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ABSTRACT This paper reviews recent developments in hydrologic modeling, and through development of a 2-D large 
basin runoff model (2-D LBRM), discusses five essential components in the development of operational hydrologic 
models: model input, model structure, spatial variability, model calibration, and GIS-model interface. Operational 
hydrologic models should utilize multiple biophysical databases to develop model input parameters over multiple 
temporal and spatial scales. They should be based on mass continuity equations and include land surface, soil zones, and 
groundwater components. Spatial heterogeneity of watersheds needs to be taken into consideration using either a 
hydrological response unit or grid network approach. Simulation results should be calibrated with respect to multiple-
objectives for better assessment of model and data errors. GIS-model interfaces need to be developed to facilitate model 
implementation and applicability.  
Key Words: Hydrologic modeling; Great Lakes; spatial variability; calibration; GIS interface. 
 

INTRODUCTION  
 
Climate change research and the increasing demand for 
effective water resources management, together with 
rapid advances in the ready availability of  satellite 
imagery and other multiple databases and computing 
technology, have led to a proliferation of hydrologic 
models, e.g. the Stanford Watershed Model (Crawford 
and Linsley 1966), TOPMODEL (Beven and Kirby 
1979), variable infiltration capacity models (Liang et al. 
1994), and models for estimation of  precipitation, soil 
moisture (Grimes et al. 1999), and surface temperature 
(Hall et al. 1992; Boni et al. 2001). Many of these 
models, developed for research at the microscale (<102 
km2 ), require multiple databases to compute spatial and 
temporal distributions of energy and water balances in 
the soil-plant-atmosphere system. Due to the 
nonlinearity of hydrologic responses at different scales, 
these microscale models cannot be directly transferred 
to large-scales for water resource applications.  
 
Large-scale operational hydrologic models, unlike 
microscale watershed models, are defined over large 
areas ( >103 km2) and long time scales (typically for use 
over monthly and annual or longer time scales at a daily 
interval). To support sustainable water resources 
applications over large areas, large- scale models must 
have few parameters, use easily accessible 
meteorological and hydrologic databases, and be user-
friendly. However, in reality, existing models are often 
constrained by the limited data availability, 
computational requirements, and model application 
costs over larger areas. As operational models serve as 
a linkage between the research community and 

policy/decision support institutions, it is important to 
identify the needs and challenges of large- scale 
operational models.  
 
This paper addresses the needs and challenges of large- 
scale operational hydrologic models. It first reviews 
recent developments in hydrologic modeling and then 
discusses five essential components: model input, 
model structure, spatial variability, model calibration, 
and GIS-model interface, in the development of 
operational hydrological models. Finally,  a large-scale 
operational hydrologic model, the two-dimensional 
large basin runoff model (2-D LBRM) is developed and 
applied to the U.S. Laurentian Great Lakes basin to 
demonstrate incorporation of these issues in the model 
development process.  

 
RECENT DEVELOPMENTS IN 

OPERATIONAL HYDROLOGIC MODELING 
 
Significant progress has been made in hydrological 
modeling during the past three decades. The 
following sections give a brief review on recent 
developments in model input, model structure, spatial 
variability, model calibration, and GIS-model 
interface of large operational hydrologic modeling.  
 
Utilization of Multiple GIS and Remote Sensing 
Databases 
 
Rapid advances in remote sensing, GIS, digital 
databases, and computing technology during the past 
three decades have provided enormous opportunities for 
the hydrologic research community. For example,
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newly launched satellites, such as the Earth Observing 
System (EOS) PM-1, RADARSAT (spaceborne radar), 
LANDSAT 7 Enhanced Thematic Mapper (TM) Plus, 
Space Imaging, Inc=s 1 m resolution of the IKONOS 
satellite, and others, enable the extraction of hydrologic 
parameters over multiple temporal and spatial scales. 
Digital Elevation Model (DEM) databases are widely 
used for deriving slope, aspect, drainage network, and 
flow direction for a watershed (Hornberger and Boyer 
1995). Soil databases such as the State Soil Geographic 
Data Base (STATSGO) from the U.S. Department of 
Agriculture Natural Resource Conservation Service 
(NRCS) enable the incorporation of spatial variation of 
soil characteristics into hydrologic models (He et al. 
1993; 2001). Land cover databases allow the derivation 
of land use/cover related parameters such as leaf area 
index, zero plane displacement height and Manning’s 
coefficient (n) values to hydrologic models.  
 
