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Introduction

Interest in the use and development of our Nation’s 
surface- and ground-water resources has increased significantly 
during the past 50 years (Alley and others, 1999; Hutson and 
others, 2004). At the same time, a variety of techniques and 
methods have been developed to examine and monitor these 
water resources. Quantifying the connection between surface 
water and ground water also has become more important 
because the use of one of these resources can have unintended 
consequences on the other (Committee on Hydrologic Science, 
National Research Council, 2004). In an attempt to convey the 
importance of the linkages and interfaces between surface water 
and ground water, the two have been described as a “single 
resource” (Winter and others, 1998). An improved understand-
ing of the connection between surface and ground waters 
increasingly is viewed as a prerequisite to effectively manag-
ing these resources (Sophocleous, 2002). Thus, water-resource 
managers have begun to incorporate management strategies 
that require quantifying flow between surface water and ground 
water (Danskin, 1998; Bouwer and Maddock, 1997; Dokulil 
and others, 2000; Owen-Joyce and others, 2000; Barlow and 
Dickerman, 2001; Jacobs and Holway, 2004).

The use of surface water (or ground water) can change 
the location, rate, and direction of flow between surface 
water and ground water (Stromberg and others, 1996; 
Glennon, 2002; Galloway and others, 2003). Pumping wells 
in the vicinity of rivers commonly cause river water to flow 
into the underlying ground-water body, which can affect 
the quality of the ground water (Childress and others, 1991; 
McCarthy and others, 1992; Lindgren and Landon, 1999; 
Steele and Verstraeten, 1999; Zarriello and Reis, 2000; Sheets 
and others, 2002). In some cases, ground water is pumped to 
provide water for cooling industrial equipment and then dis-
charged into lakes, ponds, or rivers (Andrews and Anderson, 
1978; Hutson and others, 2004). Ground water also may be 
pumped specifically to maintain lake levels for recreation 
purposes, especially during droughts (Stewart and Hughes, 
1974; Mcleod, 1980; Belanger and Kirkner, 1994; Metz and 
Sacks, 2002). Surface water can be directed into surface basins 
where water percolates to the underlying aquifer—a process 
known as artificial recharge (Galloway and others, 2003). 
Ground-water discharge areas, where ground water flows into 

surface water, can be important habitats for fish (Garrett and 
others, 1998; Power and others, 1999; Malcolm and others, 
2003a, 2003b). Water in irrigation canals can flow or seep to 
an underlying aquifer, which eventually discharges water to 
rivers, thereby sustaining streamflow essential for the mainte-
nance of fish populations (Konrad and others, 2003).

Interest in the interaction of surface water and ground 
water is not confined to inland waters. This interaction has 
been studied in coastal areas because fresh ground-water 
supplies can be affected by intrusion of saltwater (Barlow 
and Wild, 2002). Beyond the issue of water supply for human 
consumption, increased attention has been given to the ground 
water that discharges to oceans and estuaries, both in terms of 
water quantity and quality (Bokuniewicz, 1980; Moore, 1996, 
1999; Linderfelt and Turner, 2001). Discharge of fresh ground 
water to oceans and estuaries, also referred to as submarine 
ground-water discharge, is important in maintaining the flora 
and fauna that have evolved to exploit this source of fresh 
water in a saline environment (Johannes, 1980; Simmons, 
1992; Corbett and others, 1999). Nitrate in submarine ground-
water discharge to estuaries and coastal waters can result in 
eutrophication of those waters (Johannes, 1980; Johannes and 
Hearn, 1985; Valiela and others, 1990; Taniguchi and others, 
2002). Withdrawals or pumping of ground water at near-shore, 
inland locations can reduce the submarine discharge of ground 
water offshore and change the environmental conditions of 
these settings (Simmons, 1992). Some coral reefs may be 
endangered by diminished submarine ground-water discharge 
(Bacchus, 2001, 2002).

The variety of settings of interest for the examination 
of the interaction between surface water and ground water 
makes evident the need for methods to describe and quantify 
that flow. The exact method chosen for each setting will vary 
depending on the physical and hydrological conditions present 
in those settings, as well as the scale of the interaction. Some 
degree of measurement uncertainty accompanies each method 
or technique. Thus, it is prudent to consider using more than 
one method to examine the interaction between surface water 
and ground water. Because numerous techniques and methods 
are available to describe and quantify the flow between surface 
water and ground water, it is useful to provide water-resource 
investigators an overview of available techniques and methods, 
as well as their application.

Chapter 1
Introduction and Characteristics of Flow

By James W. LaBaugh and Donald O. Rosenberry



6    Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

Purpose and Scope

Several methods have been developed and applied to the 
study of the exchange between surface water and ground water 
(fig. 1). Different methods are better suited for characterizing 
or measuring flow over large or small areas. If an initial view 
of a considerable area or distance is needed to determine where 
measurable ground-water discharge is occurring, aerial infra-
red photography or imagery can be effective reconnaissance 
tools. On a smaller scale, some methods may involve direct 
measurement of sediment temperature or specific conductance 

along transects within a surface-water body, or use of dyes or 
other tracers to indicate the direction and rate of water move-
ment. The measurement of water levels in well networks in the 
watershed can be used to determine ground-water gradients 
relative to adjacent surface water, which in turn can indicate 
the direction and rate of flow between the surface-water body 
and the underlying aquifer. In streams and rivers, measure-
ment of flow at the endpoints of a channel reach can reveal if 
the reach is gaining flow from ground water or losing flow to 
ground water. Addition of tracers to streams also can be used to 
determine surface-water interaction with ground water over a 
range of scales. Local interaction of surface water with ground 

Figure 1.  Summary of techniques that have been used for the measurement or estimation of water fluxes between surface water 
and ground water. Techniques illustrated include: (A) aerial infrared photography and imagery, (B) thermal profiling, (C) the use of 
temperature and specific-conductance probes, (D) dyes and tracers, (E) hydraulic potentiomanometers, (F) seepage meters, (G) well 
networks, and (H) streamflow measurements. (Artwork by John M. Evans, U.S. Geological Survey, retired.)
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water is measured by placing devices such as thermistors, 
minipiezometers, and seepage meters in the sediment, to moni-
tor temperature gradients, hydraulic gradients, or quantity of 
flow. Determination of how interaction of surface water with 
ground water changes over time is made possible by using data-
recording devices (“data loggers”) in conjunction with pressure 
transducers, thermistors, and water-quality probes.

This report is designed to make the reader aware of 
the breadth of approaches (fig. 1) available for the study of 
the exchange between surface and ground water. To accom-
plish this, the report is divided into four chapters. Chapter 1 
describes many well-documented approaches for defining the 
flow between surface and ground waters. Subsequent chap-
ters provide an in-depth presentation of particular methods. 
Chapter 2 focuses on three of the most commonly used 
methods to either calculate or directly measure flow of water 
between surface-water bodies and the ground-water domain: 
(1) measurement of water levels in well networks in com-
bination with measurement of water level in nearby surface 
water to determine water-level gradients and flow; (2) use of 
portable piezometers (wells) or hydraulic potentiomanometers 
to measure hydraulic gradients; and (3) use of seepage meters 
to measure flow directly. Chapter 3 focuses on describing the 
techniques involved in conducting water-tracer tests using 
fluorescent dyes, a method commonly used in the hydrogeo-
logic investigation and characterization of karst aquifers, and 
in the study of water fluxes in karst terranes. Chapter 4 focuses 
on heat as a tracer in hydrological investigations of the near-
surface environment.

This report focuses on measuring the flow of water 
across the interface between surface water and ground water, 
rather than the hydrogeological or geochemical processes that 
occur at or near this interface. The methods, however, that use 
hydrogeological and geochemical evidence to quantify water 
fluxes are described herein. This material is presented as a 
guide for those who have to examine the interaction of surface 
water and ground water. The intent here is that both the over-
view of the many available methods and the in-depth presenta-
tion of specific methods will enable the reader to choose those 
study approaches that will best meet the requirements of the 
environments and processes they are investigating, as well as 
to recognize the merits of using more than one approach. To 
that end, at this point it is useful to examine the content of 
each chapter in more detail.

