MINERAL INVESTIGATIONS IN THE PORCUPINE RIVER DRAINAGE, ALASKA

•

By James C. Barker Alaska Field Operation Center, Fairbanks, Alaska

Open File Report 27-81

UNITED STATES DEPARTMENT OF THE INTERIOR

James G. Watt, Secretary

BUREAU OF MINES

TN 23 .U44 81-27

UNITED STATES BUREAU OF MINES

JAMES BOYD MEMORIAL LIBRARY FOREWORD

This is one of a series of reports that present the findings of reconnaissance-type mineral assessments of certain lands in Alaska. It is important to remember that Alaska has not been seriously prospected for minerals other than gold--except in a few relatively limited areas. These reports include data developed by both contract and Bureau studies; frequently a combination of both.

Assessing an area for its potential for buried mineral deposits is by far the most difficult of all natural resource assessments. This becomes more apparent when considering that no two deposits even of the same genesis and host rock conditions are identical. Moreover, judgments prior to drilling, the ultimate test, frequently vary among evaluators and continue to change as more detailed studies add to the understanding.

Included in these reports are estimates of the relative favorability for discovering metalic and related nonmetallic mineral deposits similar to those mined elsewhere. Favorability is estimated by evaluation of visible outcrops, and analyses of sampling data, including mineralogic characteristics and associated elements, in combination with an evaluation of the processes that have formed the rocks in which they occur. Essentially, it is a comparison of a related series of prospects and the environment in which they occur with the mineral deposits and environments in well-known mining districts. Recognition of a characteristic environment allows not only the delineation of a trend but also a rough estimate of the favorability of conditions in the trend for the formation of a minable concentrations of mineral materials. This is a technique long used in the mineral industry to select areas for mineral exploration. Qualifying a trend or area as "highly favorable" for the discovery of mineral deposits indicates that the combination of outcrop samples, mineralogic data and geologic conditions that have been observed essentially duplicate the conditions in a recognized mining district elsewhere.

TABLE OF CONTENTS

	Page
Abstract	1
Introduction	2
Previous studies	5
Acknowledgments	7
Location and physiographic features	8
General geology	8
History of mineral exploration and production	14
Mineral reconnaissance of 1976-1978	15
Granitic intrusive and metasedimentary	15
nost terrane	15
Geology	15
Interpretive studies	18
Possible economic deposit types	24
Mafic/ultramafic igneous rocks and associated	
sediments	31
Geology	31
Interpretive studies	32
Possible economic deposit types	36
Sedimentary rocks	39
Geology	39
Interpretive studies	42
Possible economic deposit types	52
Sampling and analytical procedures	61
Stream sediment samples	61
Pan concentrate samples	62
Sluice box samples	63

	Soil	samp	oles	• •	•	•	•	•	•	•	•	•	•.	•	•	٠	•	٠	•		63
	Rock	samp	les	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		63
Prospect	cs and	d and	omali	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	64
	White lead,	Mou sil	untai Iver	in (pro	Cree Dspe	ek ect	-	co •	•	er •	•	•	•	•	•	•	•	•	•		64
		Geol	logy	• •	•	•	•	•	•	•	•	•	• '	•	•	•	•	•	•		64
		Mine	erali	zat	:io	n.	•	•	•	•	•	•	•	•	•	•	•	•	•		66
		Geod	chemi	istr	·y.	•	•	•	•	•	•	•	•	•	•	•	•	•	•		68
		Resu	ults	anc	l re	eco	omm	en	da	ti	on	S	•	•	•	•	•	•	•		68
	Сорре	er, z	zinc	pro	ospe	ect	;	•	•	•	•	•	•	•	•	•	•	•	•		75
		Geol	logy	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		75
i		Hist	tory	• •	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•		79
		Mine	erali	zat	io	n.	•	•	•	•	•	•	•	•	•	•	•	•	•		79
		Geod	chemi	str	·y.	•	•	•	•	•	•	•	•	•	•	•	•	•	•		80
		Geop	ohysi	cs.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		80
	÷	Resu	ilts	and	l re	eco	mm	en	da	ti	on	S	•	•	•	•	•	•	•		80
	Rabbi	it Mo	ounta	in.	• •	٠	•	•	• :	•	•	•	•	•	•	•	•	•	•		81
		Geol	logy	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		81
		Hist	cory	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		81
		Mine	erali	zat	:10	n.	•	•	•	•	•	•	•	•	•	•	•	•	•		87
		Geod	chemi	str	·y.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i	8.7
		Resu	ults	anc	l re	eco	omm	en	da	ti	on	S	•	•	•	•	•	•	•		88
	Rapic	l Riv	ver u	irar	niur	n-t	in	p	ro	sp	ec	ts	•	•	•	•	•	•	•	i	89
		Geol	logy	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		89
		Mine	erali	zat	io	n.	•	•	•	•	•	•	•	•	•	•	•	•	•		91
		Geod	chemi	str	·y.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	00
		Resu	ılts	anc	l re	eco	omm	en ii	da	ti	on	S	•	•	•	•	•	•	•	1	01

