

Bureau of Mines Report of Investigations/1975

# Crude Oil Spills Research

An Investigation and Evaluation of Analytical Techniques



UNITED STATES DEPARTMENT OF THE INTERIOR

**Report of Investigations 8024** 

# **Crude Oil Spills Research**

An Investigation and Evaluation of Analytical Techniques

By C. A. Wilson, E. P. Ferrero, and H. J. Coleman Bartlesville Energy Research Center, Bartlesville, Okla.



UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton, Secretary

Jack W. Carlson, Assistant Secretary-Energy and Minerals

**BUREAU OF MINES** Thomas V. Falkie, Director This publication has been cataloged as follows:

Wilson, Carol A
Crude oil spills research: an investigation and evaluation of analytical techniques, by C. A. Wilson, E. P. Ferrero, and H. J. Coleman. [Washington] U.S. Bureau of Mines [1975]
28 p. illus., tables. (U.S. Bureau of Mines. Report of investigations 8024)
Includes bibliography.
1. Oil pollution of rivers, harbors, etc. I. Ferrero, Edward P., jt. auth. II. Coleman, Harold J., jt. auth. III. U.S. Bureau of Mines. IV. Title. (Series)
TN23.U7 no. 8024 622.06173
U.S. Dept. of the Int. Library

## CONTENTS

Page

| Abstract                                             | 1   |
|------------------------------------------------------|-----|
| Introduction                                         | 1   |
| Acknowledgments                                      | 2   |
| Experimental study                                   | 2   |
| Analytical techniques                                | 3   |
| Gas-liquid chromatography                            | 3   |
| Atomic absorption spectrophotometry and colorimetry  | -   |
| vanadium and nickel                                  | 8   |
| Infrared spectroscopy                                | ğ   |
| Mass spectrometry.                                   | 12  |
| Romb sulfur and Kieldahl nitrogen                    | 15  |
| Nuclear magnetic resonance spectroscopy              | 16  |
| Illtraviolet fluoresence excitation and fluorescence | 10  |
| emission spectrophotometry                           | 16  |
| Natural weathering effects                           | 16  |
| Conclusions                                          | 17  |
| Ribli comply                                         | 10  |
|                                                      | 19  |
| AppendixGrude oil analyses                           | -23 |

#### ILLUSTRATIONS

| 1. | Gas-liquid chromatograms of El Morgan, Egypt, crude, topped                 |    |
|----|-----------------------------------------------------------------------------|----|
|    | crude, and residuum                                                         | 4  |
| 2. | Gas-liquid chromatograms of topped crude oils from five crude               |    |
|    | oil samples                                                                 | 5  |
| 3. | Comparison of percent <u>n</u> -paraffin to carbon numbers from $C_{20}$ to |    |
|    | $C_{30}$ as determined from GLC data on topped crude oil samples            | 7  |
| 4. | Infrared spectra of Prudhoe Bay, Alaska, crude, topped crude,               |    |
|    | and residuum                                                                | 11 |
| 5. | Infrared spectra of five topped crude oil samples                           | 12 |
| 6. | Comparison of percent total ion intensity to nominal mass Z                 |    |
|    | series number for topped crude oil samples                                  | 13 |
| 7. | Comparison of percent total ion intensity to mass number for                |    |
|    | selected nominal mass Z series of topped or de oil samples                  | 14 |

#### TABLES

| 1.   | Sample source                                                     | 2  |
|------|-------------------------------------------------------------------|----|
| 2.   | Gas-liquid chromatography operating conditions                    | 3  |
| 3.   | Average adjacent n-paraffin peak ratios, Coo to Coo               | 7  |
| 4.   | Profile classification of GLC data from $n-C_{00}$ to $n-C_{00}$  | 7  |
| 5.   | Vanadium and nickel concentration data                            | 8  |
| 6.   | Trace metals resultscomparison of two methods                     | 9  |
| 7.   | Comparison of duplicate infrared absorbance ratios                | 10 |
| 8.   | Infrared absorbance ratios of topped oils from crude oil samples. | 10 |
| 9.   | Sulfur and nitrogen data                                          | 15 |
| 10.  | Hydrogen types by nuclear magnetic resonance                      | 16 |
| A-1. | Data from routine analysis of El Morgan, Egypt, crude oil         | 23 |
|      |                                                                   |    |

## TABLES--Continued

| A-2. | Data | from | routine | analysis | of | Duri, Indonesia, crude oil       | 24 |
|------|------|------|---------|----------|----|----------------------------------|----|
| A-3. | Data | from | routine | analysis | of | Minagish, Kuwait, crude oil      | 25 |
| A-4. | Data | from | routine | analysis | of | Bachaquero, Venezuela, crude oil | 26 |
| A-5. | Data | from | routine | analysis | of | Gach Saran, Iran, crude oil      | 27 |
| A-6. | Data | from | routine | analysis | of | Prudhoe Bay, Alaska, crude oil   | 28 |

.

Page

## CRUDE OIL SPILLS RESEARCH

## An Investigation and Evaluation of Analytical Techniques

by

C. A. Wilson, <sup>1</sup> E. P. Ferrero, <sup>1</sup> and H. J. Coleman <sup>2</sup>

#### ABSTRACT

The Bureau of Mines started a continuing program to investigate and evaluate analytical techniques to assist governmental agencies to select simple, rapid, reliable methods for crude oil spill identification. Six crude oil samples were analyzed to evaluate gas-liquid chromatography, atomic absorption spectrophotometry, infrared spectoscopy, sulfur and nitrogren determinations, mass spectrometry, nuclear magnetic resonance spectroscopy, and ultraviolet spectrophotometry. Samples were studied from the following selected fields: El Morgan, Egypt; Duri, Indonesia; Minagish, Kuwait; Bachaquero, Venezuela; Gach Saran, Iran; and Prudhoe Bay, Alaska. These samples were chosen to represent high-production fields that are likely to be involved in oceanic transport. Over 50 years of Bureau of Mines analytical research on petroleum served as the basis for evaluation of the experimental results to determine which of the methods are effective techniques to identify crude oil spills. Gas-liquid chromatographic analysis, atomic absorption spectrophotometric analysis, and sulfur-nitrogen determinations are recommended as the most useful of the techniques investigated.

#### **INTRODUCTION**

In cases of crude oil pollution of coastal waters, beaches, and inland waters, the source of pollution is often difficult to identify. Recently, successful work has been done on identification of spilled oils (1-2, 16, 19, 25, 37),<sup>3</sup> but much of this work has focused on identification of petroleum products. The Bureau of Mines Energy Research Center in Bartlesville, Okla., prompted by frequent inquiries from government agencies charged with responsibility for pollution control, studied the use of some identification techniques on crude oils. Current interests in applying many instrumental techniques to the oil spill problem has raised various questions about such frequently mentioned techniques as gas-liquid chromatography, atomic absorption spectrophotometry, infrared spectroscopy, mass spectrometry, and ultraviolet spectrophotometry. The Bureau of Mines evaluated these and other oil spill

<sup>1</sup>Research chemist.

<sup>2</sup> Project leader.

<sup>3</sup>Underlined numbers in parentheses refer to items in the bibliography preceding the appendix.

identification techniques by analyzing crude oil samples from El Morgan, Egypt; Duri, Indonesia; Minagish, Kuwait; Bachaquero, Venezuela; Gach Saran, Iran; and Prudhoe Bay, Alaska (table 1); to assist governmental agencies in selecting simple, rapid, reliable analytical methods.

|             |           |            |                        | Crude           |
|-------------|-----------|------------|------------------------|-----------------|
| Field       | Country   | Producing  | Company                | 011<br>apolycic |
| rieid       | Councry   | age        | Company                | tables          |
|             |           |            | ,                      | (see            |
|             |           |            |                        | appendix)       |
| El Morgan   | Egypt     | Miocene    | American International | A-1             |
|             |           |            | Oil Co.                |                 |
| Duri        | Indonesia | Tertiary   | California Texas Oil   | A-2             |
|             |           |            | Corp.                  |                 |
| Minagish    | Kuwait    | Cretaceous | Kuwait Oil Co., Ltd    | A-3             |
| Bachaquero  | Venezuela | Miocene    | Creole Petroleum Co    | A <b>-</b> 4    |
| Gach Saran  | Iran      | Miocene    | California Texas Oil   | A-5             |
|             |           |            | Corp.                  |                 |
| Prudhoe Bay | Alaska    | Triassic   | Atlantic Richfield Co  | A-6             |

TABLE 1. - Sample source

For many years, the Bureau of Mines has analyzed crude oils from domestic and foreign fields  $(\underline{13}-\underline{14}, \underline{30}-\underline{35})$ , and the routine crude oil distillation  $(\underline{41})$ served as a source for the two different cuts used in the study. This Bureau analytical research on crude oil composition and characteristics served as the basis for evaluation of experimental results to determine which of the methods are the most practical to aid in the identification of crude oil spills.

#### ACKNOWLEDGMENTS

Acknowledgment is made to the oil companies that supplied crude oil samples and sample source information. The authors are also grateful to the following personnel at the Bartlesville Energy Research Center for advice in their field: R. F. Kendall, research physicist, infrared spectroscopy; J. E. Dooley, project leader, mass spectrometry; D. A. Doughty, research physicist, nuclear magnetic resonance spectroscopy; and Dorothy T. Nichols, physical science technician, crude oil analysis. J. F. McKay, research chemist, at the Laramie Energy Research Center, Laramie, Wyo., provided advice in ultraviolet spectrophotometry.

#### EXPERIMENTAL STUDY

Although some analytical techniques are equally effective for identifying petroleum products and crude oils, others that are valuable for identifying petroleum product spills are less valuable for identifying crude oil spills. Also, as weathering increases, some possibly useful methods show increasingly less distinction among crude oils, Several popular techniques have been examined to determine their usefulness for identification of crude oils and topped crude oils. Where possible, all methods were applied to the crude oil, the topped crude oil (crude oil topped at 275° C), and the residuum (crude oil topped to 420° C) in order to simulate the evaporative process of weathering. Comparisons of results from the analyses of crude oil, topped crude oil, and residuum give some indication of the effect of natural weathering on an exposed sample. These comparisons can determine the best methods to use to relate an exposed sample to a suspect sample. The following techniques have been evaluated for use for crude oil spill identification.