Despite the availability of a large number of digital 
databases, obtaining input parameters for operational 
hydrologic models, especially for spatially-distributed 
models, remains a challenge. For example, precipitation 
is a key parameter in rainfall-runoff modeling. 
Estimates of the spatial distribution of precipitation are 
still inadequate due to a lack of spatial and temporal 
coverage of satellites and rain gauge stations, 
particularly in rural areas. Methods for estimating 
precipitation rates, such as cloud indexing, 
thresholding, and life history methods, by satellite 
remote sensing (e.g. GOES and spaceborne radar) are 
still at an experimental stage (Engman 1995). 
Microwave satellites in sun-synchronous orbits, passing 
over any point on the earth=s surface twice daily, can 
only produce precipitation estimates at those two times 
per day. Geosynchronous orbiting satellites such as 
Geostationary Operational Environmental Satellite 
(GOES), while  able to produce precipitation rates 
continuously for the same part of the earth in their field 
of observation at 30 min interval,  can only provide 
limited types of observations (Engman and Gurney 
1991; Engman 1995). Ground-based radar is currently 
limited to a measurement circle with a radius up to 
about 100 km and its distribution is mainly limited to 
densely populated areas (Engman and Gurney 1991; 
Engman 1995).  Estimates of precipitation from those 
radar stations still need to be calibrated against 
measurements from nearby rain gauges. Thus, 
operational hydrologic models for large basins must 
still rely on inadequately distributed rain gauges for 
estimates of precipitation. Because errors in 
precipitation data introduce greater uncertainty into 
parameter estimates than errors in runoff data (Borah 
and Haan 1991), it is critical to expand measurements 

of spatial and temporal distribution of precipitation 
nationwide in order to improve rainfall-runoff 
modeling. An immediate consideration is to add more 
ground-based radar stations in the rural areas for a more 
complete coverage of the entire U.S.  A long-term 
alternative is to develop reliable procedures for deriving 
precipitation estimates from a combination of visible, 
infrared, and microwave satellites.  
 
Unlike precipitation networks, there are virtually no 
systematic measurements of solar radiation and surface 
temperature throughout the U.S.  Although algorithms 
are available to derive solar radiation and surface 
temperature from visible and thermal bands of satellites 
such as GOES, LANDSAT TM,  and Advanced Very 
High Resolution Radiometer (AVHRR) (Hall et al. 
1992; Lindsey and Farnsworth 1997), application of 
those algorithms often requires knowledge and skills of 
image processing and interpretation. To overcome the 
challenges faced by hydrologists in use of the remote 
sensing data for operational purposes, a federal agency 
such as the U.S. Geological Survey (USGS) or National 
Oceanic and Atmospheric Administration (NOAA) 
should take a leading role in acquiring and processing 
satellite data, extracting hydrologic parameters such as 
net radiation, precipitation, surface temperature, and 
soil moisture, and distributing them on the World Wide 
Web  for hydrologists to use. This would lead to wider 
use of remote sensing data in hydrologic modeling and 
save vast amounts of resources to both space 
institutions and management agencies in the long run.   
 
Structure of Operational Models 
 
The performance of hydrologic models is closely 
associated with their structure, the objective function in 
calibration, and data quality (Gan et al. 1997). Large-
scale operational models should be physically based  
(use physics theories and principles to govern the 
hydrologic system) to provide a better representation of 
hydrologic processes. Even though being physically-
based may not always guarantee the best simulation 
results, it ensures that the results of such models are 
tractable and explainable.  
 
The model components should include land surface, 
soil zones, and groundwater. Variable-source- area 
concepts (runoff from a dynamically changing surface 
area) should be used in computing infiltration and 
saturation runoff as the variable-source models give a 
better representation of hydrologic processes and 
produce betters estimates of overland flow and are less 
scale dependent (Quinn et al. 1995; Abdulla et al. 1996; 
Koren et al. 1999; Beven 2000; Valeo and Moin 2001). 