Page

Old Crow Hills placer prospects 102
Geology
Physiography
History
Mineralization
Geochemistry
Results and recommendations 115
Porcupine ancient channel placers 116
Geology
Mineralization
Geochemistry
Coleen River barite occurrence 121
Geology
Mineralization and
geochemistry
Results and recommendations 123
Exploration potential
Conclusion and summary
References
Appendix A - Stream geochemical results
Appendix B - Pan concentrate results

Page

ILLUSTRATIONS

<u>Fig</u>	•	Page
1.	Location Map	3
2.	Project Area	4
3.	General geology of the Porcupine study area	9
4.	Geologic map of the Porcupine report area interpreted from geologic and aeromagnetic data	12
5.	Tentative composite profile, southern margin of Old Crow Granite	16
6.	Rock sample locations, VABM Orphan area	21
7.	Air photo lineaments - granitic terrane	22
8.	Mineral occurrences and anomalies - granitic terrane	25
9.	Mineral occurrences and anomalies - mafic/ ultramafic terrane	33
10.	Air photo lineaments - mafic/ultramafic terrane	35
11.	Correlation chart for rock units of the Porcupine area	40
12.	Air photo lineaments - northern portion, sedimentary terrane	44
13.	Air photo lineaments - southern portion, sedimentary terrane	45
14.	Mineral occurrences and anomalies - sedimentary terrane	47
15.	Yukon and Kandik basins	58
16.	Outcrop geology - White Mountain Creek area	65
17.	White Mountain Creek prospect	67
18.	White Mountain Creek area sediment and rock sample location map	69

Page

<u> Fig</u>.

19.	Copper-zinc prospect and sample location map	76
20.	Rabbit Mountain stream sediment and rock sample location map	82
21.	Rabbit Mountain soil sample location map	83
22.	Rapid River - rock sample locations	90
23.	VABM Orphan prospect and sample location map	97
24.	VABM Barren uranium prospect	99
25.	Sluice sample sites - Old Crow Hills	105
26.	Tin analyses - Old Crow Hills	109
27.	Tungsten analyses - Old Crow Hills	110
28.	Porcupine ancient channel placer prospect	118
29.	Coleen barite occurrence	122
30.	Mineral potential map of the Porcupine River region	126
B - 1	Histogram portrayal of concentrate sample results	171

PLATES

<u>No.</u>								Loca	tion
1.	Sediment sample	locations	•	•	•	•	•	back	pocket
2.	Pan concentrate	sample location	•	•	•	•		back	pocket

TABLES

Page	
------	--

1.	Petrography of "Black Granites"	20
2.	Coal analyses	57
3.	White Mountain Creek - stream sediment and rock analyses	70
4.	Copper - zinc prospect analyses	.77
5.	Rabbit Mountain - stream sediment and rock sample analyses	84
6.	Rabbit Mountain - soil sample analyses	85
7.	Rock sample analyses, Rapid River	93
8.	VABM Orphan - sample analyses	98
9.	Petrographic report - sluice samples	106
10.	Tin/tungsten analyses - Old Crow Hills	111
11.	Sluice concentrate sample analyses	113
12.	Trace elements in sluice concentrates	114
13.	Heavy minerals in Porcupine River gravels	119
14.	Analyses of concentrate samples from an ancient channel of the Porcupine River	120
15.	Sample analyses - Coleen barite occurrence	124
16.	Potential mineral resources of the Porcupine Plateau area	125
A-1	Sediment sample analyses	133
B-1	Pan concentrate analyses	169

MINERAL INVESTIGATIONS IN THE . PORCUPINE RIVER DRAINAGE, ALASKA by James C. Barker^{1/}

1

ABSTRACT

Between 1976 and 1978, Bureau of Mines personnel conducted a mineral resource investigation in the Porcupine River drainage of northeastern Alaska.

