The two algebraic equations represented by Eq.
(3.2) can be written for each of the m data stations,
resulting in 2m equations in n unknowns. Ifn = 2m,
a set of 2m equations in as many unknowns are
obtained. The expansion coefficients a, determined
from the 2m equations would exactly fit the data
at the observation stations leading to a zero rms
error. In general, however, it is preferable to take
n < 2m so that there are fewer unknowns than equa-
tions (an overdetermined system) and determine the
coefficients a, in a least-squares sense. That is, since
Eq. (3.2) cannot be satisfied exactly, we try to mini-
mize the rms error, which is defined as

E=[m™ § M, - i ak X Vipo| 112, (3.3)

i=1 a=1

where M; = (M;, N;) are the observed data. For
convenience, represent the scalar components (M;,

TABLE 3. Optimum spectral functions (y,) to yield minimum rms
error for various months.

Minimum error

Month Functions (values of a) - (cm s™%)
Nov 4,8,22,1,2,24 0.45
Dec 8,4,22,2,1,24,6, 12, 14 0.41
Jan 8,4,22,2,1,24,12,6, 20 0.38
Feb 4,8,2,22,1,24,6 v 0.47
Mar 8,22,4,2,24,12,20, 1,25 0.48

VoLuME 11

TABLE 4. Root-mean-square errors in the currents resulting
from objective analysis (cm s™).

Months
rms error of

objective analysis Nov Dec Jan Feb Mar
At data points from

observation 2,68 144 243 211 252
At data points from

simulation 1.89 0.26 038 053 0.76
Over the entire lake

from simulation 1.97 1.67 2.27 1.43 1.90
Standard deviation of

observed speed 670 3.86 7.19 470 4.53

N;) of the transport vector by a column vector of
length 2m X 1.

M=col(M,,M,,.. . M,, N, No, ..
Eq. (3.2) can be written as
M = Ba,

where B is a rectangular matrix of dimensions (2m
X n) with coefficients

. Np).

O
B:)blalz———g}l—;a’ i=1,2,...m
a=1,2,. n
.=_6_a¢_""_°‘, i=m+1m+2,...2m
X
a=1,2,...n

and a is the column vector of lengthn X 1, i.e.,

. ay,).

The usual procedure of determining the coefficients
a, to minimize the mean-square error given by Eq.
(3.3) leads to the solution

a = (B"B)"'B™,

where BT is the transpose of B.

a = col(ay, a,, . .

3.9

a. Application to theoretical data

Before applying the above procedure to real data,
an analysis of currents taken from the theoretical
spectral model shown in Fig. 2 was done in order to
test the performance. Transports were taken at the
nine grid points closest to current meter stations.
Locations of these stations and the magnitudes of the
currents are shown in Fig. 3. The nine most energetic
spectral functions, which are given in Table 1, are
used to compute the objectively analyzed transport
field. The result is shown in Fig. 3 in terms of the
transport streamfunction. A comparison of the cir-
culation patterns in Figs. 2 and 3 shows that the
objective analysis method does indeed give a very
good representation of the true circulation. The mag-



May 1981

DESIRAJU B. RAO AND DAVID J.

747

SCHWAB

¥ % 10" cm3 sec—1
November

—_—

10 cm sec—1

F1G. 4. Circulation of Lake Ontario as given by the objective analysis
of observed mean currents for November 1972.

nitudes of the currents and the locations of the
gyres are well reproduced. The pattern in Fig. 3 is
smoother than the theoretical solution since fewer
functions are used in the representation. The rms
error between the computed and theoretical currents
for the total grid field is 1.47 cm s~! and the standard
deviation of the theoretical currents is 3.42 cm s~1.

b. Application to real data

As mentioned earlier, the present objective analy-
sis method is applied to the monthly mean currents
in Lake Ontario for the months of November-
December 1972 and of January, February and
March 1973 as presented by Pickett (1977). The data
for May 1972 were not used because many of the
current meter records are incomplete. The mean
winds for these months are obtained from meteoro-
logical towers deployed around the lake during the
IFYGL experiment. Table 2 gives the monthly mean
wind statistics. In this table, the average speed is
the scalar average of the wind speeds and the direc-
tion corresponds to the one obtained by a vector

average of the wind fields. In the usual meteoro-
logical notation, the wind direction corresponds to
that from which the wind is blowing, with 0°
representing a northerly wind and the angle in-
creasing in a clockwise direction. The data in Table
2 may be considered to represent a wind field whose
direction corresponds to the dominant direction of
the winds during each period with a speed given
by average scalar field.

In analyzing the monthly mean circulations,
steady-state circulation patterns are computed for
each of the resultant wind directions given in
Table 2 and the most energetic spectral components
are determined. Then an objective analysis is car-
ried out for each of the months with data taken
from the theoretical simulations at points where
observations are available in order to determine the
optimum number of spectral functions needed for
the objective analysis. The optimum number of func-
tions is the number that would result in a minimum
error over the entire basin. Normally, as a greater
number of functions are taken, the rms error be-
tween the observed and predicted values decreases.

¥ X 101 ¢m3 sec-!
December

——

10 cm sec™!?

F1G. 5. As in Fig. 4 except for December 1972.
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¥ X 101 cm3 sec1
- January

et

10 cm sec1

F1G. 6. As in Fig. 4 except for January 1973.