   

Soil layers and groundwater need to be included in the 
model structure as water budget is very sensitive to the 
number of layers in the soil profile and omission of the 
subsurface-groundwater component in a runoff model 
can lead to an increase in the model scale dependency 
(Koren et al. 1999; Martinez et al. 2001). 
 
Evapotranspiration (ET, here, including evaporation) 
returns about 60 percent of precipitation to the 
atmosphere globally. Although it is one of the most 
important components of the hydrological cycle, ET 
remains probably the most poorly understood. Due to 
our inability to make direct measurements of ET in the 
natural environment and our lack of understanding of 
the processes and feedback mechanisms that control 
ET, virtually no systematic measurements of ET are 
available at the global scale (Morton 1994; Tateishit 
and Ahn 1996). Penman (1948) first developed a 
combination method that considers both the energy 
balance and the mass transfer of water vapor in 
determining evaporation from a wet surface (Jensen et 
al. 1990). Monteith (1965) introduced canopy and 
aerodynamic resistance terms into the Penman method 
for description of the ET process from vegetation 
(Jensen et al. 1990).The Penman-Monteith (PM) 
method requires determination of values of the 
aerodynamic resistance and canopy resistance. Errors in 
canopy resistance leads to larger ET errors than do 
errors in aerodynamic resistance, as canopy resistance 
is an order of magnitude larger than aerodynamic 
resistance for a vegetated surface (Hall et al. 1992). 
Since aerodynamic resistance is estimated by 
displacement height and roughness length, which are in 
turn generally estimated as a fraction of canopy height, 
errors in canopy height will lead to large errors in 
sensible heat (Hall et al. 1992). While algorithms have 
been developed to compute canopy resistance from leaf 
area index (LAI), normalized differential vegetation 
index (NDVI), and leaf assimilation rate (Abdulla et al.; 
1996Jensen et al. 1990; Liang et al. 1994), 
determination of appropriate values for canopy 
resistance remains challenging as derivation of NDVI 
and LAI from satellite data requires atmospheric, 
topographic, and radiometric corrections of satellite 
imagery (Hall et al. 1992). 

 
Another method for estimating ET is the 
complementary relationship (CR) concept, first 
proposed by Bouchet (1963). The CR concept states 
that under the condition of constant energy input to a 
land surface-atmosphere system, water availability 
becomes limited; then actual areal ET falls below its 
potential, and an excess amount of energy becomes 
available in the form of sensible heat and/or long-wave 

back radiation that increases the temperature and 
humidity gradients of the overpassing air and leads to 
an increase in potential ET (ETP) equal in magnitude to 
the decrease in ET. If water availability is increased, the 
reverse occurs, and ET increases as ETP decreases. 
Thus, ETP can no longer be regarded as an independent 
causal factor. Instead it is predicated upon the 
prevailing conditions of moisture availability (Hobbins 
et al. 2001). Morton (1983; 1994) further refined the 
CR concept and developed a Complementary 
Relationship Areal Evapotranspiration (CRAE) model. 
After testing the CRAE model in more than 150 
watersheds in different climates, Morton (1983;1994) 
found that the CRAE model considers the  feedback 
effects of vapor pressure deficit and advection. It relies 
solely on routine climatological observations, uses only 
globally-tuned coefficients, and can provide reliable, 
independent estimates of ET from environmentally 
significant areas in most parts of the world (Morton 
1994; Hobbins et al. 2001). Other studies have also 
utilized the CR concept (Croley 2002; Hobbins et al. 
2001; Kim and Entekhabi 1997; Sugital et al. 2001). An 
important feature of CR models is that they bypass the 
complex and poorly understood soil-plant processes and 
do not require data on soil moisture, stomata resistance 
of the vegetation, or any other aridity measures 
(Hobbins et al. 2001). 
 
