RECONNAISSANCE INVESTIGATION OF TIN OCCURRENCES AT ROCKY MOUNTAIN (LIME PEAK), EAST-CENTRAL ALASKA

By P. Jeffrey Burton, J. Dean Warner, and James C. Barker

* Open file 31-85

UNITED STATES DEPARTMENT OF THE INTERIOR

Donald P. Hodel, Secretary

BUREAU OF MINES

Robert C. Horton, Director

TABLE OF CONTENTS

	Page
Abstract	1
Introduction	2
Acknowledgments	2
Location, access, and physiography	. 2
Land status	3
Previous work	3
Regional geology	4
Investigations	5
Geology of the Lime Peak pluton	5
Major-oxide analyses	7
Stream sediment and panned concentrate sampling	9
Methods	9
Results	11
Rock sampling	15
Methods	15
Results	15
Discussion	16
Summary and recommendations	18
References	21
Appendix APanned concentrate and stream sediment sample	ļ
analytical results	24
Appendix BRock sample analytical results	37

ILLUSTRATIONS

-g) 🖚

...

		Follows	Page
	1.	Location map	2
	2.	Regional geology of the Lime Peak area	4
	3.	Reconnaissance geologic map of the Lime Peak pluton	6
	4.	Stream sediment and panned concentrate sample location	
		map	9
	5.	Interpretative geochemical map showing locations of	
		anomalous samples and outlines of anomalous drainages	14
	6.	Rock sample location map	15
		TABLES	Page
	1.	Major-oxide and normative composition of the Lime Peak	
		pluton	·8
	2.	Methods of trace-element analyses for different sample	
		suites	10
	3.	Anomalous values in stream sediment samples	12
	4.	Anomalous values in panned concentrate samples	. 13
	5.	Major-oxide composition of greisen sample	17
	A-1.	. Results of analyses of panned concentrate samples	24
	A-2.	. Results of analyses of stream sediment samples	28
	A-3	. Recovery (R) values of Sn, W, and Nb in panned concentrate	9
		samples	36
•	B-1.	. Results of analyses of rock samples	37
	8-2.	. Results of semi-quantitative emission spectrographic	
		analyses of 1983 (Ci) Lime Peak rock samples	40

UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT

СМ	centimeter	mg	milligram
g	gram	pct	percent
16	pound	ppm	parts per million
m	meter		

RECONNAISSANCE INVESTIGATION OF TIN OCCURENCES AT ROCKY MOUNTAIN

(LIME PEAK), EAST-CENTRAL ALASKA

By P. Jeffrey Burton, 1 J. Dean Warner, 2 and James C. Barker³

ABSTRACT

Preliminary reconnaissance, during the period 1977 to 1983, in the Rocky Mountain (Lime Peak) area by the Bureau of Mines and the University of Alaska, Mineral Industry Research Laboratory indicates the Lime Peak pluton is a composite intrusion comprising at least three plutonic phases cut by two sets of north-trending dikes. Numerous occurrences of fault-controlled, tin-bearing greisen have been identified. The greisen is composed of quartz. chlorite, sericite, and minor amounts of fluorite, tourmaline, topaz, pyrite, chalcopyrite, and molybdenite; samples contain between 60 and 1560 ppm tin. Because there has been no systematic sampling the extent of the mineralization is unknown.

Stream sediment and panned concentrate samples contain anomalous metal concentrations over a region that is generally coincident with outcrops of the Lime Peak pluton. Two anomalous drainage areas in addition to several isolated anomalous samples comprise the larger anomalous region. Anomalous concentrations of tin, tungsten, columbium (niobium), and thorium occur in sediment or panned concentrate samples collected from streams draining the Lime Peak summit whereas anomalous concentrations of lead, zinc, uranium, thorium, copper, tin, and beryllium occur in samples from streams draining the northeastern periphery of the pluton.

¹Mining engineer. Formerly of Mineral Industries Research Laboratory. University of Alaska, Fairbanks, AK.

²Geologist, Alaska Field Operations Center, Bureau of Mines, Fairbanks,

AK, ³Supervisory physical scientist. Alaska Field Operations Center, Bureau of Mines, Fairbanks, AK.

INTRODUCTION

Tin occurrences in the Lime Peak⁴ area (fig. 1), northern Yukon-⁴The name "Lime Peak" was recently changed to "Rocky Mountain". <u>Because "Lime Peak" is more widely known it is used in this report.</u> Tanana Upland, Alaska, were investigated during the summer of 1977 by the Bureau of Mines, during the summers of 1978 and 1979 by the lead author as part of a thesis investigation (<u>1</u>),⁵ and during the summer of

⁵Underlined numbers in parentheses refer to items in the list of references preceding the appendixes.

1983 by the Bureau of Mines and the University of Alaska, Mineral Industry Research Laboratory (MIRL). This report has been compiled as part of an on-going Bureau program to assess Alaska's strategic and critical mineral reserves. Results of reconnaissance investigations in the Lime Peak area are presented here; results of more detailed work in 1984 will be presented at a later date.

ACKNOWLEDGMENTS

This report includes previously unpublished data that has been donated to the Bureau of Mines. Mapco Minerals Co. permitted use of results of reconnaissance geologic mapping of the Lime Peak area obtained in 1978. Results of regional stream sediment sampling by Union Carbide in 1974 are also included. In 1977, investigations were assisted by Florence Weber of the United States Geological Survey (USGS). These companies and individuals are thanked for their contributions.

LOCATION, ACCESS, AND PHYSIOGRAPHY

Lime Peak is located in the Circle (C-6) quadrangle, Alaska (fig. 1). It lies approximately 58 miles northeast of Fairbanks in the White Mountains. There is no road access to this area; however, the

Scale, miles

FIGURE 1. - Location map.

Steese Highway is located 30 miles to the southeast and existing winter trails extend into the area.

. 7.0

The terrain is characterized by moderately steep, tundra+ and rubble-covered hillsides and tor-lined ridges. Elevations vary from approximately 2,500 ft in valley bottoms to 5,062 ft at the Lime Peak summit. Timberline in this region is at approximately 2,500 ft elevation.

LAND STATUS

The Lime Peak area lies within the White Mountain National Recreation Area, which is managed by the Bureau of Land Management (BLM) as authorized in 1980 by the Alaska National Interest Lands Conservation Act (PL 96-487). This area is currently (April 1984) closed to mineral entry.

PREVIOUS WORK

The Lime Peak area has been included in several previous geologic investigations. In 1913, Prindle ($\underline{2}$) geologically mapped the region and identified the Lime Peak pluton as a porphyritic biotite granite. In 1937, Mertie ($\underline{3}$) investigated the Yukon-Tanana Upland province and confirmed Prindle's description of the pluton. In the 1970's, several mineral exploration companies investigated the region for deposits of tin, uranium, tungsten, and other metals. During this period, Mapco Minerals Co. geologically mapped and diamond drilled a portion of the Lime Peak intrusion. Also during this period, Union Carbide conducted a regional stream sediment sampling survey that included the Lime Peak area. In 1978, the Bureau published a report on mineral deposits of the Tanana-Yukon Uplands that identified the Lime Peak pluton as tin-bearing (4). Most recently, in 1983, Menzie ($\underline{5}$) reported results of stream sed-

iment, panned concentrate, and rock sampling in the Lime Peak area.

Other mineral related studies that are relevant to the Lime Peak area have been conducted in the White Mountains. In 1973, Holm ($\underline{6}$) investigated the Mount Prindle pluton which outcrops 10 miles southeast of, and is similar to, the Lime Peak pluton. In 1973, Foster and others ($\underline{7}$) remapped the Yukon-Tanana Upland province and redefined much of the stratigraphy. In 1974, Geometrics, Inc. under contract to the U.S. Geological Survey (USGS), determined the aeromagnetic residual intensity of the eastern half of the Livengood quadrangle and all of the Circle Quadrangle and identified a magnetic high on the northwest side of the Lime Peak pluton ($\underline{8}$). In 1977 the Bureau ($\underline{9}$) identified anomalous concentrations of uranium in artesian springs and stream sediments in the Mount Prindle area. Most recently, in 1983, Foster and others ($\underline{10}$) published a preliminary geologic map of the Circle Quadrangle.

REGIONAL GEOLOGY

In general, the Lime Peak area is underlain by metasedimentary rocks of Precambrian to early Paleozoic age that form a series of thrust sheets that were probably juxtaposed as a result of complex right-lateral movement along the nearby Tintina fault (fig. 2; <u>1</u>). These rocks were intruded in Late Cretaceous time by several plutons of biotite granite.

The Lime Peak pluton is hosted by three units of low-grade metasedimentary rocks that lie stratigraphically above units of the polymetamorphosed Precambrian Yukon Cataclastic Complex (11-12). The basal unit of the lower Paleozoic rocks is composed of quartzite, slate, and argillite and contains a distinctive intraformational conglomerate with pale blue quartz granules. The middle unit comprises intercalated slate, quartzite, siltsone and limestone. The uppermost unit consists of chert, phyllite,

FIGURE 2. I. Regional geology of the Lime Peak area.

and slate.

Biotite granite occurs in the White Mountains in five principal plutons: Cache Mountain, Lime Peak, Victoria Mountain, Quartz Creek, and Mount Prindle (fig. 2). The intrusions are predominantly medium- to coarse-grained porphyritic biotite granites. Subordinate rock types are latite, andesite, tourmaline granite, and pegmatite (<u>1</u>). Age dates from the Cache Mountain and Mount Prindle plutons cluster at 57 \pm 2 m.y. (<u>6</u>). The Lime Peak and Quartz Creek plutons are undated but may be of similar early Tertiary age as suggested by lithologic similarities to these plutons.

The Lime Peak pluton is located 11 miles southwest of the Tintina fault, which is an extension of the Tintina Trench in Canada (<u>13</u>). Up to 200 miles of Late Cretaceous-early Tertiary right-lateral displacement is documented along this fault in Alaska (<u>11</u>, <u>13-15</u>). Thrust faults in the Lime Peak Area (fig. 2) may have developed concurrently with movement on the Tintina fault.

INVESTIGATIONS

Geology of the Lime Peak Pluton

The Lime Peak pluton outcrops over approximately 30 square miles and is elongate to the northeast, with a length approximately twice its width (fig. 3). The intrusion is exposed over more than 2,500 vertical feet with outcrop and rubble well exposed above 3,500 ft elevation. Because of tundra and colluvium cover, however, little is known of the geology at lower elevations. Contact relationships were mapped in the northeast, southwest, and south-central portions of the pluton and indicate the intrusion generally is conformable with the region's northeast-striking structural trend (fig. 2).

The Lime Peak pluton is a composite intrusion comprising at least

three plutonic phases. The most abundant rock type is medium- to coarsegrained, equigranular to porphyritic, biotite granite (Tgb) that contains approximately 35 pct smokey quartz, 40 pct orthoclase, 20 pct albitic plagioclase, 5 pct biotite, and trace to minor amounts of fluorite, apatite, and zircon. Plagioclase, quartz, and biotite occur as subhedral, embayed crystals surrounded by larger anhedral orthoclase phenocrysts. The Tgb unit commonly forms tors that line ridgetops in the Lime Peak area. Leucocratic, fine-grained, hypidiomorphic granular, seriate biotite granite (Tgf) forms the second intrusive phase and is found along the margins of, and in scattered outcrops within, the Lime Peak pluton (fig. 3). Contact relationships are obscure, but this rock may represent a more highly evolved phase of the intrusion or a chilled portion of the Tgb unit. Third, a small body of moderately coarse-grained equigranular muscovite granite (Tgm) composed of approximately 40 pct smokey quartz, 30 pct albitic plagioclase, 25 pct orthoclase, 4 pct muscovite, up to 2 pct tourmaline, and minor amounts of fluorite crops out at the southwestern end of the Lime Peak pluton. Tourmaline and fluorite occur in miarolitic cavities, and plagioclase occurs as euhedral laths surrounded by anhedral quartz, orthoclase, and muscovite.

Dikes and small bodies of porphyritic rhyolite to quartz latite (Tr) and andesite (Ta) are common in the area just south of the Lime Peak summit (fig. 3). These dikes cut both the Tgf unit and the Tgb unit. The rhyolite (Tr) is composed of equal amounts of subhedral to euhedral quartz, orthoclase, and albitic plagioclase and minor irregularly shaped biotite phenocrysts in a fine matrix of quartz, orthoclase, and muscovite. The phenocrysts make up 60 pct of this rock, and fluorite occurs

Base adapted from U.S.G.S. 1:63,360 Circle (C-6) Quadrangle.

rarely in miarolitic cavities. The andesite (Ta) is dark green to gray and commonly contains phenocrysts of potassium feldspar.

Rocks adjacent to the intrusion have undergone contact metamorphism. Argillaceous rocks have been hornfelsed and are banded gray, olive green, purple, and red. Calcareous rocks are now marble with green to gray calc-silicate layers.

Major-Oxide Analyses

Table 1 shows the major-oxide and normative mineral compositions of various phases of the Lime Peak pluton. Samples Ci53, Ci38, and Ci41 represent the Tgb unit, whereas samples Ci42 and Ci59 represent the Tr and Tgm units, respectively. Samples of the Tgf unit were not obtained for major-oxide analyses.

Samples (Ci53, Ci38, and Ci41) of the Tgb unit show very uniform compositions. The three samples contain between 74 to 75 pct SiO₂, 12.3 to 12.7 pct Al₂O₃, 0.80 to 0.85 pct CaO, 2.7 to 3.0 pct Na₂O, and 5.5 to 5.8 pct K₂O. Total normative quartz, albite, and orthoclase for all three samples (differentiation index of Thorton and Tuttle, (<u>16</u>)) is between 90.3 and 92.3 pct. Samples Ci38 and Ci41 also contain normative corundum.

In comparison, samples of the Tgm unit (Ci59) and Tr unit (Ci42) contain lower SiO₂, CaO, and K₂O concentrations but higher Al₂O₃ and Na₂O concentrations than samples of the Tgb unit (table 1). Additionally, differentiation indexes are either higher (Tgm unit) or lower (Tr unit), and in both normative anorthite is significantly lower than values in samples from the Tgb unit. Also, neither the Tgm unit nor the Tr unit contains normative corundum.

Rock type	Medium-	to coarse-	Rhyolite	Muscovite	
	biotite granite			(Tr)	granite
		(TgĎ)		(Tgm)	
Sample ¹	C153	C138	Ci41	Ci42	C159
	Major oxid	le analyses	² (weight	percent)	
Si02	75.00	74.00	74.50	71.50	74.00
A1203,	12.30	12.70	12.30	14.80	13.60
Fe ₂ 03 ³	2.15	2.50	2.20	.90	1.20
MgŪ	.05	.15	.10	ND	ND ND
Ca0	.85	.85	.80	.70	.50
Na ₂ 0	3.00	2.70	2.70	5.80	4.40
K ₂ 0	5.50	5.70	5.80	4.40	4.80
LŌI	.51	.75	.76	.54	.58
Ti02	.05	.15	.10	ND	ND
P ₂ 05	.03	.04	.03	.02	.04
Mn0	.04	.03	.04	.13	.06
Tota1	99.48	99.57	99.33	98.79	99.18
Normat	tive Minera	al Composit	tion ⁴ (wei	ght percen	t)
quartz	34.25	33.82	34.35	14.52	28.63
corundum	NP	.62	.15	NP NP	NP
orthoclase	32.53	33.72	34.31	26.03	28.36
albite	25.46	22.82	22.82	49.02	37.20
anorthite	3.75	3.96	3.93	1.32	2.22
enstatite	. 18	. 38	.25	.78	.13
ferrosilite	.79	.98	.66	.40	.48
wollastonite.	.20	NP	NP	.90	NP NP
magnetite	1.71	2.00	1.76	.58	.96
ilmenite	.10	. 29	. 19	.10	.10
apatite	.09	.06	.04	.03	.06
Tota1	99.06	98.65	98.46	93.68	98.14

TABLE 1. - Major-oxide and normative compositions of the Lime Peak pluton

è.

