

÷

6.1

đ

U.S. Department of Transportation

Federal Aviation Administration

Investment Criteria for Airport Surveillance Radar (ASR/ATCRBS/ARTS)

Office of Aviation Policy and Plans Washington, D.C. 20591

FAA-APO-83-5

May 1983

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

TABLE OF CONTENTS

Section

19

9

3

.

	Executive Summary	Page
Ι.	Introduction.	i
II.	Revised ASR Investment Criteria	1
III.	ASR Costs	2
IV.	Methodology for Estimating ASR Benefits	8
	A. Introduction.	12
	B. IFR Delay Reduction Benefits.	12
	C. Safety Benefits	13
	1. Collision Analysis	23
	a. Midair Collision Analysis b. Terrain Collision Analysis	23
	 b. Terrain Collision Analysis 2. VFR Radar Advisory Service. 	23
	 VFR Radar Advisory Service. Radar Flight Assists. 	27
	3. Radar Flight Assists.	28
	D. Convenience	29
v.	Development of Phase I ASR Establishment and Discontinuance Criteria	29
VI.		30
• • •	Criteria to all FAA have	
	And a servised ASR Criteria	• •
VII.	A Manual Method for a second	34
	and a cost ratio.	40
VIII.	Development of Supplemental Criteria.	48
IX.	Sensitivity Analysis.	76
Appx. A	Previous ASR Investment Criteria.	78
Аррх. В	Busy IFR Hour Operations Regression Analysis	0
Аррж. С	Delay Costs Per Hour By Aircraft Type	3
Appx. D	Midair Collision Costs By Aircraft Type	
Appx. E-1	Normative Distribution of Air Carrier Aircraft by Aircraft Type Used in the Development of Delay and Midair Collision Avoidance Benefits	

Аррх.		Normative Distribution of Air Taxi, General Aviation and Military Aircraft by Aircraft Type Used in the Development of Delay Benefits	93
Appx.	E-3	Normative Distribution of Air Taxi, General Aviation and Military Aircraft by Aircraft Type Used in the Development of Midair Collision Avoidance Benefits	94
Appx.	F	Program Logic of ASR Establishment and Discontinuance Criteria	95
Refer	ences		104

•

.

5

EXECUTIVE SUMMARY

This report develops revised investment criteria for the Airport Surveillance Radar, Air Traffic Control Radar Beacon System, and Automated Radar Terminal System (ASR/ATCRBS/ARTS) for publication in FAA Order 7031.2B, Airway Planning Standard Number One. Airway Planning Standard Number One contains the policy and summarizes the criteria used in determining eligibility of terminal locations for establishment, discontinuance and improvements of air navigation facilities and air traffic control services. The investment criteria addressed in this report include ASR establishment, ASR discontinuance, improvements, approach control in tower cab (TRACAB), establishment of terminal radar approach control (TRACON) and TRACAB to TRACON conversion.

The ASR establishment and discontinuance criteria developed in this report are based on a rigorous computerized benefit/cost analysis. The other supplemental criteria, however, are not readily adaptable to benefit/cost analyses for system-wide application because benefits and costs may vary significantly from case to case. In lieu of detailed benefit/cost analyses for these supplemental criteria, activity levels are identified at which marginal benefits are expected to exceed costs.

The primary benefits of ASR quantified in this report include reduced delays to aircraft operating under instrument flight rule (IFR) conditions made possible by reducing separations below those required by manual procedures and reduced risks of midair and terrain collisions in the terminal area through the application of radar separation services. Other benefits, such as visual flight rule (VFR) radar advisory service, radar flight assists, and convenience have not been adequately quantified and therefore have not been included in the criteria developed in this report. Life-cycle costs are based on investment in and operation and maintenance costs of the ASR-9 in TRACAB and TRACON configurations.

Of particular interest are enhancements introduced into the benefits methodology for the ASR establishment and discontinuance criteria. The revised methodology extends credit for radar services provided to all user classes. The previous criteria focused more on the air carrier user class. Additionally, the revised benefits methodology introduces the "area concept" of providing qualified radar service to multiple airport sites having a common need for radar surveillance. Under this concept, qualified radar service provided to secondary or satellite airports is taken into account in quantifying total benefits. Additionally, the revised benefits methodology is more site-specific. In the previous criteria, benefits were based only on the aviation activity for the first year of the ASR's operation and costs were annualized. Changes in aviation activity growth were not represented in the benefits calculation. The revised benefits methodology uses official aviation activity forecasts by quantifying the benefits independently for each year of an ASR's estimated 15-year economic life and discounting the benefits for each year to their present value. These are summed to represent the present value life-cycle benefits. Capital costs and operations and maintenance costs are approached on a similar present

value life-cycle basis. Lastly, the revised benefits methodology incorporates updated critical value elements, including the value of time of aircraft passengers/occupants, the value of a statistical life, the cost of a statistical serious injury, aircraft replacement and restoration costs and aircraft variable operating costs.

The revised ASR criteria, in relation to the previous ASR criteria, identify more establishment candidates and fewer discontinuance candidates. Based on projections through FY 1987, 19 FAA approach control towers presently without ASR equipment or service will meet the revised establishment criteria, while 13 meet the previous establishment criteria. Two existing ASR installations meet the revised discontinuance criteria, while 5 meet the previous discontinuance criteria. It is impossible to assess the actual budget impact of the revised criteria on agency resources for several reasons. First, meeting candidacy levels does not by itself entail automatic qualification. Benefit/cost screening is but one of several inputs to the FAA decisionmaking process relative to investment in ASR facilities. Investment decisions are made on the basis of all pertinent factors. Second, neighboring airports having a common need for radar surveillance may collectively qualify for an ASR under the "area concept." Qualifying sites in the category will be determined on a case by case basis by the Air Traffic Service. And third, actual costs vary from site to site. Estimated site-specific costs will be applied in actual application of the criteria.

This report develops revised investment criteria for the Airport Surveillance Radar, Air Traffic Control Radar Beacon System, and Automated Radar Terminal System (ASR/ATCRBS/ARTS). These criteria replace the ASR investment criteria that are currently contained in FAA Order 7031.2B, Airway Planning Standard Number One (Reference 1), as developed in FAA Report Number ASP-75-2, Establishment Criteria for Airport Surveillance Radar (ASR/ATCRBS/BDS) (Reference 2). Airway Planning Standard Number One contains the policy and summarizes the criteria used in determining eligibility of terminal locations for establishment, discontinuance and improvements of air navigation facilities and air traffic control services. The investment criteria addressed in this report include ASR establishment, ASR discontinuance, improvements, remoted radar bright display scope, establishment of terminal radar approach control in tower cab (TRACAB), establishment of terminal radar approach control (TRACON) and TRACAB to TRACON conversion.

The ASR, used in conjunction with the ATCRBS and ARTS, upgrades a manual approach control facility to a radar approach control facility. The ASR, itself, is a primary surveillance radar which provides aircraft target information on air traffic controllers' display scopes. The ATCRBS is a cooperative secondary radar system which facilitates the identification of radar targets by interrogating transponder-equipped aircraft. ARTS is a minicomputer-based system that facilitates the display of alphanumeric identification data on controllers' display scopes. For convenience and simplicity, the ASR/ATCRBS/ARTS system will be referred to simply as

1

The ASR establishment and discontinuance criteria are derived from a rigorous life-cycle benefit/cost analysis. Benefit/cost analysis, as applied to FAA facilities, equipment and services, is a quantitative evaluation in which the life-cycle capital, operating and maintenance costs of a facility or service are compared with the dollar value of the life-cycle benefits that are expected from that facility or service. Intuitively, benefit/cost ratios of one or more are good investments, while those of less than one are poor investments. Since the capital costs of an ASR system are sunk, the only relevant costs for an ASR system being considered for discontinuance are its recurring operations and maintenance costs (ignoring salvage value, relocation costs, etc.). The other supplemental criteria are not readily adaptable to rigorous benefit/cost analyses for system-wide application because benefits and costs may vary significantly from case to case. In lieu of detailed benefit/cost analyses for these supplemental criteria, activity levels are identified at which there is expected to exist reasonable relationships between benefits and costs. Meeting candidacy levels will not mean automatic qualification. Benefit/cost screening will be but one of several inputs to the FAA decisionmaking process relative to investment in ASR facilities. It will in no way affect the responsibilities of the operating services for the validation of

SECTION II - REVISED ASR INVESTMENT CRITERIA

This section summarizes the ASR investment criteria addressed in this report. The previous ASR investment criteria are reproduced in Appendix A. As discussed in Section I, the ASR establishment and discontinuance criteria are derived from a rigorous benefit/cost analysis, while the supplemental criteria for improvements, remoted radar bright display scope, TRACAB establishment, TRACON establishment, and TRACAB to TRACON conversion are based on activity levels at or above which marginal benefits are expected to exceed marginal costs. The previous criteria for TRACAB establishment, TRACON establishment and TRACAB to TRACON conversion remain unchanged.

.. ۱

Meeting candidacy levels will not mean automatic qualification. Benefit/cost screening will be but one of several inputs to the FAA decisionmaking process relative to investment in ASR facilities. Investment decisions will be made on the basis of all pertinent factors. These criteria will in no way affect the responsibilities of the operating services for the validation of candidates.

A. ASR Establishment

1. Phase I

ASR establishment criteria for FAA approach control towers are two-phased. Phase I is a set of simple generalized criteria designed to initially identify potential candidates. Under Phase I an airport ratio value is computed by summing the relative contributory benefits of ASR. If the airport ratio value obtained is equal to or greater than 1.0, the location satisfies the Phase I criteria for ASR/ATCRBS/ARTS establishment.

If radar coverage will be provided at or below initial approach altitude at secondary or satellite airports, an area ratio value is computed by summing the airport ratio values of the airports making up the radar service area. The Air Traffic Service will determine eligible locations under the area concept on a case-by-case basis. ASR coverage encompassing two or more airports may dictate changes in the operational responsibilities within the radar service area. Prudent management of resources may require that radar service ultimately be provided from that location, regardless of its current facility status, which can best serve the area.

The computation procedure and nomenclature for Phase I establishment criteria are outlined on the following pages.

Contributing Benefit	Con	tri	bu	ti	ng	Ben	ef	it	
----------------------	-----	-----	----	----	----	-----	----	----	--

Delay Reduction:		<u>Ratio Value</u>
ACPRIM 3,400 - (.0013 x PRIM) *		1000000
		XXXX
ATPRIM 26,000 - (.0096 x PRI.1) *	=	XXXX
GAPRIM 53,300 - (.0196 x PRIM) *	=	XXXX
MLPRIM 8,600 - (.0032 x PRIM) *	=	xxxx
Saf ety:		
<u>ACITN</u> 107,400	2	XXXX
<u>ATITN</u> 539,600	=	хххх
GAITN + GALCL 847,200	=	XXXX
<u>MLITN + MLLCL</u> 376,200	2	XXXX

Sum of Ratio Values

If 1 or greater, location satisfies Phase I criteria

*If the denominator for <u>any</u> user class results in a value equal to or less than zero, disregard all denominators and use all of the following instead. For the air carrier user class: 9,300 - (.0034 x PRIM); for the air taxi user class: 71,200 - (.0262 x PRIM); for the general aviation user class: 146,000 - (.0538 x PRIM); and for the military user class: 23,400 - (.0086 x PRIM).

ACPRIM, ATPRIM, GAPRIM and MIPRIM, for a primary airport, are the numbers of annual primary instrument operations of the air carrier (FAR 121, 127 and 129), air taxi (FAR 135), general aviation (FAR 91) and military (FAR 91) user classes, respectively. For a qualified secondary airport, these terms are the numbers of annual primary instrument operations of the secondary airport by user class, or the respective numbers of secondary instrument operations by user class of the primary airport associated with or allocable to the secondary airport, whichever are greater. PRIM, for a primary airport, is the number of total annual <u>primary</u> instrument operations (i.e., the sum of ACPRIM, ATPRIM, GAPRIM and MLPRIM). PRIM, for a qualified secondary airport, is the number of total annual primary instrument operations of the secondary airport, <u>or</u> the number of total annual secondary instrument operations of the primary airport associated with or allocable to the secondary airport, <u>whichever</u> is greater.

ACITN, ATITN, GAITN and MLITN are the numbers of annual itinerant operations of the air carrier, air taxi, general aviation and military user classes, respectively.

GALCL and MLLCL are the numbers of annual local operations of the general aviation and military user classes, respectively.

****.'

2. Phase II

Phase II is a site-specific computerized benefit/cost screening process under which candidates identified under Phase I are further evaluated. If an airport benefit/cost ratio or an area benefit/cost ratio of 1.0 or greater is computed, the location satisfies the P ase II criteria for ASR/ATCRBS/ARTS establishment. The ASR subroutine, integrated into the Terminal Area Forecast Data System, requires the pllowing manual input data:

- 1. System acquisition and installation costs (FA: Form 2500-40, F&E Cost Estimate Summary).
- 2. <u>Percent</u> of time that IFR weather prevails at the proposed location, if available. For the purpose at hand, IFR whather is defined as weather in which visibility is less than 3 milles and/or the ceiling below 1,500 feet.
- 3. Fraction of the air carrier user class represented by each of the following aircraft type categories:

Turbofan, 4-engine, wide body Turbojet, 4-engine Turbofan, 4-engine, regular body Turbofan, 3-engine, wide body Turbofan, 3-engine, regular body Turbofan, 2-engine, wide body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Turboprop Piston

If this data is not available from local sources, the Official Airline Guide, or the Terminal Area Forecast Data System, national averages will be used as default values in the Phase II screening process. 4. Fraction of secondary instrument operations of each user class (air carrier, air taxi, general aviation, and military) of the primary airport allocable to each secondary or satellite airport. NOTE: This data is required only for those secondary or satellite airports that are provided "qualified" radar coverage by the proposed candidate airport at or below initial approach altitude.

B. ASR Discontinuance

Like ASR establishment criteria, ASR discontinuance criteria are two-phased. To determine whether an ASR facility meets the Phase I discontinuance criteria, a ratio value is calculated by the same sum-of-ratios approach described above for Phase I establishment criteria. If the ratio value so obtained is less than 0.35, the location satisfies Phase I discontinuance criteria. The 0.35 figure is an approximation of the level where the benefits just offset recurring annual operations and maintenance costs, after allowing for salvage value, relocation costs, etc. Initial acquisition and installation costs are irrelevant when an ASR system is being considered for discontinuance since they are sunk costs. Locations satisfying Phase I discontinuance criteria will be further screened under the Phase II benefit/cost screening process. If the benefit/cost ratio so obtained is less than 0.35, the ASR installation may be considered for discontinuance.

C. Improvements

Existing FAA approach control facilities equipped with ASR systems frequently require improvements (e.g., ARTS implementation, relocation of facilities to correct siting problems, component replacement, etc.). Such improvements are normally made when the operational benefits expected to be realized exceed the costs involved.

- An FAA radar approach control facility recording 25,000 or more annual instrument operations qualifies for those improvements that satisfy an operational requirement and/or facilitate the provision of terminal area radar service. A benefit/cost study may be required for "major" improvements to terminal radar facilities in this
- 2. An FAA radar approach control facility recording between 15,000 and 25,000 annual instrument operations may be a candidate for improvements. It qualifies for those improvements that satisfy an operational requirement and/or facilitate the provision of terminal area radar service. A benefit/cost study may be required for "major" improvements to terminal radar facilities in this category.

3. An FAA radar approach control facility recording less than 15,000 annual instrument operations is not a candidate for improvements. At that activity level, the additional cost per operation resulting from the improvement is not commensurate with the benefit derived. Any improvement to terminal radar facilities in this category will be limited to the correction of a critical situation and shall be justified by an individual staff study.

NOTE: Improvements to FAA-staffed RAPCON's/RATCF's may be considered on an individual basi but the above criteria shall remain a m jor determinant in considering FAA civil facilities for improvement.

D. Remoted Radar Bright Display Scope

An FAA VFR control tower at an airport, which is a satellite of the primary airport of a radar approach control facility, is a candidate for a remoted radar display scope in the tower cab when:

- 1. At least 30,000 annual itinerant operations are recorded; and
- 2. Operationally adequate low altitude coverage is assured at the satellite airport.
- E. <u>Terminal Radar Approach Control in Tower Cab (TRACAB) and Terminal</u> Radar Approach Control (TRACON).
- 1. Establishment. An initial ASR/ATCRBS/ARTS installation shall be a TRACAB facility consisting of appropriate displays placed in the tower cab except when any of the following situations prevail:
 - a. If the official agency forecasts indicate an ASR/ATCRBS/ARTS candidate location will exceed 125,000 annual itinerant operations or 60,000 annual instrument operations within 2 years of the year of budget submission for the facility, the initial installation should be planned as a TRACON rather than a TRACAB, subject to an operational determination by the Air Traffic Service. Instrument operations at secondary airports may be included in this forecast provided radar coverage at these locations is expected to exist at or below initial approach altitude.
 - b. If an ASR/ATCRBS/ARTS candidate location cannot physically accommodate radar approach control in the tower cab, then individual justification shall be required to go directly to a TRACON facility.
 - c. When the complexity of the facility operation warrants, individual justification and consideration shall be given to locating the ASR/ATCRBS/ARTS in a TRACON rather than a TRACAB.

2. Discontinuance. A TRACAB will be discontinued when the ASR system is decommissioned or when the radar approach contro function is

3. Conversion to TRACON. A TRACAB location is a TR. CON candidate when the facility has at least 125,000 annual itinerart operations or 60,000 annual instrument operations. Instrument operations at secondary airports that receive radar service at or below initial approach altitude may be included in this count. Also, when the complexity of the facility warrants, individual justification and consideration should be given to relocating from a TRACAB to a TRACON.

SECTION III - ASR COSTS

ASR costs and their life-cycle counterparts are shown in Figure 1 for an ASR installation configured as a TRACAB and in Figure 2 for an ASR installation configured as a TRACON. The total cost of an ASR system consists of facilities and equipment costs plus operations and maintenance costs. Facilities and equipment costs consist of equipment, installation and commissioning flight check costs. Operations and maintenance costs consist of such annual recurring costs as air traffic staffing, support (airway facilities staffing, spares, training, etc.) and utilities. It may be noted that while the average installed system acquisition cost of the solid-state ASR-9 is higher than that of the earlier vacuum-tube ASR models, the operations and maintenance costs are significantly lower. Life-cycle costs are calculated by discounting total operations and maintenance costs over the assumed 15-year economic life of an ASR system to their present value and adding them to facilities and equipment costs, which are assumed to occur at the beginning of the installation year. An ASR's economic life, as opposed to its physical life, provides a more relevant mea. me of its useful service life. A fifteen year economic life is consistent with published guidelines on transportation-related capital stocks (e.g., Reference 30). Even if a longer life was assumed, the impact would be nominal, because the costs and benefits in the out years are heavily discounted.

The facilities and equipment costs in Figures 1 and 2 include no allowances for remoted radar bright display instal ations or "leap-frogging" (i.e., the practice of replacing an already existing older generation ASR with a state-of-the-art ASR and relocating the older generation ASR to a newly qualifying site). When (ither or both of these actions are contemplated, appropriate adjustments ; hould be made to facilities and equipment costs.

Once an ASR is established, the terminal air traffic control facility is organized as either a TRACAB (where the radar control area is located in the air traffic control tower with the usual cab p sitions) or a TRACON (which entails a separate IFR control room). Early difficulties were experienced with the utilization of the radar display scope in the tower cab due to the high ambient light level and space congestion. With existing improvements in BRITE display performance and tower cab layout, current opinion suggests that the TRACAB concept is feasible at some maximum level of hourly operations. Thus, the impact of adding a separate TRACON or IFR room is simply to relieve any congestion in the tower cab that might exist.

The addition of an IFR control room to a TRACAB increases costs in two ways. First, an extra flight data position (located in the TRACON) is generally required because of the coordination problem created by the physical separation of the controllers. Second, the additional construction and remoting costs of the IFR room must be added. The manpower cost is relatively constant, but the construction and remoting costs of the IFR control room are highly site-dependent. In some cases, existing structures might be used and/or space may be available close to the tower. In others, new construction may be required, possibly at some distance from the tower. Thus, a TRACAB is more economical and preferable if it is operationally feasible. TRACAB/TRACON criteria are outlined in paragraph E of Section II.

The decision to organize as a TRACAB or TRACON rests on current and projected traffic activity, and whether the less costly, but capacity limited, TRACAB configuration is adequate. The criteria developed in this report presume the establishment of the TRACAB configuration unless one or more of the criteria for establishing a TRACON (as outlined in paragraph E of Section II) are satisfied.

The assumed <u>initial</u> staffing level of five controllers per ASR facility is based on the Air Traffic Staffing Standards System (Reference 3). This Standard reflects Air Traffic Service judgment and experience in determining staffing levels necessary to provide safe separation and efficient flow of traffic. It is important to note that the assumption is <u>not</u> that there would be five air traffic control specialists assembled around the radar displays in the tower cab. The Standard provides that a minimum of three controllers is needed to operate the radar over a two-shift operating day. To allow for seven-day staffing and training, a standard factor of 1.6 is applied. Three times 1.6 yields 4.8, showing that five additional controllers must be employed to initially staff the least elaborate terminal radar configuration in the system.

Current FAA policy establishes Expanded Radar Service (ERS) at each new ASR/TRACAB facility within six months after commissioning. When the ERS is established (either Stage II which provides sequencing and advisory services or Stage III which provides sequencing and separation services), the services provided contribute toward the total instrument count at the facility, and therefore, require a concomitant increase in staff. It is current practice to request three additional controllers (in addition to the five necessary to initially establish radar approach control service) for the ERS capability when a new facility is established as a TRACAB, making a total of 8 controllers.

9

Typical Life-Cycle ASR/ATCRBS/ARTS C	osts	5 - TRACAB	Configuratio	on (ASR-9)
Typical Diff of the		Cost 980 \$)	10% Discount Factor	15-Year Discounted Costs
Facilities and Equipment: System acquisition cost (installed) $\frac{1}{2}$	\$6	,200,000	1.000	\$6,200,000
Operations and Maintenance: Air Traffic staffing (8 additional controllers @ \$36,0762/) Support (Airway Facilities staffing, spares, training, etc.)	\$	288,608 54,600		
Utilities Total O&M Total Discounted Life-Cycle Cost	Ş	<u>4,700</u> 347,908	7.976 <u>3</u> /	2,774,914 \$8,974,914 or \$8,970,000

 $\frac{1}{Does}$ not include costs for remoted radar bright display installations and leap-frogging (see text).

2/GS-12/5 salary of \$27,995 over 9 months and \$30,543 over 3 months equates to a weighted 1980 salary of \$28,632. Inflating this salary level by a fringe benefits overhead factor of 1.26 (per Reference 4) yields \$36,076 per controller in 1980 dollars.

 $\frac{3}{\text{Future year costs are discounted to their present values using mid-year rather than end-of-year discount factors (<math>\sum (1/(1.1)y-0.5)$), for y = 1 to 15).

Sources: AAF-356 and Reference 3.

	Cost (1980 \$)	10% Discount Factor	15-Year Discounted Costs
Total Discounted Life-Cycle Cost of TRACAB (from Figure 1) Incremental Costs of TRACON:			\$8,970,000
Additional flight data positions (2 @ \$36,0762/)	\$ 72,152	7.976 <u>4</u> /	575,484
Building of IFR room3/	\$180,000	1.000	180,000
Equipment relocation and cabling	\$ 19,000	1.000	19,000
Additional support & utilities	\$ 2,000	7.976 <u>4</u> /	15,952
Total Discounted Life-Cycle Cost			\$9,760,436 or
1/20			\$9,760,000

FIGURE 2 <u>Typical Life-Cycle ASR/ATCRBS/ARTS Costs - TRACON Configuration (ASR-9)1</u>/

1/As explained in the text, actual costs may vary considerably from site to site. Site-specific costs should be used in actual practice. As with the TRACAB cost estimates in Figure 1, no allowances have been made here for remoted radar bright display installations and leap-frogging (see text).

2/See Footnote 2 of Figure 1.

3/New building:		
Construction of a minimum	\$300,000	
3,000 sq. ft. base building @ \$100 per sq. ft.		·
Site preparation of existing		
leased space for TRACON	30,000	
Total	\$330,000	
x Assumed incidence rate of 50%	x.50	\$165,000
Modification of existing facilities:		
\$30,000 x assumed incidence rate of 50	6	\$ 15,000

Expected cost

\$180,000

 $\frac{4}{\text{Future year costs are discounted to their present values using mid-year rather than end-of-year discount factors (<math>\sum (1/(1.1)y^{-0.5})$), for y = 1 to 15).

SECTION IV - METHODOLOGY FOR ESTIMATING ASR BENEFITS

A. Introduction

An ASR approach control facility, as opposed to a manual approach control facility, can provide benefits through two primary sources: reduced delays to aircraft operating under instrument flight rule (IFR) conditions made possible by reducing separations below those required by manual procedures; and reduced risks of midair and terrain collisions in the terminal area through the application of radar separation services. Secondary benefits provided by an ASR include visual flight rule (VFR) radar advisory service, radar flight assists and convenience. This section details the methodology used to quantify these benefits. Before addressing the benefits in detail, however, the more significant differences in benefit methodology are highlighted between the previous and revised criteria.

First, unlike the previous benefits methodology, the revised Phase I methodology extends credit for radar services provided to all user classes, rather than focusing on the air carrier user class.

Second, in response to many suggestions that ASR establishment criteria be modified to allow credit for radar coverage provided to secondary or satellite airports, this report introduces the "area concept" of providing qualified radar service to multiple airport sites having a common need for radar surveillance. Under this concept, benefits will be ascribed and computed for the secondary airport(s) as well as the primary airport when the airport traffic areas are in a proximity which causes constant overlap of arrival and departure routes. The activity of secondary airports may be included if the siting of the ASR can be expected to provide coverage at or below initial approach altitude at the secondary airport(s). The Air Traffic Service will determine eligible locations in this category.

The methodology employed in determining total benefits of multiple airport sites having a common need for an ASR system is as follows. Because both delay reduction and safety benefits outlined in this report are non-linearly related to activity, each of the airports in the potential radar service area will be addressed independently, i.e., a benefit/cost ratio will be computed for each airport making up the radar service area. An area ratio will be computed by summing the respective airport ratios. ASR coverage encompassing two or more airports may dictate changes in the operational responsibilities within the radar service area. Prudent management of resources may require that radar service ultimately be provided from that location, regardless of its current facility status, which can best serve the area.

Third, the revised benefits methodology is more site-specific. In the previous criteria, benefi's were based only on the aviation activity for the first year of the ASR's operation and costs were annualized. Changes in aviation activity growth were not represented in the benefits calculation. The revised benefits methodology uses official aviation activity forecasts by quantifying the benefits independently for each year of an ASR's estimated 15-year economic life and discounting the benefits for each year to their present value. These are summed to represent the present value life-cycle benefits. An ASR's economic life, as opposed to its physical life, provides a more relevant measure of its useful service life. A fifteen year economic life is consistent with published guidelines on transportation-related capital stocks (e.g., Reference 5). Even if, a longer life were assumed, the impact would be nominal, because the benefits and costs in the out years are heavily discounted.

Lastly, the revised benefits methodology incorporates updated economic or critical values, including the value of time of aircraft passengers/occupants, the value of a statistical life, the cost of a statistical serious injury, aircraft replacement and restoration costs and aircraft variable operating costs.

B. IFR Delay Reduction Benefits

The establishment of an ASR at an approach control tower provides controllers with a visual representation of their traffic. It permits the use of reduced separation standards during IFR condit or and provides controllers with the capability of vectoring arrival and departure traffic, thereby increasing the utilization of the terminal area airspace and expediting the flow of traffic.

A National Bureau of Standards report, <u>A Concept for New Establishment</u> <u>Criteria for Airport Surveillance Radar</u> (Reference 6), prepared under an interagency agreement with the FAA, derived radar-preventable delays for various traffic mixes and levels of operation. When used in conjunction with unit delay costs, IFR delay reduction benefits attributable to an ASR can be readily obtained. NBS's DELCAP simulation model was used to obtain estimates of delay with and without ASR available. Since delay reduction benefits of ASR are realized principally under IFR conditions, IFR separation rules were used. It was assumed that ASR would permit this report) to be maintained at high levels of traffic, while without ASR various manual procedures would result in average spacings of 7.5, assumed that the airports in question would be operating in a single runway configuration when IFR conditions prevailed.

Two user classes, whose pertinent flight characteristics are given below, were used in the simulation runs. The flight characteristics of the general aviation user class are also attributed to the air taxi and military user classes in this report.

Flight Characteristics

	Speed	(Knots)	Runway Occupan	cy (Seconds)
<u>User Class</u>	Landing	Liftoff	Landing	
General Aviation (GA)	90		Landing	Takeoff
Air Carrier (AC)	50	90	35	25
arrier (AC)	125	120	34	32

Four mixes of these user classes were run: 10 percent GA - 90 percent AC; 20 percent GA - 80 percent AC; 40 percent GA - 60 percent AC; and 80 percent GA - 20 percent AC. Five traffic activity levels were simulated: 10, 15, 20, 25, and 30 operations per hour. The distributions of the number of arriving aircraft was assumed to be Poisson. In each case, it was assumed that half of the operations are landings and half are takeoffs.