The study area is divided into three generalized geologic terranes based on a review of available literature, analysis of field data and metallogenic projections. Potential deposit types of each terrane are described as they are indicated by mineral occurrences and other data.

Granitic intrusives and meta-sedimentary host terrane. Evaluations were
made of base metal vein deposits and skarn mineralization near the headwaters of White Mountain Creek. Uranium vein-type occurrences and tin
greisen-like alteration were found within the Devonian Old Crow batholith
which suggest similarities to mineral districts in the CarboniferousDevonian plutons of the European Hercynian Orogeny. Intrusive contact
areas are also enriched with tin. Several very extensive alluvial gravel
deposits were found to be significantly enriched with tin, tungsten,
radioactives and rare-earth resistate minerals. There is also a good
potential for rhyolite and hypabyssal porphyry, breccia pipe or stockwork
types of deposits for base metals, molybdenum, tungsten and uranium.
 Mafic/ultramafic igneous rocks and associated sediments. These are a
poorly known group of rocks which comprise a probable ophiolite sequence.

Occurrences of chromite, placer gold and bedded barite are found within this sequence of rocks, along with associated placer gold. Within the

1/ Mining Engineer, Alaska Field Operation Center, Fairbanks, Alaska

report area there are geochemical anomalies of barite, copper, manganese, and gold.

3. Sedimentary terrane. A geochemical survey was made of all tributaries to the Coleen and Porcupine Rivers. Lead, zinc and barium anomalies and minor occurrences near the U.S.-Canada border indicate potential for base metal mineralization in lower Paleozoic-Precambrian shales and carbonates. Little is known of the heavily vegetated area of sedimentary terrane in the southern portion of the report area. There is a major unconformity between the Late Devonian and younger sediments which may control mineralization. In Canada, rock units of similar age and lithology host lead-zinc and uranium deposits. Cenozoic sedimentary units also have potential for sedimentary uranium, oil and gas.

The Department of Energy is analysing all stream sediment and rock samples collected as part of this study. Analytical results for 44 elements will be available through a concurrent open file report by that department.

INTRODUCTION

During the 1976, 1977 and 1978 field seasons, approximately 175 man-days of field work were conducted. Work was done from boat and raft traverses of the Coleen and Porcupine Rivers which included those areas accessible on foot from the river, (figure 1) and with limited helicopter support elsewhere, figure 2.

The objective of the study was a regional reconnaissance of potentially favorable terranes for mineralization. All potential locatable or leasable minerals including petroleum were considered. This evaluation was based on 1) field investigations in areas of favorable geologic units as extrapolated from known deposits in Canada; 2) interpretations of air photographs and imagery, depicting those structural lineations and color variations that may be related

Figure I.- Location map

ω

·..

to mineralization; 3) regional geochemistry based on analyses of stream sediments and systematic pan sampling; 4) rock and soil sampling in areas of suspected mineralization; 5) air-borne magnetic survey ($\underline{8}$) $\underline{2}$ /; 6) air-borne radiometric survey ($\underline{47}$) and follow-up ground investigations; 7) follow-up of previously known occurrences and anomalies; 8) available seismic and gravity data used to interpret potential oil and gas provinces; 9) location and characterization of additional mineral occurrences which relate to metallogenic provinces.

The results and conclusions presented in this report are preliminary and should not be considered in any way to be conclusive with respect to this region's mineral potential but, rather to merely serve as an indicator of the types of deposits and mineral commodities that may be present.