Chapter 1 provides an overview of typical settings in 
the landscape where interactions between surface water 
and ground water occur. The chapter reviews the literature, 
particularly recent publications, and describes many well-
documented methods for defining the flow between surface 
and ground waters. A brief overview of the theory behind each 
method is provided. Information is presented about the field 
settings where the method has been applied successfully, and, 
where possible, generalizes the requirements of the physical 
setting necessary to the success of the method. Strengths and 
weaknesses of each method are noted, as appropriate. This 
will aid the investigator in choosing methods to apply to their 

setting. For those already familiar with some of these meth-
ods, the review of recent literature provides information about 
improvements in these methods.

Chapter 2 describes three of the most commonly used 
methods to either calculate or directly measure flow of water 
between surface-water bodies and the ground-water domain. 
The first method involves measurement of water levels in a 
network of wells in combination with measurement of the 
stage of the surface-water body to calculate gradients and 
then water flow. The second method involves the use of 
portable piezometers (wells) or hydraulic potentiomanometers 
to measure gradients. In the third method, seepage meters 
are used to directly measure flow across the sediment-water 
interface at the bottom of the surface-water body. Factors 
that affect measurement scale, accuracy, sources of error in 
using each of the methods, common problems and mistakes 
in applying the methods, and conditions under which each 
method is well- or ill-suited also are described.

Chapter 3 presents an overview of methods that are com-
monly used in the hydrogeologic investigation and characteriza-
tion of karst aquifers and in the study of water fluxes in karst 
terranes. Special emphasis is given to describing the techniques 
involved in conducting water-tracer tests using fluorescent dyes. 
Dye-tracer test procedures described herein represent commonly 
accepted practices derived from a variety of published and 
previously unpublished sources. Methods that are commonly 
applied to the analysis of karst spring discharge (both flow and 
water chemistry) also are reviewed and summarized.

Chapter 4 reviews early work addressing heat as a tracer 
in hydrological investigations of the near-surface environment, 
describes recent advances in the field, and presents selected 
new results designed to identify the broad application of heat 
as a tracer to investigate surface-water/ground-water exchanges. 
An overview of field techniques for estimating water fluxes 
between surface water and ground water with heat is provided.

To familiarize readers with flow conditions that may 
occur during their studies, the next section of Chapter 1 
describes commonly observed interactions between surface 
water and ground water.

Characteristics of Water Exchange 
Between Surface Water and  
Ground Water

Most measurements made for the purpose of quantify-
ing exchange between surface water and ground water are 
obtained at points within a short distance of the shoreline of 
the surface-water body. Shorelines represent the horizontal 
interface between ground water and surface water, an inter-
face that is highly dynamic spatially and temporally. Because 
of the complex physical processes that occur in precisely the 
area where measurements are needed, it is important to under-
stand those processes at shorelines and the range of potential 
changes in conditions at shorelines that occur over time. The 
following section elaborates these points.
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Typically, a significant break in slope in the water table 
occurs where the horizontal surface of a lake, stream, or wetland 
intersects the sloping surface of the ground-water table (fig. 2). 
Because of this break in slope, ground-water flow lines diverge 
where they extend beneath and end at the sediment-water inter-
face. Diverging flow lines indicate that the rate of flow per unit 
area is decreasing. Given homogeneous and isotropic conditions 
in the porous media adjacent to and beneath the sediment-water 
interface, seepage across the interface will decrease exponen-
tially with distance from shore (fig. 3) (McBride and Pfannkuch, 
1975; Pfannkuch and Winter, 1984). The movement of water 
between surface water and ground water can occur in a variety 
of settings or landscapes (fig. 4), each of which can be related 
to the break in slope of the water table defined by “an upland 
adjacent to a lowland separated by an intervening steeper slope” 
(Winter, 2001).

Ground-water flow lines bend substantially beneath 
the sediment-water interface just before they intersect the 
surface-water body. Measurements of hydraulic-head gradients 
typically assume that the flow lines either are horizontal (in 
the case of comparing heads in near-shore wells with surface-
water stage) or vertical (in the case of inserting the screened 
intervals of wells to some depth beneath the sediment-water 
interface). In reality, the orientation of the flow lines are some-
where between horizontal and vertical as shown in figure 5.

Characteristics of Near-Shore Sediments

Although some investigators have found that seepage 
decreases exponentially with distance from shore (Lee, 1977; 
Fellows and Brezonik, 1980; Erickson, 1981; Attanayake and 
Waller, 1988; Rosenberry, 1990), other studies report that the 
decrease in flow across the sediment-water interface is not 

exponential because of heterogeneity of the sediment. One of 
the early fndings of a departure from what would be expected 
in a homogeneous, isotropic setting was reported by Woessner 
and Sullivan (1984) in their study of Lake Mead, Nevada. At 
many of the transects across which they collected data in Lake 
Mead, they found seepage did not decrease exponentially, 
and furthermore, that seepage sometimes decreased and then 
increased with distance from shore. They reported a large vari-
ability in seepage with distance from shore. This variability 
was attributed to heterogeneity in the sediments in the vicinity 
of the sediment-water interface. Krabbenhoft and Anderson 
(1986) also reported that seepage was focused in a gravel lens 
that intersected the lakebed some distance from shore at Trout 
Lake, Wisconsin. It now generally is recognized that aquifers 
adjacent to and beneath surface-water bodies rarely can be 
considered homogeneous, and usually are not isotropic.

Many processes act to create heterogeneity at the sediment-
water interface. A few are listed below.

Fluvial processes1.	 —Depositional and erosional processes 
occur nearly constantly in streambeds and riverbeds, 
making heterogeneity a significant feature in these 
sediment-water interfaces. Organic deposits commonly 
are buried by deposition of inorganic material, resulting 
in interlayering of these different sediment types. Channel 
aggradation and flood scour can cause a shoreline to shift 
laterally many meters. Seasonal erosion and deposition 
related to spring floods also create a temporal component 
to the heterogeneity.

Edge effects2.	 —Shoreline erosion and deposition related 
to wave action in lakes, large wetlands, and rivers create 
heterogeneity at the sediment-water interface. Waves 
erode banks, which subsequently fail as new material 
slumps into the surface-water body. Fine-grained 
sediments are moved away from shore, often leaving a 
cobble- to boulder-sized pavement at the shoreline. Sedi-
ment deposition by overland flow commonly results in 
near-shore, fan-shaped deposits following heavy rainfall. 
Waves also rework sediments following slump events or 
sediment transport associated with overland flow, caus-
ing movement of fine-grained materials into voids created 
by movement of cobble- to boulder-sized sediments. In 
addition, changing surface-water stage causes the position 
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Figure 2.  Typical hydraulic conditions in the vicinity of the 
shoreline of a surface-water body. (Artwork by Donald O. 
Rosenberry, U.S. Geological Survey.)

Figure 3.  Decrease in seepage discharge with distance from 
shore (from Winter and others, 1998).
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(large riverine valley with terraces); E, small fundamental hydrologic landscape units superimposed on a larger fundamental 
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superimposed at random on large fundamental hydrologic landscape units (hummocky glacial and dune terrain) (from 
Winter, 2001, copyright the American Water Resources Association, used with permission).

of the shoreline to change over time, resulting in lateral 
movement of all of the previously mentioned deposi-
tional and erosional processes that occur at the shoreline. 
Accumulation of organic debris, including buried logs and 
decayed plant matter, also contributes to heterogeneity as 
it is incorporated with the inorganic sediments, particu-
larly on the downwind shores of surface-water bodies. In 
surface-water bodies that are ice covered during winter, 
ice rafting during fall and spring, when ice is forming or 
when the ice cover is melting, can substantially rework 
sediments at the downwind shoreline.