ND Not detected.

NP Not present.

¹Sample descriptions given in text and in table B-1, appendix B. ²Analyses performed by Bondar-Clegg, Inc., Lakewood, CO. ³Total Fe measured as Fe_2O_3 . ⁴ Fe0:Fe₂O₃ calculated as 1:1 wt pct ratios.

STREAM SEDIMENT AND PANNED CONCENTRATE SAMPLING

Methods

Locations of 62 stream sediment and 60 panned concentrate samples collected during the 1977 and 1983 Bureau and MIRL field investigations and the 1974 Union Carbide reconnaissance are shown in Figure 4. Results of analyses are given in appendix A. The three sample suites are differentiated by prefixes to the map location numbers; the prefix "Be" is used for the 1977 Bureau investigations, "Ci" is used for the 1983 Bureau and MIRL investigations, and "CP" is used for 1974 Union Carbide reconnaissance.

Stream sediment and panned concentrate samples were obtained with a steel shovel from silty gravels taken from either the center of the active channel of smaller creeks or from the leading edge of gravel bars on larger streams. For stream sediment samples, approximately 0.5 lb of silt was placed directly into water-resistant paper bags, air-dried, and screened at minus 80 mesh. The minus 80-mesh fraction was then pulverized prior to atomic absorption, fluorometric, emission spectrographic, or colorimetric analyses (table 2). Panned concentrates were collected with a 14-inch (35.6 cm) pan that was heap-filled and carefully panned untill nearly all low-specific gravity minerals were removed. For the Ci and CP samples, the concentrated heavy mineral fractions were then air-dried in the laboratory, weighed, and pulverized for analyses by X-ray fluorescence or atomic absorption techniques, respectively. For the Be samples, on the other hand, the concentrate was magnetically separated, and the non-magnetic minerals were further concentrated with bromoform, which has a specific gravity of 2.85. The denser nonmagnetic concentrate was then pulverized to minus 200 mesh and analyzed by semi-quantitative optical emission spectrographic methods.

rarely in miarolitic cavities. The andesite (Ta) is dark green to gray and commonly contains phenocrysts of potassium feldspar.

Rocks adjacent to the intrusion have undergone contact metamorphism. Argillaceous rocks have been hornfelsed and are banded gray, olive green, purple, and red. Calcareous rocks are now marble with green to gray calc-silicate layers.

Major-Oxide Analyses

Table 1 shows the major-oxide and normative mineral compositions of various phases of the Lime Peak pluton. Samples Ci53, Ci38, and Ci41 represent the Tgb unit, whereas samples Ci42 and Ci59 represent the Tr and Tgm units, respectively. Samples of the Tgf unit were not obtained for major-oxide analyses.

Samples (Ci53, Ci38, and Ci41) of the Tgb unit show very uniform compositions. The three samples contain between 74 to 75 pct SiO₂, 12.3 to 12.7 pct Al₂O₃, 0.80 to 0.85 pct CaO, 2.7 to 3.0 pct Na₂O, and 5.5 to 5.8 pct K₂O. Total normative quartz, albite, and orthoclase for all three samples (differentiation index of Thorton and Tuttle, (<u>16</u>)) is between 90.3 and 92.3 pct. Samples Ci38 and Ci41 also contain normative corundum.

In comparison, samples of the Tgm unit (Ci59) and Tr unit (Ci42) contain lower SiO₂, CaO, and K₂O concentrations but higher Al₂O₃ and Na₂O concentrations than samples of the Tgb unit (table 1). Additionally, differentiation indexes are either higher (Tgm unit) or lower (Tr unit), and in both normative anorthite is significantly lower than values in samples from the Tgb unit. Also, neither the Tgm unit nor the Tr unit contains normative corundum.

Rock type	Medium-	to coarse-	Rhyolite	Muscovite	
- •	biotite granite			(Tr)	granite
		(Tgb)		(Tqm)	
Sample ¹	C153	C138	Ci41	Ci42	C159
<u></u>	Major oxid	le analyses	s ² (weight	percent)	·····
Si02	75.00	74.00	74.50	71.50	74.00
A1203,	12.30	12.70	12.30	14.80	13.60
$Fe_{2}^{-0}a_{3}^{-3}$	2.15	2.50	2.20	.90	1.20
MgŪ	.05	.15	.10	ND	ND
Ca0	.85	.85	.80	.70	. 50
Na ₂ 0	3.00	2.70	2.70	5.80	4.40
K20	5.50	5.70	5.80	4.40	4.80
LŌI	.51	.75	.76	.54	.58
Ti02	.05	.15	.10	ND	ND
P ₂ 05	.03	.04	.03	.02	.04
Mn0	.04	.03	.04	.13	.06
Tota1	99.48	99.57	99.33	98.79	99.18
Norma	tive Minera	al Composit	tion ⁴ (weight	ght percen	t)
quartz	34.25	33.82	34.35	14.52	28.63
corundum	NP	.62	.15	NP NP	NP NP
orthoclase	32.53	33.72	34.31	26.03	28.36
albite	25.46	22.82	22.82	49.02	37.20
anorthite	3.75	3.96	3.93	1.32	2.22
enstatite	. 18	. 38	.25	.78	.13
ferrosilite	.79	.98	.66	.40	.48
wollastonite.	.20	NP	NP	.90	NP
magnetite	1.71	2.00	1.76	.58	.96
ilmenite	.10	. 29	.19	.10	.10
apatite	.09	.06	.04	.03	.06
Tota1	99.06	98.65	98.46	93.68	98.14

TABLE 1. - Major-oxide and normative compositions of the Lime Peak pluton

ND Not detected.

ار کار

NP Not present. ¹Sample descriptions given in text and in table B-1, appendix B. ²Analyses performed by Bondar-Clegg, Inc., Lakewood, CO. ³Total Fe measured as Fe_2O_3 . ⁴ Fe0:Fe₂O₃ calculated as I:1 wt pct ratios.

STREAM SEDIMENT AND PANNED CONCENTRATE SAMPLING

Methods

Locations of 62 stream sediment and 60 panned concentrate samples collected during the 1977 and 1983 Bureau and MIRL field investigations and the 1974 Union Carbide reconnaissance are shown in Figure 4. Results of analyses are given in appendix A. The three sample suites are differentiated by prefixes to the map location numbers; the prefix "Be" is used for the 1977 Bureau investigations, "Ci" is used for the 1983 Bureau and MIRL investigations, and "CP" is used for 1974 Union Carbide reconnaissance.

Stream sediment and panned concentrate samples were obtained with a steel shovel from silty gravels taken from either the center of the active channel of smaller creeks or from the leading edge of gravel bars on larger streams. For stream sediment samples, approximately 0.5 lb of silt was placed directly into water-resistant paper bags, air-dried, and screened at minus 80 mesh. The minus 80-mesh fraction was then pulverized prior to atomic absorption, fluorometric, emission spectrographic, or colorimetric analyses (table 2). Panned concentrates were collected with a 14-inch (35.6 cm) pan that was heap-filled and carefully panned untill nearly all low-specific gravity minerals were removed. For the Ci and CP samples, the concentrated heavy mineral fractions were then air-dried in the laboratory, weighed, and pulverized for analyses by X-ray fluorescence or atomic absorption techniques, respectively. For the Be samples, on the other hand, the concentrate was magnetically separated, and the non-magnetic minerals were further concentrated with bromoform, which has a specific gravity of 2.85. The denser nonmagnetic concentrate was then pulverized to minus 200 mesh and analyzed by semi-quantitative optical emission spectrographic methods.

Base adapted from U.S.G.S. 1:63,360 Circle (C-6) Quadrangle.

4. - Stream sediment and panned concentrate sample location map.

Sample suite	Elements	Analytical
•		method
Ci rock samples ²	Au, Ag	FA
	F	SIE
	W	l C
	Th	R
	U	İ F
	Nb	XRF
	Sn. Li. Rb. Cu	AA
	40 elements	ES
Be rock samples ²	Ag. Pb. 7n. Cu. Mo	
CP rock samples ³		FA
	Cu. Pb. 7n. Mo	AA
	W	C
	11	F
Ci pan concentrate samples ²	Sn. W. Nb. Ta	XRF
Be pan concentrate samples ²	Cu. Pb. 7n. Mo. W	
Be stream sediment samples ²	Th.	R
be bellaum begimente bumpies	11	F
_	24 alamants	
CP stream sodiment samples2	$\Delta \sigma$ CH Db $7n$ Mo W	
or scream searment samples	Ag, Cu, FO, Zh, MO, M H	
IFA - fire accay: C - colonim	$+m_{1}$ E_{-} f_{110} mometry M_{-}	2 + 0 mi 0
=1A $=111e$ assay, $C = C0101100$	ecry, F - Hudrometry, AA -	
absorption, $c_3 = emission spects and VPE = X_{c_1}$	-way fluorecone	31E -
$\frac{2}{2} \frac{1}{2} \frac{1}$	-ray Huurescence.	+
Analyses by the bureau of Min	Tes Keno (NV) Kesearch Cen	ter.
Analyses by bondar-liegg, ind	., vancouver, bu, canada.	

TABLE 2. - Methods of trace-element analyses for different sample suites

•

. *4.*

•

.

.

,

Tables 3 and 4 give minimum concentrations of elements considered anomalous in stream sediment and panned concentrate samples from the Lime Peak area. These threshold values were chosen at relatively high concentrations so as to include only those values most likely to indicate significant mineralization. Because of differences in mode of collection and analyses between the three sample suites, the analytical results are not directly comparable. Therefore differing methods have been used to determine anomalous threshold values. These methods are also summarized on tables 3 and 4.

Values for tin, tungsten, and niobium (columbium) in Be and Ci panned concentrate samples were converted to weight per pan volume (mg/pan) measurements by methods described by Barker (<u>18</u>). The resultant measurement is a measure of the total amount of a particular metal contained in a sample. This measurement gives a more realistic assessment of the anomalous nature and allows for comparison between the different sample populations Calculated weight per pan volume measurements are listed in table A-3. Anomalous levels of niobium, tin, and tungsten and highly anomalous levels of tin and tungsten were chosen by inspection of these values.

Results

At the levels given in tables 3 and 4, the Lime Peak area contains anomalous metal concentrations in stream sediment and panned concentrate samples over an approximately 3- by 10-mile, northeast-trending region (fig. 5). This region is generally coincident to outcrops of the Lime Peak pluton. Anomalous concentrations of copper, lead, silver, zinc, tin, thorium, uranium, barium, molybdenum, boron, niobium, lanthanum, tantalum, gold, and beryllium were variously found in stream sediment or panned

TABLE 3. - Anomalous threshold values in stream sediment samples. Elements not listed are present in concentrations that are either less than the 98th percentile of values or are within the background population of values on histograms presented by Barker and Hall (17).

Flomont	Value (nom)	Dotomination
LICINCIIC	varue (ppm)	Decerninacion-
Ag	6	98th percentile of Be samples.
B	300	Do.
Ba	5,000	Do.
Be	16	Do.
P b	301	Do.
Cu	300	Do.
Sn	20	Visual inspection of Be data.
Zn	300	Do.
Mo	20	Do.
U	. 80	Do.
Th	100	Do.
W	30	Do.
Anome	love lovels	hand the 1 040 second 11

¹Anomalous levels are based on 1,048 samples collected from igneous and metasedimentary terranes of central and northern Alaska (17).

TABLE 4. - Anomalous threshold values (in mg/pan or ppm) in panned concentrate samples. Elements not listed are present in concentrations considered less than anomalous by Barker and Hall (17).

Element	Value	Determination			
Sn:					
(very anomalous)	100 mg/pan	Visual inspection of data. ¹			
(anomalous)	20 mg/pan	Do.			
W:	1				
(very anomalous)	100 mg/pan	Do.			
(anomalous)	20 mg/pan	Do.			
Nb	1.2 mg/pan	Do.			
Β	² 2,500 ppm	98th percentile of Be samples. ³			
Be	240 ppm	Do.			
Cu	² 1,000 ppm	Do.			
La	² 9,000 ppm	Do.			
РЬ	23,400 ppm	Do.			
Au	detectable	Visual inspection of Be data. 3			
Мо	75 ppm	Do.			
Та	100 ppm	Visual inspection of Ci data. ⁴			
Cu (CP samples)	100 ppm	Visual inspection of CP data. ⁴			
Pb (CP samples)	70 ppm	Do.			
Zn (CP samples)	350 ppm	Do.			
T-11-01-12					

Table B-1, appendix B.

²Determined for nonmagnetic fraction of heavy mineral concentrate. ³Anomalous levels are based on 527 pan concentrate samples collected from igneous and metasedimentary terranes of central and northern Alaska (17), some of which are presented in table A-1, appendix A. ⁴Table A-1, appendix A.

iable A-1, appendix A.

concentrate samples.

Two distinct anomalous areas. each containing several adjacent drainages containing anomalous metal concentrations, can be defined within the anomalous region (fig. 5). Samples collected from the central portion of the pluton, define an area containing anomalous concentrations of niobium and thorium and anomalous to very anomalous concentrations of tin and tungsten. Tin values in the area range from 20 to 50 ppm in stream sediment samples and from 43.6 to 561.8 mg/pan in pan concentrate samples. No tungsten was detected in stream sediment samples but values range from 24.7 to 101.4 mg/pan in panned concentrate samples. Six of seven panned concentrate samples from the area also contain anomalous concentrations of niobium, with values ranging between 1.2 and 5.5 mg/pan. Samples collected from the northeastern portion of the Lime Peak pluton define the second anomalous drainage area (fig. 5). Stream sediment and panned concentrate samples collected from drainages heading near the intrusive contact contain anomalous concentrations of lead, zinc, uranium, thorium, beryllium, barium, molybdenum, copper, and tin. The southern limit of this anomalous area is unknown because of lack of sample data.

An isolated tin-tungsten-niobium panned concentrate sample anomaly also occurs approximately two miles southwest of the western anomalous area and anomalous concentrations of copper, lead, zinc, molybdenum, tin, silver, boron, beryllium, gold, and tantalum occur elsewhere in samples from streams draining the periphery of the pluton. Most of these anomalies occur on the southern or southwestern margin of the pluton, however the gold anomalies occur in the headwaters of Moose Creek, on the northeastern margin of the pluton.

Base adapted from U.S.G.S. 4:63,360 Circle (C-6) Quadrangle.

FIGURE 5. - Interpretative geochemical map showing locations of anomalous samples and outlines of anomalous drainages.

ROCK SAMPLING

Methods

Thirty-nine rock samples were collected for analyses by the Bureau and MIRL in 1977 and 1983, and four were collected by Union Carbide in 1974. Like the stream sediment and panned concentrate samples, these sample suites are differentiated by the prefixes "Be" (1977 Bureau), "Ci" (1983 Bureau), and "CP" (1974 Union Carbide).

Rock samples consist of random chips generally collected within a few feet of the sample station, unless otherwise noted. Rocks were pulverized and analyzed by procedures listed in table 2. Analytical results are presented in appendix B. Descriptions of samples listed in table B-1 are taken from field notes, supplemented in some cases by thin section examination. Locations of rock samples are shown in Figure 6.

The limited number of rock sample analyses precluded statistical determination of anomalous threshold values. Therefore, anomalous values were arbitrarily chosen by inspection of data given in appendix B.

Results

Anomalous metal concentrations in rock samples collected from the Lime Peak area are associated with two styles of mineralization: skarn, developed near the contact zone of the Lime Peak pluton; and greisen, developed within the Lime Peak pluton. Samples of skarn, collected from near the northern and southeastern intrusive contacts (samples Ci28 and Ci46), contain elevated to anomalous concentrations of tin and tungsten. The highest values were detected in iron-stained, magnetite-pyrrhotitepyroxene skarn rubble, one sample (Ci46) of which contained 220 ppm Sn and 100 ppm W.

Greisen⁶ was observed in rubble and in outcrop over much of the central

^oThe abundance of chlorite at Lime Peak indicates the alteration described here does not fall under the classical definition of "greisen" (<u>19</u>). In the context of this report, the term refers to zones of tin mineralization.