#### Analytical Techniques

#### Gas-Liquid Chromatography

Gas-liquid chromatography (GLC) is a popular technique for identifying spilled oils. The advantages of GLC include relatively rapid analysis on a small sample with little sample preparation. Samples in this study were analyzed without any preparation except for high-viscosity crude oils, topped crude oils, and residua that dictated some dilution with toluene prior to injection. All runs were made on an F & M Scientific Corp. Model 810 research chromatograph<sup>4</sup> equipped with a flame ionization detector (FID). Column and run conditions are listed in table 2.

| TABLE 2 Gas-liquid chromatography operating conditi |
|-----------------------------------------------------|
|-----------------------------------------------------|

|                          | ······································ |
|--------------------------|----------------------------------------|
| Columns                  | Dual, 1/8 in OD by 11 ft               |
|                          | stainless steel                        |
|                          | 2  mat 0 1 1  mat 0 1 0 0  mat         |
| Packing                  | 3 pct 0v-1 on 80/100 mesh              |
|                          | chromosorb G, acid washed.             |
| Carrier gas              | Helium.                                |
| Flowml/min               | 20                                     |
| Temperatures, °C:        |                                        |
| Injection port           | 300                                    |
| Column, initial          | 50                                     |
| Column, final            | 380                                    |
| Detector                 | 380                                    |
| Program rate° C/min      | 6                                      |
| Start after injectionmin | 2                                      |
| Detector                 | FID                                    |

Although GLC does not completely define natural weathering effects, it does define the extent of the loss of light components due to evaporation. This loss can be compensated for by topping both the spilled oils and possible source oils to the same temperature. The comparison in figure 1 of chromatograms of the crude oil, topped crude oil, and residuum of an El Morgan, Egypt, sample demonstrates that progressive sample evaporation leaves the remaining chromatographic pattern unchanged. Although the micro-organisms that biologically degrade crude oil will preferentially attack the normal paraffins  $(\underline{1})$ , the resulting loss should not substantially change the GLC pattern  $(\underline{8}, \underline{10})$ 

<sup>4</sup>Reference to specific brands of equipment is made for identification only and does not imply endorsement by the Bureau of Mines.



FIGURE 1. - Gas-liquid chromatograms of El Morgan, Egypt, crude, topped crude, and residuum.

4





unless the exposure has been extreme. In fact, a chromatogram of an oil that had been on the ocean floor for several months was very similar to that of the original crude oil (12).

The major problem inherent in GLC is the interpretation of results. Inspection of chromatograms can range from visual to complex mathematical analyses. A decision on the method best suited to the particular problem should include such considerations as the number of chromatograms to be compared, the amount of time to be spent on each, and the availability of data handling devices and facilities such as online integrators and computerized services.

In situations involving a limited number of samples, visual comparison of chromatograms eliminates the need for time consuming determination of peak areas, normalization for sample sizes, and mathematical treatment of data. The person scanning such chromatograms need only search for (1) relative peak heights of normal paraffins as in the Minagish, Gach Saran, and Prudhoe Bay chromatograms of figure 2, (2) relative amounts of unresolved components as in the Duri and Bachaquero chromatograms of figure 2, and (3) any characteristic of a unique nature such as the peak found at about 50 minutes in the Duri chromatogram of figure 2. Unique characteristics can often be missed in a statistical treatment involving only a portion of the chromatogram.

A statistical approach can range from manual determination of peak areas of normal paraffin peaks to integration over the entire boiling range with computerized handling of data to produce any number of comparisons. The latter requires quite sophisticated electronic equipment not available at all laboratories. Evaluation of some of the simpler manual operations involved measuring and normalizing peak areas in the range from normal eicosane  $(\underline{n}-C_{20})$  to normal triacontane  $(\underline{n}-C_{30})$ , calculating peak area ratios  $C_n + 1/C_n$ , averaging the ratios, tabulating highest normal paraffin carbon numbers, plotting carbon number versus percent of total from  $\underline{n}-C_{20}$  through  $\underline{n}-C_{30}$ , and establishing a profile from  $\underline{n}-C_{20}$  through  $\underline{n}-C_{30}$  as suggested by Miller (<u>37</u>). The suggested profile is defined as the number of peaks that touch or extend above a line drawn from the top of peak  $\underline{n}-C_{20}$  to the top of peak  $\underline{n}-C_{30}$  as illustrated on the topped crude oil sample in figure 1. All chromatograms that did not have a  $\underline{n}-C_{30}$  or a  $\underline{n}-C_{30}$  peak were classified as "broad" (B).

Manual measurement of peak area is difficult due to the necessity of establishing a baseline; thus, the repeatability of area measurements may become as dependent on operator judgment as on variation from one crude oil to another. The adjacent normal paraffin peak ratios, calculated by the formula  $C_n + 1/C_n$  and averaged as shown in table 3, revealed few distinctive characteristics for paraffinic crude oils and could not be determined for nonparaffinic crude oils. The highest normal paraffin peak resolved seemed to be as much a function of sample size and sensitivity as a characteristic of the crude oil. The plot of carbon number versus percent normal paraffin in the range <u>n</u>-C<sub>20</sub> to <u>n</u>-C<sub>30</sub> (fig. 3) exhibited little distinction among the oils and cannot be determined on nonparaffinic samples. The profile suggested by Miller seems to offer the most promise as a tool to eliminate consideration of some of the chromatograms. Profiles from the chromatograms in this study are listed in table 4. Because of the limited number of possible profiles between  $\underline{n}-C_{20}$  and  $\underline{n}-C_{30}$ (0 to 9, and B), the method cannot be used to select a specific source oil but can be used to eliminate enough chromatograms to allow visual comparison. Such visual comparison seems to be the quickest and most satisfactory way to deal with the chromatograms in the absence of a sophisticated data reduction system.

TABLE 3. - Average adjacent <u>n</u>-paraffin peak ratios,  $C_{20}$  to  $C_{30}$ 

| Sample                                   | Crude | Topped crude | Residuum |
|------------------------------------------|-------|--------------|----------|
| El Morgan                                | 0.90  | 0.89         | 1.28     |
| Duri                                     | NA    | NA           | NA       |
| Minagish                                 | .86   | .94          | 1.38     |
| Bachaquero                               | NA    | NA           | NA       |
| Gach Saran                               | .86   | .86          | 1.12     |
| Prudhoe Bay                              | .85   | .89          | 1.26     |
| NA Not contloble for company finite cile |       |              |          |

NA--Not available for nonparaffinic oils.



| Sample      | Crude | Topped crude | Residuum |
|-------------|-------|--------------|----------|
| E1 Morgan   | 0     | 1            | 9        |
| Duri        | В     | В            | В        |
| Minagish    | 2     | 2            | 7        |
| Bachaquero  | В     | В            | В        |
| Gach Saran  | 0     | 0            | 9        |
| Prudhoe Bay | 2     | 6            | В        |





FIGURE 3. - Comparison of percent <u>n</u>-paraffin to carbon numbers from C<sub>20</sub> to C<sub>30</sub> as determined from GLC data on topped crude oil samples.

#### Atomic Absorption Spectrophotometry and Colorimetry--Vanadium and Nickel

Often recommended for oil characterization, vanadium and nickel are among the most abundant trace metals. In addition to being present in readily measurable quantities, the vanadium and nickel contents vary widely among crude oils and are generally thought to be little affected by weathering, making them ideal for identification purposes. Most current vanadium and nickel determinations are made by atomic absorption (AA) spectrophotometry.

Samples for atomic absorption analysis were ashed by the benzene-sulfonic acid method (4, 40) and dissolved in a hydrochloric acid-water matrix. Standard solutions were prepared to cover the expected range, and vanadium and nickel were determined with a Perkin Elmer Model 403 atomic absorption spectro-photometer. For highly paraffinic or viscous samples, the ashing technique was found to show better repeatability than simple dilution of the sample for direct burning. Once the ashing was accomplished, many samples could be run at one time so that the method was not as time-consuming as it might appear.

Atomic absorption repeatability was frequently in the 10 to 20 percent range, and great care was necessary in both the sampling and ashing of oils in order to obtain results differing by less than 20 percent. Although repeatability can be less than desirable, vanadium and nickel concentrations were found to vary enough from crude oil to crude oil to make this parameter a useful identification tool (table 5).

|             | Vanadium, ppm |        |        | Nickel, ppm |        |              | Vanadium-to- |        |        |
|-------------|---------------|--------|--------|-------------|--------|--------------|--------------|--------|--------|
| Sample      |               |        |        |             |        | nickel ratio |              |        |        |
|             | Crude         | Topped | Resid- | Crude       | Topped | Resid-       | Crude        | Topped | Resid- |
|             |               | crude  | uum    |             | crude  | uum          |              | crude  | uum    |
| El Morgan   | 43.7          | 75.6   | 98.6   | 24.0        | 43.2   | 51.2         | 1.8          | 1.8    | 1.9    |
| Duri        | 0             | 0      | 4.0    | 33.7        | 35.1   | 49.0         | 0            | 0      | .1     |
| Minagish    | 10.5          | 26.8   | 47.8   | 6.0         | 11.3   | 19.2         | 1.8          | 2.4    | 2.5    |
| Bachaquero  | 442.2         | 512.8  | 695.7  | 58.2        | 71.4   | 86.6         | 7.6          | 7.2    | 8.0    |
| Gach Saran  | 89.0          | 189.8  | 233.7  | 30.5        | 55.9   | 62.2         | 2.9          | 3.4    | 3.8    |
| Prudhoe Bay | 28.2          | 33.2   | 59.1   | 8.8         | 16.4   | 25.4         | 3.2          | 2.0    | 2.3    |

TABLE 5. - Vanadium and nickel concentration data<sup>1</sup>

<sup>1</sup>Determined by atomic absorption spectrophotometry.