Delay was calculated for each aircraft, takeoff and landing, as the difference of the flight time actually required from that which would have occurred nad no other aircraft been present. The calculations of the delays in landings plus the delays in takeoffs are shown in Figure 3. The values listed in Figure 3 are the average of the results obtained from 20 simulation runs utilizing different strings of random numbers for generating the arrivals. They represent total delay per hour of airport operation of aircraft landing and taking off for each of the 4 mixes of aircraft for airports operating in 4 different approach environments; i.e., 3, 7.5, 10, and 15 nautical mile separation of aircraft.

Ŀ.

The ultimate capacities listed in Figure 3 were calculated as shown in the following example. At the 10 nautical mile separation, the average time between the touchdown of one aircraft and the touchdown of a following general aviation aircraft is:

and the average time between the touchdown of one aircraft and the touchdown of a following air carrier aircraft is:

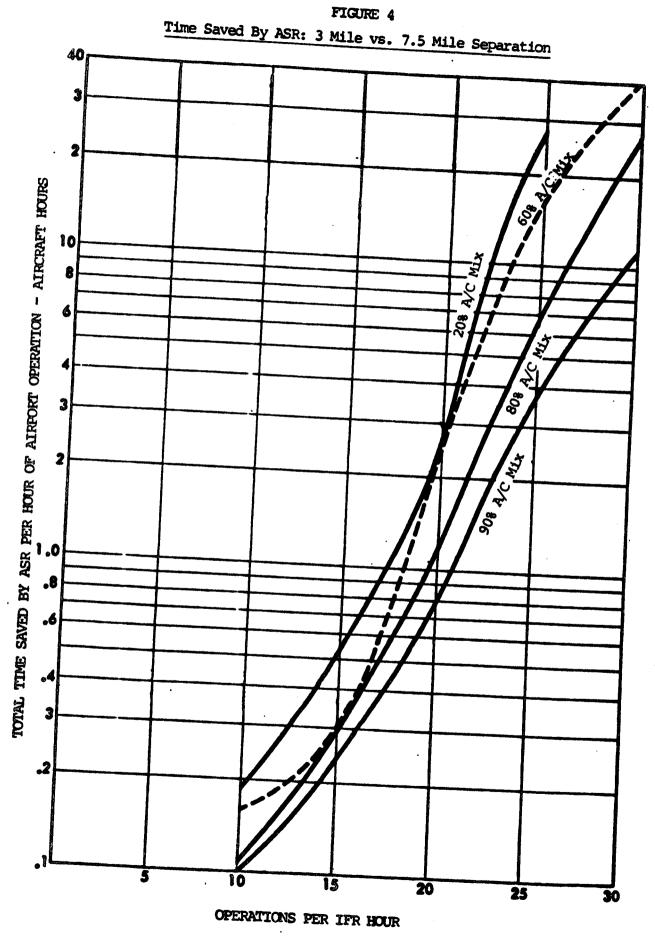
10 nautical miles = 0.08 hour 125 knots

At the 80 percent AC traffic mix, the probability of the landing aircraft being AC is 0.80, and the probability of the landing aircraft being GA is 0.20.

Therefore, the average time required per landing aircraft is:

 $(.08 \times .80) + (.11 \times .20) = 0.086$ hour

which yields an average rate of 11.6 landing aircraft per hour with no takeoffs. In this example, i.e., 10 nautical mile separation, the separation between landing aircraft is great enough to permit takeoffs without affecting the sequence of landings. Therefore, since half of the operations are landings and half takeoffs, the total potential operations per hour is 23 under the conditions stated. Since these conditions can be considered as "ideal" relative to the actual conditions under which an airport operates, the capacities computed in this manner are considered "ultimate." A slower aircraft landing ahead of a faster aircraft will generate a delay. This factor becomes evident when the plots of the total delay for a 60 percent AC mix are compared with higher and lower percentages of AC aircraft, as illustrated in Figure 4.


FI	GURE	3
----	------	---

Operations _per Hour	90% A/C	80% A/C	60% A/C	20% A/C
	<u>3 Na</u>	utical Mile Separa	tion	
10	8.7	10.6	11.6 31.6	18.8 34.1
15	15.7	22.3 41.5	52.7	54.4
20	32.5	41.5 68.1	79.0	86.2
25	56.7	95.1	102.8	111.8
30	83.8	7. T + C C		
	7.5 1	Nautical Mile Sepa	ration	
10	14.7	16.9	21.2	29.9
15	30.0	39.8	49.1	68.2
20	81.5	106.3	185.3	194.8
25	283.6	472.2	1,061.2	1,701.0
30	744.0	1,549.0	2,620.0	0/C
Ultimate Capacity (opns./hr.)	(32)	(31)	(30)	(26)
	10 1	Nautical Mile Sepa	ration	
	21.9	28.1	33.5	43.2
10	48.6	51.5	82.6	119.9
15 20	299.1	444.4	889.4	0/C
Ultimate Capacity (opns./hr.)		(23)	(22)	(19)
	15	Nautical Mile Sepa	aration	
		65.3	79.4	129.5
10	57.0	171.1	0/C	0/C
15	153.8	****	•	
Ultimate Capacity (opns./hr.)	y (16)	(15)	(14)	(12)

Total Minutes of Aircraft Delay Per Hour of Airport Operation for Varying Numbers of Operations Per Hour

 $\overline{O/C}$ = over capacity

.

In general, at the lower levels of operations per hour, the delay for takeoffs is greater than that for landings since the landing aircraft always have priority. However, as the ultimate capacities are approached, the simulation model permits landing delays to exceed delays in takeoffs to avoid an excessive departure queue.

Additional simulation runs were made at the 3 and 7.5 nautical mile separations increasing the runway occupancy for landing AC aircraft from 34 seconds to 60 seconds. No significant differences in the total delays were apparent for this increase. However, the data suggests that runway occupancy periods of over 60 seconds can become critical when computing delays for a 3 nautical mile separation distance.

For purposes of this report, total delay differentials shown in Figure 3 between the 3 and 7.5 nautical mile separation standards have been converted to average delay savings per aircraft for varying numbers of operations per hour of airport operation, as illustrated in Figure 5. Figure 4 graphically illustrates total aircraft hours saved by ASR per hour of airport operation by lowering the separation standard from 7.5 to 3 nautical miles for the 20%, 60%, 80% and 90% AC mixes.

Given the NBS methodology described above for deriving hourly IFR delay differentials between radar and non-radar environments for various hourly activity levels, the following additional data must be determined in order to compute IFR delay reduction benefits for a specific site:

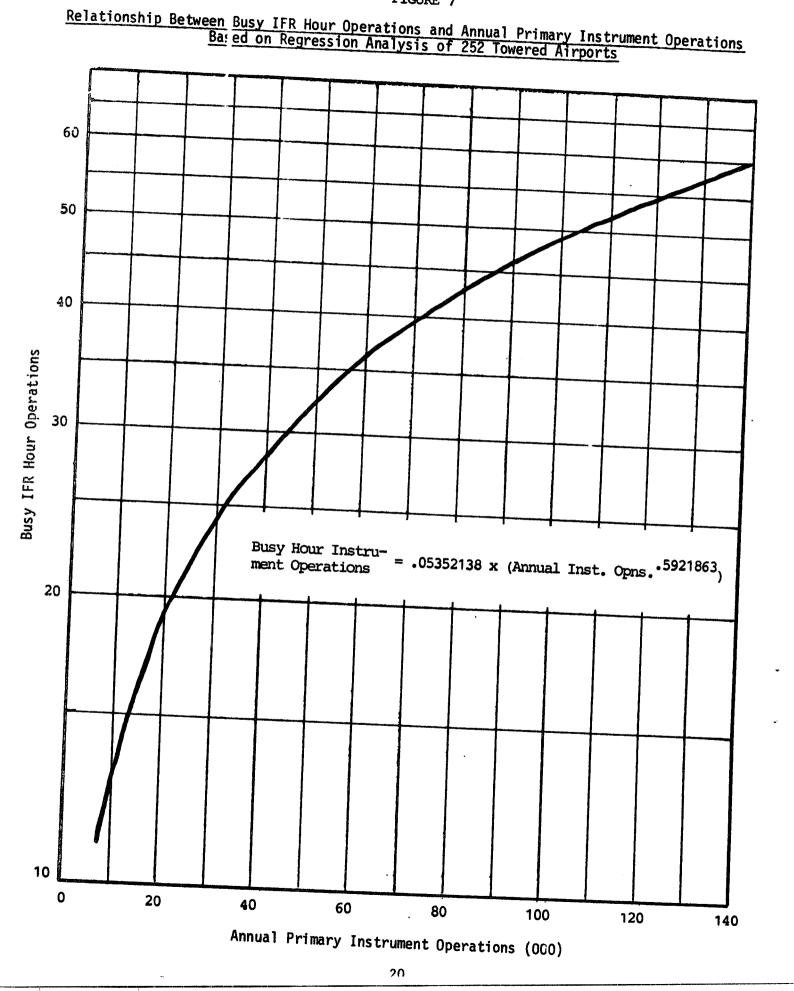
- 1. Number of operations during a busy IFR hour;
- 2. Hourly cost of delay of the aircraft type mix, and
- 3. Frequency of busy IFR hour

An "IFR hour" is defined as one during which instrument approach weather conditions prevail, usually a ceiling of 1,500 feet or less and/or visibility of 3 miles or less. It is recognized that radar can reduce delays by reducing separation when instrument conditions exist at high altitudes as well. However, data on the frequency of occurrence of "better" IFR weather, e.g., 4000-5, is not available and the 1500-3 observations, which are available (Reference 7), are thought to approximate total IFR conditions closely enough for this purpose. A "busy" IFR hour, as the term connotes, is as an hour during which high instrument operations activity takes place. To estimate the number of operations during a busy IFR hour, a regression analysis between reported busy IFR hour operations and annual instrument operations was performed for 252 towered airports (after omitting outliers). The results of this analysis are presented in Appendix B and summarized in Figures 6 and 7. The data upon which this regression analysis is based were obtained from periodic counts made by tower personnel during periods of known high instrument operations activity (Reference 8). After determining the number of operations during a busy IFR hour and the percent of instrument operations represented by the air carrier user class, the time saved per aircraft per hour of airport operation can be found by referring to Figure 5.

Hours Saved per Aircraft for Varying Numbers of Operations Per Hour of Airport Operation (3 vs. 7.5 nautical mile separation)

Operations/

•


		208		18	21	22	7	20	2	9	4		α	о го	I	0	0) ~		~				_		_
		N N	i	.018	0.	0	.02	0.		.03	.04	. 05	20	.095		.12	.201	.36	25.	.833		1.080	1.385	1.630	1 786		т.У.Т	2.067
	1	BOR	010	810.	610.	.020	.023	.026		.031	.037	.045	• 069	.089		.118	.195	.327	. 500	. 708		.940	1.212	1.426	1.607	1 750		1.900
	Instr	408	- 10 -	2 LU -	010	9T0 .	.019	.021		.025	.030	.036	.060	.085		CII .	.190	.291	.435	.583		.800	1.038	1.222	1.429	1.586		1.733
	Percent Air Carrier 608 508		.017	.017	.018	010	010 .	. 020		. 0 23	.120.	.033	.050	.080	611		581.	117.	. 404	. 504		. 720	.923	L.093	1.268	1.414		1.567
ſ	Percent A: 608	1	.016	.016	.016	.016	010	070.	100	120.	#70 •	670.	.043	0/0.	011.	176	890		4/5.	.425	073	040.0	000	202. L	/01.1	L.241		1.400
	708		.013	.014	.014	.015	.017		- 020	500	0.00	.037	(C).	•	.075	.105	.150	210	112.	000.	480	515.	.667	786		164.		1.U33
	808	:	110.	.012	· 013	.014	.016		.020	.023	.028	.033	.042		. 055	.076	.109	.152	-200)	.272	.346	.444	.536	. 655		000	•
Hour	908	010	010.	110.	210.	.013	.014		.017	010 .	.022	.028	.032		.040	. 052	.068	.087	.125		.152	.185	.222	.271	.310		.367	
BUSY IFR HOU		10 or loss	5	12		3:	9T		15	9T	17	18	19		20	17	77	23	24		25	26	27	28	29		30 or more	

¢

IFR BUSY HOUR OPNS	RANGE OF ANNUAL INSTRUMENT OPNS	IFR BUSY HOUR OPNS	RANGE OF ANNUAL INSTRUMENT OPNS
	ANNUAL <u>INSTRUMENT OPNS</u> 0-43 44-277 278-658 659-1,163 1,164-1,778 1,779-2,495 2,496-3,309 3,310-4,214 4,215-5,206 5,207-6,281 6,282-7,438 7,439-8,673 8,674-9,985 9,986-11,371 11,372-12,829 12,830-14,359 14,360-15,958 15,959-17,625 17,626-19,359 19,360-21,159 21,160-23,023 23,024-24,952 24,953-26,943 26,944-28,996	BUSY HOUR	ANNUAL INSTRUMENT OPNS 47,557-50,133 50,134-52,766 52,767-55,453 55,454-58,194 58,195-60,989 60,990-63,838 63,839-66,739 66,740-69,692 69,693-72,697 72,698-75,754 75,755-78,862 78,863-82,021 82,022-85,230 85,231-88,490 88,491-91,799 91,800-95,157 95,158-98,564 98,565-102,020 102,021-105,525 105,526-109,078 109,079-112,678 112,679-116,326 116,327-120,021 120,022-123,764 123,765-127,553
23 24 25 26 27 28 29 30 31	28,997-31,110 31,111-33,284 33,285-35,518 35,519-37,810 37,811-40,161 40,162-42,570 42,571-45,035 45,036-47,556	57 58 59 60	127,554-131,388 131,389-135,270 135,271-139,198 139,199-143,171 d over*

Relationship Between Busy IFR Hour Operations and Annual Instrument Operations Based on Regression Analysis of 252 Towered Airports

*Busy hour instrument operations for higher activity levels may be found by solving the formula in Figure 7.

Basing estimates of annual delay costs on the relatively few hours of the day that are "busy" may appear to understate those costs. However, delays increase exponentially with increases in traffic activity, and the rise is very rapid as the operations rate approaches capacity. Omitting the lower activity hours, therefore, will have little impact on total annual delays, and that impact will be offset on those occasions when higher rates of operation are experienced.

Total hours of aircraft delay per hour of airport operation multipled by average delay costs per hour yields the total cost of delay generated during one hour of airport operation. Delay costs include aircraft variable operating costs and the value of aircraft passengers'/occupants' time. "Aircraft variable operating costs," as used in this report, include the costs of flight crews (for air carrier and air taxi), fuel and oil, and direct maintenance of airframe, avionics and engine. Depreciation, amortization of capital leases, insurance, hangar and tie-down fees, and other costs of a fixed or semi-fixed nature are considered irrelevant for purposes of measuring the cost of delay. The value of time of aircraft passengers/occupants and aircraft variable operating costs used in this report were taken from Reference 9. Hourly delay costs by aircraft type are illustrated in Appendix C and weighted and summarized by user class in Figure 8.

FIGURE 8

Delay Cost Per Hour By User Class (1980 Dollars)

User <u>Class</u>	Weighted Aircraft Variable Operating <u>Cost/Hour</u>	Weighted Number of <u>Passengers/Occupants</u> 1/	Value of Occu- pants' Time @ \$17.50/Hour	Total Delay Cost/Hour
Air Carrier	\$1,169	45.7	\$800	\$1,969
Air Taxi ² /	174	4.8	84	258
General Aviation	79	2.7	47	126
Military	709	4.2	74	783

Sources: Appendices C, E-1 and E-2. Data are weighted by the expected mix of aircraft types within each user class at potential establishment candidate airports.

<u>l</u>/Because crew salaries are included in air carrier and air taxi variable operating costs, "passenger" load factors are used. "Occupant" load factors are used for the general aviation and military user classes. <u>2</u>/Air taxi includes air commuter aircraft. Reference 10 provides an indication of percentage of traffic activity on an hourly basis for air carrier, general aviation, and military aircraft. Examining the data, heavy airport activity with respect to operations takes place for about 4 hours a day during weekdays and 2 hours a day during weekends, or about 1,252 hours a year. Reference 7 documents the percentage of IFR weather from samplings of hourly airport weather observations segmented on a monthly basis and on an annual basis by 8-hour differentials for 271 airports. The Terminal Area Forecast Data System, maintained by FAA-APO, also contains IFR weather data for many locations. Multiplying 1,252 hours by the average annual IFR Occurrence rate gives an estimate of the number of times a year a busy IFR hour occurs.

In order to determine the annual delay reduction benefits of ASR, the delay time avoided per busy IFR hour is multiplied by the frequency that the busy IFR hour occurs in a year. The product yields the total time of preventable delay. This product multiplied by the hourly cost of delay (Figure 8) yields the dollar benefits of annual IFR delay reduction. The life-cycle value of IFR delay reduction benefits is derived by computing and summing this value for each year of an ASR's 15-year economic life and discounting to the present value equivalent, or:

$$\sum_{y=1}^{15} \left\{ \text{DELTOT}_{y} \times 1/(1+d) y - 0.5 \right\}$$

- ---

where 'y' is each of 15 years of an ASR's economic life, 'DELTOT' is the nondiscounted IFR delay reduction benefits in year 'y', and 'd' is the OMB-prescribed discount rate of ten percent. In cases where qualifying radar service is provided by the airport to secondary airports under the "area concept" outlined in the introduction to this section, delay reduction benefits are computed independently for each of the respective airports.

An application of the above methodology in a manual computation of the benefits of IFR delay reduction is illustrated in Section V. In actual practice, this computation will be performed by a computer program in the Phase II benefit/cost screening process.

C. Safety Benefits

This section examines the measurement of safety provided by an ASR from the standpoint of avertable midair and terrain collisions, VFR radar advisory service and radar flight assists.

1. Collision Analysis

Two kinds of aircraft accident risks can potentially be reduced by ASR systems - midair collision and terrain collision risks. The benefits of the expected reduction of these types of accidents are outlined in this section. <u>Midair collisions</u>, while not the most common form of accident, are a major concern of all facets of the air traffic control process. The air traffic control system maintains specified separation minima between aircraft while trying to expedite the movement of traffic so as to decrease delays to users of the system. The large number of aircraft flying under visual flight rules in the typical ARTS terminal compounds this problem, especially during peak periods. The second kind of accident which can be potentially reduced by ASR systems is <u>terrain</u> <u>collision</u> accidents. ARTS II enhances the ability of the terminal air traffic control system to reduce the incidence of such accidents by its Minimum Safe Altitude Warning (MSAW) and Conflict Alert (CA) features.

a. Midair Collision Analysis

The availability of an ASR/ATCRBS/ARTS system provides a mechanism for reducing the risk and incidence of midair collisions. The basic data used to derive upper bound midair collision avoidance benefits in this report is from the <u>Civil Aviation Midair Collisions Analysis</u> (Reference 11), performed by the MITRE Corporation in 1973, and the 1974 addendum to that report (Reference 12). The data was derived from National Transportation Safety Board accident reports for the nine year period between January 1964 and December 1972. Although the analyses are somewhat aged, their results are generally consistent with those of more contemporary analyses, as indicated in the footnote to Figure 9. The total midair collisions (and associated fatalities) were segregated according to the place of occurrence (airport, enroute, or terminal area), circumstance of collision (runway, midair, nature of ATC control, etc.) and, in the case of airport area collisions, whether the airport was controlled or not.

Figure 9 provides a tabular summary of the results of regression analyses of airport area collisions over an eight year period at uncontrolled, controlled and VFR-towered airports from Reference 11. "Airport area" is defined as the airspace within 5 nautical miles of the airport. The general form assumed was $c = an^b$, where 'c' is the average number of collisions per airport over the period January 1964 - December 1971, 'a' and 'b' are the coefficients which yielded the least error between the actual and estimated numbers of collisions, and 'n' is the average number of aircraft operations per airport in 1971 in units of 100,000. The 1972 collision data provided by Reference 12 did not change the formulae.

Summary of Airport Are	a Collision Regression Analyses*
Airport	
Category	Best Collision Estimator (c) For January 1964-December 1971
Uncontrolled	Jour December 1971
	0.13n0.92
Controlled	
VIDD ma	$0.048n^{1.54}$
VFR Towers	0.028n ² .3

*These formulae are applicable only over a relevant range of activity.

When scaled to an annual basis by a scaling factor of 7 to account for activity growth over the eight year period, the airport collision formulae become $.019n^{0.92}$ and $.007n^{1.54}$ for uncontrolled and controlled airports, respectively. The latter is consistent with more contemporary but preliminary work done by Graham and Faison (Reference 13) which yields a formula of $(n/10)^2/2.3902$ for controlled airports, again with n in 10^5 operations. The rationale for the third category, "VFR towers," is that none of the collisions at controlled airports occurred between aircraft which were sequenced on radar by the approach control facility. Rather, the collisions typically occurred at very busy general aviation airports where a busy local controller, without the benefit of a BRITE display, was responsible for procedurally sequencing all aircraft to the runway. Thus, this category represents an attempt to get at the subset of all controlled airports which actually produced the observed collisions, i.e., the "VFR tower" airports. It is this formula upon which the benefits of radar-preventable midair collisions are based in this report.

The data base from which this relationship was derived included 296 midair collisions between January 1964 and December 1972. Thirty-four ASR-preventable midair collisions occurred within five miles of controlled airports: 2 IFR-VFR collisions and 32 VFR-VFR collisions. The airport area is defined as the airspace within 5 nautical miles of the airport. An additional 52 ASR-preventable midair collisions occurred in terminal areas outside the airport area: 1 IFR-IFR collision, 12 IFR-VFR collisions and 39 VFR-VFR collisions. The terminal area is defined at the airspace within 30 nautical miles of the airport. Thus, for a nine year period, there were 86 airport and terminal area midair collisions are distributed approximately in proportion to airport collisions, an <u>upper bound</u> for the expected number of <u>annual</u> midair collisions avertable by ASR can be estimated by:

$$\frac{86}{34} \times \frac{0.028n^{2.3}}{7} = .010n^{2.3}$$

where n is the number of annual aircraft operations in units of 100,000 or 10^5 . Based on this formula, Figure 10 outlines expected numbers of ASR-preventable midair collisions within the relevant range of activity for new ASR establishment locations.

Annual Aircraft Operations	Expected Number of Annual Avertable Midair Collisions*
(000)	COTTIOLOUP
	.002
50	.003
55	.003
60	.004
65	.004
70	.005
75	.006
80	.007
85	.008
90	.009
95	.010
100	.011
105	.012
110	.014
115	.015
120	.017
125	.018
130	.020
135	.022
140	.024
145	.025
150	.027
155	.029
160	.032
165	.034
170	.036
175	.039
180	.041
185	.044
190	.046
195	.049
200	• •

Relationship Between Total Aircraft Operations and Number of Avertable Midair Collisions Expected by ASR

Source: Reference 11

*The expected number of avertable midair collisions may be approximated by solving for .010n^{2.3}, where n is the number of annual aircraft operations in units of 100,000. The equation used to estimate the number of preventable midair collisions as a function of total operations in this report yields significantly fewer collisions than the equation used in the current establishment criteria (Reference 2). Appendix F of Reference 11 contains a complete discussion of the merits of the formula used here versus the one used in Reference 2.

The costs of a midair collision include damage to aircraft, the value of lives lost and the costs of injuries. Collision losses used in the development of the criteria in this report are based on the unit values and costs outlined in Reference 9 and illustrated in Appendix D to this report. Expected midair collision costs per aircraft per involvement are illustrated in Figure 11. The expected number of preventable midair collisions multiplied by the appropriate collision costs for various classes of aircraft yields the estimated midair collision avoidance benefits credited to the establishment of an ASR. The life-cycle value of midair collision avoidance benefits is derived by computing and summing the expected value for each year of an ASR's 15-year economic life and discounting to the present value equivalent, or:

$$\sum_{y=1}^{15} \left\{ MACTOT_{y} \times 1/(1+d) y^{-0.5} \right\}$$

where 'y' is each of an ASR's 15-year economic life, 'MACTOT' is the nondiscounted midair collision avoidance benefits in year 'y,' and 'd' is the OMB-prescribed discount rate of ten percent.

The application of the above factors in a manual computation of the safety benefits of ASR is illustrated in Section VII. In actual practice, this computation will be performed by a computer program in the Phase II benefit/cost screening process.

FIGURE 11

Expected Midair Collision Costs per Aircraft per Involvement (Thousands of 1980 Dollars)			
User Class	Costs of Fatalities and Injuries	Cost of Air- craft Damage	<u>Total Costs</u>
Air Carrier	\$12,446	\$1,871	\$14,317
Air Taxi*	1,176	111	1,287
General Aviation	553	66	619
Military	1,038	1,108	2,146
ومؤرم المحموليان ورامياتها والمناقبة والمناوع المتحاج ومحاجاتها وجهوه ومحمد والموامل محاكر معرو وومناهما			

Sources: Appendices D, E-1 and E-3. Data are weighted by the expected mix of aircraft types within each user class at potential establishment candidate airports.

*Air taxi includes air commuter aircraft.

b. Terrain Collision Analysis

The major sources of safety benefits provided by ARTS was found in a report entitled ARTS II Enhancements Costs and Benefits (Reference 14) to be its Mininum Safety Altitude Warning (MSAW) and Conflict Alert (CA) features. Benefits generated from MSAW result from the prevention of terrain collisions while those from CA result from the prevention of midair collisions. Since the preceding section on midair collisions derives the total expected difference in incidence of midair collisions between radar and non-radar environments, no further benefits are ascribed to CA because to do otherwise would potentially result in double counting. The benefits attributable to preventable terrain collisions outlined below are from the above referenced report, updated to reflect the value of a statistical life and aircraft replacement values (from Reference 9). The analysis of aircraft accidents used a series of National Transportation Safety Board files for accidents occurring near ARTS II candidate airports between 1967 and 1972 (during and at which 41,540,000 aircraft operations took place). There were 104 fatal accidents at or near the ARTS II sites during this period. Nineteen of these were collisions with the terrain or obstructions and were considered potentially preventable by MSAW. In this group were 44 fatalities and 19 general aviation aircraft destroyed. No air carrier aircraft were involved in any of these preventable accidents.

The benefits associated with MSAW can be calculated using the annual cost of preventable terrain collision accidents. The total value of the lives and aircraft lost in the 19 fatal accidents over the six year period was \$24,384,000 or \$0.587 per operation, calculated as follows:

.

44 fatalities x \$530,00 19 GA aircraft x \$56,000 Total	$\begin{array}{rcl} 0 &=& \$23, 320, 000 \\ &=& \underline{1, 064, 000} \\ && \$24, 384, 000 \end{array}$
Operations	41,540,000
Loss per operation	\$ 0.587

Since all of the fatal terrain collision accidents involved general aviation aircraft, MSAW would only be effective if the aircraft were equipped with altitude encoders. The preventable loss must be adjusted since MSAW works only with altitude data. Figure 12 outlines percentages of all aircraft (including air carrier, air taxi, general aviation and military) which are estimated to be equipped with altitude encoding avionics over the next several years at a group of ARTS-II sites, as developed in Reference 14.

....

Forecasts of Mode C Usage (Total Aircraft	Population)
---	-------------

Year		
	Mode C Factor (%)	
1982		
1983	48	
1984	52	
1985	56	
1986	60	
1987	64	
1988	68	
1989	72	
1990	76	
1991	80	
1992	84	
1993	88	
1994	92	
1995	94	
1996	95 (extrapolated)	
1997	96 (extrapolated)	
1998	97 (extrapolated)	
1999	98 (extrapolated)	
2000	99 (extrapolated)	
	100 (extrapolated)	
	(oncluporated)	

Thus, the present value benefits of MSAW over a 15 year life-cycle at a 10 percent discount rate can be defined as:

 $\sum_{y=1}^{15} \text{ $$.587 x OPS x MODECF x (1/(1+d)y-0.5)$}$

where 'y' is each of the 15 years of an ASR's economic life, 'OPS' is the total aircraft operations in year 'y,' 'MODECF' is the Mode C factor in year 'y,' and 'd' is the OMB-prescribed discount rate of ten percent.

2. <u>VFR Radar Advisory Service</u>. VFR radar advisory service is provided on a work-permitting basis at towers which have terminal radar. It is a service provided primarily to general aviation aircraft. The service consists of radar traffic information, separation between an aircraft receiving radar traffic information and observed traffic, safety advisory to radar-identified aircraft when a situation appears to affect the safety of the aircraft, altitude conflict separation, weather and chart information and radar navigation assistance to avoid those areas, bird activity information, holding pattern surveillance and navigation guidance. All of these activities contribute to an absolute improvement of the level of safety in a radar environment compared with a terminal

environment without radar, but none are easily quantified. Towers record the number of times the service is given, but the significance of each event is not recorded and would obviously be very difficult to ascertain. Accordingly, no attempt has been made in this report to quantify and value these services. The significance of this omission is rather immaterial since the pilot can still resort to other FAA-provided means of assistance such as VHF Direction Finder and emergency services offered through flight service stations (FSS), air route traffic control centers (ARTOC) and tower facilities. ASR can be classified as only an alternative and limited means of offering navigation assistance to pilots in the immediate area of the airport.