Biological processes3.	 —Benthic invertebrates constantly 
rework sediments, particularly organic sediments, as they 
carry out their life cycles. Bioturbation and bioirrigation 
are important processes for organic sediments in deeper 
water environments, but it can be significant in some near-
shore settings also. Aquatic birds disturb the sediment 
as they search for benthic invertebrates, and fish rework 
sediments as they create spawning redds. Beavers and 
muskrats can make large-scale disturbances by remov-
ing considerable amounts of sediments for lodges and 
passageways, and the construction of dams.
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Temporal and Spatial Variability of Flow

Flow across the sediment-water interface commonly 
changes in direction and velocity temporally and spatially. 
Many occurrences of spatial and temporal variability in 
the exchange between surface water and ground water are 
described in the literature; a few examples are provided 
herein. Some of this variability is summarized in figure 6. In 
this illustration, water flows from the surface-water body to 
ground water through the bottom sediments located beyond a 
low-permeability layer some distance from shore. Yet closer 
to shore, ground water flows into the surface-water body. 
Finally, near the shore a depression in the water table created 
by evapotranspiration causes flow out of the lake. At the south 
shoreline of Mirror Lake, New Hampshire, water flows from 
the lake to ground water between the shoreline and approxi-
mately 8 meters from shore, and beyond that point, flow 
from ground water to the lake occurs (fig. 7) (Asbury, 1990; 
Rosenberry, 2005).

In many settings, evapotranspiration during the summer 
months can depress the water table adjacent to the shoreline 
of wetlands, streams, and lakes below the level of the surface-
water body (fig. 8) (Meyboom, 1966, 1967; Doss, 1993; 
Winter and Rosenberry, 1995; Rosenberry and others, 1999; 
Fraser and others, 2001). As a result, seasonal, and sometimes 
diurnal, reversals in flow between surface water and ground 
water may occur at the shoreline. The changes in direction of 
flow between surface water and ground water result from fluc-
tuations in the amount of water removed from the water table 
because of evapotranspiration by plants along the margins of 
the surface-water body. On a seasonal basis, once evapotrans-
piration ceases to remove water from the near-shore regions, 
the near-shore depression in the water table dissipates, which 
then allows ground water to flow into the surface-water body. 

On a diurnal basis, more evaportranspiration in the day and 
less at night can cause the water table to fluctuate between 
levels below and above the adjacent surface-water level.

In many locations, water-table mounds can develop at 
the edge of surface-water bodies. Many studies have shown 
transient water-table mounds that form in response to pre-
cipitation or snowmelt (fig. 9) (see, for example, Winter, 
1986; Rosenberry and Winter, 1997; Lee and Swancar, 1997). 
Most of these water-table mounds were of short duration and 
formed in response to large rainfall events. Reversals of flow 
of longer duration also occur at some settings. Jaquet (1976) 
reported a reversal of flow along part of the shoreline at Snake 
Lake, Wisconsin, following spring thaw and considerable 
rainfall (19 centimeters) over a 5-week period that persisted 
for several months.
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Figure 6.  The length of the flow path and the direction of flow 
can vary seasonally and with distance from shore. (Artwork by 
Donald O. Rosenberry, U.S. Geological Survey.)
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Ground-water levels adjacent to streams also fluctuate 
in response to the rise and fall of water in the stream (Winter, 
1999). An example of the resulting changes in flow direc-
tion between a stream and ground water is illustrated by data 
from the Cedar River in Iowa (fig. 10). In flowing waters, 
movement of surface water into the subsurface and out again 
occurs both at the bottom of the stream channel and beneath 
upland areas between bends in the open channel (fig. 11). This 
transient flow of surface water into and out of the subsurface is 
also known as hyporheic flow (Orghidan, 1959). Ground water 
flowing toward a surface-water body may discharge directly 
into that body or mix with hyporheic flow prior to emerging 
into open-water flow. The various interactions with ground 
water include situations in which flow is parallel to the stream 
(fig. 12) and does not intersect the surface water (Woessner, 
1998, 2000).

Defining the Purpose for Measuring  
the Exchange of Water Between 
Surface Water and Ground Water

Water-resource investigators and water-resource manag-
ers have many reasons to quantify the flow between surface 
water and ground water. Perhaps the most common reasons 
include: calculating hydrological and chemical budgets of 
surface-water bodies, collecting calibration data for watershed 
or ground-water models, locating contaminant plumes, locat-
ing areas of surface-water discharge to ground water, improv-
ing their understanding of processes at the interface between 
surface water and ground water, and determining the relation 
of water exchange between surface water and ground water 
to aquatic habitat. For many investigations, it is sufficient to 
make a qualitative determination regarding the direction and 
relative magnitude of flow, either into or out of the surface-
water body.

Methods for quantifying flows should be selected to be 
appropriate for the scale of the study. For a watershed-scale 
study in which multiple basins may be involved, small-scale 
flow phenomena, such as near-shore depressions in the 
water table or spatial variability of flux related to geologic 

variability, likely are of little importance to the overall study 
goal. In such watershed-scale studies, the net flux integrated 
over an entire stream reach, or lake, or wetland often is the 
desired result. Watershed-scale flow modeling, ground-water 
flow modeling, flow-net analysis, or dye- and geochemical-
tracer tests, often are used in such large-scale studies, studies 
on the order of hundreds of meters or a kilometer or more in 
length or breadth.

If the goal of a study is to identify and (or) delineate 
zones or areas of flow of surface water to ground water, or 
flow of ground water to surface water, smaller scale spatial 
and temporal variations in flow become important, and mea-
surement tools that provide results over an intermediate scale, 
many tens to hundreds of meters should be selected. In many 
instances, measurement of surface-water flow at two places 
some distance apart in a segment of stream, which enables 
calculation of gains or losses in flow in the segment, is appro-
priate for these types of studies. For local, small-scale stud-
ies in which flow to or from surface water may be focused, 
small-scale tools such as seepage meters, small portable wells 
(“minipiezometers” or hydraulic potentiomanometers), and 
buried temperature probes may be most appropriate. Devices 
designed to measure flow in a small area are known as seep-
age meters because the term seep refers to “a small area 
where water moves slowly to the land surface” (USGS Water 
Basics Glossary http://capp.water.usgs.gov/GIP/h2o_gloss/). 
Seepage is defined as “the slow movement of water 
through small cracks, pores, interstices, and so forth, 
of a material into or out of a body of surface or subsur-
face water” (USGS Water Science Glossary of Terms 
http://ga.water.usgs.gov/edu/dictionary.html#S).

Once the water-resource investigator has decided on 
the purpose of the study and the scale of the investigation, 
methods of investigation can be chosen to most effectively 
determine where an exchange between surface water and 
ground water is taking place, the direction of flow, the rate 
or quantity of that flow, and whether the rate and direction 
of flow changes over time.

Determining Locations of Water Exchange

The investigator who wishes to determine where water 
exchange is taking place between surface water and ground 
water has many options, particularly in the case of ground-
water discharge to surface water. Reconnaissance tools useful 
over larger areas, such as dye-tracer tests, aerial photog-
raphy and imagery, temperature and specific-conductance 
probes, and surface-water discharge measurements, can be 
supplemented by reconnaissance tools useful in smaller areas 
of interest, such as seepage meters, minipiezometers, and 
biological indicators.