The PM method and the CR methods have both been 
widely used for estimating regional ET over long 
periods of time. The PM method assumes that actual ET 
does not affect potential ET (the ET and ETP are 
“independent”). It links the effects of vegetation to the 
ET process through aerodynamic and canopy resistance 
terms and may be more appropriate for small areas 
where detailed databases are available. The CR 
methods bypass complex and poorly understood soil-
plant interactions, require fewer parameters for 
applications, and may be more applicable to large areas 
where detailed datasets are not available (Hobbins et al. 
2001; Jensen et al. 1990; Liang et al. 1994; Morton 
1994; Silberstein et al. 1999 ; Sugital et al. 2001; Xu 
and Singh 1998). 
 
Spatial Variability of Models 
 
Spatial variations of precipitation, soil, vegetation and 
topography have significant impacts on runoff 
modeling (Beven 2000). Available databases of digital 
elevation model (DEM), vegetation, climate, 
hydrography, and soil make development of distributed 
models readily feasible. Operational models should take 
advantage of such databases  to account for spatial 
variations of climate, soil, topography, and land use 



   

practices. Watersheds should be discretized into either 
grid network or hydrological response units (HRUs), 
large- scale operational models applied to each cell and 
output from each cell  routed to the watershed outlet 
(Becker and Braun 1999; Karvonen et al. 1999). 
 
Accurate accounting of soil water storage has a 
dominant influence on watershed runoff modeling. 
Models employing variable source area concepts 
(runoff from a dynamically changing surface area) 
produce more accurate overland flow estimates than 
models using the Hortonian infiltration capacity 
concept (Valeo and Moin 2001). In examining the 
impact of soil layers on hydrologic responses, Martinez 
et al. (2001) state that water budget is very sensitive to 
the number of layers modeled in the soil profile and an 
insufficient number of soil layers can lead to large 
errors in modeled water fluxes. For modeling soil water 
storage, a single layer in both the upper and bottom soil 
zones is adequate (Martinez et al. 2001). Distributed 
modeling is mostly needed in such environments where 
vegetation cover is mixed and there is a variable rooting 
depth or available water capacity (Quinn et al. 1995).  
 
The variable source area concept requires detailed 
information on the spatial and temporal distribution of 
soil moisture and properties. However, frequent spatial 
measurements of soil are not currently available on a 
routine basis (Engman and Gurney 1991). Researchers 
often use either soil maps or databases available such as 
STATSGO to extract soil moisture and characteristics 
for hydrologic models (Liang et al. 1994; Zhu and 
Mackay 2001), or estimate soil moisture storage 
through calibration (Croley 2002). Alternatively, 
microwave remote sensing is promising for higher 
spatial and temporal resolutions (Engman and Gurney 
1991; Mattikalli et al. 1998). 

 
Model Calibration  
 
Hydrologic models must be calibrated (model 
parameters estimated) to well represent reality, i.e. to 
match observations with acceptable accuracy and 
precision (Gupta et al. 1998; Loague and Kyriakidis 
1997). Traditionally, research has focused on error 
identification in data and model to find the Abest@ 
parameter set (Guptal et al. 1998). With inevitable 
errors in both model structure and measured data, 
calibration is inherently multiobjective; identification of 
a unique Abest@ parameter set is difficult, if not 
impossible (Gupta et al. 1998). Recently, a number of 
studies have used multiple objective functions for 
model calibration. Loague and Kyriakidis (1997) used 
five statistical criteria to evaluate the differences 

between observed and modeled runoff:  maximum error 
(ME), root-mean-squared error (RMSE), coefficient of 
residual mass (CRM), coefficient of determination 
(CD), and modeling efficiency (EF). Gupta et al. (1998) 
suggest the use of a set of unrelated measures of 
differences between simulated and observed data; they 
use residual standard deviation, residual bias, and 
number of sign changes in a case study. Yan and Haan 
(1991) use a multiple-objective programming method to 
calibrate parameters for a hydrological model, the 
USGS Precipitation-Runoff Modeling System (PRMS), 
and indicate that use of multiple objectives (matching 
storm peak flow, storm volume, and daily runoff ) 
yields optimized parameters that satisfy the criteria of 
all objectives. Therefore, a multiobjective approach 
should be used in model calibration for better 
assessment of the limitations of model structure and 
confidence of model predictions.  In addition, with 
readily available satellite data and other topographic, 
hydrologic, land use, and soil databases, it is time now 
to develop areal flow observations to calibrate with for 
improving our understanding of spatial variations. 
 