Radar Flight Assists. Primary reasons for flight assists include the pilot being lost, low on fuel, caught on top and equipment malfunction. Flight assists can and are performed without the aid of radar, but the user of flight assistance during an emergency enjoys a definite advantage when he is helped by a radar-equipped tower. The user, predominately a general aviation itinerant pilot, is in a relatively safer position from the time radar contact is established until the time he is in a safe position on the ground. This relative safety is due to the fact that the user is an identified target on the radar scope. He can be followed, guided and landed at the nearest suitable airport, or sent on his way. As in the case of VFR radar advisory service, radar flight assists afford an absolute improvement on the level of safety over that of a terminal environment which has no radar, but their value is not easily quantified. Again, these intangible services are not taken into account in the benefits developed in this report because of the difficulty of their measurement and valuation. Again this omission is not significant, since ASR should be viewed as only an alternative and limited means of offering navigation assistance to pilots in the immediate area of the airport. The pilot can still resort to other FAA-provided means of assistance such as VHF Direction Finder and emergency services offered through FSS, ARTOC and tower facilities.

D. Convenience

A third major benefit of ASR, both to the controller and the user, is that of convenience. The user benefits from the feeling of having added protection with radar. Convenience to the user arising from reduced flying time is addressed in an earlier part of this section dealing with IFR delay reduction. For the controller, convenience is realized from the reduction in the difficulty of retaining a mental image of the activity he is controlling, or more simply, a reduction in the mental strain of moving traffic. Because there is insufficient data upon which to attach a monetary value to these aspects of radar, they have not been quantified in the benefits developed in this report.

SECTION V - DEVELOPMENT OF PHASE I ASR ESTABLISHMENT AND DISCONTINUANCE CRITERIA

This section explains how the Phase I ASR establishment and discontinuance criteria were derived. Phase I criteria, published in Airway Planning Standard Number One (Reference 1), are a set of generalized criteria designed to initially identify potential candidates. Phase I criteria are easily applied with available data without the aid of a computer. Phase II is a site-specific computerized benefit/cost screening process under which candidates identified by Phase I are further evaluated. Figure 14 of Section VI provides Phase I and II results for all principal FAA approach control towers (other than CIFRR's, CERAP's, RAPCON's and RATCF's) based on extrapolated Terminal Area Forecasts over the 15 year period Fiscal Years 1982 through 1996.

At any given site, the respective contributions of IFR delay reduction and safety benefits to the Phase II benefit/cost ratio can be expressed as:

Delay Reduction Component of Benefit/Cost Ratio $= \frac{\text{TSAVE}_1 \times \text{PRIM}_1 \times \text{BHIO}_1 \times \text{VOC}_1 \times (\text{PIFR}/100) \times \text{BHPY} \times \text{NDF}}{\text{DISCST}}$

Accident Reduction = (MACBEN₁ + TRCBEN₁) x OPS₁ x NDF Component of Benefit/Cost Ratio

where for the first year of operation:

BC is the Phase II benefit/cost ratio,

TSAVE is the number of delay hours saved per aircraft per hour of airport operation (a function of airport capacity busy hour operations and user class mix),

PRIM is the number of primary instrument operations,

BHIO is the number of operations during a busy IFR hour,

VOC is the hourly variable operating cost of the aircraft mix,

PIFR is the percent of time that IFR weather prevails,

BHPY is the number of busy hours per year,

NDF is a factor by which first year benefits can be inflated to their life-cycle equilavent, taking into account discounting and activity growth,

DISCST is the life-cycle cost,

MACBEN is the expected benefit per operation of averted midair collisions,

TRCBEN is the expected benefit per operation of averted terrain collisions, and

OPS is the number of total aircraft operations.

The objective in developing Phase I criteria is to derive a simple relationship that when applied to first year activity data will produce a reasonable approximation of the Phase II benefit/cost ratio. This relationship should be sensitive to activity by user class composition because the value of ASR benefits differs by user class. Note in the above formulae that the activity measures used to determine the benefits of IFR delay reduction and collision avoidance benefits are primary instrument operations (PRIM) and total aircraft operations (OPS), repsectively.

For each FAA towered airport, values of PRIM1 and OPS1 for each user class required to achieve a life-cycle benefit/cost ratio of unity (i.e., where benefits just break-even or offset costs) were calculated using the computer program described in Appendix F. The range of values derived for OPS was narrow, with medians of 107,400 for air carrier, 539,600 for air taxi, 847,200 for general aviation and 376,200 for military. Unfortunately the results obtained for PRIM were disparate because site specific weather (PIFR) and PRIM are unrelated and there is an exponential relationship between TSAVE and BHIO on the one hand and PRIM on the other. This poor correlation result could be overcome by making PIFR a separate part of the Phase I computation and by using exponents in the Phase I criteria or constructing a table look-up for the relationship between TSAVE, BHIO and PRIM. Unfortunately, this enhancement conflicts with the ideal of keeping the Phase I criteria as simple as possible and met with resistance during coordination of preliminary draft versions of this report. The Phase I criteria finally adopted, the computation procedure and nomenclature for which are outlined below in Figure 13, correlate very well with the Phase II criteria results in the area of safety but not as well in the area of delay reduction.

FIGURE 13

Phase I Criteria

Contributing Benefit

Ratio Value

Delay H	eduction:
---------	-----------

ACPRIM	=	XXXX
3,400 - (.0013 x PRIM) *		
ATPRIM	=	XXXX
26,000 - (.0096 x PRIM) *		
GAPRIM	=	XXXX
53,300 - (.0196 x PRIM) *		
MLPRIM	=	XXXX
8,600 - (.0032 x PRIM) *		

Safety:

<u>ACITN</u> 107,400	2	XXXX
<u>ATITN</u> 539,600	=	XXXX
<u>GAITN + GALCL</u> 847,200	2	XXXX
<u>MLITN + MLLCL</u> 376,200	=	XXXX

Sum of Ratio Values

If 1 or greater, location satisfies Phase I establishment criteria

*If the denominator for any user class results in a value equal to or less than zero, disregard all denominators and use all of the following instead. For the air carrier user class: $9,300 - (.0034 \times PRIM)$; for the air taxi user class: $71,200 - (.0262 \times PRIM)$; for the general aviation user class: $146,000 - (.0538 \times PRIM)$; and for the military user class: $23,400 - (.0086 \times PRIM)$.

ACPRIM, ATPRIM, GAPRIM and MIPRIM, for a primary airport, are the numbers of annual <u>primary</u> instrument operations of the air carrier (FAR 121, 127 and 129), air taxi these terms (FAR 135), general aviation (FAR 91) and military (FAR 91) user classes, respectively. For a qualified secondary airport, these terms are the numbers of annual primary instrument operations of the secondary airport by user class, <u>or</u> the respective numbers of secondary instrument operations by user class of the primary airport associated with or allocable to the secondary airport, <u>whichever</u>

PRIM, for a primary airport, is the number of total annual <u>primary</u> instrument operations (i.e., the sum of ACRIM, ATPRIM, GAPRIM and MLPRIM). PRIM, for a qualified secondary airport, is the number of total annual primary instrument operations of the secondary airport, <u>or</u> the number of total annual secondary instrument operations of the primary airport associated with or allocable to the secondary airport, <u>whichever</u> is greater.

ACITN, ATITN, GAITN and MLITN are the numbers of annual itinerant operations of the air carrier, air taxi, general aviation and military user classes, respectively. GALCL and MLLCL are the numbers of annual local operations of the general aviation and military user classes, respectively.

When an ASR facility is being considered for discontinuance, initial acquisition and installation costs are irrelevant since they are sunk costs. The only relevant costs are recurring operations and maintenance costs, ignoring salvage value, relocation costs, etc. To determine whether an ASR facility meets Phase I discontinuance criteria, a ratio value is calculated by the same sum-of-ratios approach described above for Phase I establishment criteria. If the ratio value so obtained is less than 0.35, the location satisfies Phase I discontinuance criteria. The 0.35 figure is an approximation of the level where the life-cycle benefits just offset recurring life-cycle operations and maintenance costs.

Ideally, there should be a close relationship between candidates identified in Phase I (simple criteria) and candidates meeting a benefit/cost ratio of 1 or more in Phase II (computerized benefit/cost analysis). If not, one or both of two undesirable situations can occur. First, locations may show up as candidates under Phase I but fail to reflect an acceptable benefit/cost ratio under Phase II, a situation which is termed "false alarm." Secondly, and more critically, locations may not show up as candidates under Phase I but attain a benefit/cost ratio of 1 or more under Phase II screening, a situation termed "non-identification." In the development of the Phase I establishment criteria, the emphasis was primarily to keep the Phase I criteria as simple as possible and secondarily to maintain a reasonable relationship between the benefit/cost ratios derived from both phases. As a result of this approach, Figure 14 shows 24 instances of false alarm but no instances of non-identification of over 200 FAA approach control towers.

SECTION VI - RESULTS OF APPLYING PREVIOUS AND REVISED ASR CRITERIA TO ALL FAA APPROACH CONTROL TOWERS AND IMPACT ANALYSIS OF REVISED ASR CRITERIA

The computer program described in Appendix F, based on the benefit/cost methodology described in Sections III, IV and V, was used to compute Phase I and Phase II benefit/cost ratios for all FAA-operated approach control towers excluding CIFRR's, CERAP's, RAPCON's and RATCF's) in the Terminal Area Forecasts (TAF) (Reference 25) over the 15 year period Fiscal Years 1982 through 1996. The results are outlined in Figure 14. Figure 14A outlines the results by descending Phase II benefit/cost ratio, Figure 14B in LOCID sequence, and Figure 14C in state sequence. Also included are the Phase II benefit/cost ratios derived from applying the previous ASR criteria. The benefit/cost ratios outlined in Figure 14 are based only on activity at the primary airport and do not reflect any benefits that might be attributable to radar coverage provided to qualified secondary airports, if any, under the "area concept" outlined in Section IV. The Air Traffic Service will determine eligible locations

Order 1320.1 requires an assessment of the impact of the revised criteria on agency resources. It is impossible, however, to "precisely" assess the impact for several reasons. First, meeting candidacy levels does not by itself entail automatic qualification. Benefit/cost screening is but one of several inputs to the FAA decisionmaking process relative to

investment in ASR facilities. Investment decisions are made on the basis of all pertinent factors. Second, neighboring airports having a common need for radar surveillance may collectively qualify for an ASR under the "area concept" introduced in Section IV of this report. Qualifying sites in this category will be determined on a case by case basis by the Air Traffic Service. And third, actual costs vary from site to site. Estimated site-specific costs will be applied in actual application of

Aside from these qualifications, the relative impact of the revised ASR establishment and discontinuance criteria may be assessed by comparing the number of FAA approach control towers which qualify under the benefit/cost provisions of the revised criteria with the number that qualify under the previous criteria. Figure 14D summarizes Figure 14A by ranges of Phase II benefit/cost ratios of FAA approach control towers (other than CIFRR's, CERAP's, RAPCON's and RATCF's) under the revised and previous ASR criteria. The revised criteria result in 13 new establishment candidates and 2 discontinuance candidates, while the previous criteria result in 9 new establishment candidates and 5 discontinuance candidates. Projections through FY 1987 suggest an additional 6 new establishment candidates under the revised criteria and 4 under the previous criteria. Again, potential establishment candidates that may qualify under the "area concept" are not reflected in these impact assessments. A sensitivity analysis is provided in Section IX.

	NEW PH II	82 622 622 622 622 622 622 622 6
SERUCIACE	NEW PH I	970380056871088708177560071086607107286708677 101000000000000000000000000000000000
B/C KALLU	DLD DLD	10000000000000000000000000000000000000
TOWERS -	LC COST	$\begin{array}{c} 9760000\\ 97600$
CONTROL	SAFETY BEN	529240064. 72925006. 729250555. 72925055. 72925056. 72925056. 72925056. 72925056. 72012555. 7201255. 720126555. 720126555. 720126555. 72012655. <t< td=""></t<>
FAA APPROACH	DELAY BEN	51875072.5 546255045.5 546255045.5 546255045.5 546255045.5 546255045.5 546255045.5 5705552048. 77555424. 77555424. 77555446. 77555464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775556464. 775559564. 775559564. 775556464. 775559564. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 77555964. 775559764. 77555964. 77555964. 77555964. 77555964. 7755564. 7755564. 77555964. 77555964. 7755564. 775564. 7755564.
LA TO ALL	PIFR**	
RITERI	ERV*	
ບ ຜ	ίΩ.	
ASR	ເມ ຄ.	
NG.	EQUIP	CUUUUUUU UUUU DUUUU CUUUUUUUUUUUUUUUUUU
2		
OF APPLYING	RADAR	NONNONNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
.TS	ST	HLLAYNOHCOXXAAHHLLMCLDOCHANHXAXAHHINNXXXAHHCOADAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
FIGURE 14A: RESULTS		LILT LLANTA ALLAS-FORT WORTH DUSTON ENVER ENVER EATLE HILADELPHIA OSTON OSTON COSTON COSTON COSTON COSTON COSTON T LOUIS ALADELPHIA ULUTH T LOUIS ALANDOR COVINGTON/CINCINNA COVINGTON/CINCINNA T LOUIS COVINGTON/CINCINNA COVINGTON/CINCINNA T LOUIS COVINGTON/CINCINNA COVINGTON/CINCINNA COVINGTON/CINCINNA COVINGTON/CINCINNA COVINGTON/CINCINNA COLUMBUR COLUNNA COLUMBUR COLUMBUR COLUMBUR COLUNNA COLUMBUR COLUMBUR COLUMBUR COLUMBUR COLUNNA COLUMBUR COLUMBUR COLUMBUR COLUMBUR COLUMBUR COLUMBUR COLUSVILLE
		AUHY CORRECTED TO THE

APPROACH CONTROL TOWERS - B/C RATIO SEQUENCE

44444444444MMMMMMMMMMMMMMMMMMMMMMMMMMM
497988899999999999999999999999999999999
<pre>/ / / / / / / / / _ /</pre>
<pre>8970000 8970000 8970000 8970000 9760000 897000000 897000000 897000000 897000000 897000000 897000000 897000000 8970000000000</pre>
2255266 25686956 25686956 25686956 25686956 25686956 25686956 25686956 25686956 2586956 2585956 257855956 25785559 257855559 25785559 25785559 25785559 257855559 257855559 257855559 257855559 257855559 257855559 257855559 257855559 257855559 257855559 257855559 257855555555555555555555555555555555555
4 2 3 7 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ԱԱԱԱԱԱԱԱ	. <u>ս</u> ւսւ ա ա	<u>кки к</u>	и и ииии и	ատ ա ա		ι. W
					ပ ပ က က	
			444 44	444 4	44	
1010100	- M4- 99		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ХХХ Х 	R-78 R-78 R-78	8 - 7 - 4
	ASR ASR ASR ASR ASR ASR ASR ASR ASR ASR	SR SR SR	SI SI SI	ASI ASI ASI	A SI A SI A SI	ASA
AAAAAAA AAAAAAA		• • •	LDADTAANLL V	CURAL WIN	L N N N N N N N N N N N N N N N N N N N	GTWLYR GAXE GAXE GAXE CAN CAN CAN CAN CAN CAN CAN CAN CAN CAN
Z					R	
AUGUSTA SAVANNAH MIDLAND KNOXVILLE FLINT WILKES-BA SPRINGFIE	MHH MOU	WATERLUC VAKIMA COLORT SMU FORT SMU CHATTANU CALUMBU PASCO BAKERSF	LYNCHBURG ROCKTONA B DAYTONA B DAYTONA B EVANSVILI STOCKTON BILLINGS BILLINGS BISMARCK BISMARCK	CASPER CASPER CASPER LAKE CHARLES HARRISBURG MEDFORD MEDFORD MEDFORD MEDFORD MEDFORD MEDFORD		M ELMIRA M ELMIRA C KAULU C
AGS AGS FNT AVP AVP	BTH BTH FFI FFI FFI FFI	ALO YKM COS COS COS COS COS COS COS COS COS COS		L L L L L L L L L L L L L L L L L L L		AB4 CCC CCC CCC CCC CCC CCC CCC CCC CCC C

000000000	0000-0	000000000000000000000000000000000000000	000000000	000000
9700 9700 9700 9700 9700 9700 9700 9700		570000. 570000. 570000. 570000. 570000. 970000. 970000. 970000.		
× × × × × × × × × × × × × × × × × × ×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8888888888888 5555555555555	88888888888888888888888888888888888888	88888
690 5173858 5173858 5173858 5173858 5173858 517385 517385 517385 517385 517385 517385 517385 517385 517385 517385 5175855 517585 517555 517555 517555 5175555 5175555 51755555 51755555555	599445	615780 1271570 525856 547644 6475901 5855555 589073	857355	811 504 7497 7497
4038 4035 5957 5957 5957 59555 5124 5125 5124 5125 5828 5828 5828 5828 5828 5828 5828	207 207 207 207 207 207 207 207 207 207	000-40mm-r	7569320 7569326880 75043756880 75043756880 75043756880 75045756880 75045756880 75055880 75055880 75055880 75055880 75055880 7505580 75055880 75055880 7505500 7505580 7505500 7505500 75055000 7505500000000	~~~~~
45555555555 5555555555 555555555555555	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NUC 20004-0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13.40 13.40 17.50 17.50 17.50 11.61 11.61 17.10	-nnom	21-20-10 210		
LL LLL	LL.			
A A A	4 4		4	
ASR-5 ASR-5 ASR-6 ASR-4	ASR ASR-5		ASR	
HAGONOLIAL	XXA15XX		-	AR Pr L
HILD WILLTAMSPORT READING MANSFIELD ROSWELL COLUMBIA BROWNSVILLE LONGVIEW JACKSON MC ALLEN	CLARKSBURG SALINA KAILUA-KONA PALM SPRINGS COLLEGE STATION TYLER	STATUL JUNCIION WURTE PADUCAH WORCESTER FLORENCE FLORENCE GREENVILLE JOPLIN MISSOULA	TEXARKANA TUIN FALLS CAPE GIRARDEAU MARION HOT SPRINGS HELENA ST JOSEPH CLINION	PENDLETON PINE BLUFF Pago Pago Miami
ITT RDF RDF RDF RDF RDF RDF RDF RDF RDF RDF	SCKB SCKB SCN SCN SCN SCN SCN SCN SCN SCN SCN SCN	MIC PAH JCH MSSNNNN MSSNNNNNN MSSNNNNNNNNNNNNNNNNN	CST NUT NUT NUT NUT NUT NUT NUT NUT NUT NU	LUL LUL LUL

26). EQUIPMENT AND RADAR SERVICE AS OF SEPTEMBER 30, 1981 (SOURCE: REFERENCE SERVICE CROSS REFERENCE CODES: A = ARTS II B = ARTS II B = ARTS III C = CONFLICT ALERT C = CONFLICT ALERT D = MINIMUN SAFE ALTITUDE WARNING E = STAGE II EXPANDED RADAR SERVICE F = STAGE III EXPANDED RADAR SERVICE F = TCA GROUP 1 H = TCA GROUP 2 RADAR Radar *

WEATHER PREVAILANCE PERCENTAGES WERE TAKEN FROM REFERENCES 7 AND IFR

**

-1

29.

.....

	NEW PH II	6.08 1.70 0.50 0.50 0.50 0.50	14 9 M M 9 9	9.07 9.07 10.08 11.29	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	6.81 2.83 15.83 1.67 7.20	400 00 00 00 00 00 00 00 00 00 00 00 00	13.50	80.0000 20.0000 20.00000 20.00000000	
D SEQUENCE	I HA PH I	4.93 1.97 21.22 2.19 0.58	44-060	13.30 4.90 3.90 3.94 22.39	16.22 16.80 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8	24.34 12.67 73.68 1.00 1.00	29-22 29-22 29-22 29-22 29-22 29-28 20-28	5.55 5.55 6.71 71 71 73 70.64 30.61	20.94 20.94 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	
ts - Locid	DLD PH II	4-20 220	228224	004490 1004490	29.22.	NV 	4010	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	244.232 6.151.89 6.151.89 6.151.89 6.151.89	
ROL TOWERS	C COST	970000 970000 9700000 9700000 9700000	8970000 8970000 89700000 897000000000000	976000 976000 897000 897000 897000	897000 897000 897000 976000 976000 976000	897000 976000 976000 976000 897000 897000	897000 976000 976000 976000 976000 89700 89700	89700 89700 89700 97600 89700 89700	9760000 8970000 8970000 8970000 8970000 8970000 8970000 8970000	
APPROACH CONTROL	AFETY BEN L	1689818. 1095663. 10330862. 1350669.	191378. 959272. 3772796. 1272058. 1907006.	29240064 7385534 922692 1160177	7215830. 2997295. 590384. 1167901. 8717718. 3323883.	1458466 13985926 7734532 62417488 406929 951015	3050392 1718090 8975986 5977728 18110640 18110640 3631410 3631410 1992156	2049864 2534673 544178 25337616 25337616	128/24366 343/3496731 358348664 757397 757397 1285146 2305634 903183	
ALL FAA API	ELAY BEN S	900M	09850 971216 971216 987968 452598	87507 585007 579850 04483	98115 62102 48097 49814 49814	83070 85070 869292929292929292953296323259632325553232555532325555555555	2000 200 200 200 200 200 200 200 200 20	0520140	74273072. 67378592. 49015280. 28547680. 2581244. 19289872. 54742608. 71503296. 30288752.	
ITERIA TO	PIFR** DI			00000000000000000000000000000000000000	0-000r	20000	- 200 - 200	-0-0	13.40 13.40 18.51 11.80 12.70 12.70 12.70	
S S								H		
SR	· >			5		U				-
≪						U.	ᄣᄣᄣᄣ	ᄟ		
	<u>ш</u>	ᄔᄔ	աս ա	<u>u u u u u</u> u		L 11.12. IL				
N	<u>ш</u>	<u> </u>	ш ш		_			۵	ш Д	
ΛIΝ	ม ร ว		ມີ ພ ຄ	A	_		-	С С	ш СС СС	
PPLYIN	ม ร ว		ມ ພ ດ ວ	<u>р</u> С	D D	0 0	868	B C D	ш СС СС А А А	
APPL YING	EQUIP & SE		ມ ຟ ດ ເຊ	С С Ф	8 8 0 0 0 0	0 0 0 0	888 000 000	A A B C D	ມ ມ ບບ ຄຸຄ ຊ ຊ ຊ ຊ	
	AR EQUIP & SE	SR-7 A E E SR-8 B C D F	SR-6 A SSR-6 A SSR-6 A ISR-6 A B C D E ISR-6 A B C D E ISR-6 A B C D	158-8 A B C D 458-7 A B C D 458-7 A B C D 458-7 A B C D	ASR-6 A ASR-8 B C D ASR-6 A B C D ASR-6 A B C D ASR-6 A B C D	ASR-7 ASR-8 ASR-7 ASR-7 ASR-7 ASR-7	A SSR - 7 A SSR - 7 A SSR - 7 A SSR - 8 A SSR - 8 A SSR - 8 A A B A C U U A C U U	ASR-8 A ASR-7 ASR-7 ASR-8 B C D	ASSR ASSR ASSR ASSR ASSR ASSR ASSR ASSR	ASK-8
10	ESULIS OF EQUIP & SE	ASR-7 A E F ASR-8 B C D F	ASR-4 ASR-4 ASR-4 ASR-46 ASR-46 ASR-46 ASR-46 A C D E E E	ASR-8 ASR-7 ASR-7 ASR-7 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASSR-8 ASSR-8 ASSR-7 ASS	ASR-6 A B C D ASR-8 B C D ASR-6 A B C D ASR-6 A B C D ASR-6 B C D	ASR-7 ASR-8 ASR-7 ASR-7 ASR-7 ASR-7	A 55 A 55 A 55 A 55 A 55 A 55 A 5 A 5 A	ASR-8 A ASR-7 ASR-7 ASR-8 B C D	C C C C C C C C C C C C C C C C C C C	A ASK-8
90 JU 16 DE	KESULIS VI VILLE E	ASR-7 A E F ASR-8 B C D F	ASR-4 ASR-4 ASR-4 ASR-46 ASR-46 ASR-46 ASR-46 A C D E E E	ASR-8 ASR-7 ASR-7 ASR-7 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASSR-8 ASSR-8 ASSR-7 ASS	ASR-6 A B C D ASR-8 B C D ASR-6 A B C D ASR-6 A B C D ASR-6 B C D	ASR-7 ASR-8 ASR-7 ASR-7 ASR-7 ASR-7	A 55 A 55 A 55 A 55 A 55 A 55 A 5 A 5 A	ASR-8 A ASR-7 ASR-7 ASR-8 B C D	C C C C C C C C C C C C C C C C C C C	A ASK-8
A DECUTO CON	146: KEJULIJ V. W. L. S. SE et PADAR EQUIP & SE	ASR-7 A E F ASR-8 B C D F	ASR-4 ASR-4 ASR-4 ASR-46 ASR-46 ASR-46 ASR-46 A C D E E E	ASR-8 ASR-7 ASR-7 ASR-7 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASR-8 ASSR-8 ASSR-8 ASSR-7 ASS	ASR-6 A B C D ASR-8 B C D ASR-6 A B C D ASR-6 A B C D ASR-6 B C D	ASR-7 ASR-8 ASR-7 ASR-7 ASR-7 ASR-7	A 55 A 55 A 55 A 55 A 55 A 55 A 5 A 5 A	ASR-8 A ASR-7 ASR-7 ASR-8 B C D	C C C C C C C C C C C C C C C C C C C	A ASK-8
A DECUTO CON	FIGURE 146: KESULIS VI MILLESS	CITY 31 KADA 201 C C F LENTOWN PA ASR-7 A E F Suguerque NM Asr-8 B C D F	LBANY ACO TLANTIC CITY NJ ASR-4 A UGUSTA UGUSTA ATERLOD TA ASR-4 B C D ATERLOD TA ASR-4 B C D ASR-4 B C D	MARILLU NCHORAGE ASR-7 B C D TLANTA TX ASR-7 B C D USTIN TX ASR-7 A USTIN NC ASR-7 SHEVILLE NC ASR-7 SHEVILLE	INLANZOO MI ASR-6 A C D INLDSOR LOCKS CT ASR-8 B C D AKERSFIELD NY ASR-4 SINGHAMTON ME ASR-6 A B C D ANGOR AL ASR-6 B C D	BICHLINGS BILLINGS BISMARCK ND ASR-7 BOISE BOSTON BOSTON MASHUILLE TD ASR-7 MAS	BEAUMONINFUCKIANN TX BROWNSVILLE LA ASR-7 BATON ROUGE VI ASR-7 A BURLINGTON NY ASR-8 B C D BUFFALO CA ASR-6 B C D BUFFALO CA ASR-6 B C D BALTIMORE SC ASR-7 A COLUMBIA	AKRON CAPE GIRARDEAU MO CHATTANOOGA IN ASR-8 A CEDAR RAPIDS IA ASR-7 CLARKSBURG WU ASR 8 B C D CLARKSBURG DH ASR-8 B C D	ASSR ASSR ASSR ASSR ASSR ASSR ASSR ASSR	COLUMBUS GA ASK-8