Surface
water

Transpiration

Land surface

Water table during
growing season

Water table during
dormant season

Figure 8.  Example of the effect of transpiration on the water 
table and the direction of water flux between surface water and 
ground water (from Winter and others, 1998).
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Figure 9.  Example of rise and fall of water-table mounds at the edge of surface-
water bodies and changes in flow direction (from Lee and Swancar, 1997). A, Vertical 
distribution of head showing downward head gradient conditions, August 6, 1985.  
B, Vertical distribution of head during high water-level conditions, October 17, 1985.
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Figure 10.  Example of changes in flow direction related to onset and dissipation of a water-table mound adjacent to a river (from Squillace 
and others, 1993, used in accordance with usage permissions of the American Geophysical Union wherein all authors are U.S. Government 
employees). Hydrogeologic sections for part of the Cedar River, Iowa, for three periods in 1990. A, Movement of ground water into the river 
prior to a period of high river stage. B, Movement of river water into the contiguous aquifer during high river stage. C, Return of some of the 
water from the aquifer during declining river stage.
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Measuring Direction of Flow

Comparison of surface-water levels and adjacent ground-
water levels indicates direction of flow. If the surface-water 
level is higher than adjacent ground-water levels, the direc-
tion of flow is from the surface water to ground water. If the 
opposite is the case—ground-water levels are higher than 
nearby surface-water levels—then the direction of flow is from 
ground water to surface water. In addition to indicating the 
direction of flow, water-level measurements provide informa-
tion about the magnitude of the hydraulic gradients between 
surface water and ground water. In some instances, however, 
these gradients can be altered locally. For example, vegetation 
between the wells and the edge of the surface-water body can 
transpire sufficient water to cause a local depression in the 
water table close to the edge of the surface water (Meyboom, 
1966, 1967; Doss, 1993; Rosenberry and Winter, 1997; Fraser 
and others, 2001). Thus, it can be important to measure 
the direction of flow at a local scale using portable wells, 
minipiezometers, or hydraulic potentiomanometers.

Another way to determine if a section of stream or river 
is receiving ground-water discharge or is losing water to the 
underlying aquifer is by measurement of surface-water flow at 
two places some distance apart in a reach of stream, a practice 

commonly known as a “seepage run” (Harvey and Wagner, 
2000). If the amount of flow in the stream has increased over 
the reach, the increase may be attributed to ground-water 
discharge to the stream. If flow in the selected reach of stream 
has decreased, the decrease may be attributed to surface 
water flowing into ground water. It is important to recognize, 
however, that the direction of flow indicated by any change 
in streamflow is a “net direction” over the selected reach, 
and that within the reach, water may be moving into and out 
of the stream (and conversely, into and out of the underlying 
aquifer). It is important to account for any inflows or outflows 
within the stream reach, such as diversions for irrigation or 
channelized return flows from fields.

Measuring the Quantity of Flow

The volume of water flowing between surface water 
and ground water, either as surface water into ground water 
or ground water into surface water, can be measured directly 
with seepage meters. Measurement of changes in water 
temperatures over time at a specific site above the sediment, 
at the sediment-water interface, and within the sediment 
makes possible the determination of the amount of water 
exchange occurring between surface water and ground water. 
The exchange of water between surface water and ground 
water also can be examined and estimated by using dye 
tracer tests or by using other tracers. Such dyes or tracers are 
added directly to a stream and then their concentrations are 
measured at some point or points downstream. Changes in 
the concentration of the dye or other tracer over time down-
stream from where they are injected enables calculation of 
ground-water inputs.

Measuring Temporal Variations in Flow

In many instances, the rate of exchange between 
surface water and ground water varies over time scales 
of hours, days, or months. The direction of flow also may 
reverse on a seasonal basis or temporarily during a flood, for 
example. Measuring temporal variation in the rate of water 
exchange requires multiple measurements over these time 
periods. Measuring devices equipped with data recorders 
(“data loggers”) enable the investigator to record repeated 
measurements at specified time intervals to document 
temporal changes.

Gravel bar

Gravel bar

Sand and gravel

BankGravel bar

Bank
Gravel bar

Stream

Water surface

A. View from Above

B. Sectional View

Sand and gravel

Till

Figure 11.  Example of flow interaction between surface water 
and ground water (from Dumouchelle, 2001). Schematic of flow in 
Chapman Creek, west-central Ohio. (Arrows indicate direction of 
flow. Diagrams not to scale.)
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Methods of Investigation
Common methods to examine exchange of water between 

surface-water bodies and ground-water bodies are described 
below. Some of these methods make use of already installed 
hydrological instruments and existing data, rather than requir-
ing the investigator to make measurements of hydrologic char-
acteristics. When using such methods, however, the investiga-
tor may install wells, stream-gaging equipment, or rain gages, 
as needed, to obtain sufficient data to make the application of 
methods possible and the results less uncertain. Other methods 
require that the investigator make additional, specific measure-
ments or observations of hydrological, physical, chemical, or 
biological characteristics.

Watershed-Scale Rainfall-Runoff Models

Many analytical and numerical models that relate precipi-
tation, ground-water recharge, and ground-water discharge to 
temporal variability of flow in a stream have been developed. 
A fundamental assumption in these models is that stream-
flow is an integrated response to these processes over the 
stream’s watershed, and that ground-water discharge to the 

stream provides the steady flow in the stream between rainfall 
events, commonly referred to as baseflow. Analytical models 
generally determine baseflow through hydrograph separation 
techniques. Several automated routines have been developed 
to assist in this determination (Rutledge, 1992; Rutledge, 
1998) (fig. 13). Other analytical methods also have been used 
to quantify the interaction between ground water and surface 
water, including an analytic-element method (Mitchell-Bruker 
and Haitjema, 1996) and a nonparametric regression model 
(Adamowski and Feluch, 1991).

Several numerical models commonly referred to as 
rainfall-runoff models have been developed; these models are-
ally divide watersheds and subwatersheds and calculate hydro-
logic parameters for each smaller area (for example, Federer 
and Lash, 1978; Leavesley and others, 1983, 1996, 2002; Beven 
and others, 1984; Beven, 1997; Buchtele and others, 1998). 
Rainfall-runoff models generally are calibrated to match river 
flow at the outlet of a watershed or subwatershed. Some models 
include the ground-water component of flow in each area. The 
current trend is to couple distributed-area watershed-scale mod-
els with ground-water flow models in order to better determine 
the temporal and spatial variability of the interaction between 
ground water and surface water (for example, Leavesley and 
Hay, 1998; Beven and Feyen, 2002).

Figure 12.  Fluvial-plain ground-water and stream-channel interactions showing channel cross 
sections classified as: A, gaining; B and C, losing; D, zero exchange; and E, flow-through. The 
stream is dark blue. The water table and stream stage (thicker lines), ground-water flow (arrows), 
and equipotential lines (dashed) are shown (from Woessner, 1998, copyright American Institute of 
Hydrology, used with permission).
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Stream Discharge Measurements

Measurements of stream discharge (Rantz and others, 
1982a, b; Oberg and others, 2005) made as part of seepage runs 
(described earlier) can be used to determine the occurrence and 
rate of exchange of water between surface water and ground 
water in streams and rivers (fig. 14). The results of seepage runs 
have been used to provide an integrated value for flow between 
a stream and ground water along a specific stream reach. This 
method works well in small streams, but for larger streams and 
rivers, the errors associated with the measurement of flow in 
the channel often are greater than the net exchange of water to 
or from the stream or river. This method also requires that any 
tributaries that discharge to a stream along the reach of interest 
be measured and subtracted from the downstream discharge 
measurement. Likewise, withdrawals from the stream, such as 
that for irrigation, must be measured and added to the down-
stream discharge measurement.

The application of seepage-run data, however, is limited 
by the ratio of the net flow of water to or from the stream 
along a stream reach to the flow of water in the stream. The 
net exchange of water across the streambed must be greater 
than the cumulative errors in streamflow measurements. For 
example, if the errors in the stream discharge measurements 
are 5 percent of the true, actual flow, then according to the 
rules of error propagation, in order to be able to detect the net 
flow of water to or from the stream along the reach of inter-
est, the value of net flow must be greater than 7 percent of 
the streamflow. Despite these limitations, many hydrologic 
studies have made use of this method with good results [for 
example, Ramapo River, New Jersey−Hill and others (1992); 
Bear River, Idaho and Utah−Herbert and Thomas (1992); 
Souhegan River, New Hampshire−Harte and others (1997); 
Lemhi River, Idaho−Donato (1998); constructed stream 
channel Baden-Württemberg, Germany−Kaleris (1998)]. The 
information gained from seepage runs can be enhanced with 
data obtained by using other techniques such as minipiezom-
eters, seepage meters, temperature and specific-conductance 
measurements to better define surface-water/ground-water 
fluxes [for example, creeks and rivers in the Puget Sound area 
of Washington–Simonds and others (2004); and Chapman 
Creek, Ohio–Dumouchelle (2001)]. Seepage-run results also 
can provide estimates of hydraulic conductivity of the stream-
bed on a scale appropriate for ground-water flow modeling 
(Hill and others, 1992).