GIS-Model Interface 
 
Development of operational hydrologic models, 
particularly distributed hydrologic models, requires 
integration of GIS, remote sensing and other digital 
bases of climate, topography, vegetation, hydrology, 
and soil for extracting the needed model input 
parameters, and for processing, analyzing, and 
visualizing the model results (He 2003). A number of 
GIS-model interfaces have been developed to assist 
users in data organization, parameter extraction, model 
execution, and output display, and to improve model 
applicability. Such interfaces include linkages between 
GRASS and AGNPS (Agricultural Nonpoint Pollution  
Model)  (He et al. 1993 ), GRASS and ANSWERS 
(Areal Nonpoint Source Watershed Environment 
Response Simulation), AGNPS, and SWAT (Soil and 
Water Assessment Tool) (Engel et al.1993), and 
Arc/Info and HEC-HMS (Hydrologic Modeling 
System) (Hellweger and Maidment 1999).  He et al. 
(2001) developed an interface to integrate the ArcView 
GIS and AGNPS for modeling and analysis of 
agricultural watersheds. A software package, Real-time 
Interactive Basin Simulator (RIBS) by Garrote and Bras 
(1995) integrates a radar-based rainfall prediction 
model, a DEM-based rainfall-runoff model, and other 
multiple databases to forecast real-time flooding. To 
facilitate model implementation and applicability, 
operational hydrological models should incorporate 
linkages or interfaces to GIS for data integration, 
analysis and visualization.  



   

 
DEVELOPMENT OF A 2-D LARGE BASIN 

RUNOFF MODEL  
 
The Large Basin Runoff Model (LBRM) was 
developed by NOAA’s Great Lakes Environmental 
Research Laboratory (GLERL) in the 1970s to support 
hydrologic simulations and water resources applications 
in the Great Lakes basin. It uses a serial and parallel 
cascade of linear reservoirs (outflows proportional to 
storage) to represent moisture storages within a 
watershed: surface, upper soil zone (USZ), lower soil 
zone (LSZ), and groundwater zone. The model 
computes potential evapotranspiration (ETP) from a 
heat balance, indexed by daily air temperature, and 
calculates actual ET as proportional to both ETP and 
storage. It uses variable-area infiltration (infiltration 
proportional to unsaturated fraction of USZ) and daily 
precipitation and degree-day snowmelt (Croley 2002). 
The model has been applied extensively to the 121 
riverine watersheds draining into the Laurentian Great 
Lakes for use in both simulation (Croley 1990; Quinn 
and Croley 1999) and forecasting (Croley et al. 1993). 
The following sections briefly describe the structure, 
input, spatial variability, calibration, and GIS interface 
of the LBRM.  
 
Model Structure 

 
The tank cascade schematic of the LBRM is shown in 
Figure 1. Daily precipitation, temperature, and 
insolation (the latter available from meteorological 
summaries as a function of location) are used to 
determine snow pack accumulations and net supply, s . 

 The net supply is divided into surface runoff, 
Us
C

, 

and infiltration to the upper soil zone, 
Us s
C

− , in 

relation to the upper soil zone moisture content, U , 
and the fraction it represents of the upper soil zone 
capacity, C  (variable-area infiltration concept).  
Percolation to the lower soil zone, pUα , and 

evapotranspiration, u pe Uβ , are taken as outflows 
from a linear reservoir (flow is proportional to storage) 
(α represents linear reservoir proportionality factors, ∃ 
represents partial linear reservoir coefficients associated 
with evapotranspiration, the subscripts in ∀ and ∃ 
denote different storage zones, see Fig. 1 and 2). 
Likewise, interflow from the lower soil zone to the 
surface, iLα , evapotranspiration, pe Lβ , and deep 

percolation to the groundwater zone, d Lα , are linearly 
proportional to the lower soil zone moisture content, 
L .  Similarly, groundwater flow, gGα , and 
evapotranspiration from the groundwater zone, 

g pe Gβ , are linearly proportional to the groundwater 

zone moisture content, G .  Finally, basin outflow, 

sSα , and evaporation from the surface storage, 

s pe Sβ , depend on its content, S .  Additionally, 
evaporation and evapotranspiration are also dependent 
on potential evapotranspiration, pe , as determined by 
joint consideration of the available moisture and 
watershed heat balance. 