	699- 		204 4 4 7 0 7 0 0 0 0	~~~	4 0 0		= ;	<u>+ 0</u> 0	14	52	4 e.	\$ ¢.			04		20	00	502						3.4
		Ŧ	I																						
	G	G																I			:	E			
	IL.	I	ᄔ	<u>ل</u> ـ ا	ս. ս	. L	L 1	L	1	L IL I	ᄂᄔ	ш			п		IL IL								
			1	ш	ш	ш	ш														щ	ш	ш. ш.		ᄟ
A	20	20	20	Ω															ш					ш	
с С	00	ပပ	ပပ	S														0				2	Ð		A
8	6 6	8	മ മ	8														U			υ c	د	U		υ
4	A	•	4		4 4	.≪	<	•			-							8			6 a	2	8		2
60 4	500	00 m	<u>.</u>	et ion			-	-			4		4		×		4 4		4 4	c		4	4	•	4 4
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* * * * 	က်က်က	2 & & &	2	~~~						ī	1	4		4	74	44	60	50	. 4	40	រហ	မဆ	00 e	0 00 00
AS	ASA			ກທາ	<u></u>		~ ~ ~ ~ ~	>	SU	220	ົທີ		SR		∞ (××	ຂໍ່ຂໍ່ ທີ່ຫຼື	ŚŚ		ά.	<u> </u>	202	ц ц ц ц		
										<		-	A		A •	< <	44	<	<	A		e	ASI	_	ASIS
A>A>	HSS:	1823	SAL S	=×:	< a z	×c		υΣ		100	zo	⊻∢	×	_ س در		ب ب									
•				u	-04	< 2	:02	: NZ	11 2	ະທ⊲	(< 3	Ē	ΣĔΠ	Σ	32	žű	EE	Υ Α Α Α Α Α	3n	X C X A C X	KS	N N N	A Y P	122
NN		H																							
IJ		WORTH												-											
N/CINCINNA 16	н	M											2	5											
ິບ	×.	⊢					L L			S	Ц	ų	-	-		S			S				ŝ		
N TON	B N O	OR.	ES		ш L		11	z		Ξœ	:шД			בהשכ		QI	0	U C	ох онш	~ <u><u></u></u>	~ ~		z	۲ ۲	Ш Ц
NEAZ	A 100	2 1	IIN L	0	IL	×	>	щĘ	ŝ	 H 	N F	•	З		<u>ہ</u>	- 4 -	UK N	2 2 F	רצז	22	20		000	ī,	ONVILL
D N N N	NOL	- H A F H A R C		S S	111~	-	-			ĽΣ	3F	- Z	ш-	2 N N N N N	89	م مد (ŝ.	0	~~ ~~	(h	7 /0	_			zz
			, Ω ⊬	ዛ ቢ. ዚ	ARI	20	ີ່ທີ່ມົ	aΕ	£Ξ	S-	-L	Σ	202		d n	52i	ĽЖ	z L u	រ្ម៣ស្រ	Ξw	UNIH:	Ei		-	1010
20ACC	A A A A	D D D D D D D D D D D D D D D D D D D		រីភូទី	i N N	ΞĀ	R A	AR		E B B	A Q A	20	N <	< 2 A A	50		μü.	"ZE	: HE	ZE	US:	5	58:	122	199
CLICC					ш	ملد لل	ul Ll			. м ц.	щ	- 0	בי פ	000	00	50	303	EXE	131	HH H	HAH	3		A L S L	NAU NAU
₩S N×C S N×C	A A CH		ΣЗΣ		22	Ha		oz	<u> </u>	ΩΣ	<>	.0	ں ⊢	· I >	Fa	200	- • •	7 11	. ~ ~		~ -				
CSM CVG CVG CVG CVG					រជាភ្ន	L L	A A A A		E Z	L S S	금た	- Ш - О	00	Ser	202	SS:	200		HPSH	H		5		- G C	AN

 273811

 5872153

 718117

 5872153

 5872153

 5872153

 5872153

 5872153

 5872153

 5875153

 5875153

 5855592

 5855592

 5855592

 5855592

 5855592

 5855593

 5855593

 5855593

 5855593

 5855559

 5855559

 5855559

 5855559

 5855559

 5855559

 5855557

 5855557

 5855557

 5855557

 5855557

 5855557

 5956017

 5956017

 5956017

 5956017

 5956017

 5956017

 5956017

 5956017

 5956017

 5956017

 5956017

 595657

 595657

 595657

 595657

 5956557

 59555

 378705

 104210640

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851906

 17851916

 17851916

 17851916

 17851916

 17851916

 17851916

 17851916

 17851916

 17851916

 17851916

 17851916

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 181501

 <t

0000/0000044-04/000100040005040005000000044080400	· · ·
00000000000000000000000000000000000000	
889700000. 889700000. 97600000. 97600000. 97600000. 97600000. 8897000000. 89000000. 89000000000000000. 890000000000	00026
7 7 7 7 7 7 7 7	58679.
	001-

:	I	Ŧ			ΞΞ		Ξ Ξ	
ш	1 <u>11 11 11 11 11 11 </u>		ۍ ۲	<u></u>		<u>ш.</u> ш. ш.	ա ա ա	<mark>և Ն․</mark> և) և։
Z-7	58-5 B C D 58-5 A 58-5 A 58-7 A 58-7 A 58-4 A 58-7 A 58-7 A	SR-7 SR-6 SR-8 B C D SR-8 B C D SR-8 B C D	A SR-8 B C D	SR-8 SR-6 A B C SR-7 A SR-7 A SR-7 A SR-4 SR-4	ASR-8 B C D ASR-8 B C D	ASR-7 ASR-6 B C D	ASR-8 A ASR-8 A ASR-7 B C D ASR-7 B C D ASR-7 B C D ASR-7 P C D	5587-5 8 8 5587-5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
A	444444	444 4	<					

T

JOPLIN JACKSON KATLUA-KONA LAFAYETTE LANSING LAS VEGAS LAS VEGAS LATTLE ROCK LITTLE ROCK LINCOLN MINCAND MINCAND MANCHEN MANCHESTER MONTGOMERY MANNER MONTGOMERY MANNER MONTEREY	
A C C C C C C C C C C C C C C C C C C C	ALBOOGBES

1

ŝ

9760000 8970000 8970000 9760000 89700000 10390519 22255738 6171992 730161 72255738 864802 13864802 13864802 1386402 1386402 12265231 1606329 18606329 18606329 18606329 18606329 18606329 18606329 18606329 186065696 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 1744482 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 17454659 175665696 17454659 175665696 17454659 175665696 1756656666 175665666666666 1756656666666666 60428000 25825272 68296432 7350992 7350992 7350992 7350992 7350992 75035416 7550992 7555456 62419520 62419520 51535460 717237808 5175568 117237808 5175568 717237808 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71723786 5175568 71725768 517886 5178886 5178886 5178886 5178886 517888 27.28 27.28 27.28 27.28 27.28 27.28 27.28 28.28 29.28 20 Ŧ I ш LL. HL. ц. LL. ш. <u>ال</u> ш ш ρ Ω Δ 20 Δ Δ Δ C S O CΟ Ö C C S C ß ŝ m കമ 2 8 ø 60 ŝ 4444 ~~~ ≪€ < ASR-7 ASR-6 ASR-6 ASR-8 ASR-8 ASR-8 ASR-8 < ~ æ ASR-7 ASR-8 ASR-8 ASR-4 ASR-7 ASR-8 ASR-8 ASR-7 < ASR-8 ASR-7 ASR-8 ASR-4 **5R-8** SR-7 ASR-4 ASR-8 ASR-8 ASR-8 5R-6 ASR-8 æ NHAUNAN COORDINATE CONCORDINATION CONCORDINA RALEIGH-DURHAM RICKFORD RICHMOND RENO RCOKFORD RCONESTER ROCHESTER SAN ANTONIO SAN ANTONIO SAN ANTONIO SAN ANTONIO SAN ANGFIELD SAN ANGFIELD SAN ANGFIELD SAN ANGELO SAN ANGFIELD SAN ANGELO SALT LAKE CITY SAN ANGELO SAN ANTONIC SAN ANGENON

26)-1981 (SOURCE: REFERENCE 30, AR EQUIPMENT AND SERVICE AS OF SEPTEMBER AR SERVICE CROSS REFERENCE CODES: A = ARTS II B = ARTS III C = CONFLICT ALERT D = MINIMUM SAFE ALTITUDE WARNING E = STAGE II EXPANDED RADAR SERVICE G = TCA GROUP 1 H = TCA GROUP 2 SERVICE AS OF SEPTEMBER Reference codes: RADAR Radar *

** IFR WEATHER PREVAILANCE PERCENTAGES WERE TAKEN FROM REFERENCES

29

7 AND

	NEW PH II	алиаааноаааанбабалибалы. 	
	NEW PH I	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
- - -	DLD PH II	000 000 000 000 000 000 000 000	
	LC COST	89700000 897600000 89700000 89700000 89700000 97600000 97600000 89700000 97600000 89700000 97600000 89700000 89700000 89700000 8897000000 8897000000 8897000000 88970000000000	3
	SAFETY BEN	10773929. 871773929. 871773929. 871773929. 1545019. 1545019. 1545019. 1545019. 1545019. 1545019. 1545019. 15567195. 127556732. 15567199. 15567199. 15567199. 15567199. 15567199. 15567196. 15567156. 155	
LAA ALLKUN	DELAY BEN	<pre>50601584. 50601584. 545981565. 545981565. 37289016. 37289016. 37289016. 37594. 515594. 555594. 555594. 111509540. 5556910240. 5556910240. 1558400. 255691026. 150028816. 72295156. 555994. 7229500240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229560240. 7229570246. 7229570246. 7229570246. 7229570246. 7229570246. 7229570246. 7229570246. 7229570729. 7229570246. 7229570246. 7229570246. 7229570246. 7229570246. 72557034. 72557034. 7257037034. 7257037034. 7257037034. 7257037034. 7257037034. 7257037034. 7257037034. 7257037034. 7257037034. 7257037034. 7257034. 7257037034. 7257034. 7257034. 7257034. 72577034. 7257034. 7257034. 7257034.</pre>	- n i. L L
TA IN ALI	PIFR**	8010410808858588888888888888888888888888	•
TER.	*	т т т с с с с с т	
CRI	S ER V		ш
SR	ເ ເ		
4 (7	d H	0 0 0 000 00 0 0 0 0 0 0 0 0 0 0 0 0 0	
APPLYING	EQUIP	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
2		AA AAA A A AA A A A A A A A A A A A A	
OF API	RADAR	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0: V)
RESULTS	ST	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	IA
FIGURE 14C: RESI	CITY	TALENDE CONTRACTOR CON	SIOUX CIT
	LOCID	ARBHANALAS AND ALL AND	SU2

GURE 14C: RESULTS OF APPLYING ASR CRITERIA TO ALL FAA APPROACH CONTROL TOWERS - STATE/CITY SEQUENCE

,

W000-044	ຎຆຆຆຬຬຑຬຬຬຬຬຬຑຎຆຬຬຬຑຎຎຎຬຎຬຬຬຬຬຬຬຬຬຬຬຬຬຬ
	494987999
	085.880 085
8970000 9760000 8970000 89700000 89700000 89700000 89700000 89700000 89700000 89700000	88970000 88970000 88970000 89760000 9760000 9700000 9700000 9700000 9700000 9700000 9700000 9700000 9700000 9700000 9700000 77000000
2058 26532 265914 35914 35914 83393 8333 8339 8339 8330 8330	88236272562725657277265727726727272727272727
200. 253. 253. 253. 272. 272. 272. 272. 272. 272. 272. 27	
	25525 25555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 2555555 2555555 2555555 2555555 25555555 255555555
00000-60	

					_					
					I		Ŧ	_		
L	- <u>i</u> L	•• • •				G		2:	H	Ŧ
-	- 4		ш.			0				
ш						և և	ու ուս	1 1 1 1		
								кка		
		9								
		-		D D	2	A 0	_		ш	
		U U		υu	-	D D	9	5	~	_
				υ u	U U	ບບ	S		D	2
_		E		a a		_	V	с U	S	с U
	A	4 444	-		£	2 2	20			•
9 0			A	A	44			μΩ.	8	A
ŤĨ	9	000040	~	50000			4 4	4 4 4	-	
e è	Ó.		1		000100	N 80	5-10000		A	~ ~
SS		55.55 57.555	2		K K K K K K			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*0 r	00 V 00 N
4 4	A	AAAAAA	S	SSSS	SSS SSS	~ ~	X X X X X X	K K K K K K K K K K K K K K K K K K K	1.1	\$ \$ \$ \$ N
			A	444	A A A A	0 01	າທິທິທິທ	<i>ហហហ</i> ហ ហ ហ ហ ហ	24 24	e existe
<0	0	• • • •		•		~ ~	AAAA	AAAAAAA	SS	ດ ທີ່ທີ່ມີ
HH	드디디	겁싑싑닁킁꽁꽁ㅋㅋ	ZZZO	002222					~~	< <<<
			нннх:	<u> </u>	~~~~~	10 A A	니비ㅋㅋㅋ	HILL HE		
						12221	εσεεε	EFFFFFFF	2000	0000
	2			₹.					EEEE;	EEEEE
	7			Ş						
	URBANA			INCINNA						
	คื			<u>ວິ</u>			•			
	2	S S		ž				_		
	<u> </u>		ш		ທ			AU		
	<u>?</u> \	نے بیر لیا ہے		U	LU LL IN		S	μ μ		
0	S.L	WJZOW	~~~~	Ľsź	0		Q I	S G	ΣΩ	
	ŘΗR.	BHJZE E	. m ≤ Ω	667		<u>ດ</u> 2 ເມ		- H M	1	μ
<u>µ</u>	トイゴス	NAU VOR	. OIZ	VEEL	Sus no	ШQ	A A	AARC N 00	ншт	
		A S SN TH N	<u> </u>	HITA HITA INGT SVI SVI	້ພົວແລຍ		ZH WZ	LAND HON		에 거든 이
L N N Z	⊂∑ ∢⊦	HRAHZEDA	응 눈 방 동 *	HZZOO	z≻ööö	2024	AH D	ANDETECT.	<u> </u>	HAZO
225	r∡∷o	LOUXAKOL	25%25	THHH	ON ROU AYETTE E Chari Roe Orlean		-OFON	CHUZEDU P2	5005	>>ooza
381		DMOG YOXA	55652	12222 <u>5</u> 0	トートズコム	NX		ALAFIAZ(NSTNG NSKEGON SKEGON GINAW GINAW NNEAPO NNEAPO CHESTE PE GIR PI TN		ZLOHZ
	2		ENFER		THOPPP	DOVA	SELSS.	ALATIAZ ANSING USKEGOI USKEGOI AGINAW ULUTH ULUTH ULUTH CLUTH CLUTH CLUMBIA	za	******
					ッコンとてい	m 3 m m	LOLON	KALAN LANSI SAGIN DULUTI MINNEJ ROCHES COPE	Adre	-23411
OHL	HUA								XOOU	,00,50F
-03	$\Sigma \square \exists$	これについいかに		HOXLT	~~~~					

000///400400-000-000-00040000/00//00000//0040040 -0000000000	00000000000000000000000000000000000000
84 84 84 84 84 84 84 84 84 84	29,00,00,000 2,00,00,00 2,00,00,00 2,00,00,00 2,00,000 2,000 2,0000 2,0000 2,0000 2,00000000
101 101 101 101 101 101 101 101	20000000000000000000000000000000000000
8970000 9760000 9760000 9760000 97600000 89700000 97600000 97600000 97600000 97600000 97600000 97600000 89700000 97600000 89700000 800000 89700000 89700000 89700000 89700000 89700000 89700000 89700000 89700000 8000000 89700000 8000000 80000000 800000000 8000000	897000 897000 89700000 89700000 8970000000000
5834266 5834266 5834266 5835425926 585554225926 5855545250 5855545250 585554566 573333 5855556 573334 5595556 5595566 5555456 555566 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555556 555555	31600 31600 31600 31600 31600 31600 31600 46960 469666 469666 4696666 8859666 885926 885926 885956 885056 885

					Ŧ						x								1	Ŧ						
	ᄠᄠ	ц. ц.	u	-	ц	. IL I			<u>u. u.</u>	u	. L	ᄂᄔ	Ľ.	u.	<u>ս</u> ա	1	u, r	ᄂᄟ	iL.	1	ين ب	u.	ևև	ււս	. ш. іц	. ш. ш
			ш				I	шш		μ					ີຊ	-	A			90					6	2
P	D		F	2	Δ	ρ	D		00		0	20			U					30					c	0
U	с U		C	נ	S	υ	U		ပပ		0	SO			ß		C								a	6
_ م	<u>م</u>		p	9	60	ß	ß		മ മ		20 1	20 20					ф			<u>n</u> m				< <		
_ < <			×			۲				< <	۲.			:	<	<		4	4		44	~	4			~ ~~
158-7 158-4 158-4	ASR-7	ASR-7 ASR-7	ASR-4	L L L L L L L L L L L L L L L L L L L	ASR-	ASR-	ASR- ASR-	ASR-4 ASR-8	ASR-	ASR	ASR	ASR- ASR-	d v v	ASR-8	ASR-4	ASK	ASR-	ASR- ASR-	ASR-	ASR-	ASR ASR	ASR-7	ASR-4 ASR-7	ASR-	ASR-6	ASR
E DOOC		2 Q W	HR	EE		>≻ x x	žž	××	Ż	N.	HB	HO	Be	583	5898	200	38	PA PA	A -	4 4 4 4	AN PA	8 P 0 0 0	S S	A N L		
ISSOULA Sheville Harlottevi Ayettevi	REENSBU ALEIGH- ILMINGT	ISMARCK Argo Incoln	TLANTIC	LBUQUERQU	S O S					SYKACUS WHITE P	AKRON CI EVELA	COLUMBUS	AM	55	295	EUGENE	0.0	ALLENTO	ERIE Harrisburg	PHILAD	READING	WILLIAMSPORT COLUMBIA	FLORENCE GREER STOUX FA	PAGO PAGO BRISTOL/JO	CHATTAN00G KNOXVILLE	IEM MEMPHIS NA NASHVILLE NBI ABILENE
MS0 AVC Fall Fal	GS0 RDU ILM	BIS FAR	MHT ACY	ABQ	ROW	RNO			ROC	SYR HPN	CAN	383	Ω M H	ōž	U SOL		04	A A A	ű ű				51.01	i F F	-05-	Σü<

EQUIPMENT AND RADAR SERVICE AS OF SEPTEMBER 30,1981 (SOURCE: REFERENCE 26). SERVICE CROSS REFERENCE CODES: A = ARTS II B = ARTS III C = CONFLICT ALERT C = CONFLICT ALERT D = MINIMUM SAFE ALTITUDE WARNING E = STAGE II EXPANDED RADAR SERVICE F = STATE III EXPANDED RADAR SERVICE G = TCA GROUP 1 H = TCA GROUP 2 IFR WEATHER PREVAILANCE PERCENTAGES WERE TAKEN FROM REFERENCES 7 AND 29.

**

RADAR Radar

*

		,		⊃ ו ז כ	⊃ √7 ¢	200	- n n	80 M L	, 	4	2∞- ∩	= •• =	02.29 02.29 02.29
		Ъ Ч Ч	500	- ~ 0	· ~ ~		5413	52. 15.	, 	0	0 N D I		MOMN
Ň			-		•) 🖸	100 1	54	No U	0 0 - 4 V	26.	220-8	500	9.88 0.36 0.42 0.48
. 8970(. 9760(8970(89700	97600 97600	97600 89700	89700	89700	97600 897000 897000	976000 897000 976000	976000 897000 897000	897000 897000 897000	897000	89700 89700 89700	3970000	00002630000
0700 8553 8553	520	8792	2976	3912 1624 1524	0200	615780 615780 631555	996132 996132	218192.	228. 368. 696.	56017. 29608.	83324 69760.	305638. 544178. 905820	577. 149.
666	8286 94261 2608	mm	7384	202	513230	93500 409850	7100256	3296432 7950992 1906016	2378	244144 582480	9997087. 59285680. 90934352.	8700C	564918 928987 696047
8.11	15.21	∞ — ı	200	7.00	7.19	13.30 11.00 5.51	12.80	8.50 8.50	8.60 6.80 16.31 14.31	74	20.30 14.60 22.20		<u> </u>
8.11	-22	1 — 00 - -	п 1/.10 10.90 8.09	7.00	7.19	13.30 11.00 5.51	12.80	88.59 50 50 50 50 50 50 50 50 50 50 50 50 50	8.60 H 16.31 14.30	74	0440		<u> </u>
нтт 8 15 21 22 1 4 5 21	-22	∞ — ı	200	F 11.61	F 17.50	13.30 11.00 5.51	F 12.80	<u>.</u>	2004	74	20.50	27.0	<u> </u>
	н 12 12	ي ت ت	ב⊇∾ ב עענ	1	F 17	т 5.	н п 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>.</u>	2004	74	0440		<u> </u>
	н 12 12 12	ין – 00 ב נ	≥₽°° ⊏∟∟	1	~ ~ ~	р 13. 5.	р 12.	<u>.</u>	D F F F F	74	20.50	27.0	16.0 6.7 9.2
ш.т.т.	т 12 12	م م د م م	22 % E LLL	1	D F 17	т 5.	н п 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>.</u>	T T	74	C D F 14.0	27.0	16.0 6.7 9.2
жк жттт С 194	A 515 125				C D F 17	CD F	B C D F 12.	<u>.</u>	C D F H 16.	74	B C D F 14.0	F 27.0	E 16.0
ASR-7 A F F 15	ASR-5 A F 15 ASP-7 B C F 12		ASR-5 A 5 F 1/ ASR-5 A F 8	ASR-7 F 11	ASR-8 BCD F 17	ASR A 13. ASR-8 B C D F 11.	ASR-6 B C D F 12. ASR-4 A E 13.	ASR-7 A F 3. ASR-7 A F 8. 8.	ASR-8 B C D F H 16. ASR-6 A F D F H 16.	ASR-7 F 14.0	ASR-4 ASR-8 B C D F 14.0 ASR-8 B C D F 14.0	5R-4 A F 27.0	16.0 6.7 9.2
ASR-7 A F F 15	ASR-5 A F 15 ASP-7 B C F 12		ASR-5 A 5 F 1/ ASR-5 A F 8	ASR-7 F 11	ASR-8 BCD F 17	ASR A 13. ASR-8 B C D F 11.	ASR-6 B C D F 12. ASR-4 A E 13.	ASR-7 A F 3. ASR-7 A F 8. 8.	ASR-8 B C D F H 16. ASR-6 A F D F H 16.	ASR-7 F 14.0	ASR-4 ASR-8 B C D F 14.0	ASR-4 F 27.0	SR-6 A E 16.0 9.2 9.2
PORT ART TX ASR-4 A F F 15 LE TX ASR-7 A F F 15 LE TX ASR-7 A F F 15	RISTI TX ASR-5 A F 15 RISTI TX ASR-5 A F 15 RUDRTH TX ASP-7 B F 7 12	TX ASR-5 BCD FG 8	TX ASR-4 A F F 10	TX ASR-7 F	0 TX ASR-8 B C D F 17	CITY TX ASR A 13. UT ASR-8 B C D F 11. VA ASR-8 B C D F 5.	VA ASR-6 B C D F 13. VA ASR-4 A C D F 13.	VA ASR-7 A F 3. VT ASR-7 A F 8. WA 8.	WA ASR-8 B C D H 6 WA ASR-6 A F D F H 16 WA ASR-6 A F 14	WI ASR-7 F 7.	WI ASR-4 WI ASR-8 WV ASR-8 BCDF 14.6	WV ASR-4 A F 27.0 WV ASR-4 F 15.4	WY ASR-6 A E [6.0 WY 9.2 9.2
DRT ART TX ASR-4 A F F 15 DRT ART TX ASR-7 A F F 15 E TX ASR-7 A F F 15	CORPUS CHRISTI TX ASR-5 A F 15 DALLAS-FORT WORTH TX ASR-7 B F 12	HEL PASO TX ASR-5 B C D F U OUSTON TX ASR-5 B C D F U OUSTON	LUNGVIEW TX ASR-4 A F F 10 LUBBOCK TX ASR-5 A F 70 MC ALLEN TX ASR-5 A F 8	MIDLAND TX ASR-7 F 11 SAN ANGELD TX ASR-7 F 7	TYLER TYLER TY ASR-8 B C D F 17	WACO TX ASR A 13. Salt Lake City UT ASR-8 B C D F 11. Lynchburg va va 5.	NORFOLK VA ASR-6 B C D F 13. RICHMOND VA ASR-4 A C D F 13.	BURLINGTON VA ASR-7 A F 3. BURLINGTON VT ASR-7 A F 8. MOSES LAKE WA	rasco wa asr-a b c d F H 16. Seattle wa asr-a b c d H 16. Spokane wa asr-6 a F 14.	GREEN BAY WI ASR-7 F 7. LA CROSSE WI ASR-7 F 14.0	MADISON WI ASR-4 F 20.3 MILWAUKEE WI ASR-8 B C D F 14.0 CHARLESTON WV ASR-8 B C D F 14.6 CLARKSRURG WV ASR-8 F 22.2	HUNTINGTON WY ASK A 27.0 PARKERSBURG WY ASR-4 F 27.0	CASPER WY ASR-6 A E 16.0 CHEYENNE WY ASR-6 A E 6.7 9.2

FIGURE 14D

Summary of Results of	Applying Previous and Revised ASR Crit	erla
to all	FAA Approach Control Towersa/	

Phase II Benefit/Cost Ratio	Previous Criteria	Revised Criteria
	32b/	30Þ/
$0.00 - 0.349/{h/}$	15 C /	12 <u>b</u> /
0.75 - 0.99	<u>2</u> d/	3
1.00 - 1.34	2 <u>c</u> /	2 <u>d</u> /
1.35 and above	153 <u>e</u> /	157 <u>£</u> /

- <u>a</u>/ Source: Figure 14A. Excludes CIFRR's, CERAP's, RAPCON's and RATCF's and benefits that may be attributable to radar coverage provided to qualified secondary airports, if any, under the "area concept" outlined in Section IV.
- b/ As of September 1981, 3 of these locations had radar equipment and service (Reference 26).
- C/ As of September 1981, 2 of these locations had radar equipment and/or service (Reference 26).
- d/ As of September 1981, 1 of these locations had radar equipment and service (Reference 26).
- e/ As of September 1981, 144 of these locations had radar equipment or service (Reference 26).
- \underline{f} As of September 1981 145 of these locations had radar equipment or service (Reference 26).
- 9/ Range of discontinuance criteria under the revised criteria. Of the 30 locations that fall in this range under the revised criteria, 3 had ASR as of September 1981. Tentatively applying the "area concept" criteria discussed in Section IV reduces this to 2 discontinuance candidates.
- h/ Range of discontinuance criteria under the previous criteria. Of the 47 locations that fall in this range under the previous criteria, 5 had ASR as of September 1981 and therefore satisfy the previous discontinuance criteria.

SECTION VII - A MANUAL METHOD FOR COMPUTING THE PHASE II ASR ESTABLISHMENT BENEFIT/COST RATIO

In actual practice, candidates found to satisfy Phase I criteria (simplified criteria) will be further screened under Phase II criteria (site-specific benefit/cost analysis) by a computer program. To facilitate understanding of the logic incorporated in the Phase II screening process by program analysts, auditors and others, this section describes in detail a manual method for computing the Phase II ASR establishment benefit/cost ratio. Figures 15 through 24 are designed to serve as worksheets for manually computing the Phase II benefit/cost ratio. Additional copies of Figures 16, 18 and 21 may be required in instances where there exist secondary airports qualified under the "area concept" discussed in Section IV. It may be noted that several of the worksheets include 4-engine turbofans/turbojets. Obviously, terminals that serve these aircraft types are already equipped with and/or served by ASR. Conversely, airports within the range of interest in this report for new radar establishment do not serve these aircraft types. Their inclusion here is without impact and only for completeness of presentation.

The step-by-step methodology outlined in this section is supplemented with an illustration in Figures 25 through 34 for Binghamton Broome County Airport, NY (BGM) (which already has an ASR), including one of its secondary or satellite airports, Endicott Tri-Cities Airport (N17), which for purposes of this illustration is assumed to meet the "area concept" criteria outlined in Section II. 1982 activity forecasts are used. Application of the manual approach to computing the Phase II benefit/cost ratio should be based on site-specific data since these program inputs, if available, should be used for the computerized Phase II benefit/cost screening process. In addition to being specified in the following steps, Appendix F provides a checklist for those program inputs which should be site-specific, for those which are fixed for all candidates, and those for which default values may be used in the absence of site-specific data. The manual computation of the Phase II benefit-cost ratio described in this section quantifies the expected life-cycle benefits by discounting future year benefits using a site-specific compound growth rate. The computerized Phase II benefit/cost screening will rely on official agency traffic forecasts specific to the potential candidate site over fifteen years to derive the present value of the expected life-cycle benefits.

IFR Delay Reduction Benefits

Step 1

Enter the annual number of primary instrument operations by user class in Column A of Figure 15 for the primary airport. In Column A of each copy of Figure 16 for each qualified secondary airport, if any, enter the number of primary instrument operations by user class or the number of secondary instrument operations of the primary airport allocable to the secondary airport, whichever is larger. In the Binghamton/Endicott illustration (Figures 25 and 26), Binghamton (the primary airport) has 42,480 primary instrument operations. Assuming Endicott is its only

qualifying secondary airport by satisfying the "area concept" criteria outlined in Section IV, 100 percent of Binghamton's 7,668 secondary instrument operations are allocable to Endicott. Since Endicott generates no primary instrument operations on its own, Endicott's instrument operations total 7,668.

Step 2

In Column B of Figure 15 for the primary airport and Column B of each copy of Figure 16 for each qualified secondary airport, enter the percent of annual instrument operations represented by each user class by dividing the annual instrument operations in Column A by the respective totals. The sum of the percentages should equal 100 or approximate 100 in the event of a rounding effect.