Ground-Water Flow Modeling

Since 1983, most investigators who have used the numer-
ical modeling approach in the quantification of flows between 
surface water and ground water have used the U.S. Geological 
Survey MODFLOW modular modeling code (Harbaugh and 
others, 2000). This finite-difference model contains an original 
“river package” that can simulate flows to or from a river, 
assuming the river stage does not change during a specified 
time period (referred to as a stress period in MODFLOW), but 
can change from one time period to the next. Several other 
MODFLOW modules or packages also have been developed 
to simulate fluxes between surface water and ground water. 
These include streamflow routing packages (Prudic, 1989; 
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Figure 13.  Example of the use of hydrographs to determine the 
amount of ground-water discharge to a stream (from Rutledge, 
2000). Hydrographs of streamflow for Big Hill Creek near 
Cherryvale, Kansas, for March 1974 (blue circles and dashed 
line), and hydrograph of estimated ground-water discharge using 
the PULSE model (red line). (Note: In each example, the total 
recharge modeled is 0.73 inch, which is the same as the total 
recharge estimated from RORA [a recession-curve-displacement 
method for estimating recharge] for this period. In example A, 
recharge is modeled as 0.65 inch on day 69 and 0.08 inch on day 
74. In example B, recharge is modeled as a gradual process that is 
constant from day 68 to day 72).
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Introduction and Characteristics of Flow    19

13,000 FEET

50 FEET

LAYER

13,000 FEET

a

b

? ?

1

2

3

4

5

A

B

PLAN VIEW

CROSS-SECTIONAL VIEW

Figure 15.  Example of model grid used for simulation of surface-water/ground-water interaction (from Merritt and Konikow, 2000). 
The lateral and vertical grid discretization for test simulation 1: A, Plan view—Shaded area is the surface extent of lake cells in layer 1. 
Interior grid dimensions are 500 and 1,000 meters. Border row/column cells are 250 feet thick. The locations of hypothetical observations 
wells are denoted by a and b. B, Cross-sectional view—Shaded area is the cross section of the lake. Although a nominal 10-foot 
thickness is shown for layer 1, the upper surface of layer 1 is not actually specified, and lake stages and aquifer water-table altitudes 
may rise higher than the nominal surface shown above.
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Prudic and others, 2004), a reservoir package (Fenske and 
others, 1996), a lake package (Cheng and Anderson, 1993), 
and more recently, a more elaborate lake package (Merritt and 
Konikow, 2000) (fig. 15). More advanced MODFLOW-based 
programs have been developed to couple one-dimensional, 
unsteady streamflow routing with MODFLOW (Jobson and 
Harbaugh, 1999; Swain and Wexler, 1996). Advances also 
are being made in coupling MODFLOW with watershed 
models that simulate many of the surface-water processes 
within a basin (Sophocleous and others, 1999; Sophocleous 
and Perkins, 2000; Niswonger and others, 2006). One of 
the most challenging aspects of coupling ground-water and 
surface-water models has been representation of flow through 
the unsaturated zone beneath a stream. Two new programs 
have recently been developed for MODFLOW to simulate 
one-dimensional (Niswonger and Prudic, 2005) and three-
dimensional (Thoms and others, 2006) flow in the unsaturated 
zone. Many of these packages require a determination of the 
transmissivity of the sediments at the interface between the 
aquifer and the surface-water body. Transmissivity is deter-
mined by multiplying hydraulic conductivity by the thickness 
of the lakebed or riverbed sediments.

Direct Measurement of Hydraulic Properties

The relation between the stage of a surface-water body and 
the hydraulic head measured in one or more nearby water-table 
wells can be used to calculate flows of water between surface 
water and ground water [Williams Lake, Minnesota−LaBaugh 
and others (1995); Vandercook Lake, Wisconsin−Wentz and 
others (1995); large saline lakes in central Asia−Zekster (1996); 
Lake Lucerne, Florida−Lee and Swancar (1997); Waquoit Bay, 
Cape Cod, Massachusetts−Cambareri and Eichner (1998); Otter 
Tail River, Minnesota–Puckett and others (2002)]. The Darcy 
equation (eq. 1) is used to calculate flow between ground water 
and surface water along specific segments of shoreline.

	 Q KA
h h

L
1 2 ,	 (1)

where
	 Q	 is flow through a vertical plane that extends 

beneath the shoreline of a surface-water 
body (L3/T),

	 A	 is the area of the plane through which all 
water must pass to either originate from 
the surface-water body or end up in the 
surface-water body, depending on the 
direction of flow (L2),

	 K	 is horizontal hydraulic conductivity (L/T),

	 h
1
	 is hydraulic head at the upgradient well (L),

	 h
2
	 is hydraulic head at the shoreline of the 

surface-water body (L),

and

	 L	 is distance from the well to the shoreline (L).

Shoreline segments are delineated/selected on the assumption 
that the gradient between a nearby well and the surface-water 
body, the hydraulic conductivity of the sediments, and the 
cross-sectional area through which water flows to enter or 
leave the lake, are uniform along the entire segment (fig. 16). 
Flows through each segment are summed for the entire 
surface-water body to compute net flow. The scale of the 
shoreline segments, and the scale of the study, depend on the 
scale of the physical setting of interest and the density of mon-
itoring wells. Further detail regarding this method is provided 
in Chapter 2, in the section “Wells and Flow-Net Analysis.”

Examination and Analysis of Aerial Infrared 
Photography and Imagery

Aerial infrared photography and imagery have been 
used to locate areas of ground-water discharge to surface 
waters (Robinove, 1965; Fischer and others, 1966; Robinove 
and Anderson, 1969; Taylor and Stingelin, 1969). This tech-
nique is effective only if the temperatures of surface water and 
ground water are appreciably different. Information obtained 
from infrared scanners can be captured electronically or 
transferred to film, on which tonal differences correspond to 
differences in temperature (Robinove and Anderson, 1969; 
Banks and others, 1996) (fig. 17). Published studies indicate 
tonal differences corresponding to a difference in tempera-
ture of approximately 2 degrees Celsius are distinguishable 
(Pluhowski, 1972; Rundquist and others, 1985; Banks and 
others, 1996).

Within the limits of the ability of infrared imagery to 
distinguish temperature differences between surface water 
and ground water, the inspection of such imagery enables 
more rapid identification of gaining reaches in streams over 
large areas than can be accomplished by stream surveys that 
measure temperature directly (Pluhowski, 1972). Another 
advantage of this method in identifying areas of ground-water 
discharge to surface-water bodies is its application where 
using other techniques such as dye tracing or direct tempera-
ture measurements are impractical, or access on the ground is 
difficult (Campbell and Keith, 2001) or dangerous (Banks and 
others, 1996).

Using thermal-infrared imagery to distinguish zones of 
ground-water discharge is practical for locating diffuse and 
focused ground-water discharge (Banks and others, 1996). 
This capability has been demonstrated in a variety of envi-
ronments. Examples for lakes are Crescent Lake, Nebraska 
(Rundquist and others, 1985), where the flow is diffuse and 
occurs over a large area, and Great Salt Lake and Utah Lake 
in Utah (Baskin, 1998), where the ground-water flow into 
the lake is focused at springs. Campbell and Keith (2001) 
found the technique useful in locating many springs flowing 
into streams and reservoirs in northern Alabama. Examples 
for estuaries are creeks flowing into Chesapeake Bay, 
Maryland, and the shorelines of the Gunpowder River and the 
Chesapeake Bay into which the river flows (Banks and others, 
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1996), as well as creeks and rivers flowing into Long Island 
Sound, New York (Pluhowski, 1972). Examples of the use 
of infrared imagery to detect areas of ground-water discharge 
to marine waters include the delineation of areas of diffuse 
ground-water flow into Long Island Sound (Pluhowski, 1972) 
and focused ground-water flow as springs to the ocean, such 
as around the perimeter of the island of Hawaii (Fischer and 
others, 1966).