 
Mass conservation equations of the LBRM (1-D) 
(Croley 2002) are described below as differential 
equations with respect to time t : 

 

1 p u p
d UU s U e U
dt C

α β⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

        (1) 

p i d p
d L U L L e L
dt

α α α β= − − −          (2) 

d g g p
d G L G e G
dt

α α β= − −                     (3) 

i g s s p
d US s L G S e S
dt C

α α α β= + + − −  (4) 

Croley (2002) solved the equations , yielding storages 
at the end of a time increment ( tU , tL , tG , and tS ) 
as functions of the inputs, parameters, and beginning-
of-time-increment storages (storages at the end of the 
previous time increment: 0U , 0L , 0G , and 0S ) by 
taking net supply and potential evapotranspiration as 
uniform over the increment.  The surface storage 
solution is: 

( ) ( ) ( )
0 0

te t e vs s p s s p

t i g

U
S e S s L G e dv

C

α β α β
α α

− + +

= + + +⎡ ⎤
⎢ ⎥⎣ ⎦∫  (5) 

The volume of basin outflow is 

( )0
s

s r i g t
s s p

V V V V S S
e

α
α β

= + + + −
+

        (6) 



   

where sV  = basin outflow volume from surface storage, 

rV  = surface runoff volume, iV  = interflow volume, 

and gV  = groundwater volume, all into surface storage, 

over increment ( )0, t . 
 

Recently, the1-D LBRM was modified from its 
aggregated -parameter definition for an entire 
watershed to a two dimensional representation of the 
flow cells comprising the watershed (Croley and He 
2004a, b) and was applied to the Kalamazoo River and 
Maumee River watersheds in the Great Lakes basin. 
(Croley et al. 2004). The continuity equations were 
modified to allow upstream surface and subsurface 
routing between cells of flows of the USZ, the LSZ, and 
the groundwater zone (Figure 2).  This enables surface 
and subsurface flows to interact both with each other 
and with adjacent-cell surface and subsurface storages. 
Since ET and potential ET cannot be regarded as 
complementary when the LBRM is applied to a small 
cell, they are replaced with a more traditional 
“independent” concept (that actual ET does not affect 
potential ET) in the 2-D LBRM. A flow network is 
generated by identifying the network flow cascade of 
the watershed cells and arranging the cell computations 
accordingly (Details of the modified LBRM are 
described in Croley and He 2004a, b; and Croley et al. 
2004).  

 
Model Input 

 
Input parameters to the 2-D LBRM include: daily 
precipitation and air temperature, solar isolation, 
elevation, slope, receiving cell numbers, flow direction, 
land use, depths (cm) of USZ and LSZ, available water 
capacity (%) of USZ and LSZ, soil texture, 
permeability (cm/hr) of USZ and LSZ, Manning’s 
coefficient (n) values, and daily flows. The areally-
averaged daily time series of precipitation and 
temperature are interpolated by weighting more than 
1,800 historical climatological site records in the Great 
Lakes basin using one of three methods: Thiessen 
polygon, inverse distance, and inverse squared distance. 
Daily surface insolation estimates are generated by two 
methods: (1) from temperature databases by empirical 
formulae, and (2) reversed-engineered method from an 
available weather generation model as a function of 
location, day of the year, air temperature and 
precipitation (Croley and He 2004a). Slope, receiving 
cell numbers, and flow direction are extracted from 
digital elevation model (DEM) databases. Depths, 
available water capacity, and permeability of USZ and 
LSZ and soil texture are derived from STATSGO, a soil 

database. Manning’s coefficient (n) values are derived 
based on the combination of land use, slope, and soil 
texture.  
 
