UNITED STATES NUCLEAR REGULATORY COMMISSION

DAVIS-BESSE REACTOR VESSEL HEAD DEGRADATION

LESSONS LEARNED TASK FORCE

DEFENSE NUCLEAR FACILITIES SAFETY BOARD PUBLIC MEETING


September 10, 2003

Ed Hackett, Project Director
Project Directorate II
Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission
EMH1@NRC.GOV

DAVIS-BESSE RACTOR VESSEL HEAD DEGRADATION BACKGROUND

- ☐ FEBRUARY, 2002 CORROSION CAVITY DISCOVERED ON THE DAVIS-BESSE REACTOR VESSEL HEAD DURING INSPECTIONS FOR VESSEL HEAD PENETRATION CRACKING
- EXTENT OF THE CORROSIVE ATTACK FROM A CONCENTRATED BORIC ACID SOLUTION WAS UNPRECEDENTED IN PREVIOUS NUCLEAR PLANT EXPERIENCE:
- □ OVER 6 INCHES OF CARBON STEEL WAS DEGRADED
- □ ONLY THE STAINLESS STEEL CLADDING (0.3 INCH THICKNESS) REMAINED AS PRESSURE BOUNDARY OVER THE DEGRADED AREA
- □ NRC CHARTERED A LESSONS-LEARNED TASK FORCE (May 2002) TO ANSWER "WHY WAS THIS EVENT NOT PREVENTED?"

Typical Pressurized Water Reactor

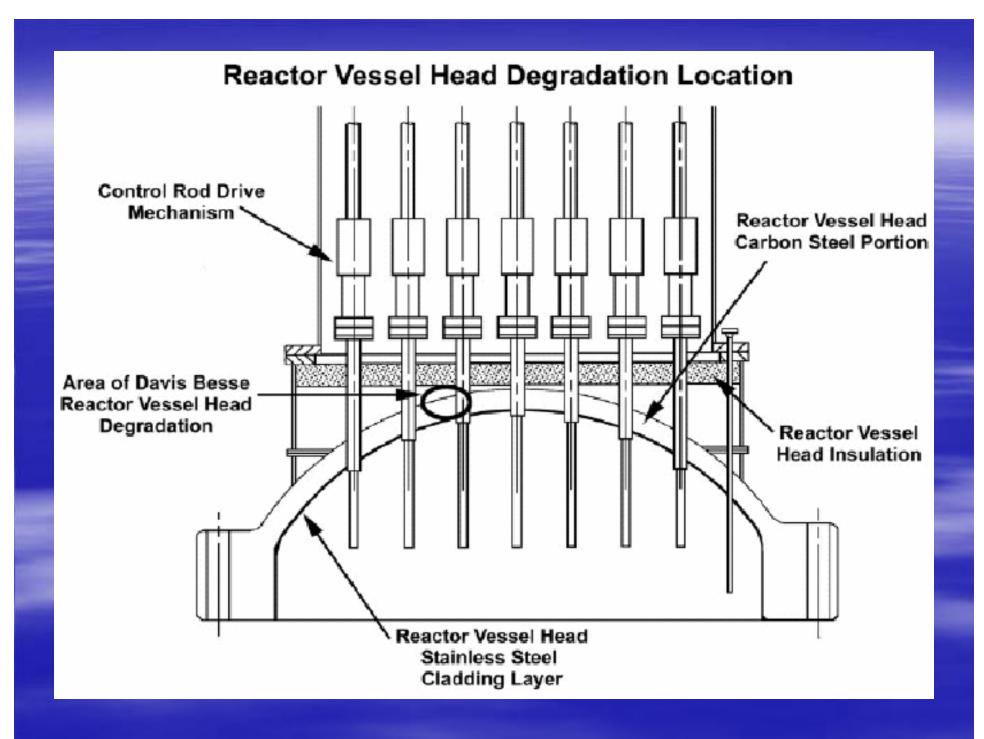
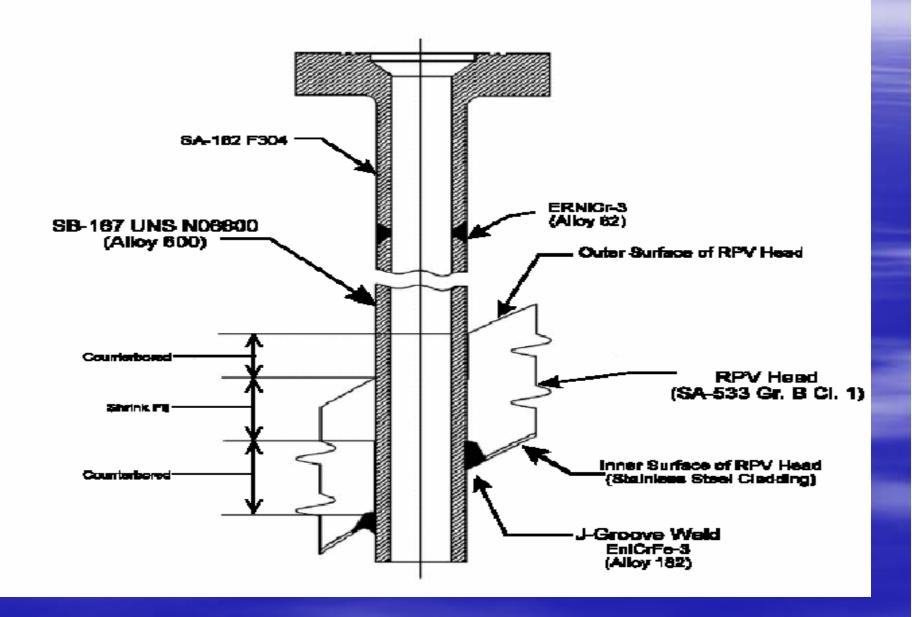
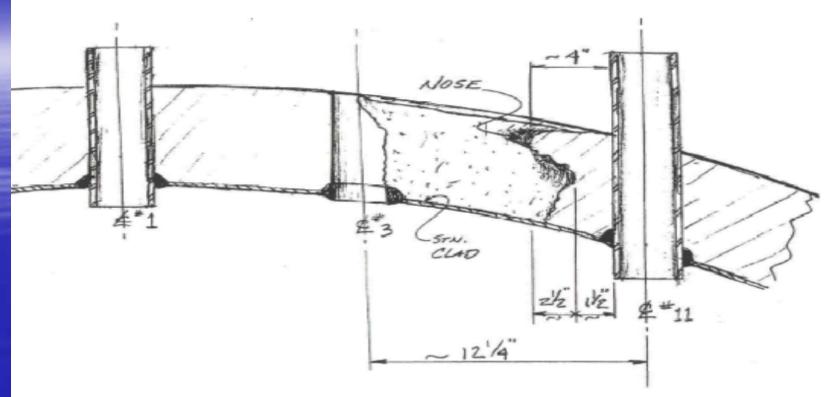