Dye and Tracer Tests

Dyes and other soluble tracers can be added to water 
and then “tracked” to provide direct, qualitative information 
about ground-water movement to streams. Fluorescent dyes 
that are readily detected at small concentrations and pose little 
environmental risk make a useful tool for tracing ground-water 
flow paths, particularly in karst terrane (Aley and Fletcher, 
1976; Smart and Laidlaw, 1977; Jones, 1984; Mull and others, 

1988). Thus, dye-tracer studies can be used to determine the 
time-of-travel for ground water to move to and into surface 
water, as well as hydraulic properties of aquifer systems (Mull 
and others, 1988). The use of dyes as tracers is described in 
more detail in Chapter 3. Commonly, a reconnaissance of the 
ground-water basin is made to identify likely areas of potential 
surface-water flow into ground water or ground-water flow 
to the surface. An inventory is made of springs, sinkholes, 
boreholes or screened wells, and sinking streams. Appropriate 
sites then are picked for dye injection, and the potential dis-
charge areas, springs, and stream reaches are monitored over 
an appropriate period of time, hours or days, for appearance of 
the dye (fig. 18).

Solute tracers have been used to aid in the determina-
tion of water gains or losses within the channel of a stream or 
river (Kilpatrick and Cobb, 1985). This technique is known as 
dilution-gaging. A variety of tracers have been used in such 
studies, either alone or in combination, usually including a 

Figure 16.  Example of shoreline segment definition for the calculation of water fluxes between surface 
water and ground water at a lake (modified from LaBaugh and others, 1995, used in accordance with author 
rights of the National Research Council of Canada Press). Location of wells and shoreline segments used to 
calculate flow between surface water and ground water at Williams Lake, Minnesota.
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Figure 17.  Example of use of thermal infrared imagery to delineate areas of discrete and diffuse ground-water discharge to surface 
water (from Banks and others, 1996, reprinted from Ground Water with permission from the National Ground Water Association, 
copyright 1996, thermal imagery of O-Field study area, Aberdeen Proving Ground, Maryland).
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Figure 18.  Example of the use of dye to examine water fluxes between surface water and ground water (from Carter 
and others, 2002). Dye testing has been done in Boxelder Creek, South Dakota, which can lose as much as 50 cubic 
feet per second of flow to the bedrock aquifers. In the upper left photograph, nontoxic, red dye is poured into Boxelder 
Creek upstream from a major loss zone. In the upper right photograph, dye in the stream can be seen disappearing 
into a sinkhole in the Madison Limestone. In the bottom photograph, dye in the stream emerges downstream at Gravel 
Spring, which is about 671 meters (2,200 feet) (linear distance) from the major loss zone. The length of time for the first 
arrival of dye to travel this distance is variable depending on flow conditions but generally is about 1 to 2 hours (Strobel 
and others, 2000). Thus, the ground-water velocity is about 0.3 to 0.6 kilometer per hour (0.2 to 0.4 mile per hour), 
which is a very fast rate for ground water. Dye also has been recovered at City Springs, which is in the Rapid Creek 
Basin, about 30 days after injection. This demonstrates that ground-water flow paths are not necessarily restricted 
by surface-water drainage basins. (Photographs by Derric L. Isles, South Dakota Department of Environment and 
Natural Resources.)
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tracer expected to be nonreactive in the waters of the stream to 
which it is added, such as lithium (for example, in the Snake 
River, Colorado–Bencala and others, 1990) or chloride (for 
example, Chalk Creek, Colorado−Kimball, 1997). In this 
technique, a known quantity of solute is added at a specified 
rate for a short interval of time at the upstream cross section 
of the stream segment of interest, and concentrations of the 
solute are measured at one or more points downstream over 
time. Discharge is calculated from the amount of dilution that 
occurs at the downstream point or points. Kimball (1997) 
indicated that Q

s
 (the discharge in the stream) is calculated 

as follows:

	 Q
s
 = (C

i
Q

i
) / (C

B
 – C

A
)

	
(2)

where
	 C

i	
is the tracer concentration in the injection 

solution,

	 Q
i
	 is the rate of injection into the stream,

	 C
B
	 is the tracer concentration downstream,

and

	 C
A
	 is the tracer concentration upstream from the 

injection point.

When coupled with stream-segment discharge measurements, 
use of solute tracers also enables calculation of the rates of 
ground-water inflow and outflow within a stream segment 
(Harvey and Wagner, 2000). At the same time the solute is 
injected and monitored within the stream segment, physical 
velocity measurements (streamflow) are made at the upstream 
and downstream sections of the stream reach. The streamflow 
measurements provide information on whether or not there 
was a net loss or gain of flow within the reach due to interac-
tion with ground water. Harvey and Wagner (2000) indicate 
the solute tracer, or dilution-gaging, values determine ground-
water inflow. Thus, ground-water outflow can be calculated by 
subtracting the net loss or gain from the solute tracer-derived 
ground-water inflow value.

Calculation of chemical budgets for a stream, lake, or 
wetland is another way in which solutes can be used to make 
quantitative estimates of surface-water exchange with ground 
water. Conservative chemicals in a watershed are those that 
are not altered by the porous media through which they flow, 
and occur at concentrations for which changes in concentra-
tion because of chemical precipitation are not likely to occur. 
Conservative chemicals can be used to determine the volume 
of ground water that flows into or out of a surface-water body, 
provided that all other fluxes are known. A common form of 
the chemical-budgeting equation for a lake or wetland is

	 P(C
P
) + GWI(C

GWI
) + SI(C

SI
) – GWO(C

GWO
) 

	 – SO(C
SO

) = V
L
(C

L
) ± R,	 (3)

where
	 P	 is precipitation,

	 GWI	 is ground-water flux into lake or wetland,

	 SI	 is streamflow into lake or wetland,

	 E	 is evaporation,

	 GWO	 is flux of lake or wetland water to ground 
water,

	 SO	 is streamflow out of lake or wetland,

	 ∆V
L
	 is change in lake or wetland volume,

	 C
x
	 is chemical concentration of hydrologic 

component,

and

	 R	 is residual.

Chemical budgets have been calculated in lake and wetland 
studies where water exchange between surface-water bod-
ies and underlying ground water was of interest [see, for 
example, Rawson Lake, Ontario−Schindler and others (1976); 
Thoreau’s Bog, Massachusetts−Hemond (1983); Williams 
Lake, Minnesota−LaBaugh and others (1995); LaBaugh 
and others (1997); multiple lakes in Polk and Highlands 
Counties, Florida−Sacks and others (1998); Lake Kinneret, 
Israel−Rimmer and Gideon (2003)]. The equation can be 
modified to solve for any unknown flow term, provided that 
the remainder of the flow terms are known. The accuracy of 
the method depends greatly on the accuracy of the other flow 
and chemical-concentration measurements. The size of the 
residual term often is considered a general indicator of the 
accuracy of the method, but a small residual does not always 
indicate an accurate chemical balance. LaBaugh (1985) and 
Choi and Harvey (2000) provide examples of the use of error 
analysis to quantify the uncertainty associated with water-flux 
results obtained using this method.