The output includes basin outflow, surface runoff, ET, 
infiltration, interflow, percolation, deep percolation, 
USZ and LSZ moisture storages, groundwater storage, 
lateral flows between USZ, LSZ, and groundwater.  
Currently, daily precipitation and air temperature and 
solar insolation to the 2-D LBRM still rely on 
measurements from ground weather stations. Once the 
daily, areal coverages of snowpack, rainfall, and solar 
radiation from remote sensing sensors such as NOAA, 
GOES, and other EOS satellites become available on a 
routine basis, the 2-D LBRM can be modified to utilize 
these estimates to simulate rainfall-runoff for the Great 
Lakes basin. Such addition will lead to better 
representation of the spatial distribution of net supply to 
the model and hence significantly improve the accuracy 
of the runoff simulation 

 
Spatial Variability of the Model 

 
The 2-D LBRM uses a serial and parallel cascade of 
linear reservoirs to represent moisture storages of 
surface, USZ, LSZ, and groundwater zone with a 
watershed. It discretizes a watershed into a grid 
network and considers surface and subsurface flow 
interactions both with each other and with adjacent-cell 
surface and subsurface storages based on spatial 
variability of climate, topography, land use, 
hydrography, and soil (Fig.2). The interactions are 
described by strictly continuous equations and 
continuous-time flow representation. Since the 
solutions are analytically tractable, large time steps may 
be employed without introducing numerical error or 
excessive computational requirements. These features, 
plus its using climatological considerations not possible 
for small watershed, make the 2-D LBRM particularly 
suitable for addressing large scale water resource 
questions over the long term (e.g. decades) (Croley 
2002).  
 
Model Calibration  
 
Calibration of the 2-D LBRM is presently conducted as 
a systematic search of the parameter space to minimize 
the root-mean-squared-error (RMSE) between actual 
and simulated daily outflow volumes at the watershed 
outlet. The 2-D LBRM has been applied to the 
Kalamazoo River watershed (drainage area 5,612 km2 ) 
in Michigan and the Maumee River watershed 
(drainage area over 17,541 km2 ) in Ohio at 1 km2 grid 
cell resolution. Calibrations of the model over the 1948-



   

1964 showed correlations between simulated and 
observed watershed outflows as 0.88 and 0.91, 
coefficient of variation of 0.24 and 0.71 for the 
Kalamazoo and Maumee Rivers, respectively (density 
of weather stations in both watersheds is approximately 
600 km2 /station). The simulations show that the 
Kalamazoo River has a dominant groundwater storage, 
allowing delayed and sustained hydrological responses 
to rainfall while the Maumee River lacks any 
significant groundwater storage, allowing a fast flashy 
response to rainfall. These results are characteristic of 
the study watersheds, indicating that the addition of 
surface and subsurface interactions in the model has 
improved watershed representation (Croley and He 
2004a, b).  
 
A new calibration procedure is to be developed to 
include the multiobjective approach suggested by Gupta 
et al. (1998) for better assessment of errors in both 
model structure and observed data. In addition to the 
daily root-mean-squared-error, bias and the number of 
sign changes will be added to the calibration module for 
assessing the systematic errors in the differences 
between the simulated and observed daily outflows. 
Future calibration will also include generating runoff 
surfaces for assessing spatial variations of observed and 
simulated runoff throughout a study watershed.   
 
GIS Interface 
 
The 2-D LBRM discretizes a watershed into a grid 
network at a resolution of  1 km2 (to match existing 
areal coverage of meteorological data) or other sizes as 
specified by a user. It requires 13 parameters for each 
of the grid cells. To facilitate the implementation of the 
2-D LBRM, a GIS interface, the AVNPSM (ArcView 
Nonpoint Source Modeling) by He et al. (2001) is 
modified to operationalize data processing, extraction, 
analysis, and visualization. The interface consists of six 
modules: a soil database processor, parameter 
generator, utility module, output visualizer, statistical 
analyzer, and land use simulator.  
 
The soil database processor automatically derives 
spatially averaged depth, available water capacity 
(AWC), soil texture, soil slope (%), and permeability 
for the USZ ( layer 1 in STATSGO) and LSZ (layers 2 
to 6 in STATSGO) by soil association (soil association 
is a unit on which soil information is mapped and 
assembled) from STATSGO. The parameter generator 
module helps a user first set up input files of DEM, land 
use, soil, and hydrography, and then derives required 
input parameters of slope, receiving cell numbers, flow 
direction, depths of USZ and LSZ, available water 

capacity of USZ and LSZ, permeability of USZ and 
LSZ, soil texture, and elevation for each grid cells. As 
the flow net allows only one outlet, flow directions 
must be carefully inspected to eliminate any flow loops. 
A utility module in the AVNPSM is used to check such 
errors and allows the user to edit flow direction either 
by one cell at a time or several cells at a time (He et al. 
2001). The verified flow net is then used to route flow 
(Croley and He 2004 a).  
 
