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Problem and Research Objectives 
This is the second year of the project. The main objective of the research work is to develop a novel, 
frequency-response permittivity sensor to measure multiple properties of surface and ground water that are 
crucial to water quality.  
 
Methodology 
1.  Sensor improvement 
Considering the effect of corrosion on measurement, we made two new sensors using aluminum 
alloy and stainless steel (Figure 1). Geometry of the sensor probe was modified to further enhance 
the capacitive effect. Sealing of the probe was also improved to achieve complete waterproof.  

         
(a)                                                               (b) 

Figure 1. Sensor probes made of (a) aluminum alloy and (b) stainless steel 
 
2. Hardware design  
A printed circuit board (Figure) was designed and fabricated. User interface with a keypad and a 
LCD screen was also designed. The hardware was integrated into a portable box (Figure 3), which 
was designed for field tests. 
 

                                      
 

Figure 2. Printed Circuit Board for signal processing 
 



 
 

Figure 3. Signal conditioning/processing and user interface 
 
Significant Findings 
Four water tests were conducted for the sensor. Findings from the tests are reported below. 
 
1. Test in three separate Potassium solutions 
A modified sensor probe (Figure 1) was tested in water solutions of three potassium salts, KNO3, 
KH2PO4, and KCl. The experiment was conducted in two steps. During the first step, we tested the 
solutions in high salt concentrations (3,500 – 35,000 ppm). The goal was to identify FR signatures 
of individual cation and anions. For each salt, 11 solution samples with increasing concentration 
were prepared in deionized water. Frequency-response data were then taken three times using the 
sensor. Calibration models for predicting the salt concentrations were established for individual 
salts. Results are shown in Table 1. 

Table 1. Prediction results for three salt solutions at high concentrations  

(3,500 – 35,000 ppm) 

Salt type R-square value RMS error (ppm) 

KH2PO4 0.9985 390 

KNO3 0.9848 1273 

KCl 0.9927 857 

  
In order to test the sensor’s ability to recognize specific ions in water solutions, FR data for all 
three salts were combined to establish PLS models to quantitatively predict individual ions. The 
results are shown in Table 2. The prediction results for potassium ion across three salt types are 
shown in Figure 4. 

 



Table 2. Prediction results for ions and cation in three salt solutions at high concentrations  

(3,500 – 35,000 ppm) 

Anion/Cation R-square RMS error (ppm) 

K+ 0.9801 640 

Cl- 0.9532 1109 

NO3
- 0.9649 1238 

PO4
- 0.8323 3078 

 

 
Figure 4. Prediction result for potassium ion concentration in three high-concentration salt 

solutions 
 
The second step of the experiment was to test salt solutions at low concentrations (0-4 ppm). The 
salt tested was potassium nitrate. Samples of 11 concentrations were prepared using a dilution 
procedure.  Three independent sets of samples were prepared. One set was used for calibration; the 
others for validation. The results are shown in Table 3. These results prove that the sensitivity of 
the sensor is sufficient for measuring nutrient residual in water at the environmentally- and 
physiologically-relevant concentration level. 

 

 

 

 

 

 



Table 3. Prediction results for K+ in three salt solutions at low concentrations 

(0-4 ppm) 

Data set R-square RMS error (ppm) 

Training data set 0.9988 0.041 

Validation data set 1 0.9217 0.775 

Validation data set 2 0.8710 1.408 
 

Frequency signature 
Conventional multivariate analysis tools, such as partial least square (PLS) method, have been 
proven effective in spectroscopic data analysis. In order to reduce the number of frequencies used 
in the model, “signature frequencies” for a specific agent, at which the frequency response of the 
agent possesses distinguishable patterns from other agents, should be selected. One way to select 
the signature frequencies is to locate the peaks (both positive and negative) in the loading factors 
(principal components) derived from the PLS analysis for that specific agent.  
 
From the first three principal components (PC) derived from the PLS analysis on potassium cation 
(K+) using 33 solution samples of KCl, KNO3, and KH2PO4 (11 samples for each), 30 signature 
frequencies were selected from 606 frequencies originally used in the FR data. PLS models 
established using the 30 signature frequencies were tested in samples of individual and combined 
salt solutions to predict the concentrations of potassium cation (K+). As shown in Table 4, the 30 
signature frequencies did a very good job in detecting the cation concentration with high R2 values 
and low RMS errors, especially for the KCl and KH2PO4 solutions. This result indicates that, once 
correctly identified, the signature frequencies can be used to detect specific ions in water samples 
with unknown pollutants. The reduced number of frequencies would not only speed up the 
measurement, it would also avoid overfitting of the prediction models.  

 
Table 4. Prediction results for K+ in different salt solutions using a PLS model established 

based on 30 “signature frequencies” 
Solutions tested Number of samples 

tested 
R2 RMS error (ppm) 

KCl 11 0.9909 503 
KNO3 11 0.8084 4401 

KH2PO4 11 0.9999 25 
KCl, KNO3, and KH2PO4 33 0.9071 1383 

 
When the 30 signature frequencies obtained using high-concentration solutions were used to 

predict low-concentration (0-4 ppm) KNO3 solutions, the R2 value for the training data set was 
basically unchanged. For validation, the R2 value slightly decreased for data set 2 but increased for 
data set 3 (Table 5). The difference between these two was greatly reduced. This demonstrates the 
effectiveness of the frequency signature in describing the FR patterns of specific types of ions and 
in avoiding model overfitting. 