Figure 2-3 SCHEMATIC VIEW OF TYPICAL B&W VHP NOZZLE

Davis Besse Reactor Vessel Head Degradation Head Cutaway View

above figure shows the Davis Besse reactor vessel head degradation between nozzle #3 nozzle #11. This sketch was provided to the NRC by the Licensee.

Figure 2-5 BORIC ACID DEPOSITS ON RPV HEAD FLANGE

Refueling Outage 12 (2000)

DAVIES-BESSE REACTOR VESSLE HEAD DEGRADATION LESSONS LEARNED TASK FORCE WHY WAS THE EVENT NOT PREVENTED?

- ☐ TWO MAJOR CAUSES TECHNICAL AND ORGANIZATIONAL
- ☐ TECHNICAL
- □ PREVIOUS NRC AND INDUSTRY ASSESSMENTS OF AXIAL CRACKING IN REACTOR VESSEL HEAD PENETRATIONS (VHPs) CONCLUDED THAT THE CRACKING WAS NOT AN IMMEDIATE SAFETY CONCERN (MID 1990's)
- ☐ MINDSET BORIC ACID ON THE REACTOR VESSEL HEAD WAS CONSIDERED TO BE NOT HIGHLY CORROSIVE SINCE THE HEADS WERE HOT (600F) AND DRY
- ☐ LINKAGE BETWEEN CRACKING IN VHPs AND BORIC ACID ATTACK WAS MISSING EVEN THOUGH EVIDENCE WAS AVAILABLE