Step 3

Disaggregate each user class by aircraft type in percentage terms and enter the percentages in Column C of Figure 15 for the primary airport and Column C of each copy of Figure 16 for each qualified secondary airport. The sum of the percentages for each user class should equal 100 or approximate 100 in the event of a rounding effect. For purposes of the Binghamton/Endicott illustration (Figures 25 and 26), the distribution of instrument aircraft by aircraft type within the air taxi, general aviation and military user classes are based on national norms, as illustrated in Appendix E-2. For the air carrier user class, the distribution of aircraft by aircraft type is site-specific based on published statistics from References 15 and 16. In the computerized Phase II benefit/cost screening process, only the air carrier user class requires dissaggregation by aircraft type. The aircraft type disaggregation of the other user classes are fixed based on national norms (Appendix E-2).

Step 4

Reference Figure 6 to determine the estimated number of instrument operations during a busy hour at the primary airport and each qualified secondary airport. Enter this (these) values in the space(s) provided in the heading(s) of Column D of Figure 15 for the primary airport and Column D of each copy of Figure 16 for each qualified secondary airport. In the Binghamton/Endicott illustration (Figures 25 and 26), 42,480 annual primary instrument operations equates to 29 instrument operations during a busy hour at Binghamton, the primary airport; for Endicott, the secondary airport, 7,668 annual instrument operations equates to 11 instrument operations during a busy hour.

Step 5

Ì

In Figure 15 for the primary airport and each copy of Figure 16 for each qualified secondary airport, find the expected mix of aircraft during a busy IFR hour by multiplying the results from steps 2 (Column B), 3 (Column C) and 4 and dividing the product by 10,000 for each aircraft type. Enter the quotient(s) in Column D.

Find the percent of total annual instrument operations represented by the air carrier user class from Column B of Figure 15 for the primary airport and Column B of each copy of Figure 16 for each qualified secondary airport. Round to the nearest 10 percent. If less than 20 percent, round up to 20 percent; if greater than 90 percent, round down to 90 percent. With this (these) percentage(s) and the number(s) of total

Step 11

In Figure 17 for the primary airport and each copy of Figure 18 for each qualified secondary airport, find the sum of aircraft variable operating costs (Column C) and the value of occupants'/passengers' time (Column E) to arrive at the total hourly operating cost of each aircraft type mix. Enter the sum(s) in Column F. Sum all values in Column F to find the total cost of operating the instrument aircraft mix for one hour.

Step 10

In Figure 17 for the primary airport and each copy of Figure 18 for each qualified secondary airport, determine the value of passengers'/occupants' time per hour for each aircraft type mix by multiplying the number of aircraft (Column A), the average number of passengers/occupants per aircraft (Column D), and \$17.50 (the hourly value of time of aircraft passengers/occupants in 1980 dollars). Enter the product(s) in Column E.

Step 9

Enter the average number of passengers for the air carrier and air taxi user classes and the average number of occupants for the general aviation and military user classes for each aircraft type in Column D of Figure 17 for the primary airport and Column D of each copy of Figure 18 for each qualified secondary airport. For purposes of the Binghamton/Endicott illustration (Figures 27 and 28) and the computer-generated Phase II benefit/cost ratios outlined for all FAA approach control towers in Section VI, passenger and occupant load factors are based on national norms, as derived from References 17, 18, 19 and 20. illustrated in Appendix C. These are

Step 8

In Figure 17 for the primary airport and each copy of Figure 18 for each qualified secondary airport, determine the hourly aircraft variable operating cost for each aircraft type mix by multiplying the number of instrument aircraft (Column A) by the respective aircraft hourly variable operating cost (preprinted in Column B). Enter the product(s) in

Step 7

Transcribe the instrument aircraft mix of the primary airport from Column D of Figure 15 to Column A of Figure 17 and from Column D of each copy of Figure 16 to Column A of each copy of Figure 18 for each qualified secondary airport.

Step 6

instrument operations during a busy hour from Column D of Figure 15 for the primary airport and Column D of each copy of Figure 16 for each qualified secondary airport, refer to Figure 5 to find the number of hours saved per aircraft per hour of airport operation. Enter this (these) value(s) in the appropriate space(s) in Row A of Figure 19. Applying Binghamton's 29 instrument operations per busy hour and a 20% air carrier instrument mix (rounded up from 6.6%) to Figure 5, we find an expected savings of 1.931 hours per aircraft per hour of airport operation (Figure 29). Similarly, applying Endicott's 11 instrument operations per busy hour and a 20% air carrier instrument mix (rounded up to lower limit) to Figure 5, we find an expected savings of .021 hours per aircraft per hour of airport operation (Figure 29).

Step 12

Transcribe the total hourly cost of aircraft operation and passengers'/occupants' time from Column F of Figure 17 for the primary airport and Column F of each copy of Figure 18 for each qualified second airport to the appropriate space(s) in Row B of Figure 19.

Step 13

In Figure 19, find the total delay savings per busy IFR hour at the primary airport and each qualified secondary airport per hour of airport operation by multiplying the average delay savings per aircraft per hour of airport operation (Row A) by the total hourly operating cost of the aircraft mix (Row B). Enter the product(s) in Row C.

Step 14

From local statistics or Section VI, find the proportionate hours of the year that instrument approach weather prevails at the primary airport and each qualified secondary airport. Enter the value(s) in the appropriate space(s) of Row D of Figure 19.

Step 15

In Figure 19, find the number of busy IFR hours per year at the primary airport and each qualified secondary airport by multiplying the percentage of time that IFR weather prevails (Column D) by 1,252 hours. The 1,252 value is the annual national norm of IFR weather prevailance based on 4 hours during weekdays and 2 hours during weekends. Enter the product(s) in Row E.

Step 16

In Figure 19, find the value of annual delay savings for the primary airport and each qualified secondary airport by multiplying the total delay savings per busy IFR hour (Row C) by the number of busy IFR hours per year (Row E). Enter the product(s) in Row F.

Step 17

Find the value of total annual delay savings for all airports (primary airport and qualified secondary airports) by summing Row F of Figure 19. Enter the sum in the space provided.

Step 18

Enter the number of annual aircraft operations for each user class in Column A of Figure 20 for the primary airport and Column A of each copy of Figure 21 for each qualified secondary airport. Sum the values of the user classes to determine total annual aircraft operations at the primary airport and each qualified secondary airport.

Step 19

Disaggregate each user class by aircraft type in percentage terms and enter the percentages in Column B of Figure 20 for the primary airport and Column B of each copy of Figure 21 for each qualified secondary airport. The sum of the percentages for each user class should equal 100 or approximate 100 in the event of a rounding effect. For purposes of the Binghamton illustration (Figure 30), the distributions of aircraft by aircraft type within the air taxi, general aviation and military user classes are based on national norms, as illustrated in Appendix E-3. For the air carrier user class, the distribution of aircraft by aircraft type is site-specific based on published statistics from References 15 and 16. In the computerized Phase II benefit/cost screening process, only the air carrier user class requires disaggregation by aircraft type. The aircraft type disaggregations of the other user classes are fixed based on national norms (Appendix E-3).

<u>Step</u> 20

In Figure 20 for the primary airport and each copy of Figure 21 for each qualified secondary airport, find the mix of aircraft in all operations by multiplying Column A by Column B and dividing the product by 100 for each aircraft type. Enter the results in Column C. Sum Column(s) C in Figure 20 and any copies of Figure 21.

Step 21

Cross sum the annual operations by aircraft type over the primary and qualified secondary airports in Columns C of Figure 20 and all copies of Figure 21. Enter the sum for each aircraft type in Column A of Figure 22.

Step 22

Enter in Column B of Figure 22 the occupant load factor for each aircraft type within the air carrier and air taxi user classes by making allowances for crews to the passenger load factors used in Columns D of Figures 17 and 18. The occupant load factors for the general aviation and military user classes used in Figures 17 and 18 should be transcribed directly to Column B of Figure 22.

Step 23

In Figure 22 find the expected contributory costs of fatalities and serious injuries per aircraft for each aircraft type by multiplying the aircraft mix (Column A), the number of occupants per aircraft (Column B), the expected costs of fatalities and serious injuries per occupant (preprinted in Column C) and dividing the resultant product by the total aircraft mix. Enter the result for each aircraft type in Column D.

Step 24

In Figure 22 find the expected contributory cost of aircraft damage per aircraft for each aircraft type by multiplying the aircraft mix (Column A) by the expected cost of aircraft damage per aircraft (preprinted in Column E) and dividing the resultant product by the total aircraft mix. Enter the result for each aircraft type in Column F.

Step 25

In Figure 22 sum the expected contributory costs of fatalities and serious injuries (Column D) and the expected contributory cost of aircraft damage per aircraft (Column F) for each aircraft type. Enter the result for each aircraft type in Column G. Sum Column G to determine the expected cost of a midair collision per aircraft.

Step 26

Transcribe the number of total annual aircraft operations from Column A of Figure 22 to both spaces provided in Row A of Figure 23.

Step 27

In Row B of Figure 23, enter the expected number of avertable midair collisions by referring to Figure 10 or by solving the formula outlined in the footnote to Figure 10.

Step 28

Multiply the total expected cost of a midair collision per aircraft in Column G of Figure 22 by the factor "2" (i.e., two aircraft per midair collision). Enter the product in Column C of Figure 23.

Step 29

Refer to Figure 12 to determine the Mode C usage factor. As an approximation of the average factor over the 15-year economic life of an ASR system, use that factor corresponding to the base year plus seven years. Enter the factor in Column D of Figure 23. In the Binghamton/Endicott illustration (Figure 33), the Mode C usage factor is found to be 76%.

Step 30

Find the expected value of annual avertable midair collisions by multiplying the expected number of annual avertable midair collisions

(Column B) by the expected cost of a midair collision (Column C). the product in the space provided in Column E. Find the value of avertable terrain collisions by multiplying the number of total aircraft Enter operations (Column A), the cost of terrain collisions per operation (preprinted in Column C) and the Mode C usage factor (Column D). Enter the product in the space provided in Column E. Find the expected value of all avertable collisions by adding the respective values in Column E.

Benefit/Cost Ratio

Step 31

Transcribe the expected annual value of IFR delay reduction from Row F of Figure 19 to Row A of Figure 24 and the expected annual value of avertable collisions from Column E of Figure 23 to Row B of Figure 24.

Step 32

Add Rows A and B of Figure 24 to arrive at total expected annual quantified benefits of an ASR in the base year. Enter this sum in Row C.

Step 33

Compute the site-specific net discount factor by solving the following

NDF =
$$\left(\frac{1}{(1+d)^{7.5}}\right)$$
 $\left(\frac{\frac{\text{Projected Total aircraft Opns in}}{\frac{\text{"Base Year + 7 years"}}{\text{Actual Total aircraft Opns in}}\right)$ (15)

where,

NDF = net discount factor d = OMB-prescribed discount rate of 10 percent

For the Binghamton/Endicott illustration, assume there are 191,000 total aircraft operations in the base year and 224,000 total aircraft operations projected for the seventh year thereafter. The net discount factor is then computed to be:

NDF =
$$\left(\frac{1}{(1.1)7.5}\right)$$
 $\left(\frac{270,000}{185,000}\right)$ $\left(15\right)$ = 10.71

Enter the result in the space provided in Row D of Figure 24.

This step is only a short-cut method of discounting the total approximate life-cycle benefits over 15 years to their present value. The computerized Phase II screening benefit/cost process is more specific in that each year is addressed separately and independently of the others.

Step 34

Multiply the total annual benefits in Column C of Figure 24 by the net discount factor computed in Step 34. Enter the product in Row D.

Step 35

Enter the site-specific discounted life-cycle cost of an ASR system in Row E of Figure 24 based on the methodology outlined in Figure 1 for a TRACAB configuration or Figure 2 for a TRACON configuration, as appropriate. The criteria for TRACAB/TRACON are outlined in paragraph E of Section II.

Step 36

In Figure 24, find the ASR Phase II benefit/cost ratio by dividing the total discounted life-cycle benefits (Row D) by the discounted life-cycle costs (Row E). Enter the quotient in Row F. As illustrated in Figure 34, Binghamton/Endicott easily qualify for an ASR with a benefit/cost ratio of 6.51. Note how similar this manually computed Phase II benefit/cost ratio is with the computer-generated Phase II benefit/cost ratio of 6.36 computed for Binghamton in Figure 14 of Section VI. The difference can be attributed principally to the fact that the computer-generated benefit/cost ratio was derived for Binghamton only and includes no credit for radar coverage provided to Endicott, while in the benefit/cost ratio computer-generated benefit/cost ratio is based on discounted traffic forecasts specific to Binghamton, while the benefit/cost ratio computed manually in this section does include Endicott ratio computed manually in this section as based on a less precise net discount factor concept.

	TROUT AIRPORT	And a put and a the state	/ IFR Hour - PRIMARY AIRI	PORT
User Class and Aircraft Type	(A) Number of Annual Primary Instrument Operations	(B) Percent of Total Annual Primary <u>Instrument Operations</u>	(C) Percent Aircraft <u>Type of User Class</u>	(D) Number of Aircraft During a Busy IFR Hour ((BxCx)/10,00
Air Carrier Turbofan, 4-engine, wide body Turbojet, 4-engine, regular body Turbofan, 4-engine, regular body Turbofan, 3-engine, wide body Turbofan, 3-engine, regular body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Piston				
<u>Air Taxi (Including Air Commuter)</u> Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft				
General Aviation (Excluding Air Taxi) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft				
<u>Military</u> Jet Turboprop Piston Rotor craft				
TOTAL				

۰,

Worksheet for Computation of Aircraft Mix During a Busy IFR Rour - QUALIFIED SECONDARY AIRPORT

(¥)	
Number of Annual	Percrn
Instrument Operations	4
(See Text)	Instrume

ł

Instrument Operations (B) 'nt of Total Annual

Percent Aircraft Type of User Class

ຍ

(D)
Number of Aircraft
During a Busy IFR
Hour ((BMCx)/10,000)

User Class and Aircraft Type

AL

wide body		regular body	wide body	regular body	wide body	regular body		
4-engine,	4-engine	4-engine,	3-engine,	3-engine,	2-engine,	2-engine,		
Turbofan,	Turbojet,	Turbofan,	Tur bof an,	Turbofan,	Turbofan,	Turbofan,	Tur boprop	Piston
		4-engine, 4-engine	4-engine, 4-engine, 4-engine,	4-engine, 4-engine, 3-engine,	4-engine, 4-engine, 4-engine, 3-engine, 3-engine,	<pre>4-engine, 4-engine, 3-engine, 3-engine, 2-engine,</pre>	<pre>4-engine, 4-engine, 4-engine, 3-engine, 3-engine, 2-engine, 2-engine,</pre>	<pre>4-engine, 4-engine, 3-engine, 3-engine, 2-engine, 2-engine,</pre>

Air Taxi (Including Air Commuter)

Turboprop Multi-engine piston Single-engine piston Rotorcraft Jet

General Aviation (Excluding Air Taxi)

Turboprop Multi-engine piston Single-engine piston Rotorcraft Jet

<u>Military</u> Jet

Turboprop Piston Rotorcraft

TOTAL

1/Source: Reference 9

 $\frac{2}{2}$ passengers for Air Carrier and Air Taxi; <u>Occupants</u> for General Aviation and Military.

FIGURE 17

(F) 18- Bourly Cost of Aircraft cou- Operation and Passengers'/ occupants' Time of <u>a</u> <u>b</u> // Aircraft Mix (C+E)								
(E) Value of Pag- sengers'/Occu- pants' Time (<u>AKDX\$17.501/)</u>								
(D) Number of Passengers/ Occupants per Aircraft2/								∋EY.∘
(C) V.O.C. of Aircraft Mix (AXB)								lom and Millt
(B) Aircraft Hourly Vari- able Opera- ting Cost <u>l</u> /		\$4,767 2,680 2,683 341 341 341 1,964 1,964 1,964 1394 1394	942 369 132 138	782 233 93 30	1, 333 360 97 113			or General Aviatí
(A) Number of Air- craft During a Busy IFR Hour (From Figure 16)				-1				Taxi; Occupants fo
	User Class and Aircraft Type	Air Carrier Turbofan, é-engine, wide body Turbojet, 4-engine Turbofan, é-engine, regular body Turbofan, 3-engine, regular body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Turboprop Turboprop	Air Taxi (Including Air Commuter) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	<u>General Aviation (Excluding Air Taxi)</u> Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	<u>Military</u> Jet Turboprop Piston Rotorcraft	тыољ	<u>1</u> /Reference 9	2/Passengers for Air Carrier and Air Taxi; Occupants for General Aviation and Military.

Worksheet for Computation of Aircraft Variable Operating Costs and Value of Passengers'/Occupants' Time During a Busy IFR Hour - QUALIFIED SECONDARY AIRPORT

Worksheet for Computation of Annual Benefits of IFR Delay Reduction at Primary and Secondar

Concertains a second	securicary Almorts	
r C L C L C L C L C L C L C L C L C L C	ב ה ה	
Drimary		
۳ ۲	5	
av kequction		
Ĭ		
51		
-i -i		
The second se		

		Ν	<u> </u>	- <u>K</u>			
	Total						
orts							
"Qualified" Secondary Airports							
lified" Sec							
"Qual							
Primary Airport							
		Hours Saved per Aircraft per Hour of Airport Operation	Sum of Aircraft Variable Oper- ating Costs and Value of Pas- sengers'/Occupants' Time	Total Delay Savings per Busy IFR Hour (Å x B)	Percent of Time that IFR Weather Prevails	Number of Busy IFR Hours per Year (D x 1,252 Hours)	Annual Benefits of IFR Delay Reduction (C x E)
		Å	ß	υ	D	ម្ម	fzy
			•				

60

•••

Worksheet for Computation of Relative Annual Aircraft Mix - PRIMARY AIRPORT

(A) Number of Annual Operations By User Class

Type of User Class **Percent Aircraft e**

(C) Annual Aircraft Mix ((AxB)/100)

User Class and Aircraft Type

<u>Air Carrier</u> Turbofan, 4-engine, wide body Turbojet, 4-engine

Turbofan, 4-engine, regular body Turbofan, 3-engine, wide body Turbofan, 3-engine, regular body Turbofan, 2-engine, wide body Turborop Turborop Piston

Air Taxi (Including Air Commuter)

Turboprop Multi-engine piston Single-engine piston Rotorcraft Jet Let

General Aviation (Excluding Air Taxi)

Single-engine piston Rotorcraft Turboprop Multi-engine piston Jet

Military

Rotorcraft Turboprop Piston Jet

Worksheet for Computation of Annual Aircraft Mix - QUALIFIED SECONDARY AIRPORT

(B)	Percent Aircraft	Type of User Class
(A)	Number of Annual	Operations By User Class

(C) Annual Aircraft Mix ((AxB)/100)

User Class and Aircraft Type

<u>Air Carrier</u> Turbofan, 4-engine, wide body Turbofan, 4-engine, regular body Turbofan, 3-engine, regular body Turbofan, 3-engine, regular body Turbofan, 2-engine, regular body Turborop Piston

<u>Air Taxi (Including Air Commuter)</u> Jet

Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft General Aviation (Excluding Air Taxi)

Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft

Military

Jet Turboprop Piston Rotorcraft

(A) <u>Aircraft Type</u> <u>Aircraft Wike</u> <u>Aircraft Wike</u> <u>Aircraft Wike</u> <u>Air Carrier</u> <u>Turbofan, 4-engine, wide body</u> <u>Turbofan, 4-engine, wide body</u> <u>Turbofan, 4-engine, regular body</u> <u>Turbofan, 3-engine, regular body</u> <u>Turbofan, 3-engine, regular body</u> <u>Turbofan, 3-engine, regular body</u> <u>Turbofan, 3-engine, regular body</u> <u>Turbofan, 2-engine, regular body</u> <u>Turborop</u> <u>Miltrengine piston</u> <u>Bingle-engine piston</u>	B) Number of Occu- pants Per Aircraft	(C) Expected Costs of Costalities and Serious Injuries Per Occupant* \$249,700 216,900 216,900 216,900	(D) Expected Contributory Costs of Fatalities and Serious Injuries ((AxBac/) Col A)	<pre>(E) (E) Expected Cost of Aircreft Damage Per Air- craft* 11,420,000 11,420,000 2,201,000 11,420,000 11,00</pre>	(F) Expected Contributory Costs of Air- craft Damage ((AKE)/ Col A)	(G) Total Expected Contributory Cost Per Collision Per Aircraft (D+F)
Jet Tur boprop Piston				2,085,000 66,000		
Rotor craft				257,000		

FIGURE 22

*Source: Appendix D

Worksheet for Computation of the Expected Value of Annual Avertable Collisions

-					
	A	B	U	D	í۵
Safety Benefit	Annual Aircraft Operations	Expected Number of Avertable Midair Collisions	Expected Cost of a Midair Colli- sion* and Cost of Terrain Coll/Opn.	Mode C Factor	Expected Value of Annual Avertable Collisions
Avertable Midair Collisions					
Avertable Terrain Collisions			\$. 587		
Total					
*Total expected cost of a midair col	st of a midair col	lision mer aircraft (from Finne 22 Column GV v 2 /i o 2 aircraft mo	+ (from Figure 22		3 sivereft and

*Total expected cost of a midair collision per aircraft (from Figure 22 Column G) x 2 (i.e., 2 aircraft per midair collision).

•

Worksheet or Computation of Phase II Benefit/Cost Ratio

A	Annual Benefit, of IFR Delay Peduction (Bas.: Year)	
В	Annual Benefits of Averted Collisions (Base Year)	
С	Total Annual Base Year Quantified Benefits (A + B)	
D	Annual Benefit: (C) x Net Discount Factor of	
Е	Total Discounted Life-Cycle Costs	
F	Benefit/Cost Fatio (D / E)	

25	
FIGURE	

<u> Illustrative Computation of Aircraft Mix During a Busy IFR Hour - PRIMARY AIRPORT</u>

User Class and Aircraft Type	(A) Number of Annual Frimary Instrument Operations	(B) Percent of Total Annual Primary Instrument Operations	(C) Percent Aircraft <u>Type of User Class</u>	<pre>(D) Number of Aircraft During a Busy IFR Hour ((BxCx29)/10,000)</pre>
4-engine, 4-engine, 4-engine, 3-engine,	2,786	و . و		
Turbotan, J-engine, regular body Turbofan, 2-engine, wide body			5.8	0.11
turboran, z-engine, regular body Turboprop Piston			65.3 28.9	1.25 0.55
<u>Air Taxi (Including Air Commuter)</u> Jet	26,191	61.7		
Turborop			4.0	0.72
Wulti-engine piston Single-engine piston Botorraf+			10.1 65.9 19.0	1.81 11.79 2.25
General Aviation (Excluding Air Taxi)	13,186		1.0	0.18 0.18
Jet Turbonron		0.16	3.4	
Multipue Multi-engine piston Single-endine piston			3.8	0.34 0.34 2.22
Rotorcraft			67.9 0.2	6.10 0.02
Military Jet	317	0.7		*
Turbopr op Piston			47.0 9.5	0.10
Rotorcraft			5.6 37.9	0.01
TOTAL	42,480	100.0		29.00

Illustrative C User Class and Aircraft Type	Computation of Aircraft A (A) Number of Annual Instrument Operations (See Text)	Illustrative Computation of Aircraf: Mix During a Busy IFR Hour - QUALIFIED SECONDARY AIRPORT (A) (A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	- QUALIFIED SECONDARY A (C) Percent Aircraft Type of User Class	(D) (D) Number of Aircraft During a Busy IFR Hour ((Barrinin con
Air Carrier Turbofan, 4-engine, wide body Turbojet, 4-engine Turbojet, 4-engine, regular body Turbofan, 3-engine, wide body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Turbogrop Turbogrop	•	0 0		
Air Taxi (Including Air Commuter) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	263	7.7	76.7 22.1 1.2	0.65 0.19 0.01
General Aviation (Excluding Air Taxi) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	7,072	92.2	26.6 73.2 0.2	2.70 7.42 0.02
<u>Military</u> Jet Turboprop Piston Rotorcraft	m	0		
TOTAL	7,668	100.0		11.00

Illustrative Computation of Aircraft Variable Operating Costs and Value of Passengers'/Occupants' Time During a Busy IFR Hour - PRIMARY AIRPORT

(E) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P	\$ 151 \$ 367 1,348 3,233 226 608	29 231 1,114 2,670 125 315	22 29 22 264 33 112 140 346 235 418 1 3	11 2 9 1 2 2 3 12 \$10,138
(D) Number of Va Passengers/ set Occupants <u>per Aircraft</u> 2/ <u>(A</u>)	78.4 61.6 23.5	ч. 2 5, 4 . 3 . 1, 4 . 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 2 3 6 6 1 2 3 6 6 1 2 4 2 5 6	6.0 3.0 2.0
(C) V.O.C. of Aircraft Mix (AKB)	\$ 216 1,885 382	678 668 1,556 190 25	242 242 206 183 2	11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
(B) Aircraft Hourly Vari- able Opera- ting Cost <u>l</u> /	\$4,767 2,880 2,880 3,643 3,441 1,964 1,964 1,508 1,508 139	942 369 132 138	782 233 30 77	1,333 97 113
(A) Number of Air- craft During a Busy IFR Hour (From Figure 25)	0.11 1.25 0.55	0.72 1.81 11.79 3.40 0.18	0.31 0.34 6.10 0.02	0.10 0.02 0.08 29.00
User Class and Aircraft Type	Air Carrier Turbofan, 4-engine, wide body Turbojet, 4-engine Turbofan, 4-engine, regular body Turbofan, 3-engine, regular body Turbofan, 3-engine, regular body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Furborop	Air Taxi (Including Air Commuter) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	General Aviation (Excluding Air Taxi) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	Turboprop Turboprop Piston Rotorcraft TOTAL Source: Reference 9.

2/<u>Passengers</u> for Air Carrier and Air Taxi; <u>Occupants</u> for General Aviation and Military. Sources: References 17, 18, 19 and 20.

Illustrative Computation of Aircraft Variable Operating Cost and Value of Passengers'/Occupants' Time During IFR Hour - QUALIFIED SECONDARY AIRPORT	tion of Aircraft Var. IF	rriable Operating Cost and Value of Pas IFR Hour - QUALIFIED SECONDARY AIRPORT	Cost and Value	ie of Passengers ¹ AIRPORT	/occupants' Time I	During a Busy
	(¥)	(8)	(C)	(a)	(E)	(E)
	Number of Air-	Aircraft		Number of	Value of Pas-	Hourly Cost of Aircraft
		Hourly Vari-	V.O.C. of	Passengers/	sengers'/occu-	Operation and Passengers'/
	à Busy IFR Hour (From Figure 26)	able Opera- ting Costl/	Aircraft Mix (AxB)	Occupants per Aircraft2/	pants' Time (<u>AxDx\$17.50)</u> <u>1</u> /	Occupants' TIME OF Aircraft Mix (C+E)
User Class and Aircraft Type						
<u>Air Carrier</u> Turbofan, 4-engine, wide body Turbotet, 4-endine		\$4,767 2,880				
		2,643 3,341				
3-engine,		1,964 7 555				
Turbofan, 2-engine, wide body Turbofan, 2-engine, regular body		1,508 1,508				
Turboprop Piston		139				
Air Taxi (Including Air Commuter)						
Jet		746				
Turboprop	0 65	202 251	\$ 86	5.4	\$ 61	\$ 147
Multi-engine piston		25		2.1		18
Single-engine pracon Rotorcraft	0.01	138	-	1.4	0	0
General Aviation (Excluding Air Taxi)	7					
Jet	1	782				
Tur bop rop	CF c	20	751	3.6	170	421
Multi-engine piston	2.10	5 PR	223	2.2	286	509
strugterengtike process Rotor craft	0.02	11	5	2.4	I	£
HILLTARY		1,333				
uet mirhonron		360				
Piston		97				
Rotorcraft		c1				
TOTAL	11.00					<u>\$1,098</u>
\mathcal{V} source: Reference 9.						

2/ Passengers for Air Carrier and Air Taxi; Occupants for General Aviation and Military. Sources: References 17, 18, 19 and 20.

FIGURE 28

.

.

Illustrative Computation of Annual Benefits of IFR Delay Reduction at Primary and Secondary ... Jrts

		N	N	Ν	Ν	<u> </u>	
	Total						\$5,291,730
orts							
ondary Airp							
"Qualified" Secondary Airports							
"Qua	2 I N	0.021	\$1,098	\$	21.6	270	\$6,219
Primary Airport	BGM	1,931	10,138	19,576	21.6	270	\$5,285,520 \$5
 -		Hours Saved per Aircraft per Hour of Airport Operation	Sum of Aircraft Variable Oper- ating Costs and Value of Pas- sengers'/Occupants' Time	Total Delay Savings per Busy \$ IFR Hour (A x B)	Percent of Time that IFR Weather Prevails	Number of Busy IFR Hours per Year (D × 1,252 Hours)	Annual Benefits of IFR Delay Reduction (C x E) \$5,
		A	щ	υ	<u>с</u>	<u></u> ы	D P L

.