Base adapted from U.S.G.S. 1:63,360 Circle (C-6) Quadrangle.

and southeastern portions of the Lime Peak pluton. The greisen is typically composed of millimeter- to half-meter-wide manganese-stained, quartz-chlorite veins enclosed within an alteration envelope of chlorite, sericite, quartz, and locally, fluorite. Topaz, blue tourmaline, pyrite, chalcopyrite, and molybdenite have also been identified in greisen at Lime Peak. The veins occur both in sheeted zones and along faults and are probably the source of cassiterite found in the surrounding drainages. Table 5 shows the major-oxide composition of one sample of greisen.

Samples of greisen collected from scattered occurrences within the Lime Peak pluton contain elevated to anomalous values of tin and other metals (table B-1). Tin values range from 60 to 1,560 ppm. The highest values are from samples Ci32, Ci36, and Ci37. Corresponding tungsten values in greisen samples are generally low; the highest value is 140 ppm W, found in sample Ci44. All but one of the greisen samples also contain detectable concentrations of silver, and many of the samples contain elevated values of uranium. Anomalous copper, lead, and zinc concentrations have also been detected.

Because there has been no systematic sampling of the greisen zones, the extent of mineralization is unknown. Seven samples from different occurrences of greisen along a ridge in Sec. 3 T. 9 N., R 5 contained an average of 610 ppm Sn and 2.36 ppm Ag with ranges of 220 to 1,000 ppm Sn and 0.370 to 4.843 ppm Ag. Although rock samples contain anomalous concentrations of tin, analyses completed to date do not indicate economic ore-grade material.

DISCUSSION

Stream sediment and panned concentrate anomalies indicate potential for additional mineralization. Anomalous concentrations of lead, zinc, and

Sample suite	Elements	Analytical
		method ¹
Ci rock samples ²	Au, Ag	FA
	F	SIE SIE
	W	C
	Th	R
	U	F
	Nb	XRF
	Sn, Li, Rb, Cu	AA
•	40 elements	ES
Be rock samples ²	Ag, Pb, Zn, Cu, Mo	AA
CP rock samples ³	Au, Ag	FA
	Cu, Pb, Zn, Mo	AA
	W	C C
	U	F
Ci pan concentrate samples ²	Sn, W, Nb, Ta	XRF
Be pan concentrate samples ²	Cu, Pb, Zn, Mo, W	AA
Be stream sediment samples ²	Th	R
	U	I F
	24 elements	ES
CP stream sediment samples ²	Ag, Cu, Pb, Zn, Mo, W	AA
	U	F
IFA - fire assay; C - colorime	etry; F- fluorometry; AA -	atomic
absorption; ES - emission spectr	<pre>rography; R - radiometric;</pre>	SIE -
specific ion electrode; XRF - X-	ray fluorescence.	

TABLE 2. - Methods of trace-element analyses for different sample suites

²Analyses by the Bureau of Mines Reno (NV) Research Center. ³Analyses by Bondar-Clegg, Inc., Vancouver, BC, Canada.

.

Tables 3 and 4 give minimum concentrations of elements considered anomalous in stream sediment and panned concentrate samples from the Lime Peak area. These threshold values were chosen at relatively high concentrations so as to include only those values most likely to indicate significant mineralization. Because of differences in mode of collection and analyses between the three sample suites, the analytical results are not directly comparable. Therefore differing methods have been used to determine anomalous threshold values. These methods are also summarized on tables 3 and 4.

Values for tin, tungsten, and niobium (columbium) in Be and Ci panned concentrate samples were converted to weight per pan volume (mg/pan) measurements by methods described by Barker (<u>18</u>). The resultant measurement is a measure of the total amount of a particular metal contained in a sample. This measurement gives a more realistic assessment of the anomalous nature and allows for comparison between the different sample populations Calculated weight per pan volume measurements are listed in table A-3. Anomalous levels of niobium, tin, and tungsten and highly anomalous levels of tin and tungsten were chosen by inspection of these values.

Results

At the levels given in tables 3 and 4, the Lime Peak area contains anomalous metal concentrations in stream sediment and panned concentrate samples over an approximately 3- by 10-mile, northeast-trending region (fig. 5). This region is generally coincident to outcrops of the Lime Peak pluton. Anomalous concentrations of copper, lead, silver, zinc, tin, thorium, uranium, barium, molybdenum, boron, niobium, lanthanum, tantalum, gold, and beryllium were variously found in stream sediment or panned

TABLE 3. - Anomalous threshold values in stream sediment samples. Elements not listed are present in concentrations that are either less than the 98th percentile of values or are within the background population of values on histograms presented by Barker and Hall (17). 2.

Element	Value (ppm)	Determination ¹
Ag	6	98th percentile of Be samples.
Β	300	Do.
Ba	5,000	Do.
Be	16	Do.
Pb	301	Do.
Cu	300	Do.
Sn	20	Visual inspection of Be data.
Zn	300	Do.
Mo	20	Do.
U	. 80	Do.
Th	100	Do.
W	30	Do.

¹Anomalous levels are based on 1,048 samples collected from igneous and metasedimentary terranes of central and northern Alaska (17).

TABLE 4. - Anomalous threshold values (in mg/pan or ppm) in panned concentrate samples. Elements not listed are present in concentrations considered less than anomalous by Barker and Hall (17).

Element	Value	Determination
Sn:		······································
(very anomalous)	100 mg/pan	Visual inspection of data. ¹
(anomalous)	20 mg/pan	Do.
W:		
(very anomalous)	100 mg/pan	Do.
(anomalous)	20 mg/pan	Do.
Nb	1.2 mg/pan	Do.
B	² 2,500 ppm	98th percentile of Be samples. ³
Be	² 40 ppm	Do.
Cu	² 1,000 ppm	Do.
La	² 9,000 ppm	Do.
Pb	² 3,400 ppm	Do.
Au	detectable	Visual inspection of Be data. ³
Mo	75 ppm	Do.
Та	100 ppm	Visual inspection of Ci data. ⁴
Cu (CP samples)	100 ppm	Visual inspection of CP data. ⁴
Pb (CP samples)	70 ppm	Do.
Zn (CP samples)	350 ppm	Do.

Table B-1, appendix B.

²Determined for nonmagnetic fraction of heavy mineral concentrate. ³Anomalous levels are based on 527 pan concentrate samples collected from igneous and metasedimentary terranes of central and northern Alaska (17), some of which are presented in table A-1, appendix A. ⁴Table A-1, appendix A. concentrate samples.

Two distinct anomalous areas, each containing several adjacent drainages containing anomalous metal concentrations, can be defined within the anomalous region (fig. 5). Samples collected from the central portion of the pluton, define an area containing anomalous concentrations of niobium and thorium and anomalous to very anomalous concentrations of tin and tungsten. Tin values in the area range from 20 to 50 ppm in stream sediment samples and from 43.6 to 561.8 mg/pan in pan concentrate samples. No tungsten was detected in stream sediment samples but values range from 24.7 to 101.4 mg/pan in panned concentrate samples. Six of seven panned concentrate samples from the area also contain anomalous concentrations of niobium, with values ranging between 1.2 and 5.5 mg/pan. Samples collected from the northeastern portion of the Lime Peak pluton define the second anomalous drainage area (fig. 5). Stream sediment and panned concentrate samples collected from drainages heading near the intrusive contact contain anomalous concentrations of lead, zinc, uranium, thorium, beryllium, barium, molybdenum, copper, and tin. The southern limit of this anomalous area is unknown because of lack of sample data.

An isolated tin-tungsten-niobium panned concentrate sample anomaly also occurs approximately two miles southwest of the western anomalous area and anomalous concentrations of copper, lead, zinc, molybdenum, tin, silver, boron, beryllium, gold, and tantalum occur elsewhere in samples from streams draining the periphery of the pluton. Most of these anomalies occur on the southern or southwestern margin of the pluton, however the gold anomalies occur in the headwaters of Moose Creek, on the northeastern margin of the pluton.

ROCK SAMPLING

Methods

Thirty-nine rock samples were collected for analyses by the Bureau and MIRL in 1977 and 1983, and four were collected by Union Carbide in 1974. Like the stream sediment and panned concentrate samples, these sample suites are differentiated by the prefixes "Be" (1977 Bureau), "Ci" (1983 Bureau), and "CP" (1974 Union Carbide).

Rock samples consist of random chips generally collected within a few feet of the sample station, unless otherwise noted. Rocks were pulverized and analyzed by procedures listed in table 2. Analytical results are presented in appendix B. Descriptions of samples listed in table B-1 are taken from field notes, supplemented in some cases by thin section examination. Locations of rock samples are shown in Figure 6.

The limited number of rock sample analyses precluded statistical determination of anomalous threshold values. Therefore, anomalous values were arbitrarily chosen by inspection of data given in appendix B.

Results

Anomalous metal concentrations in rock samples collected from the Lime Peak area are associated with two styles of mineralization: skarn, developed near the contact zone of the Lime Peak pluton; and greisen, developed within the Lime Peak pluton. Samples of skarn, collected from near the northern and southeastern intrusive contacts (samples Ci23 and Ci46), contain elevated to anomalous concentrations of tin and tungsten. The highest values were detected in iron-stained, magnetite-pyrrhotitepyroxene skarn rubble, one sample (Ci46) of which contained 220 ppm Sn and 100 ppm W.

Greisen⁶ was observed in rubble and in outcrop over much of the central

The abundance of chlorite at Lime Peak indicates the alteration described here does not fall under the classical definition of "greisen" (19). In the context of this report, the term refers to zones of tin mineralization.

and southeastern portions of the Lime Peak pluton. The greisen is typically composed of millimeter- to half-meter-wide manganese-stained, quartz-chlorite veins enclosed within an alteration envelope of chlorite, sericite, quartz, and locally, fluorite. Topaz, blue tourmaline, pyrite, chalcopyrite, and molybdenite have also been identified in greisen at Lime Peak. The veins occur both in sheeted zones and along faults and are probably the source of cassiterite found in the surrounding drainages. Table 5 shows the major-oxide composition of one sample of greisen.

Samples of greisen collected from scattered occurrences within the Lime Peak pluton contain elevated to anomalous values of tin and other metals (table B-1). Tin values range from 60 to 1,560 ppm. The highest values are from samples Ci32, Ci36, and Ci37. Corresponding tungsten values in greisen samples are generally low; the highest value is 140 ppm W, found in sample Ci44. All but one of the greisen samples also contain detectable concentrations of silver, and many of the samples contain elevated values of uranium. Anomalous copper, lead, and zinc concentrations have also been detected.

Because there has been no systematic sampling of the greisen zones, the extent of mineralization is unknown. Seven samples from different occurrences of greisen along a ridge in Sec. 3 T. 9 N., R 5 contained an average of 610 ppm Sn and 2.36 ppm Ag with ranges of 220 to 1,000 ppm Sn and 0.370 to 4.843 ppm Ag. Although rock samples contain anomalous concentrations of tin, analyses completed to date do not indicate economic ore-grade material.

DISCUSSION

Stream sediment and panned concentrate anomalies indicate potential for additional mineralization. Anomalous concentrations of lead, zinc, and

TABLE 5. - Major-oxide composition of greisen sample

Sample.... S102.... A1203.... Fe203.... Mg0.... Ci 44 65.00 14.00 9.70 .05 Ca0..... 1.20 Na₂0..... K₂0..... LOI..... ..10 2.50 2.26 T102..... .05 P₂05.... Mn0..... .01 .34 Total... 95.21

(weight percent)

copper in samples from streams draining the northeastern and southwestern contact of the Lime Peak pluton (fig. 5) may have been derived from skarn and replacement mineralization. Anomalous concentrations of tin, tungsten, niobium, molybdenum, and thorium in stream sediment or panned concentrate samples collected from streams draining the Lime Peak summit area are apparently derived from greisen mineralization. The potential for placer tin in the gravels of the larger streams is indicated, but has not yet been tested.

Isolated beryllium, boron, tin, tungsten, niobium, molybdenum, and tantalum stream sediment and pan concentrate anomalies from the southwestern portion of the Lime Peak pluton (fig. 5) may also have been derived from greisen mineralization or from pegmatites. Although not observed, mineralogically complex pegmatites may be the source of several beryl [Be $_3Al_2(Si_60_8)$] crystals that were found in creek gravels in in north-central Sec. 26, T. 9 N., R. 4 E. Anomalous levels of boron may be due to the presence of tourmaline within either the pegmatites, greisen, or muscovite granite (Tgm unit). The anomalous level of tantalum (140 ppm in sample Ci15) may be due to either the adjacent Tgm unit or a complex pegmatite.

SUMMARY AND RECOMMENDATIONS

Preliminary reconnaissance in the Lime Peak area indicates the Lime Peak pluton to be a composite intrusion comprising at least three texturally and compositionally distinct plutonic phases that are cut by at least two compositionally distinct sets of northtrending dikes.

Numerous occurrences of manganese-stained, quartz-chlorite<u>+</u> sericite+ fluorite greisen have been identified. These occurrences

are generally localized along faults but also locally comprise wide sheeted zones.

Samples of greisen contain anomalous concentrations of tin, however, because there has been no systematic sampling, the extent of mineralization is unknown. Seven samples from an area with numerous greisen zones in the central and north-central portion of Sec. 3, T 9 N, R 5 E contain an average of 610 ppm Sn and 2.36 ppm Ag. Other samples of greisen, from the southeastern and southern portions of the Lime Peak pluton, contain up to 570 ppm Sn. Although rock samples contain anomalous concentrations of tin, analyses completed to date do not indicate economic ore-grade material.

Stream sediment and panned concentrate samples contain highly anomalous metal concentrations over a region that is generally coincident with outcrops of the Lime Peak pluton. Anomalous concentrations of tin, tungsten, and niobium occur in streams draining the Lime Peak summit area whereas anomalous concentrations of lead, zinc, uranium, thorium, copper, tin, and beryllium occur in streams draining the northeastern contact of the pluton. Numerous, additional anomalous concentrations of beryllium, copper, zinc, silver, boron, molybdenum, niobium, tin, and tantalum occur as isolated stream sediment or pan concentrate anomalies in the southern and southwestern portions of the pluton.

Preliminary results presented here indicate that addditional work in the Lime Peak area is warranted. Of priority importance is completion of geologic mapping in the Lime Peak summit area and stream sediment and panned concentrate sampling along the northwestern periphery of the

intrusion. Follow-up of isolated stream sediment, panned concentrate, and rock sample anomalies in the southern and central portion of the intrusion is also needed. Future detailed work should include systematic mapping and sampling of greisen zones. Additionally, bulk samples of gravels from the headwaters of the North Fork Preacher Creek, Mascot Creek, and other creeks draining the Lime Peak summit, should be collected and tested for economic concentrations of placer tin.

2.

REFERENCES

1. Burton, P. J. Radioactive Mineral Occurrences Mt. Prindle Area Yukon-Tanana Uplands, Alaska. M.S. Thesis, Univ. AK, Fairbanks, AK, 1981, 72 pp.

2. Prindle, L. M. A Geologic Reconnaissance of the Fairbanks Quadrangle, Alaska. U.S. Geol. Surv. Bull. 525, 1913, 220 pp.

3. Mertie, J. B. The Yukon-Tanana Region, Alaska. U.S. Geol. Surv. Bull. 872, 1937, 276 pp.

4. Barker, J. C. Mineral Deposits of the Tanana-Yukon Uplands: A Summary Report. BuMines OFR 88-78, 1978, 33pp.

5. Menzie, W. D., H. L. Foster, R. B. Tripp, and W. E. Yeend. Mineral Resource Assessment of the Circle Quadrangle, Alaska. U.S. Geol. Surv. OFR 83-170B, 1983, 57 pp.

6. Holm, Bjarne. Bedrock Geology and Mineralization of the Mt. Prindle Area, Yukon-Tanana Uplands, Alaska. M.S. Thesis, Univ. AK, Fairbanks, AK, 1973, 54 pp.