The use of the vanadium-to-nickel ratio has often been recommended, the argument being that exposure will have an identical effect on both metals, and therefore the ratio will remain constant. For the samples in this study, the ratios varied as much from crude oil to topped crude oil to residuum as from sample to sample, as can be seen in table 5, possibly due to the lack of repeatability or to the different relative volatilities of vanadium and nickel compounds. Although there is some validity to the argument for using a ratio, the absolute values cover a much wider range than do the ratios and can be compared directly with the values of other samples topped to the same temperature. In table 5, the absolute values of El Morgan compared with those of Minagish and Gach Saran compared with those of Prudhoe Bay are distinguishable,

but the ratios of the same samples are similar enough to be troublesome. If ratios are used, they should not be reported without citing absolute values (24, 37).

In addition to atomic absorption, vanadium and nickel were determined colorimetrically (table 6). Samples were ashed with sulfuric acid. Vanadium was determined by the sodium tungstate method (42), and nickel was determined by the dimethylglyoxime method (9). In both cases, readings were made with a Bausch and Lomb Spectronic 20 visible spectrophotometer.

|               | Vanadium   | , ppm   | Nickel, ppm |         |  |
|---------------|------------|---------|-------------|---------|--|
| Sample, crude | Atomic     | Colori- | Atomic      | Colori- |  |
|               | absorption | metric  | absorption  | metric  |  |
| El Morgan     | 43.7       | 39.2    | 24.0        | 22.2    |  |
| Prudhoe Bay   | 28.2       | 16.5    | 8.8         | 8.9     |  |

TABLE 6. - Trace metals results--comparison of two methods

Although the colorimetric method can yield better repeatability than atomic absorption  $(\underline{36})$ , the procedures, particularly the one for nickel, are complex and time consuming, and therefore not desirable for routine use  $(\underline{3})$ . Only a few samples can be run at one time owing to the excessive manipulation required for each sample, and without extreme care, repeatability is reduced to a level comparable with that of atomic absorption. Painstaking colorimetric results can be more repeatable than atomic absorption results, but the improved repeatability does not seem important enough to justify the extra time involved.

#### Infrared Spectroscopy

Infrared spectra for use in oil spills identification seem to offer several advantages. First, the required instrumentation is relatively inexpensive and simple to operate; second, little or no sample preparation is required; and finally, the analysis can be completed in less time than is needed for any other method evaluated. Unfortunately the value of the information obtained may be limited.

Samples were run on a Perkin Elmer Model 467 infrared spectrophotometer with a sodium chloride sample cell. Sample preparation was necessary only when samples would not spread uniformly; tacky samples were first diluted with a suitable solvent (carbon disulfide) that had no absorbance bands in the regions of interest. Absorbance was measured for bands at 720, 810, 1,375, and 1,600 cm<sup>-1</sup>, and the ratios (tables 7 and 8) were calculated. The use of the ratios as an identification tool has been recommended as a mathematical solution to evaluate infrared spectra (20, 22).

| Sample, topped crude <sup>1</sup> | Wave number ratio |             |             |             |          |  |  |
|-----------------------------------|-------------------|-------------|-------------|-------------|----------|--|--|
|                                   | 720/1,375         | 1,600/1,375 | 1,600/720   | 810/1,375   | 810/720  |  |  |
| El Morgan, A                      | 0.227             | 0.182       | 0.801       | 0.127       | 0.559    |  |  |
| El Morgan, B                      | .205              | .196        | .958        | .124        | .605     |  |  |
| Minagish, A                       | .227              | .151        | .664        | .146        | .642     |  |  |
| Minagish, B                       | .223              | .166        | .746        | .145        | .650     |  |  |
| Duri, I                           | .293              | .249        | .848        | .139        | .474     |  |  |
| Duri, II                          | .294              | .256        | .873        | .144        | .492     |  |  |
| Prudhoe Bay, I                    | .161              | .236        | 1.467       | .152        | .944     |  |  |
| Prudhoe Bay, II                   | .141              | .229        | 1.627       | .150        | 1.064    |  |  |
| 1R is A compled in a por          | 0011 2 mon        | the later T | T is a seco | nd distilla | tion out |  |  |

TABLE 7. - Comparison of duplicate infrared absorbance ratios

<sup>1</sup>B is A sampled in a new cell 2 months later. II is a second distillation cut at the same temperature as I.

TABLE 8. - Infrared absorbance ratios of topped oils from crude oil samples

| Sample, topped crude | Wave number ratio |             |           |           |         |  |  |  |  |
|----------------------|-------------------|-------------|-----------|-----------|---------|--|--|--|--|
|                      | 720/1,375         | 1,600/1,375 | 1,600/720 | 810/1,375 | 810/720 |  |  |  |  |
| El Morgan            | 0.227             | 0.182       | 0.801     | 0.127     | 0.559   |  |  |  |  |
| Duri                 | .293              | .249        | .848      | .139      | .474    |  |  |  |  |
| Minagish             | .227              | .151        | .664      | .146      | .642    |  |  |  |  |
| Bachaquero           | .099              | .274        | 2.771     | .166      | 1.679   |  |  |  |  |
| Gach Saran           | .175              | .226        | 1.288     | .138      | .786    |  |  |  |  |
| Prudhoe Bay          | .161              | .236        | 1.467     | .152      | .944    |  |  |  |  |

More than one-fourth of the absorbance ratios (table 7) differed by as much as 17 percent within the same ratio when comparisons were made of duplicate runs of the same topped sample or of determinations on different topped samples from two separate distillations of the same crude oil. Ratios from repeated distillations were comparable with ratios from duplicate runs of the same sample (table 7), indicating that the distillation process was not accountable for the repeatability differences. Instrument repeatability was good. Discrepancies in peak measurement by the analyst seemed to be the significant factor responsible for deviations (28). Less than one-fourth of the results from the six different topped crude oils (table 8) showed greater variation than duplicate runs. Because duplicate runs often show as much variation as found with different samples, the use of these infrared ratios--720,  $\frac{1,500}{1,375}$ ,  $\frac{1,600}{720}$ ,  $\frac{810}{1,375}$ , and  $\frac{310}{720}$ --is not a satisfactory answer to identifying crude oil spills.

Computer analysis of infrared ratios of 21 bands in the 650 to 1,200 cm<sup>-1</sup> region has been used to identify oil spills (26). Not only does this method require computer capabilities, but as the sample becomes more severely weathered, the spectrum becomes less distinctive as in the 600 to 900 cm<sup>-1</sup> region of the Prudhoe Bay sample in figure 4. Oxidation of weathered samples can cause changes in some portions of the spectrum (1, 25). For a crude oil, these factors make it difficult as weathering increases to match a spilled oil with a suspect source on the basis of only the infrared spectrum. Used as a confirmatory technique, an infrared spectrum could be of value,



FIGURE 4. - Infrared spectra of Prudhoe Bay, Alaska, crude, topped crude, and residuum.

particularly if it was scanned for any unique portion that might be missed by measurement of a few individual absorbance bands (<u>11</u>). Examples of contrasting portions of the spectra can be found in the 700 to 900 cm<sup>-1</sup> region of the topped crude oil samples. Bachaquero (fig. 5), Gach Saran (fig. 5), and Prudhoe Bay (fig. 4) topped crude oils are the most distinctive, whereas E1 Morgan, Duri, and Minagish topped crude oils (fig. 5) are relatively similar. As the exposure time for a spilled oil increases, the likelihood of the infrared spectrum being distinctive decreases. Therefore, the usefulness of the method is extremely dependent on the extent of weathering.





### Mass Spectrometry

Mass spectra on the topped crude oil samples were obtained with a CEC (Consolidated Electrodynamics Corp.) Model 21-102 mass spectrometer, which has been modified to be equivalent to the Model 21-103. All runs were made at 15 electron volts, and samples were introduced through a 300° C all-glass inlet.

The data were initially plotted as percent of total ionization versus nominal mass Z series number. The nominal mass Z series number is taken from the general hydrocarbon formula  $C_n H_{2n+Z}$  and represents a homologous series with each successive homologue being increased by the addition of a methylene group, CH<sub>2</sub> (14 mass units). The initial graph (fig. 6) showed little distinction between samples. Consequently, graphs of percent of total ion intensity versus the individual mass numbers for the

FIGURE 5. - Infrared spectra of five topped crude oil samples.



.

FIGURE 6. - Comparison of percent total ion intensity to nominal mass Z series number for topped crude oil samples.



FIGURE 7. - Comparison of percent total ion intensity to mass number for selected nominal mass Z series of topped crude oil samples.

even numbered series were plotted. A comparison of the graphs of selected series, representing the most abundant types of compounds found in crude oils, did reveal some obvious contrasts. The nominal series selected were the +2 series, which represents the paraffinand naphthalene-type compounds, the -4 series, which represents the phenanthrene- and anthracene-type compounds, and the -6 series, which represents the benzenetype compounds.

Some distinctive characteristics shown in figure 7 are obvious, such as Minagish at about 225 mass units in the <sup>+</sup>2 series and Duri at about 200 mass units in the <sup>-4</sup> series, but many differences that are not as obvious, such as that of El Morgan at about 400 mass units in the <sup>+</sup>2 series, are significant to experienced personnel.

As an overall identification tool, the use of mass spectra has several limitations. The initial expense for instrument purchase is generally prohibitive for the smaller laboratory. In addition, without computerized data handling facilities, the time involved in data reduction is excessive in comparison with the time needed for the other methods tested. To be fully utilized, mass data should be interpreted by

highly experienced personnel using an elaborate data-reduction system. The expense, time, and personnel requirements represent the major drawbacks to this method, which otherwise can yield useful characteristics for oil spills research.

#### Bomb Sulfur and Kjeldahl Nitrogen

Sulfur and nitrogen contents of crude oils, and more recently crude oil residua, have long been a part of the Bureau of Mines routine crude oil analysis. The standard methods used have been the bomb method (5) for sulfur and Kjeldahl method for nitrogen. In connection with oil spill research, the use of these sulfur and nitrogen values has been advocated as a valuable identification characteristic (24-25, 27).