To derive appropriate Manning’s coefficient (n) values 
for each grid cell, the interface first helps the user 
define the hydrologic response units (HRUs) based on 
combinations of land use, slope, and soil texture (i.e. 
dividing the watershed into different HRUs) for the 
entire watershed and then uses a look-up table to assign 
each HRU an appropriate Manning’s coefficient (n) 
value automatically. The n values are mainly 
determined by land use/cover categories and then 
adjusted by slope and soil texture. Subsequently, the 
interface assigns n values from each of HRUs to each 
grid cells.  
 
The output visualizer allows the user to select any 
variable from the output file and display it in map 
format in ArcView. A separate, animation program has 
also been developed to animate the output variables for 
multiple years at daily intervals, which enables 
examination of dynamics of hydrological variables over 
the long term. The statistical analyzer enables the user 
to conduct the analysis of variance (ANOVA) to 
examine the relations of land use/cover and simulated 
results. The land use change simulator allows the user 
to specify land use change scenarios in a sub-basin or 
specific area based on the land use/cover file and 
evaluate the hydrologic impact of such changes to the 
downstream area (He 2003). This interface has proven 
to be a great utility in the implementation and 
application of the 2-D LBRM to the watersheds in the 
Great Lakes basin.      
 

SUMMARY AND CONCLUSIONS 
 
Development of large-scale operational hydrologic 
models is essential for support of long-term water 
resource planning and management over large river 
basins. Through development of a 2-D LBRM in the 
Great Lakes basin,  this paper discusses issues related 
to model  input, model structure, spatial variability,  
model calibration, and GIS interface in large-scale 
hydrologic modeling. Operational hydrologic models 
should utilize multiple GIS and satellite data to develop 
input parameters over multiple temporal and spatial 
scales. The U.S. government agencies may facilitate 



   

such efforts by coordinating the processing, extracting, 
and distributing hydrologic parameters such as net 
radiation, surface temperature, and precipitation  
through the World Wide Web  to the modeling 
community in the same manner as they currently 
distribute meteorological, streamflow, and topographic 
data. Measurements of precipitation should be 
expanded to reduce parameter uncertainty in rainfall-
runoff modeling. An immediate consideration is to add 
more ground-based radar stations in the rural areas for a 
more complete coverage of the entire U.S. A long-term 
alternative is to develop reliable procedures for deriving 
precipitation rates from combination of visible, 
infrared, and microwave satellites.  
 
Operational models should be based on mass continuity 
equations and include surface, soil zones, and 
groundwater components. The variable-source-area 
concept should be used in computing infiltration and 
saturation runoff.  Combination methods such as the 
Penman-Monteith equation or complementary 
relationship methods should be used in estimating 
regional ET over long periods of time. Multiple 
topographic, climatic, soil, hydrologic, and vegetation 
databases and GIS should be integrated to discretize a 
study watershed into either a grid network or HRUs. 
Operational models should be applied to each grid cells 
or HRUs to take into account spatial heterogeneity of 
watersheds in simulating their hydrologic responses. 
While routing simulated flow downstream, surface and 
subsurface flow interactions between adjacent cells 
should be considered for more accurate representation 
of the hydrologic processes. 
 
A multiple-objective calibration should be used for 
better assessment of  errors in both model structure and 
observed data. In addition to calibrations of model 
flows at the outlet of a watershed to measured flows at 
that point, model results should also be compared to 
observed data across the surface of the entire watershed 
to provide better understanding of the spatial variation 
of hydrologic responses.  
 
As operational hydrologic models  require integration 
of multiple biophysical databases for parameter 
extraction, analysis, and visualization, GIS interfaces 
should be developed to facilitate and improve model 
implementation and application.  
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Figure 1. LBRM (1-D) tank cascade schematic 



   

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 2-D LBRM with surface and subsurface inflows. 