Illustrative Computation of Relative Annual Aircraft Mix - PRIMARY AIRPORT

	(A) Number of Annual Operations By User Class	(B) Percent Aircraft Type of User Class	(C) Annual Aircraft Mix ((AxB)/100)
User Class and Aircraft Type Air Carrier Turbofan, 4-engine, wide body Turbojet, 4-engine, regular body Turbofan, 3-engine, regular body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Furborop Piston	2,786	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	162 1,819 805
Air Taxi (Including Air Commuter) Jet Turboprop Nulti-engine piston Single-engine piston Rotorcraft	30,947	3.0 12.5 38.2 18.8	928 3,868 11,822 8,510 5,818
<u>General Aviation (Excluding Air Taxi)</u> Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	3 3,380	3.1 3.0 13.0 76.9 4.0	1,035 1,001 4,339 25,669 1,335
<u>Military</u> Jet Turboprop Piston Rotorcraft TOTAL	1,669 	58.8 12.3 6.8 22.1	981 205 113 <u>369</u> 68,782

Illustrative Computation of Annual Aircraft Mix - QUALIFIED SECONDARY AIRPORT

(C) Annual Aircraft Mix ((AxB)/100)			4,506 3,240	2,223	14,643 86,903 4.563	3	71 230	116,377
(B) Percent Aircraft <u>Type of User Class</u>			45.2 32.5 22 3		13.8 81.9 4.3		23.5 76.5	
(A) Number of Annual Operations By User Class	C	9,968		106,109		300		116,377
User Class and Aircraft Type	<u>Air Carrier</u> Turbofan, 4-engine, wide body Turbojet, 4-engine Turbofan, 4-engine, regular body Turbofan, 3-engine, wide body Turbofan, 2-engine, regular body Turbofan, 2-engine, regular body Piston	<u>Air Taxi (Including Air Commuter)</u> Jet Turboprop	Multi-engine piston Single-engine piston Rotorcraft	<u>General Aviation (Excluding Air Taxi)</u> Jet Turboprop Multi-engine piston	Single-engine piston Rotorcraft	Military Jet Turboprop Piston	Rotorcraft moment	

72

•

32	
FIGURE	

P

Illustrative Computation of the Expected Cost of a Midair Collision Per Aircraft

Illustra	ative computa	Illustrative Computation of the Exper-	When the sources of				
-		(6)	(3)	(<u>a</u>)	(I)	(F)	(B)
	(Y)	(a)	2	Expected			ı
				Contributory			Total
			and the second	Costs of	Expected	Expected	Expected
			nanoadwa	batalities	Cost of	Contributory	Contributory
•			COSTE OF		alerer t	Costs of Air-	Cost Per
		Number	Fatalities			craft Damade	Collision
		of Occu-	and Serious	Injuries		(184E) /	per Aircraft
	Aircraft	pants Per	Injuries Per	((AXBXC)/	Per Alt-	185.1591	(a+d)
	Mix	Aircraft	Occupant [*]	185,139)	CLALC	10001000	
User Class and Aircraft Type							
			\$249,700				
Air Carrier					\$11,389,000		
Purbofan, 4-engine, wide body					889,000		
					2.200.000		
					11 420 000		
						< 1 .926	. 20,365
3-engune,	162	84.4		\$ 18,439	000 107 7	A +1160	•
	•				11,120,000		014 101
wurhofan, 2-engine, wide body				163.373	2,860,000	28,097	0/# 4 767
	1,819	0.00		28.768	705,000	3,065	31,833
	805	26.5			178.000		
			000 110				
			005'017		000-A19	4,080	8,754
THE THE SUMPORT OF THE IT	928	4.3		8 / Q * 8	000 010	010 1	49.409
Jet	070 6	6.9		42,139	348,000		147 184
Turboprop		V L		141,540	64,000		
Multi-engine piston	075°0T			42,669	19 , 000	1,206	
ciarlemonte piston	11,750	1.0		22 607	71,000	3,083	25,690
Deternett	8,041	2.4			•		
			000 210				,
Conoral Aviation (Excluding Air Taxi)			006'017	4 973	998,000	5,579	10,550
	1,035	4.1			190,000	2,108	8,675
Jet	1,001	5.6				6,561	86,611
Turboprop	18.982	3.6		050,08		10.336	300,449
Wulti-engine pracou	112.572	2.2		230,111	000 27	1.465	18,047
Single-engine puscon	5.898	2.4		16, 582			•
Rotor craft .							
			216,900		000 885 5	101.7	14,016
Military	180	6.0		6,895	L, 344, UUU	2000	3 509
Jet	200	5.0		1,201	2,085,000	5 1 2 C	514
Tur boprop				647	66,000	00	
Piston				1,403	257,000	831	20212
Rotorcraft	660	•					\$9.63.384
	185,159						
TOTAL							

*Source: Appendix D

.

Illustrative Computation of the Expected Value of Annual Avertable Collisions

	A	ß	U	C	
				2	ш
Safety Benefit	Annual Aircraft Operations	Expected Number of Avertable Midair Collisions	Expected Cost of a Midair Colli- sion* and Cost of Terrain Coll/Opn.	Mode C Factor	Expected Value of Annual Avertable Collisions
Avertable Midaír Collisions	185,159	.041	\$1,926,768		\$ 78,0-7
Avertable Terrain	185_150				
Collisions			÷ .587	76%	\$ 82,603
Total		1			
·					\$161,600
*Total expected cost of a midair collision per aircraft (from bitanne 20 0.	st of a midair coll	ision ner aircreft			

aircraft (from Figure 32, Column G) x 2 (i.e., 2 aircraft per midair collision).

74

--

Illustrative Computation of Phase II Benefit/Cost Ratio

		a a construction de la construction
A	Annual Benefits of IFR Delay Peduction (Base Year)	\$ 5,291,730
В	Annual Benefits of Averted Collisions (Base Year)	\$ 161,600
с	Total Annual Base Year Quantified Benefits (A + B)	\$ 5,453,330
D	Annual Benefits (C) x Net Discount Factor of 10.71	\$58,405,164
Е	Total Discounted Life-Cycle Costs	\$ 8,970,000
F	Benefit/Cost Ratio (D / E)	6.51

SECTION VIII - DEVELOPMENT OF SUPPLEMENTAL CRITERIA

In addition to revising ASR establishment criteria, this report reviews and/or revises the supplemental criteria relative to ASR facilities. This section outlines the development of the ASR supplemental criteria outlined in Section II: discontinuance, improvements, remoted radar bright display scope, establishment of terminal radar approach control in tower cab (TRACAB), establishment of terminal radar approach control (TRACON) and TRACAB to TRACON conversion. Like the establishment criteria, the discontinuance criteria are based on a detailed benefit/cost analysis. The other supplemental criteria, however, are not readily adaptable to rigorous benefit/cost analyses for system-wide application. Rather, they are based on activity levels at which there is expected to exist reasonable relationships between benefits and costs.

A. Discontinuance

Since initial ASR acquisition and installation costs are sunk costs, the only relevant costs when an ASR system is being considered for decommissioning are recurring operations and maintenance costs, ignoring salvage value, relocation costs, etc. An ASR system should be decommissioned if the present value of the life-cycle operating and maintenance costs exceed the present value of the benefits expected over the remaining useful life of the system. Using the life-cycle cost data in Figures 1 and 2 as a basis, it is estimated that this condition is reached whenever a benefit/cost ratio of less than 0.35 is derived when applying the detailed benefit/cost methodology for new radar establishment.

B. Improvements

Existing radar approach control facilities frequently require improvements to satisfy operational requirements and/or facilitate the provision of terminal area radar service. The varying and diverse nature and costs of such improvements prohibit a meaningful and rigorous benefit/cost analysis for system-wide application. However, experience suggests instrument activity ranges where the marginal benefits are expected to exceed costs. This approach was used to derive the revised improvements criteria outlined in Section II.

C. Remoted Radar Bright Display Scope

Remoted radar bright display scopes are occasionally installed in VFR towers of secondary or satellite airports receiving radar service from a primary airport. As with the improvements criteria discussed above, experience can be relied upon to identify an activity level at or above which a remoted radar bright display scope can be expected to be economically justified. In addition to changing the qualifying level of itinerant operations, the revised criteria outlined in Section II eliminate the requirement that the secondary airport be within twenty miles and within microwave link range of the existing surveillance radar system, because microwave link repeaters can be used to extend the range almost indefinitely or digital remoting may be used. Finally, since a FAA control tower which is satellite to a military radar approach control facility can benefit from a remoted radar bright display scope, the previous requirement that the radar approach control facility be an FAA facility has been eliminated.

D. TRACAB and TRACON

Radar service can be configured into either of two housing designs -TRACAB or TRACON. A TRACAB (Terminal Radar Approach Control in Tower CAB) is a facility that provides radar approach control service from positions located in the tower cab, as opposed to a TRACON (Terminal Radar Approach Control) in which radar approach control service is provided from positions located in a separate IFR room.

Historically, the principal technical questions of TRACAB feasibility revolved around the adequacy of the BRITE radar scope display and space congestion in the tower cab. Early difficulties were experience with utilization of the BRITE display in the tower cab due to the high ambient light level. However, with existing improvements in BRITE display performance the consensus currently is that the TRACAB concept is feasible and can work effectively at some maximum level of operations. Currently, the only impact of adding a separate TRACON or IFR room is to relieve congestion in the tower cab. As more radar positions are required due to increased sectorization demanded by growing traffic counts, it becomes impossible to squeeze the physical space required for these radar positions into the tower cab. Without some radical revision of cab design concepts, the physical size of the cab limits the peak hour operations that can be accommodated.

An earlier benefit/cost analysis of the TRACAB concept (Reference 21) found that the major cost savings made possible by the TRACAB was a reduction in controllers required. This reduction is due primarily to eliminating flight data positions in the IFR room. Reduced coordination effort is also an advantage when all radar controllers and cab personnel are co-located. Thus, there is normally a positive cost advantage to utilizing a TRACAB configuration. The cost of converting a TRACAB facility to a TRACON is highly site dependent. In some cases, adequate space may be available close to the tower. In other cases, new construction is required, possibly at some distance from the tower. Thus, each site should be surveyed to determine a reliable cost impact prior to an establishment decision. Typical TRACAB and TRACON cost differentials are outlined in further detail in Section III.

Review of several evaluations of tower cab configurations (References 22 through 24) and Air Traffic Service experience suggests that the current provisions in Airway Planning Standard Number One, Order 7031.2B, are valid operational and economic determinants for determining how a radar approach control facility should initially be established and for determining when a TRACAB should be converted to a TRACON. Therefore, the current provisions of these supplemental criteria, in effect since 8/13/80 by Change 18 to the subject order, remain intact.

SECTION IX - SENSITIVITY ANALY:

In the computation of the benefit/cost ratio for ASR, there are a number of constants and variables which are used to quantify benefits. This section addresses the sensitivity of the benefit/cost ratio to variations in those factors which are defined by uncertain or judgmental parameters. These factors include the number of instrument operations during a busy hour, the percentage of time that IFR weather prevails, the value of time of aircraft passengers/occupants, the probability of a midair collision, the cost of a midair collision, the cost of a terrain collision and the value of a statistical life. To get some indication of the sensitivity of these factors on the benefit/cost ratio, sample selected airports with Phase II benefit/cost ratios of 0.56 (ABY), 0.71 (GNV), 0.87 (HUT), 1.21 (LSE), 1.38 (ELM) and 1.50 (MWH) were examined with specific percentage increases and decreases in these variables.

	0.56	0.71	0.87	1.21	1.38	<u> </u>
Number of Instrument Operations During a Bus	sy Hour	-				
50% decrease	0.05	0.07	0.08	0.28	0.32	0.35
20% decrease	0.10	0.13	0.16	0.39	0.44	0.46
10% decrease	0.22	0.28	0.34	0.65	0.74	0.80
When computed or standard value used	0.56	0.71	0.87	1.21	1.38	1.50
10% increase	1.09	1.39	1.70	1.90	2.17	2.36
20% increase	1.66	2.10	2.58	2.46	2.80	3.04
50% increase	2.34	2.96	3.63	2.82	3.22	3.50
Percentage of Time that IFR Weather Prevails	3					
50% decrease	0.30	0.38		0.74	0.84	0.92
20% decrease	0.46	0.58	0 .71	1.02	1.17	1.27
10% decrease	0.51	0.65	0.80	1.12	1.27	1.38
When computed or standard value used	0.56	0.71	0.87	1.21	1.38	1.50
10% increase	0.61	0.78	0.95	1.30	1.49	1.62
20% increase	0.66	0.84	1.03	1.40	1.59	1.73
50% increase	0.82	1.04	1.27	1.68	1.92	2.08
Value of Time of Aircraft Passengers/Occupan	nts					

Airport With B/C Ratio of.

50% decrease	0.48	0.61 0.	75 1.	03 1.18	1.28
20% decrease	0.53	0.68 0.	83 1.	14 1.30	1.41
10% decrease	0.55	0.69 0.	.85 1.	17 1.34	1.46
When computed or standard value used	0.56	0.71 (.	87 1.	21 1.38	1.50
10% increase	0.57	0.73 0.	.89 1.	25 1.42	1.54
20% increase	0.59	0.75 0.	92 1.	28 1.46	1.59
50% increase	0.64	0.81 0.	.99 1.	39 1.58	1.72

<u>0.56</u> <u>0.71</u> <u>0.87</u> <u>1.21</u> <u>1.38</u> <u>1.50</u>

Probability of a Midair Collision

50% decrease 20% decrease 10% decrease When computed or standard value used 10% increase 20% increase 50% increase Cost of a Midair Collision	0.55 0.56 0.56 0.56 0.56 0.56 0.56	0.71 0.71 0.71 0.71 0.71	0.87 0.87 0.87 0.87 0.87	1.25	1.34 1.37 1.38 1.39 1.42	1.41 1.46 1.49 1.50 1.51 1.54 1.59
50% decrease 20% decrease 10% decrease When computed or standard value used 10% increase 20% increase 50% increase	0.55 0.56 0.56 0.56 0.56 0.56 0.56	0.71	0.87 0.87 0.87 0.87 0.87	1.17 1.20 1.21 1.22	1.34 1.37 1.38 1.39	1.41 1.46 1.49 1.50 1.51 1.54 1.59
<u>Cost of a Terrain Collision</u> 50% decrease	0.55	0.69	0.85	1.15	1.31	1.43

20% decrease	0.55	0.70	0.86	1.19	1.35	1.47
10% decrease	0.56	0.71	0.87	1.20	1.37	1.49
When computed or standard value used	0.56	0.71	0.87	1.21	1.38	1.50
10% increase	0.56	0.71	0.87	1.22	1.39	1.51
20% increase	0.57	0.72	0.88	1.23	1.41	1.53
50% increase	0.57	0.73	0.89	1.27	1.45	1.57

Value of a Statistical Life

.

50% decrease	0.55	0.70	0.86	1.15	1.31	1.43
20% decrease	0.56	0.71	0.87	1.19	1.35	1.47
10% decrease	0.56	0.71	0.87	1.20	1.37	1.49
When computed or standard value used	0.56	0.71	0.87	1.21	1.38	1.50
10% increase	0.56	0.71	0.87	1.22	1.39	1.51
20% increase	0.56	0.71	0.87	1.23	1.41	1.53
50% increase	0.57	0.72	0.88	1.27	1.45	1.57

APPENDIX A - PREVIOUS ASR INVESTMENT CRITERIA

The previous investment criteria for ASR, as outlined in Airway Planning Standard Number One (Reference 1) are reproduced below. Except for the criteria for TRACAB establishment, TRACON establishment and TRACAB to TRACON conversion, these criteria have been superceded by the revised criteria outlined in Section II. The TRACAB establishment, TRACON establishment and TRACAB to TRACON conversion criteria remain unchanged.

"AIRPORT SURVEILLANCE RADAR WITH AIR TRAFFIC CONTROL RADAR BEACON SYSTEM AND BRIGHT DISPLAY SCOPE (ASR/ATCRBS/BDS)

- a. <u>Establishment</u>. An FAA approach control tower which records a minimum of 45,000 annual itinerant operations and 4,000 certificated route air carrier operations and records 18,000 instrument operations at the primary and secondary airports is a candidate for ASR/ATCRBS/BDS if it satisfies any combination of the three parameters which equals or exceeds a linear sliding scale defined by the following limits:
 - 45,000 annual itinerant operations, of which 10,000 are certificated route air carrier operations, and 18,000 instrument operations at the primary and secondary airports; or
 - (2) 105,000 annual itinerant operations, of which 4,000 are certificated route air carrier operations, and 27,000 instrument operations at the primary and secondary airports.
 - (3) Numbers of operations required for candidacy... may be determined either by interpolating the sliding scale or by satisfying both of the following equations:

 $N \ge 145,000 - 10AC$

 $I \ge 33,000 - 1.5AC$

Where N, AC, and I are the annual numbers of itinerant, air carrier, and primary plus secondary instrument operations, respectively.

b. <u>Discontinuance</u>. An ASR/ATCRBS/BDS at an FAA radar approach control facility is a candidate for decommissioning if the facility records less than 75 percent of the levels specified... above for at least one parameter. In lieu of deriving these levels, discontinuance candidates must satisfy at least one of the following five equations:

N < (108,750 - 10AC) for $3,000 \le AC \le 7,500$

N < 33,750 for AC < 7,500

I < (24,750 - 1.5AC) for $3,000 \le AC \le 7,500$

I < 13,500 for AC > 7,500

- c. <u>Benefit/Cost Screening</u>. <u>SR/ATCRBS/BDS c educates identified</u>... above will be screened using the benefit versus cost technique described in Report Number ASP-75-2. FAA Regional Offices shall submit data required for screening purposes as specified in the annual Call for Estimates...
- d. <u>Improvements</u>. Existing FAA approach control facilities equipped with ASR/ATCRBS/BDS frequently require improvements. Such improvements are normally made when there exists a reasonable relationship between the operational benefits to be realized and the costs involved in accordance with the following provisions:
 - (1) An FAA radar approach control facility recording 30,000 or more annual instrument operations qualifies for those improvements that satisfy an operational requirement and/or facilitate the provision of terminal area radar service. This activity level normally assures a cost per operation that is commensurate with the benefit derived from the improvement.
 - (2) An FAA radar approach control facility recording between 20,000 and 29,000 annual instrument operations may be a candidate for improvements. It qualifies for those improvements that satisfy an operational requirement and/or facilitate the provision of terminal area radar service provided the additional cost does not result in a cost per operation that exceeds the benefit derived from the improvement.
 - (3) An FAA radar approach control facility recording less than 20,000 annual instrument operations is not a candidate for improvements. At that activity level, the additional cost per operation resulting from the improvement is not commensurate with the benefit derived. Any improvement to terminal radar facilities in this category will be limited to the correction of a critical situation and shall be justified by an individual staff study.

NOTE: Improvements to FAA staffed RAPCON/RATCCs... may be considered on an individual basis but the above criteria for FAA civil facilities shall remain a major determinant in considering them for improvement.

- e. <u>Remoted Radar Bright Display Scope</u>. An FAA VFR control tower at an airport, which is a satellite of the primary airport of an FAA radar approach control facility, is a candidate for a remote radar bright display scope in the tower cab when:
 - (1) At least 35,000 annual itinerant operations are recorded; and
 - (2) The airport is located within 20 miles and within microwave link range of an existing surveillance radar system.
 - (3) Operationally adequate low altitude radar coverage is assured at the satellite airport.

- f. Terminal Radar Approach Control in Tower Cab.
 - (1) Establishment. An initial ASR/ATCRBS/BDS installation shall be a TRACAB facility consisting of appropriate displays placed in the tower cab.
 - (a) If the official agency forecasts indicate an ASR/ATCRBS/BDS candidate location will exceed 125,000 annual itinerant operations or 60,000 annual instrument operations within 2 years of the year of budget submission for the facility, the initial installation should be planned as a TRACON rather than a TRACAB. Instrument operations at secondary airports may be included in this forecast provided radar coverage at these locations is expected to exist at or below initial approach altitude.
 - (b) If an ASR/ATCRBS/BDS candidate location cannot physically accommodate radar approach control in the tower cab, then individual justification shall be required to go directly to a TRACON facility.
 - (c) When the complexity of the facility operation warrants, individual justification and consideration shall be given to locating the ASR/ATCRBS/BDS in a TRACON rather than a TRACAB.
 - (2) <u>Discontinuance</u>. A TRACAB will be discontinued when the ASR/ATCRBS/BDS is decommissioned or when the radar approach control function is transferred to a TRACON.
 - (3) <u>Conversion to TRACON</u>. A TRACAB location is a TRACON candidate when the facility has at least 125,000 annual itinerant operations or 60,000 annual instrument operations. Instrument operations at secondary airports that receive radar service at or below initial approach altitude may be included in this count. Also, when the complexity of the facility operations warrants, individual justification and consideration should be given to relocating from a TRACAB to a TRACON."

	WADTAME P T MUSY	5 R.G.H	RIABLE			
Ner choice i a	1		RESSION LIST 1			
	URSERVE N	PHEDICIED			PLOI OF STANDAMDIZED	RESIDUAL 3.0
	10437	LEUST		2 • 4	9	
	5°856582	Se134432	0.3251525		4) 67	1
	4,955627	4 951170	100 12000012 0		- 1 •	
- 10		6 8 7 6 7 6 8	0.2783077		C×0	69
	4.852564	4.156632	0,53552366-01		\$3 \$44	
	112490.2	130561.0	0.2012537			-
-	4 253077	6.725926	80°1715899		23 4	
	4.672829	9"«/12255	50,42074025015		á l	
	8.028976 		96911244195408 0 3354581		9 cm	03
			A A A S S A A		(3	
والمرافع والمحاوم	A ARARIY	A A LA YAG	E0.1404727		3 0	
		0.002301	0.1024729		52 53	
	000000000000000000000000000000000000000	9.59259	0.2035294		6-4	(3)
	6.641367	6,590522	6 1004259		9.7	
	4 BO4065	5°599427	~0°2863555		ja O	
	0.829312	4 <u>5</u> 65858	0,2072745			ଷ
	4,362026	508/55 ⁰ 0	~0°12531%8) بر دست 20	
		Ce Ve Ve			13 	
	4, abba36	2 8 1 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9			1 8	
			1.001.001.0000000000000000000000000000		(5) (1)	
	2011200 217556		0.1091102		43 	e
	A CIVAN	6.549149	-0. VI661751-001		1.	
	4.30405	8 3429A	-0.36233702-01		64) (j)	
	e_564347	4.340502	0.2240448		57	4
	& @77336	229852.8	5615261.0		-	
	a.510059	8955288 	0-227479	6	uð tra	3
24	3. /b1200					
					9 (294)	8
	a on 577 a	6.217533	0.6674634		tent)	<u>م</u>
	6.145138	210701.5	-6-547AUZUF=01		2.0	
	6.2195u?	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 . 4957015E 01		留 L×9	
55	0.41 MB40	4,1052H7	0.255528		643	Q
36	6500659	067151 0P	4 - 1 3 2 9 5 1 7		@ ~~ •	
					۵¢ ۳۳ ۳	
25	A ALGAS	N I NOIL	A. VAGALY		I	
		e 127515	0.15620765=01		- (33) (2002)	
) - 2	1.66879	4.120570	-0.a316969		وس ۵	
	21220	a.115576	6.2282763			4
	1.98645	4.114607	•0.1256239		9 9	
	51071	4.11.25.08	6.218254		1272	63

APPENDIX B

BUSY MUUK KEGHESSION

BUSY HOUR REGRESSION

APPENDIX B (Cont. 4.1)

	5.871201	4 . AQ LA T L	-A 33(2710		
2	5.0983A4	2 091750 2 091750	- 44	5	
8	3.970291	a. U75175	-0.1050A42	#	
•	4,127134	4.074734	0.5240050E-01	• • •	
9	1.564107	4.06418	0.4999049	5 0 p.	•
	4.594967	4.042013	0.5421526		•
¥ 4		5 0 2 0 5 0 5 7 2	0.4405440	i goa	•
	2000 Veneral	125020-0	٦	•	ſ
		8 1 5 2 0 5 1 1 8	0.1544746	•	
			0.1663530£-0f	8 J	
	4.742174		7'	e .]	
	1.071201				74
		•		63	
9	1.00001	1 002257	ľ	•	
				6	
	4 0 7 7 5 1 7			e	
61	9.918460	1.07725		#]	
	4.07757			6 -4	*
				4	
	1.012025	1 941640	4	9]	
	1 7 1 7 4 9		•		
			N	5	
		TOCCCAR	0-1690971E-01	9	
			0.3940741		•
2;		5.917426	0.3990540£-01		
	1012224	3.906059	-9.3507122	4 4	
		3.070A4	0.3706811		
•			n,	40°	1
	101000	3 408/40	-0_1659354f-01		
5;		200120	0.96185776-02	4	
•		3° 452230	=0.2083559E-02	-	
	192910-5	3.789657	0.1806343		
		3.743488	0.2450945		
		520611.5	0.K763677E-01		
50	22122	3.709485	0.123344		
		3.70052	7		
		017201 • 5	۰	4	
	2,76361	3.053680	-0.157319A	•	
		3.040/36	0,2510844		
		3.075066	-0.2095513	•	
0	3.912023	3.000112	5439102		
	2 . 496507	5.042106	-0.1454016		
-	a.077537	5.619680	0.4578952	-••••	
89	3_668879	3.015060	0.73618395-01	•	•
0	3.210475	5.598058			
10	2,772560	3.592277	-0.819405	P=4 (
	3.593518	3.579678			
93	3,496507	3.574497			
4	3. 290301	3.568000	1		
95	3.610917	3.500590			
96	3,367295	3.509632	-	• 1	
		3,497623			
			i -		

.

.

.

-

BUBY HIUR REGRESSION

APPENDIX B (Cont'd.)

		æ	Ð				•			•										9							8					4			E										•		
•	-			••• •			•			- • •	6	•		*		•		*	8 1		•	•••				4 D-4	• •••		••••			• •		e	1					9 •• •-		a	÷			a7 a	
	1007//100	21144020				-0.1073293	9,1019194	-	-0.100085				2	۰.	۰.					0.3149776a02	2	1	1		1	-	- 6 R	0,274,260	18		0.1044425	0.1740948				-0.65680335+01	231011	-u.1588411	. 0. 7080115E-01	-0.1753443	-		-0-072724	0.5427037			-0.2130467
	3 3 3 - C	1.45401	3 × 5 3 × 6	3.420345	1	3.406204	1, J945A7	3.394135	3.504103	3, 300277	3, 354972	5 - 2 - 2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	3, 355958				3.251640	3.276530	5.265938	3.254946	5,253550	3.251387	3.204238	3.236790	3,233388	3°21339	3.223943	3.222.26	3.220523	3,204073	3.149394	3,149200	2º15/65	1057115	5.16/613	3.150721	5.150574	3,154572		3.147932			5.10486	3.05A403	3.050674	5°047980	3°049526
1 2054	5.757669	5.828041	5.091942	3,135493	3. U91042	2°214475	1.496507	3.524341		3.61.0417			24.2220				3.176053	3.091.042	1,071201	3,258090	5,014522	2,484906	2.690371	3,295936	3,713572			5.499507	2.690371	5,172568	3.295136	1, 10/245	3. u 4 5 2 2	3-332204	2,772588	3.091042	2,433213	2.995731		2.072383	12/244.3	2.1566.5	2.639857	3.401196	3,091042	46495.	517550°2
0	100	101	201	103	801	501	100	101		104			211			916	2 8 2	118	911	126	121	122		124				0.2	130	131				- 10	111	13.4	21			701		1 45	196	107	148	07	3 ~ 2

Cont'd.)	
•	l
£	l
APPENDIX	
A	1

BURY NOUR REGRESSION

4	<u>6</u> 2.	•										6					42		•	•	e	4		6	400		-			•									-			•	•	6	1
a 29983 a	297079	1358525	1354626-01 0 1				24202		~	\$70992E=01 & 1	774859 8 8	751573	001800 * 1	965039 B	257430	230347	340648	016267 8 8	007229	1365476-01	1	007460	1504893 e	1203810		016A67E=01 • •			2784678-01	089765		927390	•		007465	2705986=01	777653	3067326-01 + 1	3193566-01	E=01	023709	532061			
3.041463 =0.4		0.4		l			- A100AA	0- 20600		2.986081 -0.4	0						2.956976 0.1	•	2.954620						6.49	•					870315		A49987	00020							•	2,737935 0.1			
151 2,397895					•					162 2.690371					147 2.833213		140 3.091042		b (174 3.044522		176 5.256096	-		179 5,55204							50				2,70805						•	

APPENDIX B (Cont'd.)

BUSY MOUR REGRESSION

.