There are several reasons why sulfur and nitrogen values are attractive for oil spill use. Values can be determined by simple procedures involving relatively inexpensive equipment. The repeatability of the methods is good  $(\underline{24}, \underline{27})$ , and the values cover a wide range (table 9) and are unique because they are available for most of the world's crude oils.

| Sample      | Sulfur, percent |        |        | Nitr  | ogen, pe | ercent | Sulfur-to-<br>nitrogen ratio |        |        |
|-------------|-----------------|--------|--------|-------|----------|--------|------------------------------|--------|--------|
| 2 F         | Crude           | Topped | Resid- | Crude | Topped   | Resid- | Crude                        | Topped | Resid- |
|             |                 | crude  | uum    |       | crude    | uum    |                              | crude  | uum    |
| El Morgan   | 1.67            | 2.26   | 2.77   | 0.201 | 0.313    | 0.468  | 8.3                          | 7.2    | 5.9    |
| Duri        | .17             | .20    | .20    | .336  | .400     | .432   | .5                           | .5     | .5     |
| Minagish    | 2.12            | 3.47   | 4.00   | .115  | .185     | .318   | 18.4                         | 18.8   | 12.6   |
| Bachaquero  | 2.68            | 2.98   | 3.21   | .402  | .483     | .618   | 6.7                          | 6.2    | 5.2    |
| Gach Saran  | 1.57            | 2.22   | 2.74   | .267  | .418     | .583   | 5.9                          | 5.3    | 4.7    |
| Prudhoe Bay | .82             | 1.45   | 1.87   | .209  | .283     | .468   | 3.9                          | 5.1    | 4.0    |
|             |                 |        |        |       |          |        |                              |        |        |

| ſABLE | 9. | - | Sulfur | and | nitrogen | data |
|-------|----|---|--------|-----|----------|------|
|       |    |   |        |     |          |      |

The only factor interfering with the use of sulfur and nitrogen content is disagreement on net quantitative effects of weathering. Sulfur has specifically been reported to be subject to loss as high as 15 percent in exposed samples (10, 17). Others report that only a small percent of sulfur compounds boil below tridecane ( $C_{13}$ ), as determined with a flame photometric detector on gas-liquid chromatographic effluents, and also that sulfur is less subject to biological attack than the normal paraffins (1-2, 15). The effect of exposure on nitrogen compounds has received little mention but is generally assumed to be negligible (1).

To overcome any weathering effects, the use of a sulfur-to-nitrogen ratio has been proposed (25, 37) based on the assumption that both will be similarly affected. As previously mentioned and as shown by other Bureau of Mines research (6), this is not the case. The use of the ratio instead of absolute values can actually minimize differences between oils. The topped crude oil samples of Gach Saran and Prudhoe Bay have similar sulfur-to-nitrogen ratios, but these topped samples have readily distinguishable absolute sulfur and nitrogen values (table 9). If the same boiling-range cut of spilled oil and suspect oil are used, there is no justification for use of the ratio in preference to absolute values.

#### Nuclear Magnetic Resonance Spectroscopy

The nuclear magnetic resonance (NMR) spectra of the six topped crude oil samples were run on a Varian Associates DP-60 nuclear magnetic resonance spectrometer. A limited examination showed little spectral variation particularly among oils of similar gravity and composition (table 10). All NMR spectra were quite similar; however, some diversity was found in the  $H_b$  peak (a measure of paraffinicity and paraffinic side chain length) and in the  $H_d$  peak (a measure of the degreee of aromaticity). Except in cases of relatively unique crude oils, such as Duri and Bachaquero, variations were minor and of little value for crude oil spill research.

| TABLE | 10. | <br>Hydrogen | type | <u>s by</u> | nuclear |
|-------|-----|--------------|------|-------------|---------|
|       |     | magnet       | ic r | eson        | ance    |

|                                                                  | Hy             | drogen         | type,          |                |  |  |  |  |  |
|------------------------------------------------------------------|----------------|----------------|----------------|----------------|--|--|--|--|--|
| Sample, copped crude                                             |                | <u>nt-</u>     |                |                |  |  |  |  |  |
|                                                                  | H <sub>a</sub> | H <sub>b</sub> | H <sub>c</sub> | H <sub>d</sub> |  |  |  |  |  |
| El Morgan                                                        | 20.0           | 59.8           | 13.8           | 6.4            |  |  |  |  |  |
| Duri                                                             | 20.3           | 64.6           | 10.9           | 4.2            |  |  |  |  |  |
| Minagish                                                         | 18.6           | 59.2           | 15.4           | 6.8            |  |  |  |  |  |
| Bachaquero                                                       | 24.1           | 49.2           | 18.3           | 8.4            |  |  |  |  |  |
| Gach Saran                                                       | 21.4           | 57.0           | 15.0           | 6.6            |  |  |  |  |  |
| Prudhoe Bay                                                      | 20.5           | 57.1           | 16.3           | 6.1            |  |  |  |  |  |
| $^{1}H_{a}$ methyl groups $\gamma$ and fur                       | ther f         | rom ar         | omatic         |                |  |  |  |  |  |
| rings or paraffinic methy                                        | 1 grou         | ps.            |                |                |  |  |  |  |  |
| $H_b$ methyl groups $\beta$ to arom                              | atic r         | ings,          | methy1         | ene            |  |  |  |  |  |
| or methine groups $^eta$ and f                                   | urther         | from           | aromat         | ic             |  |  |  |  |  |
| rings, or paraffinic meth                                        | ylene          | groups         | •              |                |  |  |  |  |  |
| H <sub>a</sub> methyl, methylene, and methine groups $\alpha$ to |                |                |                |                |  |  |  |  |  |
| aromatic ring.                                                   |                | -              |                |                |  |  |  |  |  |
| H <sub>d</sub> aromatic hydrogen attac                           | hed to         | aroma          | tic ri         | .ngs.          |  |  |  |  |  |

Ultraviolet, Fluorescence Excitation, and Fluorescence Emission Spectrophotometry

Ultraviolet runs were made on a Beckman DBG ultraviolet spectrophotometer, and fluorescence runs were made on a Perkin Elmer MPF-2A spectrophotometer. A total of seven fluorescence spectra were recorded for each sample at different wavelengths with benzene as the solvent, and an ultraviolet spectrum was recorded for each sample with cyclohexane as the solvent. Within each method, spectra were similar or even identical. Although ultraviolet absorption spectra have been reported to be useful in differentiating various oils (1), initial examination showed such little promise for crude oil spill identification that no further work (such as the use of a different or a more sensitive instrument) was undertaken.

#### Natural Weathering Effects

Although in recent years much attention has been given to the problems presented by spilled crude oil and to its identification, the literature available on the effect of natural weathering of samples is limited. Some sources have reported undertaking simulated weathering (23, 25, 37), but no comparison to natural weathering has been established. Much disagreement exists among available sources as to the exact effect that exposure has on each parameter proposed for identification, and the situation is further complicated by the fact that exposure effects also depend on the nature of the sample (23). Another critical factor is the exposure time. If the exposure time is very short, a direct comparison of the spill to the suspect source may be feasible, otherwise use of a topped suspect sample will be more comparable and eliminate evaporation differences.

A general picture of exposure effects on the techniques evaluated can be put together from available literature. All sources agree that the major effect on gas-liquid chromatography is the evaporative loss of lighter components. Although some researchers contend that there will be little change in normal paraffins above pentadecane  $(\underline{n-C_{15}})$  (10, 12), most recent sources agree that more severe weathering will result in some decrease of normal paraffins and a corresponding increase of asphaltenes (25, 37). Slight losses of nickel and vanadium may occur due to water solubility or volatility, but prevalent opinion is that trace metals are little affected by exposure (1, 10, 25, 37). Oxidation effects can change certain infrared absorption bands, but no comprehensive study of such changes has been made (1, 25). Although some loss of sulfur has been reported, including one actual spill (10, 17), many authors still contend that weathering has no affect on values of sulfur and nitrogen (25, 37). Note that these views on weathering represent a literature composite, not a single comprehensive study.

#### CONCLUSIONS

The difficulties presented by the crude oil spill identification problem are not merely confined to development of techniques to characterize oils. The complexities of crude oil that allow so many identification techniques to exist also prevent any one technique from providing the ultimate answer. For this reason, several techniques were investigated to evaluate their applicability to the problem. In addition to the complexities of the oil, obstacles to selection of a single source in case of a spill include that the suspect sources frequently may be of similar origin, may be shipped from the same port, and may be bound for the same destination. Finally, the lack of exact definition of natural weathering effect on individual characteristics proposed for oil identification hinders any investigation.

Of the seven methods evaluated for oil spill identification, three--gasliquid chromatography, vanadium and nickel by atomic absorption, and sulfur and nitrogen analysis--manifest the simplicity, reliability, and rapidity desired as well as involving moderate costs. Once the proper column has been prepared, gas-liquid chromatography involves a short analysis time and a minimal sample and provides some assessment of the extent of weathering. More time would be needed to handle the gas-liquid chromatographic data quantitatively, and a detailed quantitative examination does not seem warranted unless there are too many samples to inspect visually. Determination of vanadium and nickel by atomic absorption is slightly more time consuming, requires more sample, and is not very precise, but the wide concentration range of the two metals make the method desirable for oil spill characterization. Routine sulfur and nitrogen determinations exhibit good precision, relatively simple techniques are involved, and concentrations cover a wide enough range to be useful in crude oil spills research.

Although mass spectra and infrared spectra have limitations, each offers some unique qualities that can be useful for identification. Mass spectra in particular show distinctive characteristics, but instrumentation is expensive and spectral interpretation is difficult and time consuming. On the other hand, infrared spectra are simple and rapid to obtain, and though there are usually few distinctive bands, unique portions can appear in the spectra. If available, these spectra can be used as auxiliaries to substantiate other data.

The limited study of nuclear magnetic resonance and ultraviolet absorption demonstrated few characteristics useful for identification of spilled crude oils.