When the number of functions taken is equal to
exactly twice the number of observation points, the
rms error at the observation points would be zero.
However, the resulting analysis would not neces-
sarily correspond to a minimum rms error over the
entire basin. The use of theoretically simulated
data, where the results are known over the entire
basin, helps to establish the optimum number of
functions that should be considered to accomplish
the above purpose. These considerations have
shown that for the various months, the optimum
number of the most energetic functions are as given
in Table 3. In general, the number of functions
is approximately equal to the number of observa-
tion stations—that is, about half the total number of
observations available, since at each station two
data values are given. For all months, six of the
spectral components are common even though they
may not appear in the same sequence.

Results of the objective analyses applied to the
monthly mean currents are shown in Table 4. Table
4 gives the rms errors for the various months
resulting from the analyses of the corresponding

theoretical steady-state calculations and data. Also,
given in the table are the standard deviations (o)
of the observed currents in each of the months. It is
seen that the rms errors range from 1.44 to 2.68
cm s71, while the standard deviations range from
3.86 to 6.70 cm s~!. If the actual variance of data
is viewed as the sum of explained variance and
unexplained variances, the latter is given by the ratio
of (rms error)?o?. This ratio has a maximum value
of 31% for March and a minimmum of 11% for January.
Hence the present analysis has been able to account
for 69% of thé actual variance in the worst case
and 89% in the best case. Even though these
numbers are obtained from the developmental data
set itself and not from an independent data set, in
view of the performance of the objective analysis
technique in the theoretical simulation cases, it is
clear that the proposed technique yields a satis-
factory solution. ,

Figs. 4-8 show the circulation patterns resulting
from the objective analysis. The observed currents
are shown by arrows on the diagram. The months
of November, December and January appear to have

x 1011 cm3 sec—1
" February

—_—

10 cm sec™1

FiG. 7. As in Fig. 4 except for February 1973.
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¥ X 101 cm3 sec—t
- March

—_—

10 cm sec™!

FiG. 8. As in Fig. 4 except for March 1973.

a two-gyre mean circulation in basic agreement with
theoretical calculations of the steady-state circula-
tion. The orientation of the gyres differs among the
different months as a consequence of the changes
in the meteorological forcing. December is the
month with a wind direction closest to the south-
west wind simulation shown in Fig. 2 and the re-
semblance between the corresponding patterns is
obvious. The months of February and March, on the
other hand, appear to produce a single cyclonic
gyre in the mean circulation pattern. The reason for
such a mean circulation pattern is not obvious. The
only theoretical explanation would be that the cy-
clonic vorticity of the wind stress has become
dominant over the bottom slope effect. The likeli-
hood of such an event, however, is very remote
from scale considerations as discussed by Pickett
and Rao (1977). More likely reasons for the one-
gyre circulation patterns during February and March
may have to do with the history of transients over
the finite interval of time. It should be pointed out
that the divergence-reducing objective analysis
scheme for currents given by Schwab (1977) re-
sulted in a one-gyre pattern for the November
circulation. With the spectral method shown here,
the cyclonic structure of the circulation pattern in
the relatively data-rich western part of the basin
somehow requires a compensating anticyclonic gyre
in the eastern basin. The divergence-reducing
scheme produces only weak currents in data-poor
areas.

c. Extension to baroclinic currents

In the analysis reported here, we have considered
the simple case of a homogeneous lake in which the
currents are essentially the same at all depths. If
there are significant vertical variations in the hori-
zontal currents due to baroclinic effects, the présent
method can be extended to obtain non-divergent
circulation patterns in a layered fashion by deter-
mining the spectral functions for various layers

instead of for a single layer. The spectral func-
tions from the vertical integral over the entire
depth will give the barotropic circulation, while the
functions from each layer will give the vertical
structure of the circulation.

4. Summary

A method of objectively analyzing vector current
fields in a homogeneous lake has been presented.
The method consists of constructing a set of orthog-
onal functions that are determined by the geometry
and topography of the lake. Once these orthogonal
functions are obtained, they are used to simulate
steady-state circulation patterns in the lake for dif-
ferent mean wind fields. From these theoretical
simulations, the most energetically excited func-
tions for each wind direction are determined and
tabulated in a sequence for future use. Even
though the entire procedure might appear com-
plicated, the tabulation of the functions to use for
objective analysis needs to be done only once for a
range of wind directions for each given lake. Once
this task is accomplished, the functions are avail-
able for future use. When current meter data are
given over any period of time, the appropriate
orthogonal functions are linearly combined and the
expansion coefficients are determined in such a way
as to minimize the mean-squared error by a simple
matrix inversion. The advantage of this method is
that the orthogonal functions used in the analysis
are characteristic of each given lake and hence are
capable of giving the best fit for the overall
circulation pattern of the lake.

The method has been applied to data obtained
from selected points of a theoretical simulation
model for the circulation of Lake Ontario. The re-
sults, when compared to the actual simulation,
showed a very good agreement. The method is then
used to describe the monthly mean circulation pat-
terns in Lake Ontario during November and De-
cember 1972 and January through March 1973. A
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comparison of the rms errors and standard devia-
tions showed that the analysis technique accounted
for 69% of the total variance of the data in the
worst case and 89% in the best case. Hence the
proposed analysis technique appears to provide a
satisfactory method to analyze and extrapolate ob-
jectively the few current meter data that are gen-
erally available to determine the large-scale circula-
tion features of lakes.
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