•	-		8 40 D-1		• •	-			•	•	· 4		•	• ••	• [•	•	1•		6 ••• 6			•		•				⊷.		• •	•		•			•••		•	•	
0.6409A21	1			111112) i	6,6404087	-0.1228.08	-	÷ 🏟 🗄	•] -	-0,29691745-01		2		Ň						, a		1	09/95/20			ļ	r.	÷.		•		•			-0°1663908
2.654A54	2.052369	906150.2	2.030759		2 447010	2.610560	2.609087	2.007307	2.005007	2,593832	2,503243	21200202		2-525594	2,50,4590	2.514054	2,512903	242012.2	2.507547	20/00/20		2.401091	2.409041	2,404529	2.323.520	2,250124	2.250438	2,221565	< < < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2.14469	2,104469	2°11 5002	2,133364				1.594704	1,291343	1.266003
3, 295430	2.039057	2,44406	2.04439			2.772568	3.2560%	2.40406	2.772540	2,397095	2,57895	3.091042		20707	2.494906	2.29705	2.484906	22101.5	2.700050			2.000171	2.597.65		202562	2,48400	2.634657	1.945910	1.0001		2.033213	2,94459	2,033213	1.JA6203	549462.2		C 137/977	C.50C373	1,791759	1,000012
205	200	207	872	202			212	412	215	216	217	21.0		122	222	225	224	542	224	227	822	220	231	252		25	231	230	239			223	244	215	216	112	(#2) 		ŝ	252

APPENDIX B (Cont'd.)

R REGRESSION

.

JN PATE # 01/07					
' VARTARLE LOUSY					1 1817 1 1 1817 1
(3) ENTERED ON STEP NUMPEN 1	LCOUNT				
R 0,92364 0,92364	ANALY818 (F VANJANCE Recréssion	40	05 800ARES 114, 11128	MEAN 30UARE 144.77734	1451 - 27245
R 304ARE 0.85252 Error 0.30692	PEPIDUAL	250.	23,55016	9-0420	
**************************************	*****************			VARIABLES NOT IN THE COUNTION SSARSSON	
B RETA BTD	ERADA & F	VARIABLE	861A IN	PARTIAL TOLERANCE	2
0,5921463 0,92364 1 -2,427475	0°01554 1851°478				
- 466AE3810M			10/20/10	PAGE S	
NANG (CREATIUN DATE = 01/07/A1)					
•	•• • • • • • • • • • • • • • • • • • •	6 P E 8 3 1 C 8		a a a a a a a valable L137 REGRESSION L137	VARJABLE LIBY 1 GRESSION LIBY 1
VARIABLE LOUDY				-	
•	SUNNARY TABLE	18r			
	AULTIPLE R B SGU	SGUARE POR CHANGE	SIMPLE R	3	ė
	0 .92344 8.65311	311 0.85311	0.92568	6,5921863 -2,927675	0.92304
· afest salum			01/01/81	PAGE 12	
1490 (CREATIUN DATE # 01/67/81)					
	AA MULIIPLE RE	<u>r c r c s s 1 0 n</u>	• • • • • •		
TEST OF RESIDUAL DIFFERENCE	BY CASE ORDER	(SEGNUM) .			
LIST 1, REGRESSION LIST 1. 0	DURATNewataon test 1.74256	-			

•

•

~	
כד	
د	
Ē	
Con	
\circ	
\sim	'
ω	
\times	
H	
APPEND	
z	
ш	
Ω.	
۵.	
4	

OUSY HOUR REGRESSION

FILE ASRAG (CREATION DATE = 01/07/81)

CASES	252 252 252
STANDARD DEV	33,9413 113813,1650 0,7992 1,2466
HEAN	38,7659 82367,0516 3,3360 10,5772
VARTABLE	BUSYHR COUNT LBUSY LCOUNT

BUBY HOUR REGRESSION

FILE ASR80 (CREATION DATE = 01/07/81)

CORRELATION COEFFICIENTS

A VALUE OF 99.00000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

LCOUNT	0.84645 0.81432 0.92364 1.00000
LBUSY	0.90913 0.78009 1.00000 0.92364
COUNT	0.91226 1.00000 0.78009 0.81432
BUSTHR	1.00000 U.91226 U.90913 0.8445
	BUSTHR COUNT LBUST LCOUNT

c	1
APPENDIX	

DELAY COSTS PER HOUR BY AIRCRAFT TYPE (1980 Dollars)

		SIPITOR MALTI		
User Class and Aircraft Type	(A) Aircraft Vari- able Operating Cost <u>al</u> /	(B) Number of Passengers/ <u>Occupants</u> /	(C) Value of Passengers'/ Occupants' Time (Column <u>B x \$17.50</u> 1/)	(D) Total Delay Cost Per Hour (Column A + Column C)
<u>Air Carrier</u> Turbofan, 4 engine, wide body <u>3</u> / Turbofan, 4-engine <u>3</u> Turbofan, 4-engine, regular body <u>3</u> / Turbofan, 3-engine, regular body Turbofan, 2-engine, wide body Turbofan, 2-engine, regular body Turborop Piston	\$4,767 2,880 2,880 3,341 1,964 1,508 1,508 1,508 1,508	235.7 235.7 92.3 92.3 92.3 92.3 158.4 138.4 138.3 61.6 61.6 23.5 2.2	\$4,125 1,615 1,744 2,774 1,372 1,45 1,078 1,078 39	\$8,892 4,495 4,388 6,115 5,075 5,075 1,105 1705
Air Taxi (Including Air Commuter) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	942 369 132 138	2572 2572 200	40 95 37 25	982 497 237 163
General Aviation (Excluding Air Taxi) Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	77 233 30 30	4.2 3.6 4.1 2.2 4	72 39 42 42	854 331 156 119
<u>Military</u> Jet Turboprop Piston Rotorcraft	1,333 360 97 113	6.0 2.30 2.00	105 105 353 35	1,438 448 150 148

¹/Source: Reference 9 ²/Sources: Reference 17 for air carrier; References 18, 19 and 20 for air taxi and general aviation. Data represents the number of <u>passengers</u> for the air carrier and air taxi user classes, and the number of <u>occupants</u> for the general aviation and military user classes. Passenger load factors, as opposed to occupant load factors, are used for the air carrier and air taxi military user classes. user classes because the value of time of the crews of these user classes are included in aircraft variable operating costs in the form of salaries and wages.

3/The NBS DELCAP simulation model did not include these aircraft types. Terminals that serve these aircraft types obviously are already equipped with or served by ASR. Conversely, airports within the range of interest in this report for new radar establishments do not serve these aircraft types. Their inclusion here is without impact and only for completeness of

.

APPENDIX D

Midair Collision Costs (Thousands of 1980 Dollars)

		Total Coilision Costs		4 . 24	25.935	50.50	53,7-5	23,276	48,151	19,490	7,322	1,226		1,747	2,305	1,669	169	165		1,887	1,605	845	494	566		2.645	3,170	717	690
	maged	Exp. Cost		/ 10 . 7	222	550	2,855	550	2,780	715	176	45		173	74	14	4	า		212	83	14	4	10		286	777	14	55
	Substantially Damaged	Restry. Cost27	000 9	979 .0	533	1,319	6,847	1,320	6,667	1,715	423	107		433	185	34	10	35		531	208	34	6	25		715	1,109	35	137
Damage	substan	Prob.2/	.417										.400						.400										
Aircraft Damage	0	Exp. Cost	0/2	240,0	667	1,650	8,565	1,651	8,340	2,145	529	133		641	274	20	51	90		786	307	50	ព	36		1.058	1,641	52	202
Ϋ́Ρ	Destroyed	, Replace. Value3/				3,958	20,540	3,959	20,000	5,144	1,269	320		1,300	556	102	31	114		1,594	623	102	27	14		2.146	3,328	106	410
	De	Prob.2/	.417		•								. 493						.493										
	Injuries	Cost (@\$383/)		\$19	8	8	13	9	11	۱	5	0		8	16	13	S	4		2	10	9	4	4		10	6	ŝ	n
uries	Serious	Prob.2/	.002										.046						.046						240				
Fatalities and Injuries	ities	Cost (@\$530 <u>3</u> /)		\$62,832	25,038	26.885	42.312	21,069	37.020	16.625	6.615	1,048		925	2,001	1,592	667	516		882	1,205	775	473	516		1, 291	1,076	646	430
Fataliti	Fatalities	Prob. 2/	.471										.406						.406						306	0			
		No. Occu- pants <u>1</u> /	•	251.7	100.3	107.7	169.5		_	66.6	26.5	4.2		4.3	9.3	7.4	3.1	2.4		4.1	5.6	3.6	2.2	2.4	•	6.0	5.0	3.0	2.0
				Turbofan. 4-engine, wide body 4/	Turboiet 4-engine 4/	Turbefan Arennine regular hudv 4/	Turbofor 2 and no wide hody	Turbofon 2-cugine, where your	Turbofan 2-chigine, iegere wood Turbofan 2-choine wide hodv	Turbofan 2-andine renilar hodv	6	Piston	Air Trvi (Including Air formuter)	The rest of the rest of the second se	Turboprop	Multi-engine piston	Single-engine piston	Rotorcraft	General Aviation	Jet	Turboprop	Multi-engine piston	Sinale-engine piston	Rotorcraft		M 1 1 1 E ar A	Jurboprop	Piston	Rotorcraft

<u>1</u>/Sources: References 17, 18, 19 and 20. <u>2</u>/Sources: References 27 and 28. <u>3</u>/Source: Reference 9. <u>4</u>/reminals that serve these alrcraft types obviously are already equipped with or served by ASR. Conversely, airports within the range of <u>4</u>/reminals that serve these alrcraft types of thereast in this report for new radar establishments do not serve these alrcraft types. Their inclusion here is without impact and only for completeness of presentation.

APPENDIX E-1

NORMATIVE DISTRIBUTION OF AIR CARRIER AIRCRAFT BY AIRCRAFT TYPE USED IN THE DEVELOPMENT OF DELAY AND MIDAIR COLLISION AVOIDANCE BENEFITS*

Aircraft Type

Percentage Mix

0.0 0.0 0.0 8.0 0.0 36.0 2 engine, regular body engine, regular body 4 engine, regular body engine, wide body engine, wide body 4 engine, wide body 4 engine m Turbofan, Turbofan, Turbojet, Tur bof an, Turbofan, Turbofan, Turbofan, Tur boprop Piston

candidate airports, based on a subset of airports listed in Section VI applied *Data represents the expected mix of air carrier aircraft at potential to References 15 and 16. APPENDIX E-2

NORMATIVE DISTRIBUTION OF AIR TAXI, GENERAL AVIATION AND MILITARY AIRCRAFT

Į.		
ŕ	cn l	
	H	ŀ
	H	l
	μ.	l
	E	ļ
ĺ		ļ
	31	ŀ
	-	ł
	M	ľ
	Y	I
	H	ļ
	E	ļ
l	L L	ļ
	6.	ĺ
ł	ō	ľ
		ł
ŀ	E	
	N.	ļ
	Ξ.	ŀ
	d	ļ
	б	l
1	H	l
	ω	ł
	2	ļ
	3	l
ľ	H	
	ц Ц	
	HE L	
	THE L	
	THE L	
	IN THE L	
	IN THE L	
	D IN THE L	
	ED IN THE L	
	ISED IN THE L	
	USED IN THE L	
	E USED IN THE L	
	PE USED IN THE L	
	YPE USED IN THE L	
	TYPE USED IN THE L	
	TYPE USED IN THE L	
	FT TYPE USED IN THE L	
	AFT TYPE USED IN THE L	
	RAFT TYPE USED IN THE L	
	CRAFT TYPE USED IN THE L	
	(RCRAFT TYPE USED IN THE L	
	AIRCRAFT TYPE USED IN THE L	
	AIRCRAFT TYPE USED IN THE L	
	Y AIRCRAFT TYPE USED IN THE L	
	BY AIRCRAFT TYPE USED IN THE DEVELOPMENT OF DELAY BENEFITS	

	Bstimated Number of Aircraft- 1978	Estimated 8 of Active Aircraft Flown IFR	Expected Number Air- craft Flown IFR	Percent Distri- bution
Air Taxi (Including Air Commuter)]/ Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	170 444 3,314 2,770 7,913	100.0 97.5 85.2 3.6 3.6	170.00 432.90 2,823.53 814.38 43.74 43.74	4.0 10.1 65.9 19.0 100.0
General Aviation (Excluding Air Taxi) <u>J</u> Jet Turboprop Multi-engine piston Single-engine piston Rotorcraft	2,310 2,686 19,857 157,881 4,100 186,834	100.0 97.5 85.2 3.6 3.6	2,310.00 2,618.85 16,918.16 46,417.01 147.60 68,411.62	3.4 3.8 24.7 67.9 0.2 100.0
<u>Military2/</u> Jet Jet Turboprop Piston Rotor craft	8,898 1,794 1,056 7,183 18,931			47.0 9.5 5.6 <u>37.9</u> 100.0

<u>1</u>/Source: Reference 19 <u>2</u>/Source: Reference 29

APPENDIX E-3

NORMATIVE DISTRIBUTION OF AIR TAXI, GENERAL AVIATION AND MILITARY AIRCRAFT BY AIRCRAFT TYPE USED IN THE DEVELOPMENT OF MIDAIR COLLISION AVOIDANCE BENEFITS

	Estimate of Total Hours <u>Flown-1978</u>	Percent Distribution
Air Taxi (Including Air Commuter) <u>1</u> /		
Jet	132,449	3.0
Turboprop	550,288	12.5
Multi-engine piston	1,683,862	38.2
Single-engine piston	1,210,388	27.5
Rotorcraft	828,107	18.8
	4,405,094	100.0
General Aviation (Excluding Air Taxi) $\frac{1}{2}$		
Jet	1,061,797	3.1
Turboprop	1,055,995	3.0
Multi-engine piston	4,502,028	13.0
Single-engine piston	26,646,920	76.9
Rotorcraft	1,399,544	4.0
	34,666,284	100.0
Military2/		
Jet	2,843,000	58.8
Turboprop	595,000	12.3
Piston	328,000	6.8
Rotorcraft	1,071,000	22.1
	4,837,000	100.0

$\frac{1}{2}$ Source: Reference 19 $\frac{2}{2}$ Source: Reference 29

.

APPENDIX F - PROGRAM LOGIC OF ASR ESTABLISHMENT AND DISCONTINUANCE CRITERIA

The ASR establishment and discontinuance criteria described in this report will be integrated as a FORTRAN subroutine into the Terminal Area Forecast Data System. This appendix provides a centralized algebraic description of the logic used to compute the Phase I and II benefit/cost ratios (in Section VI), a description and source of variables and constants used in the subroutine, and appropriate default values.

A. Phase I Ratio

ACEBE = ACPRIM1/(3,400 - (.0013 x PRIM1))* ATEBE = ATPRIM1/(26,000 - (.0096 x PRIM1))* GAEBE = GAPRIM1/(53,300 - (.0196 x PRIM1))* MLEBE = MLPRIM1/(8,600 - (.0032 x PRIM1))* ACSBE = ACITN1/107,400 ATSBE = ATITN1/539,600 GASBE = (GAITN1 + GALCL1)/847,200 MLSBE = (MLITN1 + MLLCL1)/376,200

*If the denominator for any user class results in a value equal to or less than zero, disregard all denominators and use all of the following instead. For the air carrier user class: $9,300 - (.0034 \times PRIM)$; for the air taxi user class: $71,200 - (.0262 \times PRIM)$; for the general aviation user class: $146,000 - (.0538 \times PRIM)$; and for the military user class: $23,400 - (.0086 \times PRIM)$.

PHASE I = ACEBE + ATEBE + GAEBE + MLEBE + ACSBE + ATSBE + GASBE + MLSBE

If PHASEI > 1.0, then location satisfies Phase I establishment criteria.

If PHASEI <.35, then location satisfies Phase I discontinuance criteria.

In cases where qualifying radar service is provided by the primary airport to secondary airports, the Phase I ratio value shall be the sum of the airport ratios of the airports comprising the radar service area.

B. Phase II Benefit/Cost Ratio

1. Compute Life-Cycle Benefits

DISBEN = $\sum_{y=1}^{15} (ANNBEN_y \times 1/(1+d)y^{-0.5})$

where DISBEN is the life-cycle benefits discounted over 15 years, 'y' is each of 15 years of an ASR's estimated economic life, 'ANNBEN' is the nondiscounted sum in year 'y' of benefits of IFR delay reduction, midair collision avoidance and terrain collision avoidance, and 'd' is the OMB-prescribed discount rate of ten percent. In cases where qualifying radar service is provided by the primary airport to secondary airports, the Phase II benefit/cost ratio shall be the sum of the airport ratios of the airports comprising the radar service area.

- a. IFR Delay Reduction Benefits
 - (1) Compute delay costs (aircraft variable operating costs and value of passengers'/occupants' time) of aircraft mix during an busy IFR hour:

	Air	Aircraft Mix	Mi	×		Hou	rly	Hourly Delay Costs	sts		
ACACST = (((ACPRIM/PRIM)	×	ACAEP	×	BHIO)/100)	× Co	(ACAVOC	+ ប	(ACAPAX x		VALTIM))	
ACBCST = ((ACPRIM/PRIM)	×	ACBEP	×	BHIO)/100)	x (0	(ACBVOC	+ 2	(ACBPAX	N N	VALTIM))	
ACCCST = ((ACPRIM/PRIM)	×	ACCEP	×	BHIQ)/100)	× (0	(ACCVOC	+ V	(ACCPAX	×	VALTIM))	
ACDCST = ((ACPRIM/PRIM)	×	ACDEP	×	BHIO)/100)	x (0	(ACDVOC	+ ប្	(ACDPAX	N N	VALTIM))	
"	×	ACEEP	×	BHIQ)/100)	× (0	(ACEVOC	+ 0	(ACEPAX	×	VALTIM))	
"	×	ACFEP	×	BHIO)/100)	× ()	(ACFVOC	+ 2	(ACFPAX	×	VALTIM))	
AOGCST = ((ACPRIM/PRIM))	×	ACGEP	×	BHIO)/100)	× ()	(ACGVOC	+ 2	(ACGPAX	×	VALTIM))	
ACHCST = (((ACPRIM/PRIM)	×	ACHEP	×	BHIO) /100)	x ()	(ACHVOC	+ ບ	(ACHPAX	×	VALTIM))	
"	×	ACIEP	×	BHIO)/100)	× ()	(ACIVOC	+ 2	(ACIPAX	×	VALTIM))	
ATACST = (((ATPRIM/PRIM)	×	ATAEP	×	BHIO)/100)	x (0	(ATAVOC	+ ប្	(ATAPAX	×	VALTIM))	
ATBCST = (((ATPRIM/PRIM)	×	ATBEP	×	BHIO)/100)	× (0	(ATBVOC	+ 0	(ATBPAX	×	VALTIM))	
ATCCST = (((ATPRIM/PRIM)	×	ATCEP	×	BHIO)/100)	× ()	(ATCVOC	+ ប្	(ATCPAX	Р Х	VALTIM))	
ATDCST = (((ATPRIM/PRIM)	×	ATDEP	×	BHIO)/100)	× (0	(ATDVOC	+ 2	(ATDPAX	×	VALTIM))	
ATECST = (((ATPRIM/PRIM)	×	ATEEP	×	BHIO)/100)	x (0	(ATEVOC	+ 2	(ATEPAX	×	VALTIM))	
GAACST = ((GAPRIM/PRIM)	×	GAAEP	×	BHIO)/100)	× ()	(GAA VOC	+ 2	(GAAOCU	×	VALTIM))	
GABCST = (((GAPRIM/PRIM)	×	GABEP	×	BHIO)/100)	× 6	(GABVOC	+ 2	(GABOCU	×	VALTIM))	
GACCST = ((GAPRIM/PRIM)	×	GACEP	×	BHIO / 100)	× ()	(GACVOC	+ 2	(GACOCU	×	VALTIM))	
GADCST = (((GAPRIM/PRIM)	×	GADEP	×	BHIO / /100)	× ()	(GADVOC	+ 2	(GADOCU	×	VALTIM))	
GAECST = ((GAPRIM/PRIM)	×	GAEEP	×	BHIO)/100)	× ()	(GAEVOC	+ 2	(GAEOCU	×	VALTIM))	
MLACST = (((MLPRIM/PRIM)	×	MLAEP	×	BHIO) /100)	× ()	(MLAVOC	+ 0	(MLAOCU	×	VALTIM))	
MLBCST = (((MLPRIM/PRIM)	×	MLBEP	×	BHIO)/100)	о х	(MLBVOC	+ 2	(MLBOCU	×	VALTIM))	
MLOCST = (((MLPRIM/PRIM)	×	MLCEP	×	BHIO) /100)	x (0	(MLCVOC	+ 2	(MLCOCU	×	VALTIM))	
MLDCST = (((MLPRIM/PRIM)	×	MLDEP	×	BHIO) /100)	0) x	(MLDVOC	+ 2	(MLDOCU	×	VALTIM))	

TOTCST = \sum of above

(2) Compute IFR Delay Reduction Benefits:

DELSPH

DELITOT = TOTCST X TSAVE X (PIFR/100) X BHPY

Safety Benefits ġ.

(1) Midair Collision Avoidance Benefits

Compute Expected Cost of a Midair Collision: (a)