The ratios of the isotopes of oxygen and hydrogen 
present in water have been used for decades to distinguish 
sources of water, including ground-water discharge to surface-
water bodies (for example, Dincer, 1968). These isotopes are 
useful because they are part of the water and not solutes dis-
solved in the water. The method works well when the degree 
of isotopic fractionation of the water is different for different 
sources of water. The process of evaporation tends to remove 
lighter isotopes, leaving the heavier isotopes behind. Thus, the 
ratio of lighter to heavier isotopes will change over time in the 
water and the water vapor. More detailed explanation of the 
isotopic fractionation in catchment water is given in Kendall 
and others (1995). If the isotopic compositions of different 
sources of water are distinct, then simple mixing models can 
be used to identify sources of water. A brief example is pre-
sented here, but more detailed explanations and examples of 
the use of this method can be found in Krabbenhoft and others 
(1994), LaBaugh and others (1997), Sacks (2002) (applied 
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to lakes), Kendall and others (1995) (a brief description of 
the methods), and Kendall and McDonnell (1998) (detailed 
descriptions of numerous isotopic methods).

For determination of ground-water discharge to streams 
and rivers, a simple two-component mixing model often 
is used:

	 Q
S
δ

S
 = Q

GW
δ

GW
 + Q

P
δ

P	
(4)

where
	 Q	 is discharge,

	 δ	 is the stable-isotopic composition in parts 
per thousand enrichment or depletion 
(“per mil”) relative to a standard,

	 S	 is stream water,

	 GW	 is ground water,

and 

	 P	 is precipitation.

For lakes and wetlands, where sources of water are more 
numerous, slightly more complex mixing models can be used, 
such as those provided by Krabbenhoft and others (1990):

	 GWI
P EL P E L

GWI L

( ) ( )
	 (5)

or that provided by Krabbenhoft and others (1994):
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where
	 GWI	 is ground-water flux into lake,

	 GWO	 is flux of water from lake to ground water,

	 P	 is precipitation,

	 E	 is evaporation,

	 ∆V
L
	 is change in the volume of the lake,

and

	 δ
X	

is per mil value for hydrologic component.

Where equations 5 and 6 are derived from equation 3 applied 
to stable isotopes at steady state:
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Investigation of ground-water discharge into inland and 
marine surface water also is feasible through measurement 
of radon and radium isotopes (Corbett and others, 1998; 
Moore, 2000). In the radon isotope method, a mass balance is 
constructed for radon-222 (222Rn), which is a chemically and 
biologically inert radioactive gas formed by the disintegration 
of the parent nuclide radium (Corbett and others, 1998, 1999). 
Because radon is a gas, radon in water in contact with the 

atmosphere will be lost from that water because of volatiliza-
tion. Thus, ground water commonly contains higher activities 
of 222Rn than does surface water, from 3 to 4 orders of magni-
tude greater (Burnett and others, 2001). 222Rn is a radioactive 
daughter isotope of radium 226 (226Ra) and has a half life of 
3.82 days. Determination of the activity of 222Rn and 226Ra in 
surface water enables the calculation of the 222Rn excess—how 
much more 222Rn is present in surface water than would be 
expected based on the 226Ra content of the water. Determina-
tion of the activity of 222Rn and 226Ra in sediment water or 
ground water is used to determine the 222Rn flux into surface 
water (Cable and others, 1996; Corbett and others, 1998), 
which can account for the excess 222Rn in the surface water. 
The mass balance or flux of 222Rn has been used to determine 
ground-water discharge to several types of surface-water bod-
ies (Kraemer and Genereaux, 1998): in streams, such as the 
Bickford watershed, Massachusetts (Genereaux and Hemond, 
1990); rivers, such as the Rio Grande de Manati, Puerto Rico 
(Ellins and others, 1990); lakes, such as Lake Kinneret, Israel 
(Kolodny and others, 1999); estuaries, such as Chesapeake 
Bay (Hussain and others, 1999), Charlotte Harbor, Florida 
(Miller and others, 1990), and Florida Bay (Corbett and others, 
1999), as well as the coastal ocean, such as in Kanaha Bay, 
Oahu, Hawaii (Garrison and others, 2003); the Gulf of Mexico 
off of Florida (Cable and others, 1996; Burnett and others, 
2001); and the Atlantic Ocean off the coast of South Carolina 
(Corbett and others, 1998).

In the radium isotope method, the surface-water activi-
ties of the four naturally occurring radium isotopes—226Ra, 
228Ra, 223Ra, and 224Ra—are compared to activities in sediment 
water or ground water to determine fluxes (Moore, 2000). 
The source of the radium isotopes is the decay of uranium 
and thorium in sediments or rocks. Water in contact with solid 
materials containing the source of the isotopes will accumu-
late the isotopes. Ground water will accumulate more of the 
isotopes because of water’s presence within the matrix of the 
sediments or rocks. Surface waters will accumulate less of 
the isotopes because the sediments or rocks are less abundant 
relative to the water (Kraemer, 2005). Kraemer indicates the 
ratio of the longer lived isotopes (226Ra half-life of 1,601 years, 
228Ra half-life of 5.8 years) can be used as an indicator of 
the types of sediments or rocks through which ground water 
has traveled, because of differences in uranium and thorium 
content between rock types. Kraemer (2005) also notes that 
the short-lived isotopes (223Ra half life of 11.4 days, and 224Ra 
half-life of 3.7 days) provide some indication of the timing of 
ground-water discharge. Naturally occurring radium isotopes 
have been useful in the identification of ground-water inflow 
to lakes, such as Cayuga Lake, New York (Kraemer, 2005), 
freshwater wetlands in the Florida Everglades (Krest and 
Harvey, 2003), estuarine wetlands, North Inlet salt marsh, 
South Carolina (Krest and others, 2000), and coastal waters 
in the central South Atlantic Bight (Moore, 2000).
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Thermal Profiling

Measurements of temperature have been used to 
determine qualitatively the locations of rapid discharge of 
ground water to surface water; common measurement methods 
include towing a tethered temperature probe, in-situ mea-
surements of temperature, and thermal imagery (Lee, 1985; 
Baskin, 1998; Rosenberry and others, 2000). Temperature also 
can be measured at different depths beneath a stream or lake to 
determine the rate of vertical flow through a surface-water bed 
either into or out of the surface-water body (Lapham, 1989). 
This method is effective when flow through the lakebed is 
sufficient to allow advective processes to be significant relative 
to conductive temperature signals. The method requires 
multiple measurements of temperature over weeks or months 
and the simultaneous solution of the flow of fluid and heat in 
one dimension. Depths of temperature measurement typically 
extend up to 3 to 6 meters beneath the sediment bed. The 
solution requires the assumption that flow is vertical through 
the surface-water bed and that the media are homogeneous and 
isotropic. Taniguchi (1993) used seasonal changes in sediment 
temperature beneath a surface-water body to develop type 
curves that can be used to estimate vertical fluxes through the 
surface-water bed.

Subsediment temperature has been used over short 
distances beneath the surface-water bed and makes use of 
the temperature response in the sediments to diurnal changes 
in surface-water temperature (Constantz and others, 1994; 
Stonestrom and Constantz, 2003). This method adjusts 
parameters in a one-dimensional, variably saturated heat-
transport model (VS2DH) [developed in the USGS (Healy 
and Ronan, 1996)] until the simulation results match the 
temperature data collected beneath the surface-water body. 
Sediment temperature measurements and data also have 
been used to determine streamflow frequency in ephemeral 
stream channels (Constantz and others, 2001; Stonestrom 
and Constantz, 2003). This method is described in greater 
detail in Chapter 4. Conant (2004) used measurements of 
hydraulic-head gradient and hydraulic conductivity in wells 
installed in a streambed to determine rates of exchange 
between ground water and surface water. Conant then devel-
oped an empirical relation between streambed flux and 
streambed temperature relative to stream-water temperature 

and used the empirical relation to indicate rate of discharge of 
ground water to the stream at locations where only streambed 
temperature was measured.