7. Foster, H. L., F. R. Weber, R. B. Forbes, and E. E. Brabb. Regional Geology of the Yukon-Tanana Upland, Alaska. In Arctic Geology (M. G. Pitcher, ed.), Am. Assoc. Petroleum Geol. Memoir 19, Tulsa, 1973, pp. 388-395.

8. Brosge' W. P. and J. T. Dutro, Jr. Paleozoic Rocks of Northern and Central Alaska. In Arctic Geology, (M.G. Pitcher, ed.), Am. Assoc. Petroleum Geol. Memoir 19, Tulsa, 1973, pp. 361-373.

9. Barker, J. C. and K. H. Clautice. Anomalous Uranium Concentrations in Artesian Springs and Stream Sediments in the Mount Prindle Area, Alaska. BuMines OFR 130-77, 1977, 19pp.

REFERENCES--Continued

10. Foster, H. L., J. Laird, T. E. C. Keith, G. W. Cushing, and W. D. Menzie. Preliminary Geologic Map of the Circle Quadrangle, Alaska: U. S. Geol. Surv. OFR 83-170A, 1983.

11. Tempelman-Kluit, D. J. Transported Cataclasite, Ophiolite, and Granodiorite in Yukon: Evidence of Arc-Continent Collision. Geol. Soc. Can., Paper 79-14, 1979, pp. 1-27.

12. Chapman, R. M., F. R. Weber, and B. Taber. Preliminary Geologic Map of the Livengood Quadrangle, Alaska. U.S. Geol. Surv. OFR 71-66, 1971.

Roddick, J.A. The Tintina Trench. J. Geol., v. 75, 1967, pp. 23-32.
Grantz, A. Strike Slip Faults in Alaska. U.S. Geol. Surv. OFR 66-53, 1966, 82 pp.

15. Davis, G. A., J. W. H. Monger, and B. G. Burchfield. Mesozoic Construction of the Cordilleran "collage," Central British Columbia to Central California. In Mesozoic Paleography of the Western U.S. (D. G. Howell and K. A. McDougal, eds.). Soc. Econ. Paleontologists and Mineralogists Press, Los Angeles, 1978, pp. 1-28.

16. Thornton, C. P. and O. F. Tuttle. Chemistry of Igneous Rocks: Differentiation Index. Am. J. Sci., v. 258, 1960, pp. 664-684.

17. Barker, J. C. and G. T. Hall. Geochemical Data on Portions of the Tanana-Yukon Uplands. Support data for BuMines OFR 88-78; available upon request from D. Warner, BuMines, AFOC, Fairbanks, AK.

18. Barker, J. C. Reconnaissance of Tin and Tungsten in Heavy Mineral Panned Concentrates along the Trans-Alaska Pipeline Corridor, North of Livengood, Interior Alaska. BuMines OFR 59-83, 1983, 24 pp.

REFERENCES--Continued

19. Gary, M., R. McAfee, Jr., and C. L. Wolf, editors. Glossary of Geology. American Geological Institute, Washington DC., 1974, 805 pp. APPENDIX A.--PANNED CONCENTRATE AND STREAM SEDIMENT SAMPLE ANALYTICAL RESULTS

TABLE A-1. - Results of analyses¹ of panned concentrate samples

Map no	Bel ²	Be2	Be3	Be4	Be5	Веб	Be7	Be8
Field no	Be1355	Be1354	Be1352	Be2289	Be1099	Be1167	Be1160	Bel158
Agppm	3	2	3	5	10	10	10	15
Auppm	500	700	1,000	N	N	N /	N	N
Bppm	G	G	3,000	150	2,000	1,000	2,000	2,000
Bappm	10	7	- 7	G	2,000	5,000	N	N
Beppm	N	L	N	L	10	20	20	20
Bippm	N	_N	N	N	L	L	L L	L
Ceppm	N	30	30	N	N	N a	N	100,000
Coppm	500	1,500	1,500	70	100	50	N	100
Crppm	150	300	300	1,500	2,000	2,000	1,000	2,000
Cuppm	L	L	L	. 300.	1,000	1,000	500	500
Lappm	15	15	15	1,000	N	10,000	7,000	20,000
Moppm	• N	N	N	15	20	20	20	300
Nbppm	200	200	300	L	Ĺ	-200	500	1,000
N1ppm	200	300	- 300	150	200	2,000	200	2,000
Pbppm	N	N	N	150	2,000	5,000	700	2,000
Sbppm	N	N	N	N	N	N	N	
Snppm	/00	500	700	N	200	50,000	5,000	5,000
Vppm]	100	300	200	300	1,000	1,000	500	5,000
Mbbw	L	L	L	N	L	L	5,000	/00
lappm	NA	NA	NA	NA	NA	NA	NA	NA NA
Yppm	N	N	N	N	200	2,000	2,000	10,000
2rppm	1,000	G	· G	1,000	G			
<u>Znppm</u>	1,500	1,500	1,500	1,000	2,000	2,000	1,000	1,000
Map no	Bey	Belu	Bell	Bel2	Bel3	Bel4	Bel5	Belb
Field no	Bell51	Beruos	Beluis	BEIOIO	BETOOR	BETOO1	BETODO	BELOO2
Agppm	10		10	2	L N			
Auppm	200	500		2 000	10,000	2 000	N 2 000	700
Bppm	300	500	5,000	2,000	10,000	2,000	2,000	/00
варрт	5,000	10		N 15	20	50	100	
bepom	10	10	5U N	12	20 N	50		
61ppm		L N	20,000	nu N	N		200 N	
Ceppm	50	N N	20,000	10	10	20	70	
Coppm	1 000	1 000	2 000	1 000	500	1 000	1 000	1 500
	1,000	1,000	2,000	· 200	150	200	1,000	1,500
	T,000	120	200	200 N	120	200 N	Г <u>1</u> 000	UUC
	20	N N	200	20	20	20	50	50
Nb ppm	20		200	200	200	200	200	200
Ni nom	200	150	2 000	100	200	100	500	2 000
Ph nnm	500	700	2,000	300	1 000	200	1 000	500
Sh. nnm	N	,	500	500 N	1,000 N	200 N	1,000 N	N
Sn nm	100	200	1 000	5 000	300	10 000	7 000	1 000
V nnm	1 000	50	200	100	300	100	100	100
W	1,000	N N	1				200	2,000
	NA	NA	ΝΔ	NA NA	NĂ	NA	NA NA	NA NA
Y	500	500	1,000	1,000	700	700	700	500
Zr. nm		1,000	1,000 G	,000 G	a l	a	, , , , , , , , , , , , , , , , , , ,	1,000
7nnm	2,000	2,000	2,000	1,000	1.000	1,000	2.000	2,000
<u></u>			11-1-1-1			1,000		1 2,000

 ^{1}G - greater than detection limit; L - detected; N - not detected; NA - not analyzed.

 2 Data for samples with Be prefix from Barker and Hall (18). As and Pt below detection limits. Analyses by emission spectrography performed by Mineral Industry Research Laboratory (MIRL) University of Alaska, Fairbanks, AK.

Results of analyses¹ of panned concentrate samples--Continued

Мар по	Be17	CP13	CP2	CP3	CP4	CP5	CP6	CP7
Field no	Be1088	CP2988	CP2990	CP1548	CP1779	CP1542	CP1768	CP3022
Agppm	10	<5	<5	<5	<5	<5	<5	<5
Auppm	N	NA	NA	NA	NA	NA	NA	NA
Bppm	700	NA	· NA	. NA	NA	NA /	- NA	NA
Bappm	L	NA	NA	NA	NA	NA	NA	NA
Beppm	100	NA	NA	NA	NA	NA	NA	NA
Bippm	· ι	NA	NA	NA	NA	NA	NA	NA
Ceppm	. N	NA	NA	NA	NA	NA	NA	NA
Coppm	100	NA	NA	NA	NA	NA	NA	NA
Crppm	1,000	NA	NA	NA	NA	NA	NA	NA
Cuppm	1,000	75	100	75	65	50	55	65
Lappm	N	NA	NA	. NA.	. NA	NA	NA	NA
Moppm	50	10	15	5	5	5	5	10
Nbppm	200	NA	NA	NA	NA	NA	NA	NA
Nippm	150	NA	NA	NA	NA	NA	NA	NA
Pbppm	2.000	10	- 40	20	30	20	35	70
Sbpom	N	NA	NA	NA	NA	NA	NA	NA
Sn ppm	1.000	NA	NA	NA	NA	NA	NA	NA
Yppm	200	NA	NA	· NA	NA	NA	NA	NA
Wpom	L	<10	<10	· 10	<10	18	16	<10
Таррм	NĂ	NA	NA.	NA	NA	NA	. NA	NA
Ypom	700	NA	NA	NA	NA	NA	NA	NA
Zrppm	500	NA	NA	NA	NA	NA	NA	NA
Znpom	2,000	75	165	50	145	75	143	350
Map no	CP8	CP9	CP10	CP11	CP12	CP13	CP14	CP15
Field no	CP1503	CP5893	CP5895	CP1761	CP2963	CP3013	CP2839	CP2842
Agppm	<5	NA	NA	<5	<5	<5	<5	<5
Auppm	NA	NA	NA	NA	NA	NA	NA	NA
Bppm	NA	NA	NA	NA	NA	NA	NA	NA
Bappm	. NA	NA	NA	NA	NA	NA	NA	NA
Beppm	NA	NA	NA	NA	NA	NA	NA	NA
Bippm	NA	NA	NA	NA	NA	NA	NA	. NA
Ceppm	NA	NA	NA	NA	NA	NA	NA	· NA
Coppm	NA	NA	NA	NA	NA	NA	NA	NA
Crppm	NA	NA	NA	NA	NA	NA	NA	NA
Cuppm	85	30	25	65	60	75	85	75
Lappm	NA	NA	NA	• NA	NA	NA	NA	NA
Moppm	5	<5	<5	5	15	10	5	5
Nbppm	NA	NA	NA	NA	NA	NA	NA	NA
Nippm	NA	NA	NA	NA	NA	NA	NA	NA
Pbppm	30	45	45	35	20	35	55	50
Sbppm	NA	NA	NA	NA	NA	NA	NA	NA
Snppm	NA	NA	NA	NA	NA	NA	NA	NA
Vppm	NA NA	NA	NA	NA	NA NA	NA	NA	NA
Wppm	<10	<10	12	19	<10	<10	<10	<10
Tappm	NA	NA	NA	NA	'NA	NA	NA	NA
Yppm	NA NA	NA	NA	NA	NA	NA	NA	NA
Zrppm	NA	NA	NA	NA	NA	NA	NA	· NA
Znppm	100	135	130	120	130	130	- 195	160
+G = groat	ton than	intaction	limit. I	- datact	d. N - no	+ dotocto	d. NA -	10t

analyzed. ³Data for samples with CP prefix from Union Carbide 1974 reconnaissance. Cu, Pb, Zn, and Sn analyses by atomic absorption, and W by colorimetry techniques performed by Bondar-Clegg, Inc., Vancouver, BC, Canada.

Results of analyses¹ of panned concentrate samples--Continued

Map no:	CP16	CP17	CP18	CP19	CP20	CP21	CP22	C114
Field no	CP1236	CP1251	CP1331	CP5603	CP5606	CP5604	CP803	C121286
Agppm	<5	<5	<5	NA	NA	NA	<5	NA
Auppm	NA	NA	NA	NA	NA	NA	NA	NA
Вррп	NA	NA	, NA	NA	NA NA	NA	NA	NA
Bappm	NA	NA	NA	NA	NA *	NA '	NA	NA
Beppm	NA	NA	NA	NA	NA	NA	NA NA	Í NA
Bippm	NA	NA	NA	NA	NA	• NA	NA	NA
Ceppm	NA NA	NA	NA	NA	NA	NA	NA	NA
Coppm	NA NA	NA	NA	NA	NA	NA	NA	NA
Crppm	NA NA	NA	NA	NA	· NA	NA	NA	NA
Cuppm	65	55	50	45	50	45 ·	80	NA
Lappm	NA	NA	NA	NA NA	NA	NA	NA	NA
Moppm	. 10	10	10	<5	<5	<5	10	NA
Nbppm	NA	NA	NA	NA	. NA	NA	NA	<70
Nippm	NA	NA	. NA	NA	° NA	NA	NA	NA
Pbppm	20	50	30	45	60	40	55	NA
Sbppm	NA	NA	- NA	NA	NA	NA	NA) NA
Snppm	NA	NA	NA	NA	NA	NA	NA	<100
Vppm	NA	NA	NA	NA	NA	NA	NA	NA
Wppm	<10	33	16	<10	19	<10	14	<200
Tappm	NA	NA	NA	NA	NA	NA	· NA	<60
Yppm	NA NA	NA	NA	- NA	NA	NA	NA	NA
Zrppm	- NA	NA	NA	NA NA	NA	NA	NA NA	NA NA
Znppm	75	320	12	315	370	360	215	NA ·
Map no	C12	Ci3	C 14	C15	Ci6	Ci7	C18	C19
Field no	C121287	Ci21288	C121289	C121284	Ci21411	C121412	Ci21285	Ci21410
Agppm	NA	NA	- NA	NA	NA	NA	NA	NA
Auppm	NA NA	I NA	NA	NA NA	NA NA	NA	NA NA	NA
	ИЛ							
Bppm	NA	NA	NA	NA	NA NA	NA	NA NA	NA
Bppm Bappm	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bppm Bappm Beppm	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
Bppm Bappm Beppm Bippm	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm Crppm	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Lappm	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Lappm Moppm	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Cuppm Lappm Nbppm	NA NA NA NA NA NA NA STO	NA NA NA NA NA NA NA NA STO	NA NA NA NA NA NA S70	NA NA NA NA NA NA NA S70	NA NA NA NA NA NA NA S70	NA NA NA NA NA NA NA 150	NA NA NA NA NA NA NA STO	NA NA NA NA NA NA NA SOO
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Cuppm Lappm Nbppm Nippm	NA NA NA NA NA NA NA STO NA	NA NA NA NA NA NA NA S70 NA	NA NA NA NA NA NA NA STO NA	NA NA NA NA NA NA STO NA	NA NA NA NA NA NA NA 370 NA	NA NA NA NA NA NA NA 150 NA	NA NA NA NA NA NA NA S70 NA	NA NA NA NA NA NA NA SOO NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Cuppm Lappm Nbppm Nippm	NA NA NA NA NA NA NA STO NA NA	NA NA NA NA NA NA NA S70 NA NA	NA NA NA NA NA NA S70 NA NA	NA NA NA NA NA NA NA <70 NA NA	NA NA NA NA NA NA NA 370 NA NA	NA NA NA NA NA NA NA 150 NA NA	NA NA NA NA NA NA STO NA NA	NA NA NA NA NA NA NA 300 NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Cuppm Lappm Nbppm Nippm Sbppm	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA S70 NA NA NA	NA NA NA NA NA NA STO NA NA NA	NA NA NA NA NA NA NA S70 NA NA NA	NA NA NA NA NA NA 150 NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA SOO NA NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Crppm Lappm Nbppm Nbppm Sbppm Sbppm	NA NA NA NA NA NA NA STO NA NA STO NA NA	NA NA NA NA NA NA NA S70 NA NA NA S100	NA NA NA NA NA NA S70 NA NA S70 NA NA S100	NA NA NA NA NA NA STO NA NA NA 1,600	NA NA NA NA NA NA NA 370 NA NA NA 30,000	NA NA NA NA NA NA NA 150 NA NA A A A A A A A A A A A A A A A A	NA NA NA NA NA NA NA S70 NA NA NA 2,100	NA NA NA NA NA NA NA S,200
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Cuppm Lappm Nbppm Nbppm Sbppm Sbppm Vppm	NA NA NA NA NA NA NA NA NA NA 400 NA	NA NA NA NA NA NA NA S70 NA NA S70 NA NA S70 NA NA	NA NA NA NA NA NA S70 NA NA S100 NA	NA NA NA NA NA NA STO NA NA 1,600 NA	NA NA NA NA NA NA NA 370 NA NA 30,000 NA	NA NA NA NA NA NA NA 150 NA NA 6,700 NA	NA NA NA NA NA NA A A A A A A A A A A A	NA NA NA NA NA NA NA S,200 NA NA
Bppm Bappm Beppm Bippm Ceppm Coppm Crppm Crppm Lappm Nbppm Nbppm Nippm Sbppm Sbppm Yppm	NA NA NA NA NA NA NA NA A NA NA A 00 NA A 200	NA NA NA NA NA NA NA NA S70 NA NA S70 NA NA S70 NA NA S70 NA NA S70 NA NA S70 NA NA S70 NA NA S70 NA NA S70 NA S70 S70 S70 S70 S70 S70 S70 S70 S70 S70	NA NA NA NA NA NA NA A NA A NA A A A A	NA NA NA NA NA NA NA A NA 1,600 NA 500	NA NA NA NA NA NA NA 370 NA NA 30,000 NA 1,500	NA NA NA NA NA NA NA 150 NA NA 6,700 NA 1,800	NA NA NA NA NA NA NA STO NA NA 2,100 NA 1,600	NA NA NA NA NA NA NA S 300 NA NA S ,200 NA 2,100
Bppm. Bappm. Bappm. Bappm. Bappm. Bappm. Ceppm. Ceppm. Crppm. Crppm. Crppm. Crppm. Crppm. Crppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm. Sbppm.	NA NA NA NA NA NA NA NA NA NA A00 NA 400 NA 400 NA 400 NA	NA NA NA NA NA NA NA S70 NA NA S70 NA NA S200 S60	NA NA NA NA NA NA NA A NA A NA A A A A	NA NA NA NA NA NA NA S70 NA NA 1,600 NA S00 80	NA NA NA NA NA NA NA NA 370 NA NA 30,000 NA 1,500 70	NA NA NA NA NA NA NA 150 NA NA 6,700 NA 1,800 <60	NA NA NA NA NA NA NA A NA 2,100 NA 1,600 < 60	NA NA NA NA NA NA NA S,200 NA 2,100 80
Bppm. Bappm. Bappm. Beppm. Bippm. Ceppm. Coppm. Crppm. Crppm. Lappm. Noppm. Nbppm. Nbppm. Sbppm. Sbppm. Sbppm. Yppm. Tappm.	NA NA NA NA NA NA NA NA NA A00 NA 400 NA 400 NA	NA NA NA NA NA NA NA A A A A A A A A A	NA NA NA NA NA NA NA S70 NA NA S70 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA C70 NA NA 1,600 NA 500 80 NA	NA NA NA NA NA NA NA NA 370 NA 370 NA 30,000 NA 1,500 70 NA	NA NA NA NA NA NA NA 150 NA 6,700 NA 1,800 <60 NA	NA NA NA NA NA NA NA S70 NA NA 2,100 NA 1,600 S60 NA	NA NA NA NA NA NA NA S,200 NA 2,100 80 NA
Bppm. Bappm. Bappm. Bappm. Bappm. Bappm. Ceppm. Coppm. Crppm. Crppm. Crppm. Crppm. Noppm. Noppm. Noppm. Noppm. Sbppm. Sbppm. Sbppm. Snppm. Yppm. Tappm. Zrppm.	NA NA NA NA NA NA NA A NA A A A A A A A	NA NA NA NA NA NA NA <70 NA NA <100 NA <200 <60 NA NA	NA NA NA NA NA NA NA <100 NA <200 <60 NA NA	NA NA NA NA NA NA NA <70 NA NA 1,600 NA 500 80 NA	NA NA NA NA NA NA NA 370 NA NA 30,000 NA 1,500 70 NA NA	NA NA NA NA NA NA NA 150 NA A 6,700 NA 1,800 <60 NA	NA NA NA NA NA NA NA <70 NA NA 2,100 NA 1,600 <60 NA	NA NA NA NA NA NA NA S,200 NA S,200 NA 2,100 80 NA
Bppm. Bappm. Bappm. Bappm. Bappm. Bappm. Ceppm. Coppm. Crppm. Crppm. Crppm. Cuppm. Cuppm. Noppm. Noppm. Noppm. Noppm. Sbppm. Sbppm. Sbppm. Sbppm. Crppm. Sbpp	NA NA NA NA NA NA NA A NA A A A A A A A	NA NA NA NA NA NA NA NA S70 NA NA S70 NA NA S70 NA NA S200 S60 NA NA NA NA	NA NA NA NA NA NA NA <70 NA NA <100 NA <200 <60 NA NA NA NA NA	NA NA NA NA NA NA NA SOO NA SOO NA SOO NA NA NA NA NA NA	NA NA NA NA NA NA NA NA 370 NA NA 30,000 NA 30,000 NA 1,500 70 NA NA NA	NA NA NA NA NA NA NA 150 NA NA 6,700 NA 1,800 <60 NA NA NA NA NA	NA NA NA NA NA NA NA A NA 2,100 NA NA 1,600 <60 NA NA NA NA	NA NA NA NA NA NA NA S,200 NA 2,100 80 NA NA NA NA