 



Table 5. Effectiveness of frequency signature in reducing the number of frequencies while 
achieving better prediction for low concentration (0-4ppm) KNO3. 

Data set Data set 1 (Training) Data set 2 (Validation) Data set 3 (Validation) 
Frequencies 

used 
606 

(original) 
30 

(Signature) 
606 

(original) 
30 

(Signature) 
606 

(original) 
30 

(signature) 
R2 values 0.9991 0.9992 0.9560 0.9153 0.8207 0.9140 

 
2. Detecting potassium ion in mixed salt solutions 
 
Two sets of 121 mixed Potassium Phosphate (K3PO4) and Potassium Nitrate (KNO3) solutions 
were prepared by blending 11 Potassium Phosphate solutions (0-20ppm) with 11 Potassium Nitrate 
solutions (0-4 ppm). One set was used for training and the other validation. Models were 
established to predict the concentration of potassium ions in the mixed solutions. The results are list 
in table 6. Figures 5 and 6 demonstrate the prediction results for potassium ion for the training and 
validation data sets, respectively. 
 
It can be noted from Table 6 that, when 30 “signature frequencies” were used, high prediction 
accuracy was maintained.    
 

Table 6. Predicting potassium ion concentration in mixed salt solutions 
 

Data type R-square RMS error (ppm) 
Gain 0.9887 0.376 

Gain (30 “signature frequencies”) 0.9708 0.603 
Phase 0.9878 0.390 

 
Training 

 
Gain and phase 0.9885 0.379 

Gain 0.9886 0.410 
Gain (30 “signature frequencies”) 0.9645 0.679 

Phase 0.9880 0.430 

 
Validation 

Gain and phase 0.9878 0.436 
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Figure 5. Prediction K+ using training gain data 
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Figure 6 Prediction K+ using validation gain data 

 
 
 
 



3. Simultaneously detecting nitrate and three salts in mixed salt solutions 
 
Two sets of 125 mixed salt solutions were prepared. These included combinations of five 
Potassium Nitrate (KNO3) concentrations, five Calcium Nitrate(Ca(NO3)2) concentrations, and five 
Ammonium Nitrate(NH4NO3) concentrations. The five concentrations were 0, 5, 10, 15, and 20 
ppm. One set of the 125 mixed solutions were used as the training data set, where as the other for 
validation. The goal was to predict the nitrate concentration, as well as concentrations of Potassium 
Nitrate, Calcium Nitrate, and Ammonium Nitrate, simultaneously, in all samples. The results are 
shown in Tables 7 through 10. Figure 8 shows the prediction using both gain and phase training 
data.   
 

Table 7. Predicting Nitrate concentration in blends of three salt solutions 
Data set R-square RMSE (ppm) 

Gain 0.9987 0.320 
Phase 0.9990 0.284 

 
Training 

Gain+Phase 0.9992 0.245 
Gain 0.9973 0.481 
Phase 0.9971 0.484 

 
Validation 

Gain+Phase 0.9976 0.445 
 

 
Figure 7. Prediction result using both gain and phase data for the training data set 

 



 
 

Figure 8. Prediction result using both gain and phase data for the validation data set 
 
 

Table 8. Predicting Potassium Nitrate concentration in blends of three salt solutions 
Data set R-square RMSE (ppm) 

Gain 0.9001 2.235 
Phase 0.6887 3.945 

 
Training 

Gain+Phase 0.8805 2.444 
Gain 0.5744 4.894 
Phase 0.4322 5.954 

 
Validation 

Gain+Phase 0.6380 4.386 
 

Table 9. Predicting Calcium Nitrate concentration in blends of three salt solutions 
Data set R-square RMSE (ppm) 

Gain 0.9025 2.207 
Phase 0.8278 2.934 

 
Training 

Gain+Phase 0.8757 2.493 
Gain 0.6488 4.447 
Phase 0.5663 4.727 

 
Validation 

Gain+Phase 0.6464 4.220 
 
 



Table 10. Predicting Ammonium Nitrate concentration in blends of three salt solutions 
Data set R-square RMSE (ppm) 

Gain 0.9704 1.217 
Phase 0.9564 1.476 

 
Training 

Gain+Phase 0.9632 1.357 
Gain 0.8794 2.817 
Phase 0.8828 2.943 

 
Validation 

Gain+Phase 0.8960 2.819 
 
It can be seen from Tables 7-10 that the prediction result is better for nitrate than for the potassium, 
calcium, and ammonium ions. This is probably because that nitrate is the only anion in the mixed 
solutions, whereas all other ions are all cations. It is more difficult to discriminate between same 
types of ions because their roles in ionic conduction are similar. However, more accurate detection 
of individual types of ions is possible if “signature frequencies” for individual ion types are 
identified. We will further work in this area. 
 
4. Measuring atrazine concentration in water 
 
Water solutions of atrazine at 10 concentrations (0-5 ppm) were tested using the sensor. Two sets 
of samples were prepared for training and validation purposes, respectively. Results shown in Table 
11 and Figure 9 are promising.   

 
Table 11. Predicting Ammonium Nitrate concentration in blends of three salt solutions 

Data set R-square RMSE (ppm) 
Gain 0.9949 0.103 
Phase 1.0000 0.001 

 
Training 

Gain+Phase 1.0000 0.002 
Gain 0.9694 0.396 
Phase 0.9456 0.375 

 
Validation 

Gain+Phase 0.9558 0.365 



 
Figure  9. Predicted and actual atrazine concentrations (ppm) in deionized water for the 

validation data set.  
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