

Long-Term Bridge Performance Program

Hamid Ghasemi, Ph.D.

Program Manager Long-Term Bridge Performance Program Federal Highway Administration Turner-Fairbank Highway Research Center McLean, Virginia

LTBP Program Objective

Improved asset management

Improved knowledge of bridge performance

Collect, document and maintain high quality, quantitative performance data

- Over the next five years, LTBP will inspect, document, evaluate, and periodically monitor a representative sample of bridges nationwide, taking advantage of advanced condition monitoring technologies in addition to detailed visual inspections.
- The high-quality data gathered in the process and the subsequent data analysis and data mining aim to significantly enhance our knowledge of bridge performance.

- Among the study's objectives are improved lifecycle cost and predictive models, better understanding of bridge deterioration and more effective maintenance and repair strategies.
- LTBP results should also support improved design methods and bridge preservation practices and help develop the next generation of bridges and bridge management systems.

Understanding and Evaluating Performance

Performance is a critical factor in optimal operation of highway systems

Understanding performance is key to address bridge deficiencies and the design/construction of superior bridges of the future

Understanding and Evaluating Performance

- How do we define bridge performance objectively?
- Are current measures (sufficiency and condition rating) sufficient to describe performance of critical nodes of a multi-domain system?
- Does "health index" account for interactions important to bridge and highway system performance?
- What are the critical design, fabrication and construction parameters, loading and behavior mechanisms, operational as well as maintenance practices that have significant impacts on bridge LC performance?

Understanding and Evaluating Performance

- How do we rationally estimate LCC given the complexity of multidomain infrastructure system?
- Challenge is to formulate performance in terms of rational, measurable indices that correlate with the performance of the entire system

Goals and Performance Categories

Structural Condition & Integrity

- . Types, Materials and Specifications
- Clearance
- ·As built material and construction quality
- Traffic loads –trucks
- •Environment climate, air quality and marine atmosphere
- Snow and ice removal operations
- •Type, timing and effectiveness of preventive maintenance
- Type, time and effectiveness of restorative maintenance and rehabilitation
- ·Hydraulic designs and scour mitigation programs
- ·Soil characteristics and settlement

Safety of User

- Structural geometry
- Vertical clearance
- Traffic volume and % trucks
- ·Posted Speeds

Cost to User and Agency

- User
- Accident cost
- · Delay and detour costs to users
- Agency
- Initial costs
- Maintenance and rehabilitation costs

Highway Transportation as a Multidomain, Multidisciplinary, Layered System-of-Systems

Program Approach

2010

Maka available a usar friendly high quality database on bridge

2009

OBJECTIVE

œ

S

SK

4

2008

- Develop a national concensus that the program is critical for a more efficient nationwide bridge management system
- Review Pilot Program to determine lessons learned and area for improvement
- · Develop future Phase Program that is:
 - Manageable
 - Comprehensive
 - Repeatable

- Achievable
- Measurable
- Representative

Development and Pilot Phase Tasks

Task Number	Task Description	CAIT	PB	UTC	VTRC	Siemens	Advitam	BDI	Emin Aktan
1.1	Road Map	$\sqrt{}$	X	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V	V
1.2	Specific data to be collected			$\sqrt{}$	X		$\sqrt{}$	V	V
1.3	Development of Data Infrastructure					X	$\sqrt{}$		$\sqrt{}$
1.4	Protocols for data sampling, collection and Q/A		$\sqrt{}$		$\sqrt{}$		X	V	$\sqrt{}$
1.5	Bridge Sampling Methodology	X	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$
1.6	Synthesis of bridge monitoring and autopsy methods			X					$\sqrt{}$
1.7	Protocols for Bridge Monitoring and autopsy			X	V				$\sqrt{}$
1.8	Communication/Marketing Plan and Products	X	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$
2.1	Project Coordination (for fieldwork)	V	X	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
2.2.1	Draft Pilot Study Plan	V	X	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
2.2.2	Pilot Study Execution	X	X	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		V	$\sqrt{}$

X

Indicates team member with primary responsibility

Indicates team member that will provide significant contributions to the task

- Task 1.1: Road Map
 - Understanding
 - Guide to the LTBP program
 - Basis of early communication and marketing plan
 - Identify the range of issues, needs, and desired state-ofpractice at the end of the LTBP program.
 - Approach
 - Review lessons learned from similar projects
 - Work closely with advisory board and stakeholders

- Task 1.2: Specific Data to be Collected
 - Understanding
 - Identify key elements
 - Type of data
 - Determine what relevant data is available from other sources
 - Approach
 - Work with SHA
 - Bring together experienced bridge inspectors for symposium

- Task 1.3: Development of Data Infrastructure
 - Understanding
 - Open, scalable, extensible software and data infrastructure
 - Incorporate tools and algorithms for:
 - Life Cycle Cost Models
 - New Data analytical Methods
 - Easy to use
 - Approach
 - Experience from previous projects will be leveraged
 - Connection with NBI, NOAA, GIS, etc

- Task 1.4: Protocols for Data Sampling and Collection
 - Understanding
 - Develop protocols for:
 - Inspection
 - Instrumentation
 - Data Quality Assurance
 - Determine quantity and frequency of data collection
 - Approach
 - Protocols need to be coordinated with the rest of the LTBP team

- Task 1.5: Bridge Sampling
 - Understanding
 - Develop methodology and rational for sampling bridges
 - Recommend type, number, and location
 - Final sample shall support the objectives of LTBP program
 - Approach
 - Multiobjective constrained optimization problem
 - Combined top-down heuristic and bottom-up statistical approach
 - Work closely with stakeholders

- Task 1.6: Synthesis of Bridge Monitoring & Autopsy Methods
 - Understanding
 - Synthesize past work for both short-term and long-term monitoring
 - Structural Health Monitoring (SHM)
 - NDE/NDE techniques
 - Include benefits realized from the application of SHM and Autopsy
 - Approach
 - Work closely with Turner Fairbanks NDE/NDT Laboratory
 - Review published literature

- Task 1.7: Protocols for Bridge Monitoring & Bridge Autopsy
 - Understanding
 - Develop protocols and standards for monitoring and autopsy
 - Document protocols for implementation
 - Accommodate a variety of sensors, instrumentation, and NDE/NDT methods
 - Approach
 - Based on findings of Task 1.6
 - Take advantage of existing documents

Review of Developmental Phase Tasks

- Task 1.8: Communication and Marketing Plan
 - Understanding
 - Develop aggressive communication and marketing plan including:
 - LTBP Website
 - PowerPoint Presentations
 - Briefings
 - Program Newsletter
 - Workshops
 - Conferences
 - Approach
 - Work closely with FHWA and Stakeholders
 - Aggressive outreach