Use of Specific-Conductance Probes

Specific-conductance probes are another tool that can 
be useful for locating areas of ground-water discharge to 
surface waters (Lee, 1985; Vanek and Lee, 1991; Harvey 
and others, 1997) (fig. 19). Such probes are suspended from 
a boat with a cable connecting the probes to a specific-
conductance meter on board the boat. The housing for 
the electrically conductive probes is designed to maintain 
contact with the sediments (Lee, 1985) so that the probes 
are dragged through bottom sediments at a depth of 1 to 
3 centimeters (Vanek and Lee, 1991). This method depends 
on having the existence of a difference in the electrical con-
ductance of surface and ground water great enough to be 
detected by the sensors (probes) and thus to identify points or 
areas of ground-water discharge to the surface water. Thus, 
saline waters receiving ground-water discharge of less salin-
ity (Vanek and Lee, 1991) or fresh surface waters receiving 
more mineralized ground-water discharge (Harvey and oth-
ers, 1997) are environments where this technique is effec-
tive. Changes in electrical conductance, however, also may 
reflect changes in sediment type so that the technique should 
be considered only as a reconnaissance tool. The identifica-
tion of places where ground-water discharge may be occur-
ring should be verified by other, complementary techniques 
(Vanek and Lee, 1991). Specific-conductance and temperature 
probes have been used in this way along many kilometers of 
river reaches in combination with Global Positioning System 
information to determine the precise locations of ground-
water discharge and their variation with season (Vaccaro 
and Maloy, 2006).
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Figure 19.  Example of the use of a towed specific-conductance 
probe to identify ground-water discharge to surface waters 
(from Harvey and others, 1997, used in accordance with usage 
permissions of the American Geophysical Union). The sediment 
probe is being towed behind a small boat. The probe is used to 
detect areas of more electrically conductive ground-water inflow. 
In saline waters, the probe is used to detect less electrically 
conductive fresh ground-water inflow.
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Electrical Resistivity Profiling

Electrical geophysical survey methods are applicable 
to delineating submarine ground-water discharge (Loke and 
Lane, 2004). Salinity differences in water can be detected by 
the resistance to the passage of current between electrodes. 
Fresh or weakly saline waters will be more resistant to move-
ment of an electric current than more saline waters. Two 
resistivity data acquisition geometries commonly are used: 
(1) continuous resistivity profiling (Belaval and others, 2003; 
Manheim and others, 2004; Day-Lewis and others, 2006), and 
(2) marine resistivity (Taniguchi and others, 2006). In continu-
ous resistivity profiling, a streamer comprising a set of floating 
electrodes spaced at a regular interval is towed on the water 
surface behind a boat. As the boat travels along a transect, 
electrical current is applied at a fixed time interval at one or 
more electrode pairs, and electrical potentials are measured 
simultaneously between other electrode pairs. At the same 
time, water depths along the transect are measured with echo 
sounding. In marine resistivity profiling, measurements are 
made using electrodes placed on the water bottom. Regardless 

of the acquisition geometry, data are inverted to produce 
two-dimensional cross sections, or tomograms, of subsurface 
resistivity. Such data can indicate locations within a transect 
where submarine ground-water discharge is occurring, as well 
as delineating the subsurface saltwater/freshwater interface or 
geologic structure. Tomograms are commonly interpreted in 
the context of direct, discrete measurements of conductivity, 
temperature, and depth.

Hydraulic Potentiomanometer 
(Portable Wells) Measurements

Many devices have been designed to be installed 
through the bed of a surface-water body to measure the verti-
cal hydraulic-head gradient beneath the surface-water body. 
These devices provide a direct measurement of hydraulic head 
relative to surface-water stage at the depth to which the probe 
is inserted beneath the surface-water bed. One of the most 
commonly used devices of this type is the hydraulic potentio-
manometer (fig. 20), also sometimes called a minipiezometer 

Figure 20.  A, Hydraulic potentiomanometer with users 
demonstrating hydraulic-head difference between surface water 
and ground water. The hydraulic head of the river (right side 
of the board) is higher than the hydraulic head of the ground 
water (left side of the board), indicating a downward gradient 
(from Simonds and Sinclair, 2002). Photograph by Kirk A. Sinclair, 
Washington State Department of Ecology, 2002. B, Components of 
a hydraulic-potentiomanometer system (from Winter and others, 
1988, copyright 1988 by the American Society of Limnology and 
Oceanography, Inc., used with permission).
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(Winter and others, 1988). Although this device does not pro-
vide direct measurements of flow across the sediment-water 
interface, it is useful for making qualitative determinations of 
direction of flow across the sediment-water interface. Esti-
mates of hydraulic conductivity also can be made on the basis 
of the amount of suction required to pull water through the 
screen at the end of the probe. These devices often are used 
in conjunction with a network of wells to obtain additional 
hydraulic-head data along shoreline segments where wells are 
not or cannot be situated. Details about use of these devices is 
provided in Chapter 2.

Seepage Meter Measurements

Seepage meters are devices that isolate a small area of 
the bed of a surface-water body and measure the flow of water 
across that area. References as early as 1944 indicate that early 
seepage meters were designed to measure water loss through 
unlined canals (Carr and Winter, 1980). Beginning in the early 
1970s, seepage meters have been used in lakes, rivers, wet-
lands, and estuaries to measure flows between surface water 
and ground water in natural settings. Use in coastal environ-
ments has increased during recent years (Cable and others, 
1997). One of the most common devices, called a half-barrel 
seepage meter, uses a cut-off end of a steel (or plastic) storage 
drum to isolate a small circular area of the surface-water bed, 
and a plastic bag is attached to the barrel to register the change 
in water volume over the time of bag attachment (Lee, 1977; 
Lee and Cherry, 1978) (fig. 21). More details about the use 
and interpretation of data from seepage meters are included in 
Chapter 2. Many device modifications have been made to the 
basic design of seepage meters for use in deep water, soft sedi-
ments, shallow water, and areas exposed to large waves.

Many investigations of surface-water and ground-water 
interaction require integrating point measurements of water 
flux in order to interpret the total flow between surface water 
and ground water. The most common method is to average 
point measurements and apply that average value to all or 
part of the surface-water body of interest. This method is not 
appropriate, however, where ground-water flux into a surface 
water declines with greater distance from shore. If data are 
collected along transects perpendicular to the shore, a curve 
can be fit through the data. Because ground-water flow to 
surface water commonly is distributed exponentially with 
distance from shore, exponential curves have been fit through 
transect data, and the equation for the curve has been used 
to calculate water flux for an area deemed to be representa-
tive of the transect point measurements (for example, Fellows 
and Brezonik, 1980). Where ground-water flux is not expo-
nentially distributed with distance from shore, a plot of point 
measurements of seepage flux with distance from shore is 
made, and the area under the curve can be determined to repre-
sent total seepage for a unit width of shoreline. That value can 

then be multiplied by an appropriate shoreline length to deter-
mine a flux volume for a specific area of the surface-water 
body. If point measurements are made at a sufficient number 
of transects, ground-water flux for an area of a surface-water 
body can be determined.

Biological Indicators

The biological response to conditions of flow at the 
sediment-water interface can be an indicator of the direc-
tion and relative magnitude of flow. The growing field of 
ground-water ecology has made frequent use of distributions 
of specific types of plants and animals as an indicator of 
ground-water/surface-water interaction (Danielopol, 1984; 
Danielopol and others, 1997; Lodge and others, 1989; Malard 
and others, 1996; Goslee and others, 1997; Wetzel, 1999) 
(fig. 22). These methods are useful reconnaissance tools to aid 
in locating areas in need of more detailed investigations. Typi-
cally, these methods involve identifying species or groups of 
species of plants or animals that are known to thrive in places 
where ground water discharges to surface water, but some of 
the indicators also indicate areas where surface water flows 
into ground water. Identification of specific plant and animal 
species is necessary for use of these methods, but some of the 
species are readily identifiable without requiring intensive bio-
logical or ecological training (Rosenberry and others, 2000).
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Figure 21.  Full-section view of seepage meter showing details 
of placement in the sediment (modified from Lee and Cherry, 1978, 
used with permission of the Journal of Geoscience Education).
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Figure 22.  Marsh marigold in Shingobee Lake, Minnesota. Presence indicates location of ground-water discharge to the 
lake. (Photographs by Donald O. Rosenberry, U.S. Geological Survey.)
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