PREVIOUS STUDIES

The geology of the Porcupine River area has been investigated by Kindle (1908) (26), Maddren and Harrington (1955) (29), Cairnes (1914) (15), Mertie (1941) (30), Brosge and others (1966) (13), Laudon and others (1966) (27) and Churkin and Brabb (1967) (18). Maddren's (28) and Cairnes' (15) work was the result of geologic mapping of a four-mile wide zone along the International Boundary. Laudon and others (27) published a stratigraphic study of the Paleozoic rocks along the Alaska-Yukon border in 1966. Also, in 1966 a detailed geologic strip map of the Porcupine River Canyon was compiled by Brosge and others (13). The Devonian rocks of the Yukon-Porcupine Rivers area were reported on by Churkin and Brabb in 1967 (19). An aeromagnetic survey of northeastern Alaska was released in 1970 and published at a scale of 1:1,000,000 (8). Subsequent to this survey, a study was made by Brosge and Conradi in 1971 (9) of the bedrock magnetic characteristics associated with the various magnetic

2/ Underlined numbers in parenthesis refer to items in the references listed at the end of this report.

anomalies. The first geologic reconnaissance mapping of the Coleen and Christian 1:250,000 quadrangles was published by Brosge and Reiser in 1969 (12) and 1962 (10) respectively. In 1970 a preliminary geologic map of the Black River quadrangle was published by Brabb ($\underline{6}$). A study of the Jurassic mafic igneous complex in the Christian quadrangle was made by Reiser and others in 1965 (35).

A brief investigation for radiometric minerals along the Porcupine River was conducted by White in 1948 ($\underline{43}$). Traces of radioactive accessory minerals were found in rhyolite, but it was concluded that the region did not warrant further investigation.

In 1977, results of an air-borne radioactive survey were released by the Energy Research and Development Administration (47). This 19 quadrangle survey included all of the study area in that report.

In 1968, Brosge and Reiser compiled geochemical analyses of 119 stream sediments and 89 rock and soil samples from the Table Mountain and Coleen quadrangles (<u>11</u>). Portions of this data, including stream sediment analyses from the Christian and Coleen quadrangles were tabulated and published in 1977 (<u>14</u>). Although sample stations were widely spaced, several regional anomalies and mineral occurrences were found which were further studied by the Bureau of Mines.

ACKNOWLEDGEMENTS

Considerable assistance with the field investigations and and preparation of this report was contributed by K. H. Clautice, Geologist, with the Bureau of Mines. The topographic and geologic maps used in this report were adapted from the U.S. Geological Survey published maps.

The Bureau of Mines was also assisted in the preparation of this report by W. P. Brosge, U.S. Geological Survey, who provided in-depth advice, field assistance and past data collected by the Survey; by M. W. Payne, University of Alaska, who provided geologic expertise and field assistance; by Dr. R. C. Swainbank, Vice President, Resource Exploration Consultants, who was contracted to provide air photo interpretation of Landsat, false color imagery and black and white photography. Samples were prepared by the University of Alaska, Mineral Industry Research Laboratory, under a Bureau of Mines grant. Analyses were also performed by the University unless otherwise noted. Uranium and thorium analyses were done by the Alaska Division of Geological and Geophysical Surveys. All sediment and rock samples referred to in this report are also being analyzed by the Department of Energy for 44 elements including uranium Results will be concurrently open-filed by that department. and thorium.

A section is included on oil and gas by D. P. Blasko of the Bureau of Mines. Petrographic work was contributed by W. L. Gnagy and T. C. Mowatt, also of the U.S. Bureau of Mines. Mowatt also provided a technical review of the findings.

LOCATION AND PHYSIOGRAPHIC FEATURES

The study area is located in the physiographic region of the Porcupine Plateau. Principal topographic features are the Upper Ramparts (locally called the Porcupine River Canyon), the Yukon Flats and the Old Crow Hills, figure 2. This region is characterized by rather subdued and unglaciated low rolling hills, continuous dense vegetation and a dry continental climate with an annual average precipitation of eight inches (24). Bedrock is generally only seen as weathered rubble on a few of the higher ridges, and is best exposed along the canyon of the Porcupine River. The majority of the region lies north of the Arctic Circle and continuous permafrost should be expected.