<pre>(ACTENS X ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ACTENS x ACSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ATTENS x ATSEP/100) x (ACPERB x VALIFY) + (ACTERB x (CSTINJ))) + ((ACDESF x ((ATTENS x ATSEP/100) x (ACPERB x VALIFY) + (ATTERB x (CSTINJ))) + ((ACDESF x ((ATTENS x ATSEP/100) x (ACPERB x VALIFY) + (ATTERB x (CSTINJ))) + ((ACDESF x ((ATTENS x ATSEP/100) x (ACPERB x VALIFY) + (ATTERB x (CSTINJ))) + ((ATDESF x ((ATTENS x ATSEP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTENS x ATSEP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTEN * ACCSP)/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTENS * ATSEP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTENS * ATSEP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTENS * ATSEP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTENS * ATSEP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDESF x ((ATTENS * ACACSP/100) x (ACPOCU x ((ACFERB x VALIFY) + (ATTERB x (CSTINJ)))) + ((ATDE</pre>	Relati	Relative Aircraft Mix A	Cost of	Fatal and S	Serious In A	Injuries Per	Aircraft	Cost of A	Cost of Aircraft Damage Per Aircraft λ	lage Per	Aircraft
<pre>((ACTTN x ACBSP)/100) x (ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACCSP)/100) x (ACDOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACDOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACGOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACGOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACGOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACGOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACGOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ACTTN x ACGSP)/100) x (ACGOCU x ((ACPPNB x VALLIF) + (ACTPNB x (CSTINJ))) + ((ACDESP x ((ATTN x ATGSP)/100) x (ACGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ACDESP x ((ATTN x ATGSP)/100) x (ATGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((ATTN x ATGSP)/100) x (ATGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((ATTN x ATGSP)/100) x (ATGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((ATTN x ATGSP)/100) x (ATGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((ATTN x ATGSP)/100) x (ATGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((ATTN x ATGSP)/100) x (ATGOCU x ((ATPPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((ATTN + ALCCL) x AGGSP)/100) x (GADCU x ((APPNB x VALLIF) + (ATTPNB x (CSTINJ))) + ((ATDESP x ((GATN + GALCL) x GADSP)/100) x (GADCU x ((APPNB x VALLIF) + (ATTPNB x (CSTINJ)))) + ((GADESP x ((GATN + GALCL) x GADSP)/100) x (GADCU x ((GAPPNB x VALLIF) + (ATTPNB x (CSTINJ)))) + ((GADESP x ((GATN + GALCL) x GADSP)/100) x (GADCU x ((GAPPNB x VALLIF) + (ATTPNB x (CSTINJ)))) + ((GADESP x ((GATN + GALCL) x GADSP)/100) x (GADCU x ((GAPPNB x VALLIF) + (ATTPNB x (CSTINJ)))) + ((GADESP x ((GATN + GALCL) x GADSP)/100) x (GADCU x ((GAPPNB x VALLIF) + (ATTPNB x (CSTINJ)))) + ((GADESP x ((GATN + GALCL) x GADSP)/100) x (GADCU x ((GAPPNB x VALL</pre>	ACACCC =	x ACASP)/100)		((ACFPRB X	VALLEP) +	(ACIPRB X	+ (((CNILS))	(ACDESP ×	ACAREP) +	(ACSDP X	ACARES))
<pre>((ACITN X ACCSP)/100) X (ACCPUB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ACITN X ACCSP)/100) X (ACCOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ACITN X ACGSP)/100) X (ACCOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ACITN X ACGSP)/100) X (ACCOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ACITN X ACGSP)/100) X (ACCOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ACITN X ACGSP)/100) X (ACCOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ACITN X ACGSP)/100) X (ACCOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ATTN X ACGSP)/100) X (ACOCU X ((ACPPRB X VALIFY) + (ACIPRB X (CSTINJ))) + ((ACDESP X ((ATTN X ACGSP)/100) X (ACOCU X ((ACPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ACDESP X ((ATTN X ATGSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ACDESP X ((ATTN X ATGSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((ATTN X ATGSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((ATTN X ATGSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((ATTN X ATGSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((ATTN X ATGSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((ATTN + ATCCL) X GADSP)/100) X (ATGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((ATTN + ATCCL) X GADSP)/100) X (ACGOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ))) + ((ATDESP X ((GATN + GAUCL) X GADSP)/100) X (GADOCU X ((ATPPRB X VALIFY) + (ATTPRB X (CSTINJ)))) + ((ATDESP X ((GATN + GAUCL) X GADSP)/100) X (GADOCU X ((APPRB X VALIFY) + (ATTPRB X (CSTINJ)))) + ((GADESP X ((GATN + GAUCL) X GADSP)/100) X (GADOCU X ((APPRB X VALIFY) + (GATPRB X (CSTINJ)))) + ((GADESP X ((GATNA + GAUCL) X GADSP)/100) X (GADOCU X ((APPRB X VALIFY) + (GATPRB X (CSTINJ)))) + ((GADESP X ((GATNA + GAUCL) X GADSP)/100) X (GADOCU X ((APPRB X VALIFY) + (GATPRB X (CSTINJ)))) + ((GADESP X ((GATNA + GAUCL) X GADSP)/100) X (GADOCU X ((</pre>	ACBCCC =	H	K (ACBOCU X	((ACPPRB x	+ (AITTNA	(ACIPRB x	(CSTINJ))) +	((ACDESP ×	ACBREP) +	(ACSDP ×	ACBRES))
<pre>((ACITN * ACDEP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACITN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACITN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACITN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACITN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACITN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACTTN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACTTN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACTTN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACTTN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACTTN * ACDSP)/100) x (ACDOCU x ((ACPPRB x VALLIP) + (ACIPRB x (SCTINJ))) + ((ACDESP x ((ACTTN * ACDSP)/100) x (ACDOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ACDESP x ((ATTN * ATDSP)/100) x (ACDOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ATDESP x ((ATTN * ATDSP)/100) x (ACDOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ)))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ)))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ)))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ)))) + ((ATDESP x ((ATTN * ATDSP)/100) x (GADOCU x ((ATPPRB x VALLIP) + (ATIPRB x (SCTINJ)))) + ((ATDESP x</pre>	ACCCCC =	×	K (ACCOCU K	((ACPPRB x	+ (AITTIN)	(ACIPRB ×	((CSTINJ))) +	((ACDESP X	ACCREP) +	(ACSDP X	ACCRES))
<pre>((ACTNN X ACESP)/100) X (ACBOCU X ((ACPPRB X VALLIP) + (ACIPRB X (CSTINJ))) + ((ACDESP X</pre>	ACDCCC =	×	K (ACDOCU X	((ACFPRB x	+ (AITTINA	(ACIPRB x	(CSTINJ)) +	((ACDESP X	ACDREP) +	(ACSDP x	ACDRES))
<pre> ((ACITNS X ACFSP)/100) x (ACFPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ACITNS X ACGSP)/100) x (ACCPPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ACITNS X ACGSP)/100) x (ACGOCU x ((ACFPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ACITNS X ACGSP)/100) x (ACGOCU x ((ACFPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ACDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATBSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS + ATDSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS + ATGSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS + ATGSP)/100) x (ATGOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS + ATGSP)/100) x (GADCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTNS + ATGSP)/100) x (GADCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTNS + ATGSP)/100) x (GADCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTNS + ATGCL) x (AASPP)/100) x (GADCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTNS + ATCCL) x (ALSPP)/100) x (GADCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((GADESP x ((ATTNS + ATCCL) x (ALSPP)/100) x ((GAPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((GADESP x ((ATTNS + ATCCL) x (ALSPP)/100) x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((GADESP x ((ATTNS + ATCCL) x (ALSPP)/100) x ((GAPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) +</pre>	ACBCCC =	×	K (ACBOCU X	((ACFPRB x	+ (AITTIN) +	(ACIPRB ×	((CRIINJ))) +	((ACDESP x	ACEREP) +	(ACSDP x	ACERES))
<pre>((ACITNS X ACGSP)/100) x (ACCPPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ACITNS X ACHSP)/100) x (ACBOCU x ((ACFPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ACITNS X ATMSP)/100) x (ACBOCU x ((ACFPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x ((ATTNS X ATMSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATMSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATMSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATMSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATMSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS X ATMSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS ATDSP)/100) x (ATTOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS ATDSP)/100) x (ATDOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS ATDSP)/100) x (ATDOCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTNS + ATLCL) x GABSP)/100) x (GADCU x ((ATFPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAFPRB x VALLIF) + (GATPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAFPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((GATTN + GALCL) x GASSP)/100) x (GADCU x ((GAFPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((GATTN + GALCL) x GASSP)/100) x (GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((GATTN + MLLCL) x MLLSP)/100) x (GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((MLTN + MLLCL) x MLLSP)/100) x ((GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((MLTN + MLLCL) x MLLSP)/100) x ((GAPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((GADESP x ((MLTN + MLLCL) x MLLSP)/100) x ((GAPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((GADESP x ((MLTN + MLLCL) x MLLSP)/100) x ((GAPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((MLTN + MLLCL) x MLLSP)/100) x ((MLPPRB x VALLIF) + (MLTPRB x (CSTI</pre>	ACFOCC =	×	K (ACPOCU X	((ACPPRB ×	+ (AITTINA	(ACIPRB X	(CSTINJ)) +	((ACDESP x	ACPREP) +	(ACSDP x	ACFRES))
<pre>((ACTEN X ACHSP)/100) x (ACPPRB x VALLIF) + (ACTPRB x (CSTINJ))) + ((ACDESP x ((ACTEN X ACISP)/100) x (ACDOCU x ((ACTPRB x VALLIF) + (ACTPRB x (CSTINJ))) + ((ACDESP x ((ATTEN X ATBSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTEN X ATBSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTEN X ATBSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTEN X ATBSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTEN X ATBSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTEN A ATBSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTEN A ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTEN A ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTEN A ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTEN A ATDCL) x GABSP)/100) x (GADCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GATPRB x (CSTINJ)))) + ((GADESP x ((MLTTN + MLLCL) x MLBSP)/100) x (MLDOCU x ((MLPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((GADESP x ((MLTTN + MLLCL) x MLBSP)/100) x (MLDOCU x ((MLPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((MLTTN + MLLCL) x MLBSP)/100) x (MLDOCU x ((MLPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((MLTTN + MLLCL) x MLBSP)/100) x (MLDOCU x ((MLPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((MLTTN + MLLCL) x MLBSP)/100) x (MLDOCU x ((MLPPRB x VALLIF) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((MLTTN + MLLCL) x MLBSP)/100) x (MLDOCU x ((MLPPRB x VALLIF) + (MLTPRB x (CSTINJ)</pre>	AOGCOC -	×	K (ACCOCU X	((ACPPRB ×	+ (AITTIN)	(ACIPRB x	(CSTINJ)) +	((ACDESP x	ACCREP) +	(ACSDP x	ACGRES))
<pre>((ACITN X ACISP)/100) x (ACIOCU x ((ACPPRB x VALLIF) + (ACIPRB x (CSTINJ))) + ((ACDESP x</pre>	ACHOOC -	×	K (ACBOCU X	((ACPPRB x	+ (AITTINA	· (ACIPRB x	((CSTINJ))) +	((ACDESP x	ACHREP) +	(ACSDP X	ACHRES))
<pre>((ATITN & ATMASP)/100) x (ATPRD x VALLIF) + (ATTPRB x (STINJ))) + ((ATDESP x ((ATTTN x ATMASP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (STINJ))) + ((ATDESP x ((ATTTN x ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (STINJ))) + ((ATDESP x ((ATTTN x ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (STINJ))) + ((ATDESP x ((ATTTN x ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (STINJ))) + ((ATDESP x ((ATTN + GALCL) x GADSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTN + GALCL) x GADSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATTPRB x (CSTINJ)))) + ((ATDESP x ((ATTN + GALCL) x GADSP)/100) x (GADPGB x VALLIF) + (ATTPRB x (CSTINJ))) + ((ADDESP x ((GATTN + GALCL) x GADSP)/100) x (GADPGB x VALLIF) + (GALPBB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GADSP)/100) x (GADPGB x VALLIF) + (GALPBB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x MASP)/100) x (GADPCU x ((GAPPRB x VALLIF) + (GALPBB x (CSTINJ)))) + ((GADESP x ((GATTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (GALPBB x (CSTINJ))) + ((GADESP x ((MLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLTPRB x (CSTINJ))) + ((MLDESP x ((HLTN + MLL</pre>	ACTCOC -	×	x (ACTOCU X	((ACPPRB X	+ (ALLIE) +	· (ACIPRB X	((CSTINJ)) +	((ACDESP x	ACIREP) +	(ACSDP x	ACIRES))
<pre>((ATITN & ATBSP)/100) x (ATPPRB x VALLIP) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATCSP)/100) x (ATOCU x ((ATPPRB x VALLIP) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATDSP)/100) x (ATOCU x ((ATPPRB x VALLIP) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATDSP)/100) x (ATOCU x ((ATPPRB x VALLIP) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GALSP)/100) x (ATOCU x ((ATPPRB x VALLIP) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GALSP)/100) x (GALPRB x VALLIP) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((GATTN + GALCL) x GALSP)/100) x (GALPRB x VALLIP) + (GALPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GALSP)/100) x (GALPRB x VALLIP) + (GALPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GALSP)/100) x (GALPRB x VALLIP) + (GALPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x MLASP)/100) x (GALPRB x VALLIP) + (GALPRB x (CSTINJ))) + ((GADESP x ((GATTN + MLLCL) x MLASP)/100) x (GALPRB x VALLIP) + (GALPRB x (CSTINJ))) + ((GADESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((GAPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPPRB x VALLIP) + (MLTPRB x (CSTINJ)))) + ((MLDESP x ((HLTN</pre>	NENCCC =	×	x (ATPACCU x	((ATFPRB X	+ (AITTINA	(ATIPRB X	((CSTINJ)) +	((ATDESP x	ATAREP) +	(ATSDP ×	ATARES))
<pre> ((ATITN x ATCSP)/100) x (ATCOCU x ((ATPPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATDSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GADSP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GADSP)/100) x (GADCU x ((ATPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((ATTN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + GALCL) x MEASP)/100) x (GADCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((ALTN + MLLCL) x MEASP)/100) x (GADCU x ((GAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((GADESP x ((ALTN + MLLCL) x MEASP)/100) x (MLBOCU x ((ATPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLBOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ)))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ)))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ)))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ)))) + ((MLDESP x ((MLIPR + MLLCL) x MLASP)/100) x (MLDOCU x ((MLPRB x VALLIF) + (MLIPRB x (CSTINJ)))) + ((MLDESP x ((MLPR + VALLIF) + (MLLPRB x VALLIF) + (MLIPRB x (</pre>	ATBCCC =	Ħ	K (ATBOCU K	((ATPPRB X	+ (AITTIN)	· (ATIPRB X	((CSTINJ)) +	((ATDESP x	ATBREP) +	(ATSDP X	ATBRES))
<pre>((ATITN x ATDSP)/100) x (ATDPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN x ATESP)/100) x (ATDOCU x ((ATPPRB x VALLIF) + (ATIPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GASP)/100) x (GANCU x ((ATPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GASP)/100) x (GANCU x ((ATPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((ATTN + GALCL) x GASP)/100) x (GANCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((ATTN + GALCL) x GASP)/100) x (GANCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + GALCL) x GASP)/100) x (GANCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + GALCL) x GASP)/100) x (GANCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + MLLCL) x MLASP)/100) x (GANCU x ((ATPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((GADESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x ((MLITN + MLLCL) x MLASP)/100) x (MLAPUB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x </pre>	ATCCCC =	×	x (ATCOCU x	((ATPPRB x	VALLUE) +	(ATIPRB X	(CSTINJ)) +	((ATDESP x	ATCREP) +	(ATSDP	ATCRES))
<pre>((ATTTN x ATESP)/100) x (ATEOCU x ((ATPPRB x VALLIP) + (ATTPRB x (CSTINJ))) + ((ATDESP x ((ATTN + GALCL) x GAASP)/100) x (GAADERB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GAADCU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GATTN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x ((GAITN + GALCL) x GADSP)/100) x (GADPCU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x ((HLTN + HLLCL) x HLASP)/100) x (GADCU x ((MLPPRB x VALLIP) + (HLIPRB x (CSTINJ))) + ((MLDESP x ((HLTN + HLLCL) x HLASP)/100) x (MLDOCU x ((HLPPRB x VALLIP) + (HLIPRB x (CSTINJ))) + ((HLDESP x ((HLTN + HLLCL) x HLASP)/100) x (MLDOCU x ((HLPPRB x VALLIP) + (HLIPRB x (CSTINJ))) + ((HLDESP x ((HLITN + HLLCL) x HLASP)/100) x (MLDOCU x ((HLPPRB x VALLIP) + (HLIPRB x (CSTINJ))) + ((HLDESP x ((HLITN + HLLCL) x HLASP)/100) x (MLDOCU x ((HLPPRB x VALLIP) + (HLIPRB x (CSTINJ))) + ((HLDESP x ((HLITN + HLLCL) x HLASP)/100) x (MLDOCU x ((HLPPRB x VALLIP) + (HLIPRB x (CSTINJ))) + ((HLDESP x </pre>	ATDCCC =	×	x (ATDOCU x	((ATTERB X	VALLIF) 4	· (ATIPRB ×	((CRIINJ))) +	((ATDESP x	ATDREP) +	(ATSDP #	ATDRES))
<pre>((GAITN + GALCL) x GAASP)/100) x (GAAPRB x VALLF) + (GAIPRB x (STINJ))) + ((GADESP x (GAITN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLF) + (GAIPRB x (STINJ))) + ((GADESP x ((GAITN + GALCL) x GABSP)/100) x (GADCU x ((GAPPRB x VALLF) + (GAIPRB x (STINJ))) + ((GADESP x ((GAITN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLF) + (GAIPRB x (STINJ))) + ((GADESP x ((GAITN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLF) + (GAIPRB x (STINJ))) + ((GADESP x ((GAITN + GALCL) x GADSP)/100) x (GADCU x ((GAPPRB x VALLF) + (GAIPRB x (STINJ))) + ((GADESP x = ((GAITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLFF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLFF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLFF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLFF) + (MLIPRB x (STINJ))) + ((MLDESP x = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLFF) + (MLIPRB x (STINJ))) + ((MLDESP x X = ((MLTN + MLLCL) x MLASP)/100) x (MLAPOU x ((MLPPRB x VALLFF) + (MLIPRB x (STINJ))) + ((MLDESP x X X X X X X X X X X X X X X X X X X</pre>	ATBOCC =	×	x (ATEOCU x	((ATPPRB x	+ (AITTIN)	(ATIPRB x	(CSTINJ)) +	((ATDESP ×	ATEREP) +	(ATSDP X	ATERES))
<pre>= ((GAITN + GALCL) x GABSP)/100) x (GABOCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x = ((GAITN + GALCL) x GACSP)/100) x (GAOCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x = ((GAITN + GALCL) x GADSP)/100) x (GAOCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x = ((GAITN + GALCL) x GADSP)/100) x (GAOCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x = ((MLITN + MLLCL) x MLASP)/100) x (GADCU x ((AMPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((GADESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) = ((MLITN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) = ((MLITN + MLACL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLASP x) = ((MLITN + MLACL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLASP x) = ((MLITN + MLACL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLASP x) = ((MLITN + MLACL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLASP x) = ((MLITN + MLACL) x MLASP)/100) x (MLAPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + (MLASP x) = ((MLIN + MLACL) X MLASP)/100) x (MLAPPRB x VALLIF) + (MLAPPRB x VALLIF) + (MLAPPRB x X) + (MLAPPRB</pre>		+ CALCL) ×	K (GNNOCU X	((GAPPRB x	ANLLIP) +	(GAIPRB ×	+ (((CNILSO)) +	((GADESP X	GAAREP) +	(GASDP >	GAARES))
<pre>= ((GAITN + GALCL) x GACSP)/100) x (GACOCU x ((GAPPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x (GADESP x))) + ((GADESP x)) + ((GADESP x)) + ((GADESP x))) + ((GADESP x)) + ((GADESP x)) + ((GADESP x))) + ((GADESP x))) + ((GADESP x))) + ((GADESP x)) + ((GADESP x)) + ((GADESP x))) + ((GADESP x)) + ((GADESP x)) + ((GADESP x))) + ((GADESP x)) + ((GADESP x)</pre>	*	I + GALCL) ×	x (GABOCU x	((CAPPRB x	+ (AITTEA	· (GAIPRB ×	((CSTINJ))) +	((GADESP x	GABREP) +	(GASDP #	GABRES))
<pre>= ((GAITN + GALCL) x GADSP)/100) x (GADOCU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x (CAITN + GALCL) x GAESP)/100) x (GADECU x ((GAPPRB x VALLIP) + (GAIPRB x (CSTINJ))) + ((GADESP x (CAITTN + MLLCL) x MLASP)/100) x (MLAPPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x (CAITTN + MLLCL) x MLASP)/100) x (MLADCU x ((MLPPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x (CAITTN + MLLCL) x MLASP)/100) x (MLADCU x ((MLPPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLADRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLADRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLADRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLADRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLADRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLADRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLAPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLAPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLAPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLLCL) x MLCSP)/100) x (MLAPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLACL) x MLCSP)/100) x (MLAPRB x VALLIP) + (MLAPRB x VALLIP) + (MLAPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLACL) x MLAPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLACL) x MLAPRB x VALLIP) + (MLAPRB x (CSTINJ))) + ((MLBESP x (CAITTN + MLACL) x MLAPRB x (CATTNA + MLACL) x (MLAPRB x VALLIP) + (MLAPRB x (CSTINJ))) + ((MLBESP x (CATTNA + MLACL) x MLAPRB x (CSTINJ))) + ((MLBESP x (CATTNA + MLACL) x (MLAPRB x (CSTINZ))))) + ((MLAPRB x (CATTAN + MLACL) x (MLAPRB x (CSTINZ)))) + (MLAPRB x (CSTINZ)))) + ((MLBESP x (CATTNA + MLACL) x (MLAPRB x (CSTINZ))))) + ((MLBESP x (CATTNA + MLACL) x (MLAPRB x (CSTINZ)))))))))))) + (MLAPRB x (CSTINZ)))) + (MLAPRB x (CSTINZ))))) + (MLAPRB x (CSTINZ)</pre>		+ GNLCL) ×	x (GMCOCU x	((GAFPRB ×	VALLET +	· (GAIPRB x	+ ((CRIINJ))) +	((GADESP x	GACREP) +	(GASDP >	GACRES))
<pre>a ((GAITH + GALCL) x GASSP)/100) x (GABOCU x ((GAPRB x VALLIF) + (GAIPRB x (CSTINJ))) + ((GADESP x = ((MLITH + MLLCL) x MLASP)/100) x (MLACU x ((MLPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITH + MLLCL) x MLASP)/100) x (MLAOCU x ((MLPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITH + MLLCL) x MLCSP)/100) x (MLOOCU x ((MLPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x))</pre>	11	+ GNECE) ×	x (GADOCU x	((GAPPRB x	ANLLIP) +	(GAIPRB X	(CSTINJ)) +	((GADESP x	GADREP) +	(GASDP x	GADRES))
<pre>= ((MLITN + MLLCL) x MLASP)/100) x (MLADCU x ((MLPPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x * ((MLITN + MLLCL) x MLASP)/100) x (MLADCU x ((MLPPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x = ((MLITN + MLLCL) x MLCSP)/100) x (MLCOCU x ((MLPPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x))</pre>	1	+ GALCL) x	x (GABOCU x	((GAPPRB x	VALLIP) +	(GAIPRB x	+ (((CNLLSO)))	((GADESP x	GAEREP) +	(GASDP)	GARRES))
<pre>* ((MLITN + MLLCL) x MLBSP)/100) x (MLBOCU x ((MLPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) = ((MLIFN + MLLCL) x MLCSP)/100) x (MLCOCU x ((MLPPRB x VALLIF) + (MLIPRB x (CSTINJ))) + ((MLDESP x) </pre>		+ NILCL) ×	X (MLAOCU X	((MLFPRB X	ANLLIP) +	· (MLIPRB X	(CSTINJ)) +	((MLDESP ×	HLAREP) +	(MLSDP)	MLARES))
= ((MILTRH + MILCL) x MLCSP)/100) x (MLCOCU x ((MLRPRB x VALLIP) + (MLIPRB x (CSTINJ))) + ((MLDESP x)		+ MILCE) ×	X (MLBOCU X	((MLFPRB x	+ (HITTIN)	· (MLIPRB X	((CRTINJ)) +	((MLDESP x	MLBREP) +	(AUSIN)	NLBRES))
	MLCCCC = ((ML)	+ MLLCL)	x (NLOOCU x	((NGLPRB ×	VALLEP) 4	· (MLIPRB ×	(CSTINJ)) +	((MLDESP ×	MICREP) +	(MLSDP)	MLCRES))
MEDCOC = ((MLITN + MLLCL) x MLDSP)/100) x (MLPPRB x VALLIF) + (MLPPRB x (CSTINJ)) + ((MLDRS x MLD)	•	+ MLLCL) X	٦		NALLER) 4	· (MLIPRB ×	(CSTINJ)) +	- 1	MLDREP) +	X doside)	MLDRES))

BRACCC

((\sum of above)/OPS) x 2

Compute Annual Midair Collision Avoidance Benefits: e

MACTOT = BMACCC x .010 x (OPS/100000) 2.3

.

Terrain Collision Avoidance Benefits ଟି

TRCTOT = TENBER × OPS × MODECF

Compute Total Safety Benefits: 9

SAFTOT = MACTOF + TRCFOF

Compute Total Annual Benefits: ö

ANNBEN = DELTOT + SAFTOT

2. Compute Phase II Benefit/Cost Ratio

BC = DISBEN/DISCST

If $BC \ge 1.0$, then location satisfies Phase II establishment criteria.

If BC<.35, then location satisfies Phase II discontinuance criteria.

	Source	Computed	Computed	Computed	Constant of 1,252	Computed	Computed	Constant of \$38,000	Constant of 0.10	Computed	Computed	Constants outlined in in Appendix D	Computed
	<u>Description</u>	Nondiscounted sum of benefits of IFR delay reduction, midair collision avoidance and terrain collision avoidance in year 'y'.	Phase II benefit/cost ratio.	Number of operations during a busy IFR hour: BHIO = .05352138 x (PRIM .5921863).	Number of busy hours per year.	Contributory expected midair collision costs by user class and aircraft type category. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Contributory aircraft variable operating costs and value of passengers'/occupants' time by user class and aircraft type category during a busy IFR hour. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Cost of a statistical serious injury.	OWB-prescribed discount rate.	Product of TOTCST and TSAVE	Nondiscounted IFR delay reduction benefits in year 'y'.	Probability of an aircraft involved in a midair collision being "destroyed" by user class. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	Life-cycle benefits discomted over 15 years.
Variahle/Fixed	Factor Name	ANNA EN	R	BHIO	ВНРУ	8	133-	CSTINJ	۳	BISID	DELITOT	DEST	DISBEN

.

.

Default <u>Value</u>

Factor Name	Description	Source	Value
DISCST	Life-cycle costs discounted over 15 years.	Regional input	Constants outlined in Figures 1 and 2
	Break-even activity levels by user class (i.e., where efficiency benefits equal cost). Used in Phase I criteria. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	Computed	
ENA COC	Total expected cost of a midair collision.	Computed	
81, 1	Percentage dissaggregation of user classes by aircraft type category for purposes of delay benefits. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	For air carrier: Regional input or the Official Airline Guide. For other user classes: Constants outlined in Appendix E-2.	For air carrier: As outlined in Appendix B-l
EZEMAC	Expected annual number of avertable midair collisions: EXPARC = .010 x (OPS/I00,000) 2.3	Computed	
84 84 1	Probability of an occupant being fatally injured in a midmir collision by user class. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	Constants outlined in Appendix D	
	Probability of an occupant being seriously injured in a midair collision by user class. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	Constants outlined in in Appendix D	
	Itinerant operations of the air carrier and air taxi user classes in year 'y'. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	TAR	

Variable/Fixed Factor Name	Description	Source
IJ	Local operations of the general aviation and military user classes in year 'y'. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	4 41
NACTOF	Nondiscounted midair collision avoidance benefits in year 'y'.	Computed
MODECF	Percentage of all aircraft which are estimated to be Mode C - equipped in year 'y'.	Constants outlined in Figure 12
8,	Standard number of occupants (including crew) aboard each aircraft type category of each user class. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Constants outlined in Appendix D
	Total aircraft operations in year 'y'.	TAF
PAX	Standard number of passengers (other than crew) aboard the various aircraft type categories of the air carrier and air taxi user classes. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Constants outlined in Appendix C
PEASEI	Phase I benefit/cost ratio.	Computed
REAL	Percentage of time that IFR weather prevails.	This report, Reference 5, Reference 29, or regional input.

13.5

Default Value

Source TAF	Terminal Area Forecast (TAF) File for instrument operations. To compute allocable secondary instru- ment operations of the primary airport, regions provide allocation percentages.	Constants outlined in Appendix D	Constants outlined in Appendix D	computed	Computed
<u>Description</u> Sum of	In year 1. We have an operations by user class. The Amnual primary instrument operations by user class. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix. For a <u>primary sirport</u> , this includes primary instrument operations. For a <u>secondary airport</u> of the primary airport operations of the secondary airport of the primary airport of the secondary airport of the primary instrument by user class and a moust instrument operations of the primary instrument operations of the secondary airport of the primary airport of the secondary instrument operations of the primary instrument of the secondary airport.	Aircraft "replacement" costs by user class and aircraft type Aircraft "replacement" costs by user class and aircraft type category. The user classes (identified in the first two posi- tions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Aircraft "restoration" costs by user class and aircraft type category. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Nondiscounted sum of michair and terrain collision avoicance benefits in year 'Y'.	Break-even activity levels by user class (i.e., where safety benefits equal cost). Used in Phase I criteria. The user classes (identified in the first two positions) are cross- referenced at the end of this appendix.
Variable/Fixed Factor Name FRIM	PRIM			SAFTOT	

Default Value

.

.

Factor Name	Description	Source	Default Value
SDP -	Probability of an aircraft involved in a midair collision being "substantially-damaged" by user class. The user classes (identified in the first two positions) are cross-referenced at the end of this appendix.	Constants outlined in Appendix D	
	Percentage dissaggregation of user classes by aircraft type category for purposes of safety benefits. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	For air carrier: Regional input. For other user classes: Constants outlined in Appendix E-3.	For air carrier: As outlined in Appendix E-l.
NZBYZL	Benefits of averted terrain collision benefits per operation.	Constant of .587	
TOTOST	Sum of aircraft variable operating costs and value of passengers'/occupants' time during an IFR busy hour for all aircraft type categories of all user classes.	Computed	
TRCFOT	Nondiscounted terrain collision avoidance benefits in year ' \mathbf{y} '.	Computed	
TSAVE	Delay time saved (hours) per aircraft per hour of airport operation. Derived from Figure 5 delay time table and supplemented with the following FORTRAN interpolation;	Compu ted	
	<pre>IB=BHIO-9. IF(BHIO.GE.30.) IB=21 IF(BHIO.LE.10.) IB=1 PSLOM=(ATPRIM + GAPRIM + MLPRIM)/PRIM TSAVE=(ATPRIM + GAPRIM + MLPRIM)/PRIM TSAVE=(ATP.10) TSAVE=T(1,IB) IF(PSLOM.GE.80) TSAVE=T(1,IB) IF(PSLOM.GE.80) TSAVE=T(1,IB) IF(TSAVE.RE.0.) GO TO 940 IP=PSLOM*10. TSAVE=T(IP,IB) +(PSLOM*10FLOAT(IP))* &(T(IP-1,IB)-T(IP,IB)) 940 CONTINUE</pre>		
	where T(IP,IB) = element of delay time table whose subscripts are calculated, FLOAT(IP) = FORTRAN supplied mathematical function to change an integer (IP) to its real equivalent. This allows us to find the fractional difference between PSLOW*10 and IP.		

Variable/Fixed Factor Name	Description	Source
	T(IP+1,IB) = Next higher element of delay timetable used to interpolate the stated value of T(IP,IB).	
	PSLOW = Fraction of total primary instrument operations represented by user classes other than air carrier.	
ATTTA	Value of a statistical life.	Constant of \$530,000
MEDIAV	Bourly value of time of aircraft passengers/occupants.	Constant of \$17.50
	Aircraft variable operating costs per hour by user class and aircraft type category. The user classes (identified in the first two positions) and the aircraft type categories (identified in the third position) are cross-referenced at the end of this appendix.	Constants outlined in Appendix C
Х	A year of an ASR's estimated 15-year economic life.	
	Factors relating to aircraft type mategories (third position) within each user class (first two positions):	
ţ	Air Carrier: Thribofan, 4-andina, wide hody	
1 Q	4-engline	
20N	4-engine,	
9 !	Turbotan, 3-engine, wide body muthers 2-resize variat body	
	2-engine,	
ACG	Turbofan, 2-engine, regular body	
NCI NCI	Turboprop Platon	
	Air Taxi (Including Air Commuter):	
ATA	Jet	
ATB	Turboprop	
ATC	Multi-engine piston Single-engine piston	
ATB	Rotorcraft	
	General Aviation (Excluding Air Taxi):	
GAA	Jet	
	Turboprop Multi-endine piston	
	Single-engine piston	
GAE	Rotorcraft	
	Military:	
MLA	det	
NG.B	Turboprop	
	Piston Rotor craft	

Default Value

ų,

REFERENCES

- 1. <u>Airway Planning Standard Number One, Terminal Air Navigation</u> Facilities and Air Traffic Control Services, FAA Order 7031.2B.
- 2. <u>Establishment Criteria for Airport Surveillance Radar</u> (ASR/ATCRBS/BDS), Report Number FAA-ASP-75-2, December 1975.
- 3. <u>Air Traffic Staffing Standards System</u>, FAA Order 1380.33B, March 10, 1980.
- 4. <u>Cost Comparison Handbook</u>, Supplement No. 1 to OMB Circular No. A-76, March 1979.
- 5. <u>Capital Stock Measures for Transportation, Volume I</u>, DOT, December 1974.
- 6. <u>A Concept for New Establishment Criteria for Airport Surveillance</u> <u>Radar</u>, Report Number NBSIR-74-593, prepared for the FAA by the National Bureau of Standards, October 1974.
- 7. <u>Ceiling-Visibility Climatological Study and Systems Enhancement</u> <u>Factors</u>, prepared for the FAA by the National Oceanic and Atmospheric Administration, June 1975.
- 8. FAA Air Traffic Activity Calendar Year 1973, FAA, February 1974.
- 9. <u>Economic Values for Evaluation of Federal Aviation Administration</u> <u>Investment and Regulatory Programs</u>, Report Number FAA-APO-81-3, September 1981.
- 10. Handbook of Air Traffic Projections: CONUS 1962-1980, FAA, Systems Research and Development Service, April 1964.
- 11. Civil Aviation Midair Collisions Analysis January 1964-December 1971, Report FAA-EM-73-8, MITRE Corporation, May 1973.
- 12. Civil Aviation Midair Collisions Analysis 1972 Added to the 1964-71 Results, Addendum 1 to Report FAA-EM-73-8, MITRE Corporation, December 1974.
- 13. The Safety Impact of Flight Environment Factors, Airports and FAA Facility Factors, QUESTEK Corporation (Walton Graham, et al.), Task Order IV to FA:79-WAI-078.
- 14. ARTS II Enhancements Costs and Benefits, Report Number FAA-AVP-76-16, September 1976.
- 15. Official Airline Guide, published by Reuben H. Donnelley Corporation.
- 16. <u>Airport Activity Statistics of Certificated Route Air Carriers</u>, prepared jointly by the FAA and CAB.
- 17. Aircraft Operating Cost and Performance Report, CAB, July 1980.

- 18. Commuter Air Carriers as of September 1975, FAA, Office of Management Systems, September 30, 1975.
- 19. 1978 General Aviation Activity and Avionics Survey, Report Number FAA-MS-80-5, FAA, Office of Management Systems, March 1980.
- 20. <u>General Aviation Pilot and Aircraft Activity Survey</u>, Report Number FAA-MS-79-7, FAA, Office of Management Systems, December 1979.
- 21. Cost/Benefit Analysis of Tower Cab Radar Approach Control, FAA, April 1970.
- 22. Evaluation of High Activity Level Tower Cab, FAA-RD-2-111, FAA, October 1972.
- 23. Intermediate Activity Level Tower Cab Design Evaluation, FAA-RD-71-77, FAA, November 1971.
- 24. Evaluation of Hexagonal VFR ATC Tower Cab for Intermediate Activity Level Airports, FAA, Systems Research and Development Service, April 1971.
- 25. Terminal Area Forecasts, FY 1982-FY 1995.
- 26. ATS Fact Book, FAA Air Traffic Service, September 30, 1981.
- 27. Annual Review of Aircraft Accident Data, U.S. Air Carrier Operations, National Transportation Safety Board, 1966-1979.
- 28. <u>Annual Review of Aircraft Accident Data, U.S. General Aviation</u>, National Transportation Safety Board, 1969-1978.
- 29. SCI (Systems Control, Inc.) data file, APO-130.