analyzed. ⁴Data for samples with Ci prefix collected by the Bureau in 1983. Sn, W, Nb, and Ta analyses by X-ray fluorescence techniques performed by the Bureau's Reno (NV) Research Center.

Results	of	analysesl	òf	panned	concentrate	samples-	-Continued
---------	----	-----------	----	--------	-------------	----------	------------

Man no	C110	<u> </u>	C+12	C113	Cil4	Ci15
Field no	C121294	C121296	C121291	C121293	C121292	C121387
	NA	NA	NA	NA	NA	NA
	I NA	ΝΔ	NA	· NA	NA	NA
B nnm	NA	NA	NA	NA	NA	NA
Ba nnm	ΝA	ΝΔ	NA	NA	NA	NA
Re nnm	NA	NA	NA	NA	NA	NA
Bippm	NA	NA	NA	NA	NA	NA
Ce. nnm	I NA	NA	NA	NA-	NA	NA
	NA	NA	NA	NA	NA	NA
Cr. ppm	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA
Mo	NA	NA	NA	• NA	NA	NA
Nb. ppm	430	710	130	<70	<70	<70
Ni nom	NA	NA NA	NA	NA	NA	NA ·
Ph nnm	NA	NA	NA	NA	NA	NA
Sh nm	ΝA	I NA	NA	NA	NA	NA
Sn nm	19,000	72.000	12.000	1,100	<100	200
V ppm	NA	NA NA	NA	NA	NA	NA NA
W nnm.	5,100	13,000	2.600	5,100	<200	300
Ta nom	70	70	<60	70	<60	<60
Y nm	NA	NA	NA	NA	NA	NA
7r	NA	NA NA	NA	NA	NA	NA
7n	NA	NA	NA	NA	NA	NA
Map no.	C116	C117	C118	Ci19	C120	C121
Field no	C121386	C121385	C121413	Ci18716	C121300	C121299
Ag., ppm.	NA	NA	NA	NA	NA	NA
Au	NA	NA	NA	NA	NA	NA
B	NA	NA	NA	NA NA	Í NA	NA
Bappm	NA	NA	NA NA	NA.	NA	NA
Beppm	NA	NA	NA	NA	NA	NA
Bippm	NA	NA	NA	NA	NA	NA
Ceppm	NA	NA	NA	NA	NA	NA
Coppm	NA	NA	NA	NA	NA	NA
Crppm	NA	NA	NA	NA	NA	NA
Cuppm	NA	NA	. NA	NA	NA	NA
Lappm	NA	NA	NA	NA	NA	NA
Moppm	NA NA	NA	NA	NA	NA	NA NA
Nbppm	80	180	<70	910	<70	130
Nippm	NA	NA	NA NA	NA NA	NA	NA
Pbppm	NA	NA NA	NA	NA	NA	NA
Sbppm	NA	NA	NA NA	NA	NA	NA
Snppm	400	1,200	1,200	14,000	1,800	3,600
Vppm	NA	NA	NA	NA	NA	NA
Wppm	300	1,000	1,000	4,000	400	<200
Tappm	<60	<60	<60	60	<60	140
Yppm	NA	NA	NA	NA	NA	NA
	-	-			1	1
Zrppm	NA	NA	NA	NA NA	NA NA	NA NA
Zrppm Zn,ppm	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

NA - not analyzed.

TABLE A-2. - Results of analyses¹ of stream sediment samples

Map no	Be18 ²	Be19	Be20	Be21	Be22	Be23	Be24	Be25
Field no	Be1353	Be1351	Be1100	Be1169	Be1168	Be1116	BeI115	Be1114
Fepct	5	3.5	2	2	20	3,	· 2	2
Mgpct	3.5	3.5	3	5	7	3 (3	3
Capct	5	5	2	5	7	5	7	7
Napct	G	G	G	. G	G	G	G	G
Kpct	NA	NA	NA NA	NA	NA	NA	NA	NA
Tipct	1.0	G	0.7	1	G	0.7	1	1
Mnppm	1,500	1,500	5,000	5,000	G	3,000	5,000	5,000
Agppm	2	2	L	L	2	2	2	2.
Bppm	100	100	70	70	100	100	150	100
Bappm	· N	L	N	N N	N	- N	N	N
Beppm	2	2	2	L	2	10	20	20
Bippm	N	L	5	5	5	L	L	L
Coppm	N	N N	_ N	N	N	L L	N	N
Crppm	300	1,000	300	1,000	2,000	200	500	100
Cuppm	20	15	30	50	50	70	70	70
Gappm	· 1.5	2	1.5	1	2	2	10	7
Lappm	N	N	N	N.	I N	N N	N	N N
Moppm	N	N	L	N	N	L	. L	L
Nippm	100	100	70	500	500	150	300	70
Pppm	L	L	L	L	500	2,000	500	1,000
Pbppm	50	50	N	.L	100	L	300	500
Pdppm	N	N	N	N	N	N	N j	N
Vppm	150	150	150	200	500	300	500	300
Snppm	N	· N	N	N	N	N	30	N
Wppm	N	N	N N	N	N	N N	N	N
Yppm	N N	N N	L	N	N	L	2,000	l L
Znppm	L	N	500	N	700	L	1,500	1,500
Zrppm	350	500	200	N N	1,000	200	500	N
Thppm) NA	NA	14.0	13.8	18.0	78.8	143.8	106.3
U.,ppm	NA	NA	4.6	3.6	3.4	56.0	108.0	45.2
-G - grea	ter than (detection	limit: L	- detect	ed: N - no	ot detect	ed: NA - 1	not

analyzed; i - interference. ²Data for samples with Be prefix from Barker and Hall (<u>18</u>). As, Au, Cd, Li, Nb, Pt, Sb, Sc, Se, Sr, Ta, and Te values below detection limits. Analyses by emission spectrography performed by Mineral Industry Research Laboratory (MIRL), University of Alaska, Fairbanks, AK.

Results of analyses ¹ of stream sediment sam	lesContinued
---	--------------

Map no	Be26	Be27	Be28	Be29	Be30	Be31	Be32	Be33
Field no	Be1113	Be1166	Be1111	Be1165	Be1164	Be1110	Be1163	Be1161
Fepct	5	20	2	10	10	5,	10	5
Mgpct	3	7	. 3	5	7	3	5	7
Capct	5	. 7	5	5	5	5	5	5
Napct	G	G	G	G	G	G	G	G
Kpct	NA	NA	NA	NA	NA	Í NA	NA	NA
Tipct	. 1	G	0.7	1	1	0.7	0.1	0.1
Mnppm	5,000	G	2,000	5,000	G	3,000	5,000	5,000
Agppm	2	2	2	2	2	N	2.	L
Bppm	100	100	30	100	100	20	100	100
Bappm	N	N	5,000	N	N	N) N	N
Beppm	70	10	30	15	· 10	15	15	7
Bippm	L	5	150	5	5	N	5	5
Coppm	1 N	N	_ N	N	N	N	N	N
Crppm	200	2,000	700	1,000	1,000	300	1,000	1,000
Cuppm	70	100	30	50	50	20	50	50
Gappm	2	10	1.5	2	5	L	10	5
Lappm	N	N	N.	N 1	N	N	- N	N
Moppm	L	N -	N	N,	N	N	N N	N N
Nippm	200	500	300	300	300	500	-500	300
Pppm	1,000	500	500	500	1,000	N	500	500
Pbppm	500	7,000	I N	500	700	L	1,500	100
Pdpom	N	N	N	N	N	N N	N	N
Vppm	300	500	30	100	200	300	200	200
Snppm	N	N	N N	N	N	N	N	N
Wppm	N	N	N	N	N	N	N	N
Yppm	L	N	L	N	L [·]	N	N	N
Znppm	500	700	j N	1,000	N	N N	700	N
Zrppm	500	N	500	1,000	1,000	N	N	N
Thppm	109.0	37.0	106.3	57.5	153.0	106.3	54.0	19.6
U.,ppm	88.0	13.2	116.0	13.3	25.5	29.6	30.8	8.6
-G - great	ter than d	detection	Timit; L	- detecte	ed; N - no	ot detect	ed; NA - 1	not

analyzed; i - interference.

. Results of analyses¹ of stream sediment samples--Continued

Map no	Be34	Be35	Be36	Be37	Be38	Be39	Be40	Be41
Field no	Be1109	Be1107	Be1106	Be1159	Be1157	Be1105	Be1101	Be1155
Fepct	1	0.5	5	5	5	2	5	5
Mgpct	2-	0.1	2	5	3	0.5 /	2	3
Capct	2	·0.1	2	3	2	1	2	2
Napct	G	0.8	G	G	G	G	G	G
Kpct	NA	NA	NA	NA	NA	NA	NA	NA
Tipct	0.7	0.15	1	1	1	0.15	0.7	1
Mnppm	3,000	300	2,000	2,000	2,000	700	700	2,000
Agppm	N S	2	2	L	L	N	L	· L
Bppm	70	30	200	100	50	L	70	100
Bappm	N	N	N	N	N	N	N -	NA
Beppm	15	20	2	5	5	3	10	10
Bippm	N	· N	L	5	L	N	5 •	L
Coppm	N	N	N	. N	N	N	N	N
Crppm	300	N	-1,000	1,000	500	N	300	500
Cuppm	30	20	15	70	50	2	7	20
Gappm	L	N	N [†]	1	1	1.5	1	0.5
Lappm	N	N	N	. N	N	I N	N	NA
Moppm	L	N	N	Ň	N	L	. L	N
Nippm	200	100	300	1,000	300	[.] 70	70	200
Pppm	L	500	N	500	L	N	L	N
Pbppm	50	L	N	50	50	N	N	N
Pdppm	N	N	N	N	N	Ň	N	N
Vppm	150	50	100	150	100	70	150	100
Snppm	N	N	N	. N	N	20	50	N
Wppm	N	N (N	· N	N	N	N N	Î N
Yppm	500	Í N	N	N) N	N	Ĺ	N
Znppm	N	500	N	N	N	N	N	N
Zrppm	N	Ń	N	N	N	N	200	N
Thppm	52.5	83.8	8.5	16.8	34.0	107.8	52.5	33.3
U.,ppm	69.6	108.0	1.8	4.7	44.0	46.8	44.7	17.0
G - great	ter than o	detection	limit; L	- detecte	ed; N - no	ot detecte	ed; NA - 1	not

analyzed; i - interference.