Access to the area is very limited. Small fixed wing aircraft with floats can land on the Porcupine River, at several sites along the Coleen River and on a few lakes. The Porcupine River is navigable by medium-size barges along its 210 mile length from Fort Yukon to the Canadian border and for at least 70 miles beyond. The community of Old Crow in Yukon Territory is currently served intermittently by barge. The remainder of the region can be reached only on foot or by helicopter. The only known inhabitant of the area is a trapper on the Coleen River. The closest settlements are Old Crow, about 35 miles east of the area, in the Yukon Territory, and Fort Yukon to the southwest. Regular air service is available to Fort Yukon.

GENERAL GEOLOGY

The Porcupine study area is composed of Paleozoic and lower Mesozoic sediments and metasediments with a Tertiary sedimentary basin to the southwest, figure 3. The lower Paleozoic stratigraphy in the northeast region, figure 3, may in part be Precambrian based on extrapolation of the units into the Yukon Territory (33). Some metamorphic rocks uplifted by the Old Crow batholith may be Precambrian. Tertiary to Quaternary volcanism resulted in sheets of basalt lava and ash beds seen in the east-central area.

In the northwestern portion of the area, the sedimentary rocks form

.

Figure 3

EXPLANATION

STRATIFIED SEDIMENTARY AND VOLCANIC ROCKS.-Mainly marine. In part metamorphosed.

Qh HOLOCENE DEPOSITS.—Alluvial, flood plain, beach, low terrace, swamp, and landslide deposits.

<u> </u>	

QUATERNARY DEPOSITS.—Loess, colian sand, terrace, flood plain and alluvial.

Т	
,	

TERTIARY DEPOSITS.—Conglomerate, gravels, pebbly clay, lignite, minor tuff and ironstone.

LOWER CRETACEOUS ROCKS.—Graywacke sandstone, shale, silistone, and conglomerate.

KJ CRETACEOUS AND JURASSIC ROCKS.—Graywacke, sandstone, quartzitic sandstone, quartzite, conglomerate, siltstone, shale, and argillite.

JURASSIC ROCKS.—Carbonaceous shale with minor siltstone and quartzite.

JURASSIC AND TRIASSIC ROCKS.-Chert and argillite.

TRIASSIC AND PERMIAN ROCKS.-Sandstone, siltstone, and shale.

PERMIAN ROCKS .-- Chert, shale, and siltstone.

Ρ

М

ΤP

MISSISSIPPIAN ROCKS.-Conglomerate, shale, and limestone with subordinate shale, chert, and dolomite. In-

cludes the Endicott Group and the Lisburne Group.

JURASSIC TO MISSISSIPPIAN ROCKS.—Slate and fossiliferous quartzite of Jurassic and Mississippian(?) age.

TRIASSIC TO DEVONIAN ROCKS.—Radiolarian chert, alate, and argillite of undetermined age and thickness.

UPPER PALEOZOIC ROCKS.-Sandstone, shale, siltstone, chert, limestone.

MD

uPz

MISSISSIPPIAN AND(OR) DEVONIAN ROCKS.—Sandstone, quartz-te, graywacke, and quartz-chert conglomerate. Includes the undifferentiated Kekiktuk or Kanayut Conglomerate.

uD

UPPER DEVONIAN ROCKS.—Consists of a clastic sequence of shale, sandstone, chert, quartz-pebble conglomerate and quartzite.

IP7	LOWER PALEOZOIC ROCKS Dolomite,	limestone.
<u> </u>	quartzite, shale. (May be Precombrian based o	on recent
	work by D.K. Norris.) (33)	

pE PRECAMBRIAN ROCKS.—Phyllite, slate, and siltstone near Salmon Trout River drainage.

FELSIC IGNEOUS ROCKS

PZG PALEOZOIC GRANITIC ROCKS.—Biotite granite and quartz monzonite of the Old Crow Batholith.

MAFIC IGNEOUS ROCKS

QUATERNARY AND TERTIARY VOLCANIC ROCKS.-Olivine basalt flows.

MESOZOIC INTRUSIVE ROCKS.—Leucogabbro, anorthosite and ultramafic rocks.

