EIS

John Isaacson [isaacson@lanl.gov] From: Thursday, June 02, 2005 2:04 PM Sent:

KIRK.W.OWENS@saic.com To:

ewithers@doeal.gov; torig@lanl.gov; sradz@lanl.gov; janecky@lanl.gov Cc:

CMR NEPA Document tables Subject:

Attachments: CMR_BG_Tables_1,_2.doc

CMR_BG_Tables_1, _2.doc (31 KB)...

Kirk, attached are tables 1&2 from the CMR NEPA Determination Document that have been updated.

JΙ

John Isaacson S-SWEIS Project Leader ENV Division M887 (505) 667-2276 (phone) (505) 667-0731 (fax)

Table 1. Principal Buildings and Structures of CMR Building

Technical Area	Principal Buildings and Structures
	CMR Building: 3-29
	Low Level Waste Storage and Transfer
	Facility: 3-154

Table 2. CMR Building

Capability	Operations Examples
1. Analytical	1.1 Sample analysis in support of a wide range of actinide research
Chemistry	and processing activities. Approximately 4,000 samples/year.
2. Uranium Processing	2.1 Activities to recover, process, and store LANL highly enriched
	uranium inventory by 2011. Includes possible recovery of
	materials resulting from manufacturing operations.
3. Destructive and	3.1 Evaluate less than 5 secondaries/year through
Nondestructive	destructive/nondestructive analysis and disassembly.
Analysis	3.2 Receive, disassemble, and analyze assemblies and components
	used to measure radiologic effects on different materials such as
	metals, metal alloys, and ceramics. These activities could include
	machining, cutting, grinding, and polishing.
	3.3 Performance Demonstration Program to test nondestructive
	analysis/nondestructive examination equipment.
4. Nonproliferation	4.1 Nonproliferation training involving SNM. No additional quantities
Training	of SNM, but may work with more types of SNM than in 1995.
5. Actinide Research	5.1 Introduce research and development effort on spent nuclear fuel
and Development	related to long-term storage, and analyze components in spent and
	partially spent fuels.
	5.2 Metallurgical microstructural/chemical analysis and compatibility
	testing of actinides, and other metals. Primary mission to study
	long-term aging and other material effects. Characterize about 100
	samples/year.
	5.3 Analysis of TRU waste disposal related to validation of the Waste
	Isolation Pilot Project (WIPP) and other waste facilities
	performance assessment models.
	5.4 TRU waste characterization.
	5.5 Analysis of gas generation such as could occur in TRU waste
	during transportation to WIPP or other waste facilities.
	5.6 Demonstrate actinide decontamination technology for soils and
	materials.
	5.7 Develop actinide precipitation method to reduce mixed wastes in LANL effluents.
	5.8 Develop small-scale (less than 1 kg/year) actinide processing capability.
	5.9 Perform gas-solid interfacial studies using surface science
	instrumentation and associated techniques.
	5.10 Investigate physical and mechanical properties of plutonium metal

	alloys.
6. Fabrication and	6.1 As part of the Isotope Production Program, produce up to 100
Processing	Curies per year of industrial or medical radioisoptopes.
	6.2 Process up to 5,000 Ci/year plutonium-238/beryllium and
	americium-241/beryllium neutron sources.
	6.3 Produce up to 4 kg/year of americium oxide.
6.5	6.4 Stage up to 1,000 beta/gamma/neutron sources such as plutonium-
	238/beryllium, americium-241/beryllium, americium-241,
	plutonium-238, cobalt-60, cesium-137, strontium-90, californium-
	252, iridium-192, radium-226, and curium-244 in Wing 9 floor
	holes.
	6.5 Support complete highly enriched uranium processing, research
	and development, pilot operations, and casting.
	6.6 Fabricate metal shapes, including up to 50 sets of highly enriched
	uranium components, using 1 to 10 kg highly enriched uranium
	per operation.
	6.7 Material recovered and retained in inventory. Up to 1,000 kg
	annual throughput.
	6.8 Fabricate actinide metal alloys.
	6.9 Study/perform fabrication methods and effects of thermo-
	mechanical processing on actinide materials.

a: Source: Modified from SWEIS 1998 Yearbook (LANL 1999).
b: Includes installation of UF/RO and nitrate reduction processes in Building 50-01 and installation of above-ground tanks for the collection of influent radioactive liquid waste.