Results of analyses¹ of stream sediment samples--Continued

Map no	Be42	Be43	Be44	Be45	Be46	CP213	CP22	CP23
Field no	Be1152	Be1009	Be1005	Be1004	Be1002	CP2987	CP2989	CP3020
Fepct	1	5	. 5	5	5	NA	NA	NA
Mgpct	3	3	3	5	3	NA	NA	NA
Capct	2	2	5	5	2	NA	NA	NA
Napct	G	G	G	G	G	·NA	NA	NA NA
Kpct	- NA	j j	i	i	· i	NA	NA	NA
Tipct	0.7	0.7	0.7	0.7	0.7	NA	NA	NA
Mnpom	5,000	3,000	1,000	200	1,500	NA	NA	NA
Agppm	L	N	L	5	L	<0.5	0.5	0.8
Bppm	150	N	100	70	70	NA	NA	NA
Bappm	NA	70	N	Γ N	N	NA	NA NA	NA
Beppm	2	N	L	L	2	NA	NA NA	NA
Bippm	N	5	5	5	5	NA	NA	NA
Coppm	N	N	_ N	N	N	NA	NA	I NA
Crppm	300	N	500	200	700	NA	NA NA	NA
Cuppm	30	700	20	50	30	22	19	30
Gappm	L	30	15	· 2	2	NA	NA	NA
Lappm	NA	1.5	N	· N	N	NA	NA	NA
Moppm	· N	N	Ĺ	L	L	N	· N	N
Nippm	200	N	200	100	150	NA	NA	NA NA
Pppm	L	300	1,000	1,000	1,500	NA	NA	NA
Pbppm) N	1,000	L	50	100	18	27.	15
Pdppm	N	L	N	N	N	NA	NA	NA NA
Vppm	100	200	200	200	200	NA	NA	NA
Snppm	N	N	· N	N	N) N	N	N
Wppm	N N	N	N	N	L	<10	N N	N
Yppm	N	L	N	L	L	NA	NA NA	NA
Znppm	N	200	200	200	200	80	140	82
Zrppm	N	500	500	200	500	I NA	Í NA	I NA
Thppm	14.8	33.0	15.3	20.0	19.5	NA	NA NA	NA
U.,ppm	3.0	NS	3.4	3.0	3.0	0.8	0.6	0.4

¹G - greater than detection limit; L - detected; N - not detected; NA - not analyzed; NS - not sufficient sample; i - interference. ³Data for samples with CP prefix from Union Carbide 1974 reconnaissance. Ag, Cu, Pb, Zn, and Mo analyses by atomic absorption, W by colorimetry, and U by fluorometric techniques performed by Bondar-Clegg, Inc., Vancouver, BC, Canada.

Results of analyses¹ of stream sediment samples--Continued

Map no	CP24	CP25	CP26	CP27	CP28	CP29	CP30	CP31
Field no	CP1546	CP1547	CP1777	CP1778	CP1543	CP1544	CP1766	CP1767
Fepct	NA	NA	NA	NA	NA	NA /	NA	NA
Mgpct	NA	NA	NA	NA	NA	• NA	. NA	NA
Capct	NA	NA	NA	NA	NA	NA	NA	NA
Napct	NA	NA	NA	NA	NA	NA ·	NA	NA
Kpct	NA	NA	NA	NA	NA	NA	NA	NA
Tipct	NA	NA	NA	NA	NA	NA 4	NA	NA
Mnppm	NA	NA	NA	NA	NA	NA .	NA	NA
Agppm	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	<0.5
Bppm	NA	NA	NA	NA .	NA	NA	NA	NA
Bappm	NA	NA	NA	NA	NA	. NA	NA	NA
Beppm	NA	NA	NA	NA	' NA	NA	NA	NA
Bippm	NA	NA	NA	NA	NĄ	NA	NA	NA
Coppm	NA	NA	- NA	NA	NA NA	NA NA	NA	NA
Crppm	NA	NA	NA	NA	NA	NA	NA	NA
Cuppm	65	52	60 ·	45	31	50	33	60
Gappm	NA	NA	NA	NA	NA	NA	NA NA	NA
Lappm	NA	NA .	NA ·	' NA	NA	NA	I NA	NA
Moppm	5	2	5	1	3	5	N N	5
Nippm	NA	NA	NA	NA	NA	NA	NA	NA
Pppm	NA	NA	NA	NA	NA NA	NA	NA	NA
Pbppm	35	24	25	22	14	35	24	40
Pdppm	NA	NA	NA	NA	NA	NA	NA	NA
Vppm	NA	NA NA	NA	NA	NA	NA	NA	NA
Snppm	NA	NA NA	NA	NA NA	NA	NA	NA	NA
Wppm	<10	<10	14	<10	<10	15	<10	13
Yppm	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
Znppm	135	124	110	112	72	145	129	115
Zrppm	NA NA	NA	NA	NA	NA	NA	NA	NA NA
Thppm	NA	NA NA	NA NA	NA NA	NA	NA NA	. NA	NA NA
U.,ppm	<5	-NA	<5	NA	<5	· <5	<5	<5
¹ G - grea	ter than d	detection	limit; L	- detecte	ed; N - no	ot detecte	ed; NA - I	not

analyzed; NS - not sufficient sample; i - interference.

Results	of	analyses ¹	of	stream	sediment	samples-	-Continued
---------	----	-----------------------	----	--------	----------	----------	------------

Map no	CP32	CP33	CP34	CP35	CP36	CP37	CP38	CP39 -
Field no	CP1501	CP1502	CP1536	CP4312	CP4377	CP4327	CP4328	CP5892
Fepct	NA	NA	NA	NA	NA	NA	NA	NA
Mgpct	NA	• NA	NA	NA	NA	NA '	NA	NA
Capct	NA	NA '	NA NA	NA	NA	NA	NA	NA
Napct	NA	NA	NA	NA	NA	NA	NA	NA
Kpct	NA	NA	NA	NA	NA	NA	NA	NA
Tipct	NA	NA	NA	NA	NA	NA .	NA	NA
Mnppm	NA	. NA	NA	NA	· NA	NA [†]	NA	NA
Agppm	<0.5	<0.5	<0.5	NA	<0.5	2	2	NA
Bppm	NA	NA	NA	NA	NA	NA	NA	NA
Bappm	NA	NA	NA	NA NA	NA	NA	NA	NA
Beppm	NA NA	NA	NA	NA	NA NA	NA	NA	NA
Bippm	NA	NA	NA	NA	NA	NA	NA	NA
Coppm	NA	NA	_ NA	NA	NA NA	NA	NA	NA
Crppm	NA	NA	NA	NA	NA .	NA NA	NA NA	NA
Cuppm	40	50	90	35	25	60	65	55
Gappm	NA	NA	NA.	NA	NA	NA	NA NA	NA
Lappm	NA	NA	NA .	. NA	NA	NA	NA	- NA
Moppm	10	5	5 -	<5	· <5	25	· 20	<5
Nippm	NA	NA	NA	NA	NA	NA	NA	NA
Pppm	NA	NA	NA	NA	NA	NA	NA	NA.
Pbppm	20	20	40	95	45	75	75	45
Pdppm	NA	NA	NA	NA	NA	NA	NA	NA
Vppm	NA	NA	NA	NA	NA	NA	NA NA	NA
Snppm	NA	NA	NA	NA	NA ·	NA	NA	NA
Wppm	11	18	13	11	24	<10	12	<10
Yppm	NA	NA	NA	NA	NA	NA	NA	NA
Znppm	75	75	75	165	240	345	245	235
Zrppm	NA	NA	NA	NA	NA	NA	NA	NA
Thppm	NA	NA	NA	NA	NA	NA	NA	NA
U.,ppm	<5	NA	<5	<5	46	24	20	7
-G - great	cer than c	letection	limit; L	- detecte	ed; N - no	ot detecte	ed; NA - 1	not
analyzed; NS	5 - not si	ufficient	sample; i	i - interi	ference.			

Results	of	analyses	of	stream	sediment	samp	lesCo	onti	nued
					•				-

Map no	CP40	CP41	CP42	CP43	CP44	CP45	CP46	CP47
Field no	CP5894	CP1759	CP1760	CP2962	CP3012	CP2838	CP2841	CP1233
Fepct	NA	NA	NA	NA	NA	NA /	NA	NA
Mgpct	NA	NA	NA	NA NA	NA	I NA	I NA	NA
Capct	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
Napct	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	I NA
Kpct	NA	NA NA	NA	NA NA	I NA	NA	NA NA	NA
Tipct	NA	NA	NA	NA	NA	NA	NA	NA
Mnppm	NA	NA	NA	NA	NA NA	NA	NA	NA
Agppm	NA NA	<0.5	<0.5	0.7	0.6	0.9	0.8	NA
Bppm	NA	NA	NA	NA	NA	NA	NA	NA
Bappm	NA	NA	NA	NA	NA	NA	NA	NA
Beppm	NA	NA	NA	NA	· NA	NA	NA	NA -
Bippm	NA	NA	NA NA	NA	NA	NA	NA	NA
Coppm	NA	NA NA	– NA	NA	NÁ	NA	NA	NA
Crppm	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA
Cuppm	30	32	55	40	28	30	27) NA
Gappm	NA	NA	NA NA	NA	NA	NA	NA	NA
Lappm	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
Моррт	<5	N ·	5	N	N	N	· N	NA
Nippm	NA	NA	NA	NA	NA	NA	NA	NA
Pppm	NA	NA	NA	NA	NA	NA	NA	NA
Pbppm	75	41	50	22	39	48	57	23
Pdppm	NA	NA	NA	NA	NA	NA	NA	NA
Vppm	NA	NA	NA	NA NA	. NA	NA	NA	NA
Snppm	NA	NA	NA	NA NA	NA	3	1	NA
Wppm	12	<10	16	<10	N	N	N	27
Yppm	NA	NA	NA	NA	NA	NA	NA	NA
Znppm	120	110	120	153	138	120	170	78
Zrppm	NA	NA	NA	NA	NA	NA	NA	NA
Thppm	NA	NA NA	NA NA	NA	NA	NA	NA	NA
U.,ppm	· 7	<5	<5	0.8	0.4	2	0.6	NA
1G - great	ter than	detection	limit; L	- detecte	ed; N - n	ot detect	ed; NA -	not
analyzed; NS	5 - not s	ufficient	sample;	i - inter	ference.		•	

Results of analyses¹ of stream sediment samples--Continued

Map po	CD49	CP49	CP50	CP51	CP52	CP53	CP54	CP55
Field no	CP1234	CP1235	CP1249	CP1250	CP1329	CP1330	CP801	CP802
Fe not	NA	NA	NA	NA	NA	NA	NA	NA
Ma pet	NA .	NΔ	- NA	NA	NA	NA	NA	NA
Co pet	NA	ΝA	NA	NΔ	NA	NA	NΔ	NA
	NA	· NA	NA	NA	NΔ	NΔ	ΝA	NA
Na pct			NA NA	NA	NΔ	NΔ	ΝA	NA
T	NA NA				NA	NΔ	NA	NΔ
11pct						NA NA	NA NA	NA NA
Mnppm			NA NA			NA .	10 E	NA
Agppm	<0.5	<0.5	NA	×0.5	×0.5	INA .		
Bppm	NA	NA	NA	NA	NA		NA	
Bappm	NA	NA	NA	NA	NA	NA	NA	NA
Beppm	NA	NA	NA	NA	NA	I NA	NA	NA
Bippm	NA	NA	NA	NA	NA	NA	NA	NA NA
Coppm	NA	NA	NA	NA	NA	NA	NA	NA
Crppm	NA	NA	- NA	NA NA	NA NA	NA NA	NA	NA
Cuppm	20	80	NA	95	80	NA	50	20
Gappm	NA	NA NA	NA -	NA	NA	NA	NA	NA
Lappm	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA
Moppm	15	10	NA	· 10	5	NA NA	10	NA NA
Nippm	. NA	NA	NA.	NA	NA NA	NA NA	I NA	NA NA
Pppm	NA	NA	NA	NA	NA	NA	NA	NA
Pb., ppm.,	30	30	İ 85	95	25	28	45	46
Pd ppm	NA	NA	NA	NA	Í NA	NA	NA	NA
V	NA	NA	NA	NA	NA	NA	NA	NA NA
Sn	NA	I NA	I NA	NA	İ NA	Í NA	NA	NA NA
W	20	23	33	41	16	29	14	<10
Y	NA	NA	NA	NA	NA	NA	NA	NA
7n nom	85	85	210	500	80	113	145	145
7r. nnm	ΝĂ	NA	ŇĂ	ŇĂ	NĂ	NA	NA	NA
Th nom	NA	NA	NA	NA	NA	NA	NA	NA
	<5	<5	ΝΔ	26	<0.5	<0.5	<0.5	<0.5
-G - grea	ter than	detection	limit:	- detect	ed: N = n	ot detect	ed: NA -	not
analyzed: N	S = not si	ufficient	sample:	i - inter	ference.			•

TABLE A-3. - Weight per pan volume values $(mg/pan)^1$ of Sn, W, and Nb in panned concentrate samples

Map no.	Field no.	Weight (g)	Sn, ppm	W, ppm	Nb, ppm	R _{Sn(ma)}	R _{w(ma)}	RNb(mg)
Bel	Be1355	1.84	700	L	200	1.29	, L	0.368
Be2	Be1354	1.20	500	L	200	.60	Ĺ	.240
Be3	Be1352	.50	700	L	300	.35	L	.150
Be4	Be2289	1.829	N	N	L	N ·	N	L
Be5	Be1099	.870	200	L	L	.17	ι ι	L
Веб	Be1167	1.56	50,000	L	200	78.0	j . L	.366
Be7	Be1160	2.17	5,000	5,000	500	10.85	10.85	1.085
Be8	Be1158	0.54	5,000	700	1,000	2.7	.4	2.17
Be9	Be1151	1.274	100	L	L	.13) L	L
Be10	Be1063	.205	200	Ň	Ĺ	.04	N	L
Bell	Be1011	.144	1,000	L	200	.14	L	.029
Be12	Be1010	.550	5,000	L	200	2.75	L L	.11
Be13	Be1008	.494	300	L	200	.15) L	.010
Be14	Be1007	.67	10,000	L	200	6.7) L	.134
Be15	Be1006	.70	7,000	200	200	4.9	.14	.140
Be16	Be1003	.26	1,000	2,000	200	.26	.52	.052
Be17	Be1088	.74	1,000	. L	200	.74	L	.148
Ci1	Ci21286	5.5	<100	<200	<70	<.55	<1.1	<.385
Ci2	Ci21287	6.8	400	<200	<70	2.72	<1.36	<.476
Ci3	Ci21288	6.6	<100	<200	<70	<.66	<1.32	<.462
Ci4	Ci21289	5.9	<100	<200	<70	<.59	<1.18	<.4713
Ci5	Ci21284	4.5	1,600	500	<70	7.2	2.25	<.315
Ci6	Ci21411	6.0	30,000	1,500	370	180.0	9.0	2.22
Ci7	Ci21412	6.5 ·	6,700	1,800	150	43.55	11.7	.975
Ci8	Ci21285	7.0	2,100	1,600	<70	14.7	11.2	<.49
C i 9	Ci21410	8.6	5,200	2,100	300	44.72	18.06	2.58
Ci10	Ci21294	8.2	19,000	5,100	430	155.8	41.82	3.526
Ci11	Ci21296	7.8	72,000	13,000	710	561.8	101.4	5.538
Ci12	Ci21291	9.5	12,000	2,600	130	114.0	24.7	1.235
Ci13	Ci21293	8.2	1,100	5,100	. <70	9.02	<1.64	<.574
Ci14	Ci21292	6.4	<100	<200	<70	<.64	2.56	<.448
Ci15	Ci21387	6.5	200	300	<70	1.3	2.13	<.455
Ci16	Ci21386	7.1.	400	300	80	2.84	2.13	.568
Ci17	Ci21385	5.7	1,200	1,000	180	6.84	5.7	1.026
Ci18	Ci21413	7.0	1,200	1,000	<70	8.4	7.0	<.49
Ci19	Ci18716	8.5	14,000	4,000	910	119.0	34.0	7.735
Ci20	Ci21300	7.1	1,800	400	<70	12.78	2.84	6.497
Ci21	C121299	6.9	3,600	<200	130	24.84	1.38	.897
-Value	es calcula	ted by meth	descri	ibed in	Burgau	of Mines	OFR 59.	-83

-Values calculated by method described in Bureau of Mines UFR 59-83 using the following formula:

> mg/pan = (ppm value) [1,000 (weight in grams)]1 X 106

APPENDIX B.--ROCK SAMPLE ANALYTICAL RESULTS

TABLE B-1 Results of trace element analyses and field descriptions of rock s
--

Man no.	Field no. I	Au	Ag.	Cu.	Ph.	7n.	Mo.	Sn.	W	U.	LI.	Rb.	Ba.	Nb.	F:	Th.	
ing not		nnm	nnm		nnm	,	nom	DDM -	DDM	DDM	DDm	DDM	DDM	DDM	nad	DDM	
Be471	Be1112	NA	14.0	18	470	950	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	ĺ
Be48	Be1108	NA	7.7	4,900	290	160	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Be49	Be1102	NA	2.8	10	100	190	4	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	
Be50	Be1104	NA	9.6	97	370	1,000	82	NA	NA	NA	NA	NA	NA	NA	NA	NA	
CP56 ² .	CP6407	NA	NA	800	275	530	<5	NA	NA	6	NA	NA	NA	NA	NA	NA	
CP57	CP6408	NA	NA	1,160	170	2,600	100	NA	NA	<5	NA	NA	NA	NA	NA	NA	
CP58	CP4160	9.6	6.8	460	1,050	18,750	<5	NA	133	NA	NA	NA	NA	NA	NA	NA	
CP59	CP5739	NA	NA	200	1,700	1,450	<5	NA NA	13	NA	NA	NA	NA	NA	NA	NA	
Ci22 ³	Ci17996	<.007	<.3	NA	NA	NA	NA	15	<5	0.8	NA	NA	NA	<50	120	<30	
Ci23	Ci17999	<.007	1.543	i NA	NA	NA	NA	130	10	.88	NA	NA	NA	80	34,000	<30	
Ci24	Ci17997	<.007	<.3	NA	NA	NA	NA	66	40	<.5	NA	NA	NA	<50	6,000	<30	
Ci25	Ci17994	<.007	<.3	NA	NA	NA	NA	9	<5	1.6	NA	NA	NA NA	<50	270	35	
Ci26	Ci17995	<.007	<.3	. NA	NA	NA	NA	15	<5	15	NA	NA	NA NA	<50	660	65	
Ci27	Ci17993	<.007	.770	NA	NA NA	NA	NA	34	<5	6.2	NA	NA	NA NA	<50	930	35	
Ci28	Ci17992	<.007	<.3	NA NA	NA	NA	NA	220	6	3.4	NA	NA	NA NA	<50	130	<30	
Ci29	Ci17998	<.007	<.3	NA	NA	NA	NA	15	12	1.1	NA	NA	- NA	<50	33,000	<u><30</u>	
					Fie	eld des	c ri pt	tion									
Be47	Granite co	ontainir	ng mino	r fluoi	rite,	limonit	e, go	bethit	e, ai	nd hema	tite	•					
Be48	One- to tw	io-foot-	wide v	ein.													
Be49	Silicic, f	'ine-gra	ined is	gneous	rock w	vith K-	spar,	, quar	tz, l	piotite	phei	nocry	/sts a	and 1	rusty	•	
	veinlets	and ble	ebs thre	oughou	t.												
Be50	Altered gr	anite w	vith ab	undant	limoni	ite and	mang	janese	stai	ining.							
CP56	No descrip	otion; a	ıpproxiı	nately	locate	ed with	in Se	ec. 3,	T 9	N, R 5	Ε.						
CP57	Do.			_					_	_			_				_
CP58	Assay show	IS 0.28	oz/ton	Au, 0.	.2 oz/1	ton Ag,	appr	°oxima	tely	locate	d wi	thin	Sec.	9,	[9 N, I	RΣE	-
CP59	No descrip	otion; a	ipproxi	na te 1 y	locate	ed with	in Se	ec. 20	, T 9	9. N , R !	5 E.						
C122	Grit with	chlorit	te (or j	tourma	line?).			_			_						
C123	Tourmalini	zed gra	nite,	biotite	e and f	feldspa	rs re	eplaced	1, he	eavily M	in s	taine	ed.				
C124	Skarn.																
C125	Skarn, und	lerlying	g marble	e 1,500) ft fi	rom con	tact.	,									
C126	Fine-grain	ied grar	nite flo	pat nea	ar cont	tact.		- 1									
C127	[Horntels with disseminated sulfides (pyrrhotite?).																
C128	Limestone	and cal	c sili	cates	(?).									2			
<u><u><u>c</u>129</u></u>	Hornfels w	rith qua	irtz ve	<u>ins, f</u>	luorite	e, and	tourn	na line.		·····					· · · · · · · · · · · · · · · · · · ·		

See explanatory notes at end of table.

Results of trace element analyses and field descriptions of rock samples--Continued

					Dh	7.	Ma	Sn	W	11	11 1	Rh	Ra	Nh I	3	Th.
Map no.	field no.	AU,	Ag,	cu,	۳۵,	211,	110,	511,	7 ,			n0,	Du DDm	nnm	• ,	nnm
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u>hh</u> u		Ph m	Phill		Phillip		
Ci30	C121268	<0.007	<0.3	NA	NA	NA	NA	60	\$ 0	3.0				150	240	
Ci31	Ci21290	<.007	<.3	98	NA	NA	NA	9	<5	.1.0		NA	NA	\$50	1 100	40
Ci32	Ci21269	<.007	4.873	NA	NA	NA	NA	1,560	12	10	NA	NA	NA	<5U	1,100	25
C133	Ci21270	<.007	4.743	NA	NA	NA	NA NA	220	6	52	NA	NA	NA	<50	950	35
Ci34	Ci21271	<.007	.370	NA NA	NA	NA	NA	690	20	8.6	NA	NA	NA	<50	5,100	90
C135	Ci21272	<.007	2.223	NA	NA	NA	NA	880	10	22	NA	NA'	NA	<50	2,000	55
Ci36	Ci21273	<.007	2.854	1,400	NA	I NA	NA NA	1,000	16	12	NA NA	NA	NA	<50	1,000	60
C137	Ci21274	<.007	3.923	NA	NA	NA	NA	910	10	15	NA	NA	NA	<50	2,100	<30
C138	C121275	I NA	NA NA	NA	NA	NA NA	NA	7	<5	5.3	50	210	200	<50	980	70
C139	C121276.	<.007	1.490	NA	NA	. NA	NA	270	8	13	NA	NA	I NA	<50	2,500	125
Ci40	Ci21277	<.007	.942	I NA	NA	Í NA	NA NA	320	8	13	NA	NA	NA NA	<50	2,200	45
Ci41	C121278.	NA	NA	NA	NA	NA	NA	7	<5	3.8	44	270	<200	<50	1,500	45
Ci42	Ci21279	NA	NA	NA	NA	NA	NA	48	<5	12.0	25	330	<200	80	1,700	35
C143	C121295	< 007	4 520	NA NA	NA	NA NA	NA	530	i 6	30	Í NA	I NA	NA NA	<50	3,800	45
C145	101212901	< 007	3 007	NA	NA	NA	NA	570	140	19	NA	NA	<200	<50	260	<30
0144	10110000	1.007	0.007		F1	ald des	crip	tion	L				•			
<u>C130</u>	Typical c	hlorite	+ tour	maline	seri	cite an	d qu	artz g	reis	en in b	ioti	te q	ranit	e.		
C130	limestone	with d	issemin	ated n	rite /	and cha		vrite.								
C131	Random ch	inc of	chlorit	e-seri	cite a	reisen	vein	s in a	rani	te. Vei	ns a	t le	ast 1	5 cm	wide a	nd
0152	1 at loact	come r	andom o	rionta	tion	Creek	floa	t.								
C + 2 2	Somicitor	chlorit	andom o a-duart	7-tour	naline	(?)-f]u	orit	e arei	sen	rubble	simi	lar	to sa	mole	Ci32.	
	Groicon	coattor	od in f	loat f	or fow	hundre	d me	ters.			•••••		-	•		•
C+24			122 hu	+ with	more	fluorit	ас А						•			•
0134	Jame as s	dimpte u	tz-comi	cito-t		ino(?)	aroi	con	Fxte	nsive a	1ter	ed s	hear(?) zo	one tha	t
C135	jen-starne	u, yuar ith hmo	LZ-Serr			1110(17)	gici	3011						•		
0.100	i aligns w	run bre	ak III S anniait	Tope.		ine (2)	wi+	h mino	r to	200206	orv	cha]	convr	ite i	in medi	นต-
L130	ichiorite-	quartz-	sericit	e yrei	sen ve	1115 (1) oc in f	WIL 109+		1 10	access	J	Cildi	copji			
	grained	DIOTICE	granic	e. re bundan	+ in f	$1 \rightarrow 1$	IVal	•								
613/	Same as C	130 DUT	more a	Dundan	6 111 I	ival.		£ 10 0 0	+_ +~	- ctured	hou	1 dar	s of	i h am	um-arai	ned
C138	IRandom un	weather	ea chip	S Troin	relat	ivery r	resn	, mos	ι-1 n	actureu	Dou	luer	3 01		um grui	nea
	to porph	yritic	DIOTITE	grani	te.	5-1-1		mmon i		ant and	-14	anc	with	hroal	k in sl	one
C139	Greisen w	ith a t	ew spec	KS TIU	orite.	rairi	y co		8 1 1	Uat and	αιι	yns	WILII	Dieai	× 111 J1	ope
	at 3,850	ft _{ele}	vation.			Land /	••••••••••••••••••••••••••••••••••••		21 ~	naundma	~~ ~	-+	ial	Page	cible	
C140	Abundant	greisen	and th	ne-gra	inea,	DIACK (tour	mairne	() 9	rounding	22 11	ater	141.	103.	STORE	
	sediment	ary roo	t rock.	_	-		~	<i>.</i> .	c .					4 0	autanan	
Ci41	Random ch	ip from	intern	al are	as of	boulder	s of	trost	-tra	cturea	coar	se-g	raine	u, e	quigran	ular
	biotite	quartz	monzoni	te. P	ossibl	e sauss	urit	izatio	n of	teldsp	ars.					F
Ci42	N 50° W-s	triking	, unalt	ered a	plinit	ic to f	inel	y crys	tall	ine apl	1 te	aike	, app	roxi	na te i y	эm
	thick.	Minor M	n stain	on fr	acture	s										
Ci43	Composite	chip o	f greis	en vei	n mate	rial.										
Ci44	Modera tel	y to in	tensely	greis	enized	granit	.e									
Sac ave	lanatory n	ator at	and of	table							- /-					

See

R

Non no	IFIAId no	A.,	1 A a	<u> </u>	Dh	- <u>7</u> n	IMo I	Sn	W	<u> </u>	<u>11-1-1</u>	Rh	Ra l	Nh T	F	lī h
map nu.	riela no.	nu,	ng,	bom	rD,	411 ,	0.00	511,	n ,	nnm	nnm	nnm	nnm	nom	, ,	nnm
<u>C145</u>	C117660					NA	NA NA	11	<u>75</u>	0 55	NA	NA	NA	250	420	230
C 145	Ci18718	033	780	ΝA	ΝA	NA NA	NA	220	1100	. 69	NA	NA	NA	<50	1.000	<30
Ci47	C118938	< 007	2 348	NA	NA	NA	NA	78	14	93	NA	NA	NA	<50	150	35
C 149	10118937		< 3	NA	NA	NA	NA	<5	<5	.53	NA	NA	NA	<50	280	<30
Ci49	C118936	< 007	< 3	NA	NA	NA	NA	21	8	15	NA	NA	NA	<50	410	70
C150	C118939		< 3	NA	NA	NA	NA	300	<5	13	NA	NA	NA	<50	540	85
C151	Ci18940	<.007	<.3	NA	NA	NA	NA	46	<5	19	NA	NA	NA	<50	250	45
C152	Ci20121	<.007	1.964	NA	NA	NA	NA	76	12	35	NA	NA	NA	<50	410	<30
C153	C121218.	NA	NA	NA	NA	NA	NA	<5	<5	7.8	100	240	<200	<50	570	60
Ci54	C121217.	<.007	2.596	NA	NA	NA	NA	540	6	100	NA	NA	NA NA	<50	320	<30
C155	C120216	<.007	.890	NA	NA	NA	NA	99	8	28 .	NA	NA	NA	<50	140	<30
C 156	C120732	<.007	.580	NA	NA	NA	NA	60	6	53	NA	NA	NA NA	<50	270	45
Ci57	Ci20731.	<.007	2.048	NA	NA	NA	NA	490	6	67	NA	NA	I NA	<50	6,000	<30
C158	Ci18717	<.007	<.3	NA	NA	NA	NA	84	<5	.88	NA	NA	NA NA	<50	900	40
C159	C 120730.	NA	NA	NA	NA	NA	NA	NA	NA NA	4.8	NA	NA	Ì NA	<50	930	40
	1	L			Fie	ld des	cript	tions		L		 _	<u></u>			Lana - an - a
Ci45Diabase dike.																
Ci46 Fe-stained, magnetite-pyrrhotite-pyroxene skarn. Possible scheelite?																
Ci47 Mn-stained intenselv greisenized granite.																
Ci48	Green-bla	ck alte	red dial	base.	Trends	appro.	ximat	tely N	30°	Ψ.						
C149	Quartz la	tite(?)	porphy	ry, gre	een mat	trix, s	moky	quart	z ph	enocrys	ts.					
C150	Intensely	greise	nized g	rani te.			-	•	•							
Ci51	K-spar-qu	artz po	rphyry v	vith ap	olinit	ic grou	ndmas	ss. 0	nly 🛛	rock ty	pe no	ot g	reise	nized	i in ar	ea,
	l later in	trusion	?```	-		•										
C152	Greiseniz	ed gran	ite.			•						• •		. 1		l.
Ci53	Non-porph	yritic	coarse-	grained	1 grani	ite wit	h bo'	th pla	gioc	lase an	d or	thoc	lase.	Qua	ntz is	
	slightly	smokey	•	•			•									
Ci54	Sericite-	quartz	veins w	ith goo	èthite	and li	moni	te in 🛛	coar	se-grai	ned	gran	ite a	long	side o	f tor
Ci55	Greisen r	ubble i	n talus.	. Clo	ts of 1	tourmal	ine :	sen in	near	by fine	-gra	ined	biot	ite 🤉	grani te	•
C156	Greisen v	ein in I	biotite	quart	z monzo	onite.	Pie	ces to	2 b	y 5 cm.	Min	or b	oxwor	k. –		
Ci57	Do.			•										· ··		~
C158	Tactite f	loat in	creek.	Few s	specks	pyrrho	tite	and s	chee	lite(?)	•					
Ci59	Muscovite	granit	e.		•	•										
NA N	NA Not analyzed.															
¹ Data for samples with Be prefix from Barker and Hall (<u>18</u>). Analyses by atomic absorption by the																
Bureau'	s Reno (NV) Resear	rch Cen	ter.												_
² Data	for sample	es with	CP pret	fix fro	om Unic	on Carb	ide 🛛	1974 r	econ	na <mark>is</mark> san	ce.	Ana	lyses	of į	lu and i	Ag
by fire	by fire assay; Cu, Pb, Zn, and Mo by atomic absorption; W by colorimetry; and U by fluorometry per-															
formad	hy Rondan-	loga V	Vancouv	an RC	Canad	ia .										