DAVIES-BESSE REACTOR VESSEL HEAD DEGRADATION LESSONS LEARNED TASK FORCE WHY WAS THE EVENT NOT PREVENTED

☐ ORGANIZATIONAL - THE EVENT WAS PREVENTABLE	
☐ NRC, THE LICENSEE AND INDUSTRY FAILED TO ADEQUATELY REVIEW, ASSESS AND FOLLOW-UP ON RELEVANT OPERATING EXPERIENCE	
☐ THE LICENSEE FAILED TO ASSURE THAT PLANT SAFETY ISSUES WOULD RECEIVE APPROPRIATE ATTENTION	5
☐ NRC FAILED TO INTEGRATE INFORMATION INTO ASSESSMENTS THE LICENSEE SAFETY PERFORMANCE	OF
☐ OTHER INFLUENCES ALSO CONTRIBUTED: ☐ REQUIREMENTS AND GUIDANCE	
☐ RESOURCES AND STAFFING ☐ QUALITY OF LICENSEE INFORMATION	

DAVIS-BESSE REACTOR VESSEL HEAD DEGRADATION LESSONS LEARNED TASK FORCE BACKGROUND

- ☐ TASK FORCE CHARTER OBJECTIVES
 - □ CONDUCT AN INDEPENDENT EVALUATION OF THE NRC'S REGULATORY PROCESSES
 - □ IDENTIFY AND RECOMMEND AREAS FOR IMPROVEMENT APPLICABLE TO THE NRC AND/OR THE INDUSTRY
- □ TASK FORCE CHARTER AND SCOPE
 - ☐ REACTOR OVERSIGHT PROCESS ISSUES
 - ☐ REGULATORY PROCESS ISSUES
 - □ RESEARCH ACTIVITIES
 - □ INTERNATIONAL PRACTICES
- □ REPORT COMPLETED SEPT. 30, 2002. Available at www.nrc.gov

DAVIES-BESSE LESSONS LEARNED TASK FORCE RECOMMENDATION AREAS

- **☐** INSPECTION GUIDANCE
- ASSESSMENT OF OPERATING EXPERIENCE
- □ ASME CODE INSPECTION REQUIREMENTS
- □ LEAKAGE MONITORING REQUIREMENTS AND METHODS
- **□** TECHNICAL INFORMATION AND GUIDANCE
- □ NRC LICENSING PROCESSES
- □ PREVIOUS NRC LESSONS LEARNED REVIEWS.

DAVIES-BESSE LESSONS LEARNED TASK FORMCE SELECTED SPECIFIC RECOMMENDATIONS

- □ NRC SHOULD REVISE ITS PROCESSES TO REQUIRE SHORT-TERM AND LONG-TERM FOLLOW-ON VERIFICATION OF LICENSEE ACTIONS TO ADDRESS SIGNIFICANT GENERIC COMMUNICATIONS [3.1.2(1)]
- □ NRC SHOULD EVALUATE THE AGENCY'S CAPABILITIES TO RETAIN OPERATING EXPERIENCE INFORMATION AND TO PERFORM LONGER-TERM OPERATING EXPERIENCE REVIEWS [3.1.6(1)]
- □ NRC SHOULD REVISE ITS INSPECTION GUIDANCE TO PROVIDE ASSESSMENTS OF THE SAFETY IMPLICATIONS OF ... CORRECTIVE ACTIONS PHASED IN OVER SEVERAL YEARS [3.2.5(2)]
- □ NRC SHOULD EVALUATE THE ADEQUACY OF ANALYSIS METHODS INVOLVING THE ASSESSMENT OF RISK ASSOCIATED WITH PASSIVE COMPONENT DEGRADATION [3.3.7(3)]

[] - citations to report recommendations

PREVENTING STRUCTURAL FAILURES SOME COMMON ELEMENTS (Petroski, 1992)

- ☐ COMMUNICATIONS AND ORGANIZATION
- INSPECTION
- **□** ENGINEERING DESIGN
- ☐ TIMELY DISSEMINATION OF DATA AND INFORMATION

NRC "ENVIRONMENT" SOME ADDITIONAL LESSONS

- ☐ TECHINCAL ELEMENTS ARE ONLY PART OF THE STORY
- ☐ Regulatory Framework and Issues
- □ Policy issues
- ☐ CRITICAL NATURE OF THE PUBLIC INTERFACE
- □ COMMUNICATION IS THE "KEY"
- ☐ IMPORTANCE OF RISK-ACTUAL AND PERCEIVED