In the identification of pollutant crude oils, negative results are often more conclusive than positive ones, but if negative results are to be used, a complete set of suspect sources must be obtained along with the pollutant oil. Even the most complex identification schemes, involving elaborate mathematical and computerized data processing, will not always provide positive identification (25, 37). To be able to positively identify an oil spill without any knowledge of the possible sources involved would be extremely difficult with data currently available on the world's oils. The Bureau of Mines evaluated the previously discussed techniques for use with a spilled crude oil compared with suspect oils and found that gas-liquid chromatography and vanadium, nickel, sulfur, and nitrogen determinations were the most useful of the techniques investigated to aid in crude oil spill identification.

#### **BIBLIOGRAPHY**

- Adlard, E. R. A Review of the Methods for the Identification of Persistent Hydrocarbon Pollutants on Seas and Beaches. J. Inst. Petrol., v. 58, No. 560, March 1972, pp. 63-74.
- Adlard, E. R., L. F. Creaser, and P. H. D. Matthews. Identification of Hydrocarbon Pollutants on Seas and Beaches by Gas Chromatography. Anal. Chem., v. 44, No. 1, January 1972, pp. 64-73.
- Agazzi, E. J., D. C. Burtner, D. J. Crittenden, and D. R. Patterson. Determination of Trace Metals in Oils by Sulfur Incineration and Spectrophotometric Measurements. Anal. Chem., v. 35, No. 3, March 1963, pp. 332-335.
- 4. American Society for Testing and Materials. Standard Method of Test for Lead and Vanadium in Gas Turbine Fuels. D 2787-72 in 1973 Annual Book of ASTM Standards: Part 17, Petroleum Products--Fuels; Solvents; Lubricating Oils; Cutting Oils; Lubricating Greases; Hydraulic Fluids. Philadelphia, Pa., 1973, pp. 1025-1028.
- Standard Method of Test for Sulfur in Petroleum Products (General Bomb Method). D 129-64 in 1973 Annual Book of ASTM Standards: Part 17, Petroleum Products--Fuels; Solvents; Lubricating Oils; Cutting Oils; Lubricating Greases; Hydraulic Fluids. Philadelphia, Pa., 1973, pp. 75-78.
- Ball, J. S., W. E. Haines, and R. V. Helm. Minor Constituents of a California Petroleum. Proc. 5th World Petrol. Cong., sec. 5, 1959, pp. 175-189.
- Bean, R. M. Analysis of Porphyrins in Boscan Crude. Ph.D. Thesis, University of Utah, Salt Lake City, Utah, 1961, 106 pp.
- Berridge, S. A., R. A. Dean, R. G. Fallows, and A. Fish. The Properties of Persistent Oils at Sea. J. Inst. Petrol., v. 54, No. 539, November 1968, pp. 300-307.
- Blackwell, A. T., A. T. Daniel, and J. D. Miller. Photometric Determination of Nickel in Petroleum Cracking Catalyst. Anal. Chem., v. 28, No. 7, July 1956, p. 1209.
- Brunnock, J. V., D. F. Duckworth, and G. G. Stephens. Analysis of Beach Pollutants. J. Inst. Petrol., v. 54, No. 539, November 1968, pp. 310-325.
- 11. Cole, R. D. Identification of Slop Oils--An Aid in Tracing Refinery Oil Leaks. J. Inst. Petrol., v. 54, No. 538, October 1968, pp. 288-296.

- Cole, R. D. Recognition of Crude Oils by Capillary Gas Chromatography. Nature, v. 233, Oct. 22, 1971, pp. 546-548.
- 13. Ferrero, E. P., and D. T. Nichols. Analyses of 38 Crude Oils From Africa. BuMines IC 8293, 1966, 47 pp.
- 14. \_\_\_\_\_. Analyses of 169 Crude Oils From 122 Foreign Oilfields. BuMines IC 8542, 1972, 113 pp.
- 15. Garza, M. E., Jr., and J. Muth. Characterization of Crude, Semirefined, and Refined Oils by Gas-Liquid Chromatography. Environ. Sci. and Technol., v. 8, No. 3, March 1974, pp. 249-255.
- Gruenfeld, M. Identification of Oil Pollutants: A Review of Some Recent Methods. Proc. Conf. on Prevention and Control of Oil Spills, Mar. 13-15, 1973, Washington, D.C., pp. 179-193.
- Journal of the Institute of Petroleum. Analytical Methods for the Identification of the Source of Pollution by Oil of the Seas, Rivers, and Beaches. V. 56, No. 548, March 1970, pp. 107-117.
- Kahn, H. L. Principles and Practice of Atomic Absorption. Adv. Chem. Ser., No. 73, "Trace Inorganics in Water." ACS, 1968, pp. 183-229.
- Kawahara, F. K. Characterization and Identification of Spilled Fuel Oils by Gas Chromatography and Infrared Spectrophotometry. J. of Chromatog. Sci., v. 10, No. 10, October 1972, pp. 629-636.
- 20. Identification and Differentiation of Heavy Residual Oil and Asphalt Pollutants in Surface Water by Comparative Ratios of Infrared Absorbance. Environ. Sci. and Technol., v. 3, No. 2, February 1969, pp. 150-153.
- Kawahara, F. K., and D. G. Ballinger. Characterization of Oil Slicks on Surface Water. I & EC Prod. Res. Develop., v. 9, No. 4, 1970, pp. 553-558.
- Kawahara, F. K., J. F. Santner, and E. C. Julian. Characterization of Heavy Residual Fuel Oils and Asphalts by Infrared Spectrophotometry Using Statistical Discriminant Function Analysis. Anal. Chem., v. 46, No. 2, February 1974, pp. 266-273.
- 23. Klein, A. E., and N. Pilpel. The Effects of Artificial Sunlight Upon Floating Oils. Water Res., v. 8, No. 1, January 1974, pp. 79-83.
- 24. Kreider, R. E. Identification of Oil Leaks and Spills. Joint Conf. Prevention and Control of Oil Spills (A Report of the Western Oil and Gas Association Subcommittee on Analysis of Beach Pollutants), June 15, 1971, Washington, D.C., 26 pp.

- Lieberman, M. Oil Pollution Source Identificiation. U.S. Environmental Protection Agency, R2-73-102, 1973, 175 pp.
- Lynch, P. F., and C. W. Brown. Identifying Source of Petroleum by Infrared Spectroscopy. Environ. Sci. and Technol., v. 7, No. 13, December 1973, pp. 1123-1127.
- Magee, E. M., H. J. Hall, and G. M. Varga, Jr. Potential Pollutants in Fossil Fuels. U.S. Environmental Protection Agency, R2-73-249, 1973, 293 pp.
- 28. Mattson, J. S. "Fingerprinting" of Oil by Infrared Spectrometry. Anal. Chem., v. 43, No. 13, November 1971, pp. 1872-1873.
- 29. Mattson, J. S., H. B. Mark, Jr., R. L. Kolpack, and C. E. Schutt. Identification of Crude Oils by Internal Reflection Spectrometry. Anal. Chem., v. 42, No. 2, February 1970, pp. 234-238.
- McKinney, C. M., and E. L. Garton. Analyses of Crude Oils From 470 Important Oilfields in the United States. BuMines RI 5376, 1957, 276 pp.
- 31. \_\_\_\_\_. Analyses of 42 Crude Oils From Mexico. BuMines RI 5595, 1960, 26 pp.
- 32. McKinney, C. M., E. L. Garton, and F. G. Schwartz. Analyses of Some Crude Oils From Alaska. BuMines RI 5447, 1959, 29 pp.
- McKinney, C. M., and E. M. Shelton. Analyses of Some Crude Oils From Fields in West Texas. BuMines RI 6752, 1966, 163 pp.
- 34. McKinney, C. M., and E. P. Ferrero. Analyses of Crude Oils From the Gulf Coast Area of Louisiana and Texas. BuMines RI 6266, 1963, 173 pp.
- 35. McKinney, C. M., E. P. Ferrero, and W. J. Wenger. Analyses of Crude Oils From 546 Important Oilfields in the United States. BuMines RI 6819, 1966, 345 pp.
- 36. Meddings, B., and H. Kaiser. Precision of Routine Atomic Absorption Analysis. Atomic Absorption Newsletter, v. 6, No. 2, March-April 1967, pp. 28-32.
- Miller, J. W. A Multiparameter Oil Pollution Source Identification System. U.S. Environmental Protection Agency, R2-73-221, 1973, 173 pp.
- 38. Rall, H. T., C. J. Thompson, H. J. Coleman, and R. L. Hopkins. Sulfur Compounds in Crude Oil. BuMines Bull. 659, 1972, 187 pp.

- 39. Ramsdale, S. J., and R. E. Wilkinson. Identification of Petroleum Sources of Beach Pollution by Gas-Liquid Chromatography. J. Inst. Petrol., v. 54, No. 539, November 1968, pp. 326-331.
- 40. Shott, J. E., Jr., T. J. Garland, and R. O. Clark. Determination of Traces of Nickel and Vanadium in Petroleum Distillates. Anal. Chem., v. 33, No. 4, April 1961, pp. 506-510.
- 41. Smith, N. A. C., H. M. Smith, O. C. Blade, and E. L. Garton. The Bureau of Mines Routine Method for the Analysis of Crude Petroleum. I. The Analytical Method. BuMines Bull. 490, 1951, 82 pp.
- 42. Wallace, G. W., and M. G. Mellon. Spectrophotometric Determination of Vanadium as Tungstovanadic Acid. Anal. Chem., v. 32, No. 2, February 1960, pp. 204-207.