Results of trace element analyses and field descriptions of rock samples--Continued

formed by Bondar-Clegg, Vancouver, BC, Canada. ³Data for samples with Ci prefix from Bureau (1983) work. Analyses of Au and Ag by fire assay; Sn, Li, Rb, and Ba by atomic absorption; W by colorimetry; and W by fluorometry performed by the Bureau's Reno (NV) Research Center. TABLE B-2. - Results of semi-quantitative emission spectrographic analyses¹ of 1983 (Ci) Lime Peak rock samples

Map no	Ci22	C123	C124	C125	C126	C127	C128	C129
Field no	C†17996	Ci17999	Ci17997	Ci17994	Ci17995	C†17993	C117992	Ci17998
		(Concentra	ition, pe	ercent			
Āg	<0.0007	<0.006	<0.001	<0.0005	<0.0005	<0.0008	<0.003	<0.0008
A1	>3	>4	>4	. >3	>4	>4	>4	>3
As	<0.01	<0.009	<0.009	<0.009	<0.02	<0.009	<0.009	<0.01
Au	<0.002	<0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
B	0.01	<0.004	0.01	0.01	0.02	0.02	0.02	· 0.01
Ba	0.008	0.006	0.01	1	0.03	0.3	0.008	0.02
Be	<0.0003	0.001	0.0006	<0.0003	0.001	0.0003	0.0005	0.002
Bi	<0.01	<0.3	<0.05	<0.01	<0.02	<0.02	<0.02	<0.01
Ca	<0.05	3	6	3	. 0.1	1	>10	5
Cd	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0005	<0.0005	<0.0005
Co	<0.001	<0.00 <u>1</u>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cr	0.01	0.001	0.001	0.003	0.009	0.002	0.006	0.009
Cu	<0.0006	0.001	<0.0006	0.0008	<0.0006	0.0007	<0.0006	<0.0006
Fe	3	9	4	3	2	3	7	5
Ga	<0.0002	0.002	<0.0004	<0.0002	<0.0003	<0.0002	<0.0008	<0.0002
K	<0.9	<0.7	2	5	>10	10	. <0.6	<1
La	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Li	<0.002	>0.09	>0.04	<0.003	0.02	>0.05	<0.002	0.01
Mg	0.2	0.8	2	_ 1	0.3	1	0.8	0.6
Mn	0.1	>6	>2	>2	0.06	0.2	>5	0.4
Mo	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Na	<0.3	3	4	<0.3	4	<0.7	<0.3	<0.3
Nb	<0.007	<0.03	<0.02	<0.01	<0.02	<0.02	<0.03	<0.007
Ni	0.001	<0.0002	0.004	0.001	0.001	0.002	<0.003	0.002
P	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Pb	<0.005	0.1	<0.002	<0.003	<0.006	0.2	<0.004	<0.003
Pd	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Pt	<0.0006	<0.0007	<0.0006	<0.0006	<0.0006	<0.0006	<0.0009	<0.0006
Sb	<0.06	<0.1	<0.06	<0.06	<0.06	<0.06	<0.07	<0.06
Sc	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
S1	>10	>10	>10	>10	>10	>10	>10	>10
Sn	<0.004	<0.03	<0.008	<0.007	<0.003	<0.005	<0.03	<0.01
<u>Sr</u>	<0.0001	0.001	0.04	0.03	0.002	0.002	0.0006	0.0005
<u>r</u> a	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Te	<0.04	<0.04	<0.04	<0.07	<0.04	<0.04	<0.04	<0.04
11	0.8	<0.04	0.1	0.2	<0.03			0.2
V	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005
Y	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009
Zn	0.02	0.2	0.04	0.09		0.2		0.04
<u>{r</u>		<u> <0.003</u>	<u><0.003</u>	<u><0.003</u>	<u><0.003</u>	<0.003	<0.003	<0.003

¹Analyses by Bureau of Mines Reno (NV) Research Center.

Results of semi-quantitative emission spectrographic analyses of 1983 (Ci) Lime Peak rock samples--Continued

. **** • ***

Map no	Ci30	C131	C132	C133	C134	Ci35	C136	C137
Field no	C121268	C121290	C121269	C121270	Ci21271	Ci21272	C121273	Ci21274
		(Concentra	tion, pe	ercent		,	
Āq	<0.001	<0.0005	<0.002	<0.004	<0.002	<0.008	<0.003	<0.003
A1	>3	>3	>4	>4	>4	.>4	>4	>3
As	<0.009	<0.009	<0.01	<0.009	<0.009	<0.06	<0.01	<0.05
Au	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
B	0.009	0.02	0.01	0.009	0.01	<0.006	0.04	<0.008
Ba	0.09	0.06	0.007	0.005	0.03	0.005	0.01	0.005
Be	0.001	0.0008	0.002	0.001	0.01	0.001	0.002	0.001
Bi	<0.03	<0.02	<0.04	<0.02	<0.04	<0.03	<0.02	<0.04
Ca	<0.05	.1	<0.07	<0.1	. 7	<0.06	<0.05	<0.2
Cd	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Co	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cr	0.003	<0.0007	0.002	0.003	<0.0003	0.001	0.006	<0.0009
Cu	<0.0006	0.004	<0.0006	0.007	<0.0006	<0.0006	0.1	0.08
Fe	3	5	8	7	8	10	6	9
Ga	<0.0007	<0.0002	<0.001	<0.0005	0.002	<0.001	<0.0004	<0.0005
K	10	4	5	4	4	<1	. 7	<1
La	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Li	0.02	0.01	>0.1	>0.04	>0.2	>0.06	>0.09	>0.03
Mg	0.1	1	0.2	0.04	0.3	0.1	0.1	0.05
Mn	0.5	0.3	>3	>5	>2	>5	0.5	>3
Mo	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Na	2	<0.3	<0.3	<0.3	3	<0.3	·<0.3	<0.3
Nb	<0.007	<0.02	<0.02	<0.009	<0.02	<0.02	<0.01	<0.008
Ni	0.0008	0.001	<0.0002	<0.002	<0.0003	<0.004	<0.0008	<0.003
Ρ	<0.7	<0.7	<0.9	<0.7	<0.7	<0.7	<0.7	<0.7
Pb	<0.002	<0.004	0.02	0.1	0.009	0.03	0.02	0.03
Pd	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
.Pt	<0.0006	<0.0006	0.0007	<0.0006	<0.0006	<0.0008	<0.0006	<0.0007
Sb	<0.06	<0.06	<0.1	<0.1	<0.09	<0.1	<0.08	<0.01
Sc	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Si	>10	>10	>10	>10	>10	>10	>10	>10
Sn	<0.006	<0.004	<0.2	<0.03	<0.09	<0.2	<0.1	<0.1
Sr	0.0003	0.0004	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001
Ta	<0.02	<0.02	<0.03	<0.02	<0.02	<0.03	<0.02	<0.02
Te	<0.04	<0.04	<0.04	<0.04	<0.04	<0.05	<0.04	<0.04
Ti	<0.03	0.2	<0.04	<0.03	0.09	<0.05	<0.05	<0.03
۷	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Y	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009
Zn	0.2	0.01	0.09	0.09	0.07	0.1	0.08	0.09
Zr	1 0.003	<0.003	0.005	<0.003	<0.003	0.006	[<0.003	1 0.01

41

.

Map	no	C138	C139	C140	Ci41	C142	Ci43	C144	C145
Ffel	d no	Ci21275	C121276	Ci21277	C121278	Ci21279	C121295	Cj18000	Ci17669
	· · · · ·	· · · · · · · · · · · · · · · · · · ·	······	Concentra	tion, pe	rcent		• • •	
Ag.		<0.0005	<0.002	<0.009	<0.001	<0.0005	<0.006	<0.002	<0.002
AĬ.,		>4	>4	>4	>4	>4	>4	>4	>5
As.		<0.01	<0.01	<0.06	<0.01	<0.01	<0.05	<0.009	<0.009
Au.		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
B		0.01	0.02	0.04	0.01	0.01	0.03	0.009	0.01
Ba		0.04	0.01	0.02	0.02	<0.002	0.01	0.002	0.02
Be.		0.001	0.002	0.006	0.0007	0.0004	0.002	0.0005	0.0006
B1.		<0.02	<0.05	<0.04	<0.03	<.02	<0.03	<0.03	<0.02
Ca.		0.5	<0.2	<0.07	0.4	0.2	<0.1	0.5	10
Cd.		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Co		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
Cr		0.006	0.001	<0.0008	0.005	0.003	0.002	0.003	0.03
Cu.		<0.0006	<0.0006	0.001	<0.0006	<0.0006	0.002	0.0008	<0.0006
Fe.		2	9	9	2	0.9	8	6	6
Ga.		<0.0002	<0.002	0.002	<0.0003	<0.0008	<0.000/	<0.001	<0.0008
Κ		>10	6			9			<0.6
La.		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
L1.		0.02	<0.2	>0.1	0.02	<0.005	>0.1	>0.1	0.01
Mg.		0.1	0.2	0.2		0.001	0.1	0.03	2
Mn.		0.09	>3	>6	0.09	0.4	>5	>2	>2
Mo.	• • • • • • • •	<0.0001	<0.0001	<0.0001	1<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Na.		3	<0.3	<u.3< th=""><th>4</th><th>0</th><th></th><th></th><th>10.05</th></u.3<>	4	0			10.05
ND.	• • • • • • • •	<0.02	<0.03	<0.03					
N1.	• • • • • • • • •	0.0009	<0.0002	<0.004	0.0009	<0.0007		<0.0007	
P	• • • • • • • • •		<0.9			.<0.007			
PD.		<0.002		0.06	<0.003	<0.00/			
Pa.,	• • • • • • • • •				KU.0001				
7 U.	• • • • • • • • •								
50.									0.07
SC.		10.0004	10.0004			>10	10.0004	1 510	1 510
51.	• • • • • • • •	1 10 003							
211.	• • • • • • • • •	0.003			0.003				
Jr., Ta	• • • • • • • • •								
Ta.						<0.02			
Ti	•••••••••							1 10.07	0.6
v .	• • • • • • • • •						<0 005	<0 005	
Ŷ	• • • • • • • • • • • • • •				<0.000		<0.0009		<0.0009
1 7n	• • • • • • • • •	0 003		Λ 2	0 006		0.1	0.04	0.008
Zr.	••••••	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Results of semi-quantitative emission spectrographic analyses of 1983 (Ci) Lime Peak rock samples--Continued Results of semi-quantitative emission spectrographic analyses of 1983 (Ci) Lime Peak rock samples--Continued

Map no	C146	C147	C148	C149	C150	C151	C152	C153
Field no	C118718	C118938	Ci18937	C118936	C118939	Ci18940	C,i20121	Ci21218
	·	(oncentra	tion, pe	ercent			
Āq	<0.002	<0.01	<0.002	<0.0005	<0.0008	<0.0005	<0.003	<0.0005
A1	. 1	· >4	>4	>4	>3	>4	>4	· >4
As	<0.05	<0.07	<0.01	<0.02	<0.01	<0.02	<0.009	<0.01
Au	<0.002	<0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
B	<0.006	<0.003	<0.008	0.01	0.01	0.01	<0.009	0.02
Ba	0.01	0.04	0.04	0.04	0.002	0.03	0.02	0.007
Be	0.005	0.002	0.001	0.002	0.0009	0.001	0.002	0.003
Bi	<0.02	<0.03	<0.03	<0.03	<0.01	<0.02	<0.03	<0.02
Ca	0.2	<0.05	8	<0.05	<0.05	<0.05	<0.2	0.4
Cd	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Co	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cr	0.001	<0.0003	0.004	0.005	0.005	0.003	<0.0003	0.007
Cu	0.03	<0.0006	<0.0006	<0.0006	0.01	<0.0006	<0.0006	<0.0006
Fe	9	10	6	3	6	2	10	2
Ga	<0.0007	<0.002	<0.0002	<0.0006	<0.0006	<0.0002	<0.001	<0.0004
K	<0.8	10	<0.7	>10	<2	>10	<2	>10
La	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Li	0.005	>0.1	0.03	>0.05	>0.04	0.009	>0.08	>0.1
Mg	0.4	0.07	1	0.8	0.02	0.05	0.04	0.06
Mn	0.4	>8	>3	0.2	0.6	0.2	>3	0.09
Мо	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Na	<.3	<0.3	2	3	<0.3	2	<0.3	6
Nb	<0.007	<0.02	<0.04	<0.02	<0.02	<0.02	<0.03	<0.02
Ni	<0.001	<0.006	<0.0008	0.001	<0.0005	<0.0007	<0.0006	0.0009
Ρ	<0.7	<0.9	<1	<0.7	<0.7	<0.7	<1	<0.7
РЬ	<0.002	0.06	<0.006	<0.004	<0.003	<0.004	0.02	<0.004
Pd	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Pt	<0.0006	<0.0009	<0.001	<0.0006	<0.0006	<0.0006	<0.001	<0.0006
Sb	<0.1	<0.2	<0.1	<0.06	<0.06	<0.06	<0.3	<0.06
Sc	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Si	>10	>10	>10	>10	>10	>10	>10	1 >10
Sn	<0.04	<0.04	<0.008	.<0.007	<0.02	<0.003	<0.04	<0.003
Sr	<0.0001	0.002	0.03	0.0009	<0.0001	<0.0001	<0.0001	1<0.0001
Ta	<0.02	<0.04	<0.02	<0.02	<0.02	<0.02	<0.1	<0.02
Те	<0.04	<0.07	<0.04	<0.04	<0.04	<0.04	<0.04	<0.05
Ti	<0.05	<0.04	0.5	0.1	<0.03	<0.03	<0.03	
۷	<0.005	<0.005	<0.007	<0.005	<0.005	<0.005	<0.005	
Y	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	1<0.0009	<0.0009
Zn	0.01	0.2	0.04	0.006	0.07	0.01	0.2	0.004
Zr	0.003	<0.003	<0.003	<0.003	0.005	<0.003	0.005	<0.003

Results of semi-quantitative emission spectrographic analyses of 1983 (Ci) Lime Peak rock samples--Continued

Non no	1 6154	C155	C156	C157	C158	C159
map no	C121217	CT20216	C120732	C120731	C118717	C120730
Concentration, percent						
A _	1 20 004	<u><0 005</u>	<0 00051	<0.002	<0.002	<0.002
Ag		×0.003	33	>3	>4	>4
A1		0 04		<0.03	<0.02	<0.01
AS				<0 002	<0.002	<0.002
Au		<0.002	0 01	<0.003	0.02	0.02
B			0.01	0.01	0.01	<0.002
Ba	. 0.007	0.02	0.005	0 002	0 0007	0.002
Be				<0.002		<0.03
B1	. <0.02		×0.02	20.01	6	0.1
Ca	<0.09				10 0005	
Cd	. <0.0005	<0.0005	CU .0005			
Co	. <0.003		<0.001			
Cr	. <0.0004	<0.0006	0.003		0.0005	
Cu	. 0.006	<0.0006	<0.0006		0.0000	1
Fe	. 10	/	D	9	0 0006	<0.001
Ga	0.002	<0.0008	<0.0003	1<0.0002	10.0000	10
К	. <0.6	4	6	4		
La	. <0.02	<0.01	<0.01	<0.01		
Li	. >0.08	>0.1	>0.05	>0.06	0.009	20.5
Mg	. 0.03	0.04	0.1	0.1		0.0003
Mn	. >2	>6	>3	>0	0.9	
Mo	. <0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Na	. <0.4	<0.4	<0.3	<0.3	4	0
Nb	. <0.03	<0.02	<0.02	<0.01	<0.05	<0.02
Ni	. <0.0007	<0.003	<0.0002	<0.003	0.002	0.001
P	. <1	<0.7	<0.8	<1	<1	<0./
Pb	0.02	0.03	<0.005	<0.004	<0.003	<0.003
Pd	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Pt	. <0.0008	<0.0006	<0.0006	<0.0006	<0.001	<0.0006
Sb	. <0.2	<0.1	<0.1	<0.2	<0.1	<0.06
Sc	<0.0005	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Si	>10) >10	>10	>10	>10	>10
Sn	<0.1	<0.01	.<0.02	<.03	s <0.02	2 <0.003
Sr	0.0001	. 0.0002	0.002	0.0002	2 0.05	5 <0.0001
Та	<0.02	<0.02	<0.02	<0.07	/ <0.02	2] <0.02
Te	<0.04	<0.04	<0.04	<0.04	l <0.05	5 <0.05
Ti	<0.03	<0.03	<0.03	<0.03	3 1	l <0.03
Υ		<0.005	<0.005	; <0.00	5 0.0	l <0.005
Υ	<0.000	<0.0009	<0.0009	<0.000)<0.0009	9 <0.0009
7n.		0.2	0.04	0.1	1 0.04	4 0.002
7r	. 0.01	0.004	<0.003	<0.00	3 <0.00	3 <0.003