JURASSIC, TRIASSIC AND PERMIAN VOLCANIC ROCKS.—"Christian Complex."-basalt, diorite, gabbro, chert, peridotite, dunite.

DEVONIAN VOLCANIC ROCKS.—Includes spilitic basalt and lapilli tuff with interbedded dolomite, limestone, and shale of the Volcanics.

PRECAMBRIAN MAFIC INTRUSIVE ROCKS.-Gabbro and diabase.

MAP SYMBOLS

Contact

Indefinite contact

Fault Dotted where concealed or inferred

a structural basin in which lies a Jurassic mafic/ultramafic, predominantly intrusive complex referred to as the Christian complex. Rocks in contact with the mafics are mostly chert, shale, argillite, and graywacke of late Paleozoic to Jurassic age (<u>12</u>). Mafic rocks also occur along the Porcupine River.

The Old Crow granitic batholith is crossed by the U.S.-Canada border in the northeastern corner of the region. This Carboniferous-Devonian(?) (2, 36) intrusion is flanked to the south by apparently younger rhyolite sills and by lower Paleozoic(?) or Precambrian sediments. These marine shales and carbonates form a portion of the Yukon shelf which extends eastward into Canada. Upper Paleozoic sediments, including sandstone, shale and chert occur southwest of this section. Quaternary basalt flows cap Tertiary clay, sandstone, mudstone and gravel and Paleozoic sediments forming the Upper Ramparts along the Porcupine River. There is a regional Late Devonian uncomformity in the eastern areas representing the Late Devonian orogenic events. The Porcupine River parallels an extension of the Kaltag Fault. (33).

A geologic map of the area compiled from aeromagnetic and geologic data $(\underline{8})$ is shown in figure 4. Salient features noted on this map include the large amount of inferred granitic basement rock surrounding the exposed portion of the Old Crow batholith; the mafic igneous rocks concealed within the batholith; the major northeast trending faults bounding the Christian complex; the granitic intrusion indicated to occur along the southern margin of the Christian complex, and the extensive areas of mafic igneous rocks inferred to underlie the Yukon Flats.

All of these geologic terranes are discussed in more detail in later portions of this report, in the context of mineral resource potential.

Sase from USGS fairbanks and Gaussa EtCOD000 maps

after Brosge and others, 1970, (7).

FIGURE 4 - EXPLANATION

Exposed sedimentary rocks and surficial deposits

EXPOSED CRYSTALLINE ROCKS

Granitic intrusive rocks and migmatite

Mafic intrusive and extrusive rocks

Metamorphic rocks

CONCEALED CRYSTALLINE ROCKS INFERRED FROM MAGNETIC DATA

Granitic intrusive rocks

Mafic intrusive and extrusive rocks

Serpentine pods in schist and sedimentary rocks

Basement rocks of Precambrian(?) age or deep intrusive rocks

Flight lines 10-25 miles apart, flown 2,500-5,000 feet above sea leval.

Fault Inferred from magnetic data

-?____?____

Contact Queried where doubtful

HISTORY OF MINERAL EXPLORATION AND PRODUCTION

There has been no mineral production reported, and only a minuscule amount of previous exploration on the Porcupine Plateau. In the early years of this century, the area was undoubtedly examined for gold by the prospectors active at the time. One gold placer prospect is reported just north of the study area on a small westerly tributary to the Coleen River. However, most of the Porcupine region appears to be either geologically unfavorable for rich gold lodes or placers, or else is unexplored due to the the dense vegetation cover and the permafrost. Consequently, no significant discoveries of any kind were reported, and the prospectors moved on to other regions. Little attention was paid at that time, however, to other lower value commodities, particularly in such a remote area as northeastern Alaska. Only one lone prospector is known to have worked briefly in the region since then.

Several very brief mineral reconnaissance efforts were undertaken by industry in recent years, mostly in the later part of the 1960's. However, further work was suspended after the land withdrawals that accompanied the passage of the Alaska Native Claims Settlement Act, and at the present time the lands of concern to this report remain virtually unexplored beyond the findings presented herein.

The rock units are parts of broader metallogenic provinces which can be traced into Canada. Mineral exploration and development in the Yukon Territory has resulted in a number of significant discoveries in the Canadian portion of these trends. Basinal margin carbonate formations similar to the Goz Creek and Godlin Lake lead-zinc deposits in the Yukon are examples.