## APPENDIX. - CRUDE OIL ANALYSES

## TABLE A-1. - Data from routine analysis of El Morgan, Egypt, crude oil

Bureau of Mines Bartlesville Laboratory 

### **IDENTIFICATION**

El Morgan field Miocene

Africa Egypt

## **GENERAL CHARACTERISTICS**

Gravity, ° API, <u>32, 1</u> Gravity, specific, 0.865 Sulfur, percent, <u>1.67</u> Viscosity, Saybolt Universal at 77° F, 77 sec; 100° F, 60 sec

Pour point, ° F., <u>40</u> Color, <u>brownish black</u> Nitrogen, percent, 0.201

#### DISTILLATION, BUREAU OF MINES ROUTINE METHOD

| Fraction<br>No. | Cut<br>temp.<br>°F. | Percent      | Sum,<br>percent | Sp. gr.,<br>60/60° F. | ° API,<br>60° F. | C. I. | Refractive<br>index,<br>n <sub>p</sub> at 20° C. | Specific dispersion | S. U.<br>visc.,<br>100° F. | Cloud<br>test,<br>°F. |
|-----------------|---------------------|--------------|-----------------|-----------------------|------------------|-------|--------------------------------------------------|---------------------|----------------------------|-----------------------|
| 1               | 122                 | 2,6          | 2.6             | 0.646                 | 87,5             |       |                                                  |                     |                            |                       |
| 2               | 167                 | 2.3          | 4.9             | .662                  | 82,2             | 3,7   | 1,38759                                          | 129.7               |                            |                       |
| 3               | 212                 | 3.7          | 8.6             | .706                  | 68.9             | 15    | 1.39538                                          | 134.5               |                            |                       |
| 4               | 257                 | 4,3          | 12,9            | .735                  | 61.0             | 19    | 1.40905                                          | 137.2               |                            |                       |
| 5               | 302                 | 4.7          | 17.6            | .756                  | 55.7             | 22    | 1.42093                                          | 140.3               |                            |                       |
| 6               | 347                 | 4,1          | 21,7            | .776                  | 50.8             | 24    | 1.43124                                          | 140.9               |                            |                       |
| 7               | 392                 | 3.9          | 25.6            | .791                  | 47.4             | 25    | 1.43933                                          | 142.3               |                            |                       |
| 8               | 437                 | <u>\ 4,1</u> | 29.7            | .804                  | 44.5             | 26    | 1.44745                                          | 144.4               |                            |                       |
| 9               | 482                 | 4.1          | 33.8            | .819                  | 41.3             | 28    | 1.45582                                          | 150.9               |                            |                       |
| 10              | 527                 | 4.5          | 38,3            | .835                  | 38.0             | 31    | 1.46420                                          | 151.7               |                            |                       |

|     |                                 | U U                                                                                                                | INGLE DISU                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|---------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 392 | 4.1                             | 42.4                                                                                                               | 0.856                                                 | 33.8                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                           | 1.47408                                               | 163.6                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 437 | 5.1                             | 47.5                                                                                                               | .864                                                  | 32.3                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                           | 1,47837                                               | 159.2                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 482 | 5.2                             | 52.7                                                                                                               | .875                                                  | 30.2                                                                                                                                                                                                                                                                                                  | 38                                                                                                                                                                                                                                                                                                                                                                           | 1.48527                                               | 168.1                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 527 | 4.9                             | 57.6                                                                                                               | .888                                                  | 27.8                                                                                                                                                                                                                                                                                                  | 41                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 572 | 5.7                             | 63.3                                                                                                               | .898                                                  | 26.1                                                                                                                                                                                                                                                                                                  | 43                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 34.5                            | 97,8                                                                                                               | .984                                                  | 12,3                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 392<br>437<br>482<br>527<br>572 | 392       4.1         437       5.1         482       5.2         527       4.9         572       5.7         34.5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 392         4,1         42.4         0.856           437         5.1         47.5         .864           482         5.2         52.7         .875           527         4.9         .57.6         .888           572         5.7         .63.3         .898           34.5         97.8         .984 | 392         4,1         42.4         0.856         33.8           437         5.1         47.5         864         32.3           482         5.2         52.7         875         30.2           527         4.9         57.6         888         27.8           572         5.7         63.3         898         26.1           34.5         97.8         984         12.3 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 392         4.1         42.4         0.856         33.8         36         1.47408           437         5.1         47.5         .864         32.3         36         1.47837           482         5.2         52.7         .875         30.2         38         1.48527           527         4.9         57.6         .888         27.8         41         .48527           572         5.7         63.3         .898         26.1         43         .43 | 392         4.1         42.4         0.856         33.8         36         1.47408         163.6           437         5.1         47.5         .864         32.3         36         1.47837         159.2           482         5.2         52.7         .875         30.2         38         1.48527         168.1           527         4.9         57.6         .888         27.8         41            572         5.7         63.3         .898         26.1         43 | 392         4,1         42.4         0.856         33.8         36         1,47408         163.6         39.           437         5.1         47.5         .864         32.3         36         1.47837         159.2         47           482         5.2         52.7         .875         .30.2         .38         1.48527         168.1         .60           527         4.9         57.6         .888         .27.8         41         .92           572         5.7         63.3         .898         26.1         43         .173 |

# Carbon residue, Conradson: Residuum, .9.8 percent; crude, .3.8 percent.

#### APPROXIMATE SUMMARY

Residuum:

Sulfur, percent, 2.77 Nitrogen, percent, 0.468.

|                                   | Percent | Sp. gr. | ° API     | Viscosity |
|-----------------------------------|---------|---------|-----------|-----------|
| Light gasoline                    | 8,6     | 0,676   | 77,8      |           |
| Total gasoline and naphtha        | 25.6    | 0.734   | 61.2      |           |
| Kerosine distillate               | 8.2     | .812    | 42.9      |           |
| Gas oil                           | 12.3    | .850    | 34.9      |           |
| Nonviscous lubricating distillate | 9.5     | .867889 | 31.8-27.7 | 50-160    |
| Medium lubricating distillate     | 6.6     | .889901 | 27.7-25.5 | 100-200   |
| Viscous lubricating distillate    | 1.1     | .901903 | 25.5-25.1 | Above 200 |
| Residuum                          | 34.5    | .984    | 12.3      |           |
| Distillation loss                 | 2.2     |         |           |           |

STAGE 2-Distillation continued at 40 mm Hg

TABLE A-2. - Data from routine analysis of Duri, Indonesia, crude oil

Bureau of Mines Bartlesville Laboratory Sample 69074

## **IDENTIFICATION**

Duri field Tertiary Asia Indonesia Sumatra

## GENERAL CHARACTERISTICS

| Gravity, specific. 0,936           | Gravity, ° APL    | 19,7          | Pour point, ° F.,  | 50    |
|------------------------------------|-------------------|---------------|--------------------|-------|
| Sulfur percent. 0.17               | •                 |               | Color. brownish    | black |
| Viscosity, Saybolt Universal at100 | °F, 1,661 sec; 13 | 0° F, 618 sec | Nitrogen, percent, | 0.336 |

#### DISTILLATION, BUREAU OF MINES ROUTINE METHOD

| Fraction<br>No. | Cut<br>temp.<br>°F. | Percent | Sum,<br>percent | Sp. gr.,<br>60/60° F. | ° API,<br>60° F. | C. I.       | Refractive<br>index,<br>n <sub>p</sub> at 20° C. | Specific<br>dispersion | S. U.<br>visc.,<br>100° F. | Cloud<br>test,<br>°F. |
|-----------------|---------------------|---------|-----------------|-----------------------|------------------|-------------|--------------------------------------------------|------------------------|----------------------------|-----------------------|
| 1               | 122                 |         |                 |                       |                  |             |                                                  |                        |                            |                       |
| 2               | 167                 |         |                 |                       |                  |             |                                                  |                        |                            |                       |
| 3               | 212                 |         |                 |                       |                  |             |                                                  |                        |                            |                       |
| 4               | 257                 | 0.8     | 0.8             | 0.765                 | <u>53,5</u>      |             | 1.41593                                          | 130.5                  |                            |                       |
| 5               | 302                 | 1.2     | 2.0             |                       | 51.3             | 30          | 1.42690                                          | 132.7                  |                            |                       |
| 6               | 347                 | 1.1     | 3.1             | .792                  | 47.2             | 32          | 1,43958                                          | 135.7                  |                            |                       |
| 7               | 392                 | 1.4     | 4.5             | .818                  | 41.5             | 38          | 1.44894                                          | 140.2                  |                            |                       |
| 8               | 437                 | 2.0     | 6.5             | .835                  | 38.0             | 41          | 1.45903                                          | 141.9                  |                            |                       |
| 9               | 482                 | 3.1     | 9.6             | .853                  | 34.4             | 44          | 1.47027                                          | 148.9                  |                            |                       |
| 10              | 527                 | 4.3     | 13.9            | .869                  | 31.3             |             | 1.48085                                          | 162.8                  |                            |                       |
|                 |                     |         | s               | TAGE 2-Dist           | illation contin  | ued at 40 m | nm. Hg                                           |                        |                            |                       |

| 11        | 392 | 3.8      | 17.7 | 0.889 | 27.7 | 52 | 1.49433 | 176.7 | 45  | Below 5 |
|-----------|-----|----------|------|-------|------|----|---------|-------|-----|---------|
| 12        | 437 | 4.8      | 22.5 | .906  | 24.7 | 56 | 1.50149 | 185.4 | 60  | 10      |
| 12        | 487 | 4.4      | 26.9 | .915  | 23.1 | 57 |         |       | 93  | 40      |
| 14        | 507 | 45       | 31 4 | 925   | 21.5 | 59 |         |       | 158 | 55      |
| 14        | 579 | 5 5      | 36.9 | 933   | 20.2 | 60 |         |       | 255 | 75      |
|           | 014 | 62.6     | 99.5 | .968  | 14.7 |    |         |       |     |         |
| nesiduum. |     | ¥.55.8-¥ |      |       |      |    | 1       |       | I   | I       |

Carbon residue, Conradson: Residuum, 5.7 percent; crude, 3.7 percent.

APPROXIMATE SUMMARY

Residuum: Sulfur, percent, 0.20 Nitrogen, percent, 0.432

|                                   | Percent | Sp. gr. | ° API     | Viscosity |
|-----------------------------------|---------|---------|-----------|-----------|
| Light gasoline                    |         |         |           |           |
| Total gasoline and naphtha        | 4.5     | 0.790   | 47.5      |           |
| Kerosine distillate               | <b></b> |         |           |           |
| Gas oil                           | 12.7    | .865    | 32.1      |           |
| Nonviscous lubricating distillate | 8,0     | .895916 | 26.7-23.0 | 50-160    |
| Medium lubricating distillate     | 6.1     | .916928 | 23.0-20.9 | 100-200   |
| Viscous lubricating distillate    | 5.6     | .928937 | 20.9-19.4 | Above 200 |
| Residuum                          | 62.6    | .968    | 14.7      |           |
| Distillation loss                 | ,5      |         |           |           |

1/ Distillation discontinued at 545° F.

## TABLE A-3. - Data from routine analysis of Minagish, Kuwait, crude oil

Bureau of Mines Bartlesville Laboratory Sample 69111

## **IDENTIFICATION**

Minagish field Cretaceous

# Asia

Kuwait

## **GENERAL CHARACTERISTICS**

| Gravity, specific, 0.859        | Gravity, ° API, 33,2      | Pour point, ° F., below 5 |
|---------------------------------|---------------------------|---------------------------|
| Sulfur, percent, 2.12           |                           | Color, brownish black     |
| Viscosity, Saybolt Universal at | F, 62 sec; 100° F, 52 sec | Nitrogen, percent,0.115   |

## DISTILLATION, BUREAU OF MINES ROUTINE METHOD

| Fraction<br>No. | Cut<br>temp.<br>°F. | Percent | Sum,<br>percent | Sp. gr.,<br>60/60° F. | ° API,<br>60° F. | C. I.     | Refractive<br>index,<br>n <sub>p</sub> at 20° C. | Specific dispersion | S. U.<br>visc.,<br>100° F. | Cloud<br>test,<br>°F. |
|-----------------|---------------------|---------|-----------------|-----------------------|------------------|-----------|--------------------------------------------------|---------------------|----------------------------|-----------------------|
| 1               | 122                 | 2.1     | 2.]             | 0.634                 |                  |           |                                                  |                     |                            |                       |
| 2               | 167                 | 2.9     | 5,0             | ,656                  | 84.2             | 0.8       | 1.37164                                          | 130.1               |                            |                       |
| 3               | 212                 | 3,7     | 8,7             | .693                  | 72.7             | 8,5       | 1,39299                                          | 132.1               |                            |                       |
| 4               | 257                 | 4.3     | 13,0            | .719                  | 65.3             | . 12      | 1,40372                                          | 133.6               |                            |                       |
| 5               | 302                 | 4.6     | 17.6            | .745                  |                  | <u>17</u> | 1.41823                                          | 145.8               |                            |                       |
| 6               | 347                 | 5.3     | 22.9            | .768                  | 52.7             | 21        | 1.43085                                          | 146.1               |                            |                       |
| 7               | 392                 | 4.3     | 27.2            | .787                  |                  |           | 1.43922                                          | 147.3               |                            |                       |
| 8               | 437                 | 4.5     | 31.7            | .796                  | 46.3             |           | 1.44454                                          | 154.0               |                            |                       |
| 9               | 482                 | 4.5     | 36.2            | .809                  | 43.4             | 23        | 1.45135                                          | 147.2               |                            |                       |
| 10              | 527                 | 4.6     | 40.8            | .825                  | 40.0             | 26        | 1.46030                                          | 154.9               |                            |                       |

| STAGE 2-Distillation continued at 40 mm. Hg |     |      |      |       |      |    |         |       |     |    |  |  |
|---------------------------------------------|-----|------|------|-------|------|----|---------|-------|-----|----|--|--|
| 11                                          | 392 | 4.5  | 45.3 | 0,850 | 35,0 | 34 | 1,47207 | 163.7 | 40  | 20 |  |  |
| 12                                          | 437 | 4.7  | 50.0 | .864  | 32.0 | 36 | 1.47827 | 165.6 | 45  | 55 |  |  |
| 13                                          | 482 | 6.3  | 56.3 | .883  | 28.7 | 42 | 1.48811 | 168.7 | 71  | 60 |  |  |
| 14                                          | 527 | 5.8  | 62,1 | .896  | 26,4 | 45 |         |       | 95  | 75 |  |  |
| 15                                          | 572 | 8.3  | 70.4 | .913  | 23.5 |    |         |       | 185 | 90 |  |  |
| Residuum.                                   |     | 27.7 | 98,1 | 1.008 | 8.9  |    |         |       |     |    |  |  |

Carbon residue, Conradson: Residuum, ...12..1 percent; crude, ...3.9. percent.

# APPROXIMATE SUMMARY

Residuum:

## Sulfur, percent, 4.00 Nitrogen, percent, 0.318

|                                   | Percent | Sp. gr. | ° API     | Viscosity |
|-----------------------------------|---------|---------|-----------|-----------|
| Light gasoline                    | 8.7     | 0.666   | 80.8      |           |
| Total gasoline and naphtha        | 27,2    | 0.727   |           |           |
| Kerosine distillate               | 13.6    | .810    | 43.2      |           |
| Gas oil                           | 7.9     | .855    | 34.0      |           |
| Nonviscous lubricating distillate | 10.9    | .868897 | 31,6-26,3 | 50-160    |
| Medium lubricating distillate     |         | .897916 | 26.3-23.0 | 100-200   |
| Viscous lubricating distillate    | 3.0     | .916923 | 23.0-21.8 | Above 200 |
| Residuum                          | 27.7    | 1.008   | 8.9       |           |
| Distillation loss                 | 1,9     | 1       |           |           |

TABLE A-4. - Data from routine analysis of Bachaquero, Venezuela, crude oil

Bureau of Mines Bartlesville Laboratory Sample 70025

## **IDENTIFICATION**

Bachaquero field Miocene

## South America Venezuela

#### **GENERAL CHARACTERISTICS**

Gravity, specific,0,965Gravity, ° API,15,1Pour point, ° F.,35Sulfur, percent,2,68Color,brownish blackViscosity, Saybolt Universal at 100° F, 4,441 sec; 130° F, 1,198 secNitrogen, percent,0.402

DISTILLATION, BUREAU OF MINES ROUTINE METHOD

First drop, 140 ° F.

| Fraction<br>No. | Cut<br>temp.<br>°F. | Percent | Sum,<br>percent | Sp. gr.,<br>60/60° F. | ° API,<br>60° F. | C. I. | Refractive<br>index,<br>$n_{p}$ at 20° C. | Specific<br>dispersion | S. U.<br>visc.,<br>100° F. | Cloud<br>test,<br>°F. |
|-----------------|---------------------|---------|-----------------|-----------------------|------------------|-------|-------------------------------------------|------------------------|----------------------------|-----------------------|
| 1               | 1 <b>22</b>         |         |                 |                       |                  |       |                                           |                        |                            |                       |
| 2               | 167                 |         |                 |                       |                  |       |                                           |                        |                            |                       |
| 3               | 212                 |         |                 |                       |                  |       |                                           |                        |                            |                       |
| 4               | 257                 | 1.5     | 1.5             | 0.729                 | 62.6             | -     | 1.40431                                   | 127.3                  |                            |                       |
| 5               | 302                 |         | 2,4             | .763                  | 54_0             | 25    | 1.42215                                   | 133.5                  |                            |                       |
| 6               | 347                 |         | 3.6             |                       |                  | 27    | 1.43380                                   | 133.6                  |                            |                       |
| 7               | 392                 | 1.4     | 5.0             | .812                  | 42.8             | 35    | 1.44654                                   | 140,2                  |                            |                       |
| 8               | 437                 |         |                 | 833                   | 38.4             | 40    | 1.45784                                   |                        |                            |                       |
| 9               | 482                 | 3.5     | 10.7            | .854                  | 34.2             | 44    | 1.46877                                   | 145,8                  |                            |                       |
| 10              | 527                 | 4.7     | 15,4            | .873                  | 30.6             | 49    | 1.47976                                   | 154.6                  |                            |                       |

|           |     |      | 8      | TAGE 2—Dist | illation contin | ued at 40 | mm. Hg  |       |      |         |
|-----------|-----|------|--------|-------------|-----------------|-----------|---------|-------|------|---------|
| 11        | 392 | 2.1  | 17.5   | 0,901       | 25.5            | 58        | 1.49226 | 166,9 | 44   | Below 5 |
| 12        | 437 | 4.9  |        | .909        |                 | 58        | 1.49902 | 167.8 | 55   | do.     |
| 13        | 482 |      |        |             |                 | 60        |         |       | . 81 | do.     |
| 14        | 527 |      |        |             |                 | 65        |         |       | 183  | do ,    |
| 15        | 572 | 10.2 |        |             | 17.9            | 66        |         |       | 455  | do.     |
| Residuum. |     | 51.6 | . 99.0 | 1.031       | 5.7             |           |         |       |      |         |

### Residuum:

## APPROXIMATE SUMMARY

#### Sulfur, percent, 3.21 Nitrogen percent 0.618

| N1 | tro | gen, | per | cent | , | 0.018 |
|----|-----|------|-----|------|---|-------|
|----|-----|------|-----|------|---|-------|

|                                   | Percent | Sp. gr. | ° API     | Viscosity |
|-----------------------------------|---------|---------|-----------|-----------|
| Light gasoline                    |         |         |           |           |
| Total gasoline and naphtha        | 5.0     | 0.771   | 52,1      |           |
| Kerosine distillate               |         |         | -         |           |
| Gas oil                           | 13.4    | .868    | 31.5      |           |
| Nonviscous lubricating distillate | 8.1     | .905924 | 24.8-21.6 | 50-160    |
| Medium lubricating distillate     | 6.6     | .924939 | 21.6-19.3 | 100-200   |
| Viscous lubricating distillate    | 14.3    | .939952 | 19.3-17.2 | Above 200 |
| Residuum                          | 51.6    | 1,031   | 5.7       |           |
| Distillation loss                 | 1,0     |         |           |           |

TABLE A-5. - Data from routine analysis of Gach Saran, Iran, crude oil

Bureau of Mines Bartlesville Laboratory 

## **IDENTIFICATION**

Gach Saran field Miocene

#### Asia Iran

#### **GENERAL CHARACTERISTICS**

| Gravity, specific, 0.880        | Gravity, ° API, 29.3      | Pour point, ° F.,below 5 |
|---------------------------------|---------------------------|--------------------------|
| Sulfur, percent, 1.57           |                           | Color, brownish black    |
| Viscosity, Saybolt Universal at | F, 91 sec; 100° F, 72 sec | Nitrogen, percent, 0,267 |

## DISTILLATION, BUREAU OF MINES ROUTINE METHOD

| Fraction<br>No. | Cut<br>temp.<br>°F. | Percent | Sum,<br>percent | Sp. gr.,<br>60/60° F. | ° API,<br>60° F. | C. I.        | Refractive<br>index,<br>n <sub>p</sub> at 20° C. | Specific<br>dispersion | S. U.<br>visc.,<br>100° F. | Cloud<br>test,<br>°F. |
|-----------------|---------------------|---------|-----------------|-----------------------|------------------|--------------|--------------------------------------------------|------------------------|----------------------------|-----------------------|
| 1               | 122                 |         |                 |                       |                  |              |                                                  |                        |                            |                       |
| 2               | 167                 | 2.5     | 2.5             | 0.660                 | 82.9             | -            | 1.37285                                          | 122.3                  |                            |                       |
| 3               | 212                 | 3.3     | 5.8             | .705                  | 69.2             | 14           | 1.39538                                          |                        |                            |                       |
| 4               | 257                 | 4.9     | 10.7            | .737                  | 60.5             | 20           | 1,41056                                          | 137.1                  |                            |                       |
| 5               | 302                 | 4.6     | 15.3            | .760                  | 54.7             | 24           | 1.42299                                          | 137.3                  |                            |                       |
| 6               | 347                 | 4.9     | 20.2            | .778                  | 50.4             | 25           | 1,43315                                          | 140.6                  |                            |                       |
| 7               | 392                 | 4.5     | 24.7            | .793                  | 46.9             | 26           | 1,44067                                          | 144.1                  |                            |                       |
| 8               | 437                 | 4.5     | 29.2            | .805                  | 44.3             | 26           | 1.44801                                          | 150.2                  |                            |                       |
| 9               | 482                 | 5.1     | 34.3            | .822                  | 40.6             | 29           | 1,45711                                          | 152.2                  |                            |                       |
| 10              | 527                 | 5.7     | 40.0            | .837                  | 37.6             | 31           | 1.46611                                          | 157.0                  |                            |                       |
|                 |                     |         | S               | TAGE 2—Dist           | illation conti   | nued at 40 r | nm. Hg                                           |                        |                            |                       |
| 11              | 392                 | 3.0     | 43.0            | 0.861                 | 32.8             | 39           | 1,47540                                          | 160.6                  | 41                         | 20                    |
| 12              | 437                 | 5.5     | 48.5            | .870                  | 31.1             | 39           | 1.47880                                          | 164.0                  | 46                         | 30                    |

| 11                  | 392 | 3.0  | 43.0 | 0.861 | 32.8 | 39 | 1.47540 | 160.6 | 41  | 20 |
|---------------------|-----|------|------|-------|------|----|---------|-------|-----|----|
| 12                  | 437 | 5.5  | 48.5 | .870  | 31.1 | 39 | 1.47880 | 164.0 | 46  | 30 |
| 13                  | 482 | 4.9  | 53.4 | .884  | 28.6 | 43 | 1.48776 | 178.3 | 58  | 55 |
| 14                  | 597 | 55   | 58.9 | 895   | 26.6 | 45 |         |       | 88  | 75 |
| 15                  | 572 | 5.6  | 64.5 | .909  | 24.2 | 48 |         |       | 161 | 95 |
| Residuum            | 012 | 34.2 | 98.7 | .999  | 10.1 |    |         |       |     |    |
| attended (intended) |     |      |      |       |      |    |         |       |     |    |

Carbon residue, Conradson: Residuum, 11.9 percent; crude, 4.6. percent.

## APPROXIMATE SUMMARY

Residuum:

Sulfur, percent, 2.74 Nitrogen, percent, 0.583

|                                   | Percent | Sp. gr. | ° API     | Viscosity |
|-----------------------------------|---------|---------|-----------|-----------|
| Light gasoline                    | 5,8     | 0,686   | 74.9      |           |
| Total gasoline and naphtha        | 24.7    | 0.748   | 57.8      |           |
| Kerosine distillate               | 9,6     | ,814    | 42.3      |           |
| Gas oil                           | 13.2    | .853    | 34.3      |           |
| Nonviscous lubricating distillate | 9.6     | .875897 | 30.3-26.2 | 50-160    |
| Medium lubricating distillate     | 7.4     | .897916 | 26.2-23.0 | 100/200   |
| Viscous lubricating distillate    |         |         |           | Above 200 |
| Residuum                          | 34,2    | ,999    | 10.1      |           |
| Distillation loss                 | 1.3     |         |           |           |

TABLE A-6. - Data from routine analysis of Prudhoe Bay, Alaska, crude oil

Bureau of Mines Bartlesville Laboratory Sample 71011

## **IDENTIFICATION**

Prudhoe Bay field Sadlerochit, Permian and Lower Triassic

#### **GENERAL CHARACTERISTICS**

Gravity, specific,0.893Gravity, ° API,27.0PouSulfur, percent,0.82ColeViscosity, Saybolt Universal at 77° F, 111 sec; 100° F, 84 secNite

Pour point, ° F., <u>15</u> Color, <u>brownish black</u> Nitrogen, percent, <u>0.209</u>

## DISTILLATION, BUREAU OF MINES ROUTINE METHOD

STAGE 1-Distillation at atmospheric pressure, 741 mm. Hg

| Fraction<br>No. | Cut<br>temp.<br>° F. | Percent | Sum,<br>percent | Sp. gr.,<br>60/60° F. | ° API.<br>60° F. | C. I.       | Refractive<br>index,<br>n <sub>p</sub> at 20° C. | Specifie<br>dispersion | S. U.<br>visc.,<br>100° F. | Cloud<br>test,<br>°F. |
|-----------------|----------------------|---------|-----------------|-----------------------|------------------|-------------|--------------------------------------------------|------------------------|----------------------------|-----------------------|
| 1               | 122                  |         |                 |                       |                  |             |                                                  |                        |                            |                       |
| 2               | 167                  | 2,1     | 2,1             | 0.693                 | 72.7             | -           | 1.38591                                          | 127.9                  |                            |                       |
| 3               | 212                  | 2.6     | 4.7             | .723                  | 64.2             | 23          | 1.40312                                          | 139.0                  |                            |                       |
| 4               | <b>257</b>           | 3.5     | 8,2             | .752                  |                  |             | 1.41922                                          |                        |                            |                       |
| 5               | 30 <b>2</b>          | 3.6     |                 | .773                  | 51.6             | 30          | 1.43082                                          | 147.Q                  |                            |                       |
| 6               | 347                  | 3.7     | 15,5            | ,790                  | 47,6             | 31          | 1.43922                                          | 149.6                  |                            |                       |
| 7               | <b>3</b> 9 <b>2</b>  | 3.5     | 19.0            | .801                  | 45.2             | 30          | 1.44626                                          | 152.1                  |                            |                       |
| 8               | 437                  | 4.3     | 23.3            | .818                  | 41.5             | 33          | 1.45528                                          | 154.7                  |                            |                       |
| 9               | 482                  | 4,8     | 28,1            | ,836                  | 37.8             | 36          | 1.46565                                          | 157.0                  |                            | 1                     |
| 10              | 527                  | 5.0     | 33.1            | ,851                  | 34,8             | 38          | 1.47467                                          | 160.5                  |                            |                       |
|                 |                      |         | s               | TAGE 2-Dist           | illation contir  | ued at 40 n | nm. Hg                                           |                        |                            |                       |

|           |     |        |      |       |       |    | 4.      |       |     |    |
|-----------|-----|--------|------|-------|-------|----|---------|-------|-----|----|
| 11        | 392 | 2.8    | 35,9 | 0,873 | 30,6  | 45 | 1,48218 | 161.5 | 40  | 10 |
| 12        | 437 | 6.5    | 42.4 | .881  |       | 45 | 1.48650 | 168.6 | 45  | 30 |
| 13        | 482 | 6.8    | 49.2 | .897  | 26.2  | 49 | 1.49477 | 169.4 | 58  | 50 |
| 14        | 527 | 6.0    | 55.2 | .910  | 24.0  | 52 |         |       | 93  | 70 |
| 15        | 572 | 7.4    | 62.6 | ,919  | 22.5  | 53 |         |       | 176 | 90 |
| Residuum. |     | : 36.3 | 98.9 | .990  | 11.4. |    |         |       |     |    |

Carbon residue, Conradson: Residuum, 11.6 percent; crude, 4.7. percent.

## APPROXIMATE SUMMARY

#### Residuum: Sulfur, percent, 1.87 Nitrogen, percent, 0.468

|                                   | Percent | Sp. gr. | ° API     | Viscosity |
|-----------------------------------|---------|---------|-----------|-----------|
| Light gasoline                    | 4.7     | 0.710   | 67,9      |           |
| Total gasoline and naphtha        | 19.0    | 0.762   | 54.2      |           |
| Kerosine distillate               | 4.3     | .818    | 41.5      |           |
| Gas oil                           | . 18.4  | .860    | 33,1      |           |
| Nonviscous lubricating distillate | 11.0    | .887911 | 28.0-23.9 | 50-160    |
| Medium lubricating distillate     |         | .911922 | 23.9-22.0 | 100-200   |
| Viseous lubricating distillate    | 1.8     | .922924 | 22.0-21.6 | Above 200 |
| Residuum                          | 36.3    | .990    | 11.4      |           |
| Distillation loss                 | 1.1     |         | 1         |           |

 ${\rm tr}$  U.S. GOVERNMENT PRINTING OFFICE: 1975-603-752/6

INT.-BU.OF MINES, PGH., PA. 20113

North America Alaska

| 17150111401011 | courmee   |       |    |    |  |
|----------------|-----------|-------|----|----|--|
| -Distillation  | continued | at 40 | mm | Hα |  |