MINERAL RECONNAISSANCE OF 1976-1978

Granitic Intrusive and Metasedimentary Host Terrane

Geology

-

The Old Crow batholith is a broadly domed, multiphase and partially contaminated granitic body. It has been described as a partly porphyritic biotite granite with large microcline phenocrysts and quartz monzonite with muscovite occurring locally (<u>12</u>). Host rocks of this intrusive have been referred to by Brosge as the Strangle Woman stratigraphic sequence. To the north, the granite intrudes and shows thermal contact effects on lower Paleozoic semischist, phyllite and quartzite. Areas of biotite and garnet schist are found adjacent to the batholith.

The southern intrusive margin is obscure, with possible thrust fault contact, and large sills of rhyolite. A thrust fault striking parallel to the southwestern margin of the batholith has overlain lower Paleozoic quartzite and Paleozoic(?) phyllite from the south onto undifferentiated Mississippian to Jurassic sedimentary rocks which in turn lie adjacent to the pluton. The undifferentiated units consist of limestone, quartzite, shale and sandstone (12).

Along the south-central border of the batholith, in the headwaters of White Mountain Creek (figure 3), lies a group of Paleozoic argillites, phyllites, calcargillites, quartzites and limestones. These rocks are in contact with and intruded by dikes and sills of rhyolite which are exposed over as much as five to seven square miles, figure 5. The rhyolite contains phenocrysts of dark smoky quartz and, locally, minor traces of fluorite. Thermal contact effects on Paleozoic metasediments by the rhyolite were noted. During mid-Tertiary to Quaternary, general uplifting occurred in the vicinity, which may have first exposed the intrusive.

FIGURE 5.- Tentative composite profile, southern margin of Old Crow Granite

The batholith shows evidence of northeasterly displacements and northwesterly shearing associated locally with sericitic, muscovite, chloritic and silicic alteration. According to Payne (<u>34</u>) the batholith lies at the intersection of the Brooks Range and Ruby geanticline, which may in part account for the folding and shearing in the intrusive. There is evidence of recent uplift along the southern margin of the batholith. The characteristics of the Porcupine River Canyon suggests uplifting may still be continuing. Perched abandoned channels of the Porcupine can be found at elevations up to 500 feet above the present data level.

ş

Potassium-argon dates on biotite at three locations in the American portion of the pluton indicate an age of $314 \pm 9 \text{ m.y.}$, $299 \pm 10 \text{ m.y.}$ and $295 \pm 9 \text{ m.y.}$ At this last site, a muscovite date has given $335 \pm 10 \text{ m.y.}$ (12). Three Canadian K-Ar biotite dates have given, 220 m.y., $265 \pm 12 \text{ m.y.}$ and $345 \pm 10 \text{ m.y.}(36)$. The age dates are varied and probably indicate successive reheatings with the Late Devonian date being most reliable. There have been no age dates reported on the rhyolite bordering this pluton, however, possible related(?) rhyolite associated with the Bear Mountain intrusive 55 miles to the north has been dated as Paleocene (54.6 $\pm 1.8 \text{ m.y.}$) on biotite (7). At both locations the rhyolite appears to be a control for local mineralization.

The Old Crow batholith appears to be one of a number of intrusions within a mid-Paleozoic (Devonian?) orogenic belt which extended eastward into Canada $(\underline{2})$. The plutons involved include the Okpilak batholith and Jago stock in the Romanzof Mountains, Ammerman Mountain and the Bear Mountain pluton, all within the Arctic National Wildlife Refuge north of the Old Crow batholith. In the northern Yukon Territory, about 110 miles to the northeast, the Mt. Fitton and Mt. Sedgewick plutons have been assigned a similar genesis. All appear to have been also subjected to a late Cretaceous or Tertiary orogenic event as well (36).

Initial studies indicate similar mineral assemblages typical of mid-Paleozoic orogenies (e.g. the Hercynian Orogeny of Europe) associated with these plutons. Sable (<u>36</u>) has noted greisenization, as well as tin, fluorine, and beryllium mineralization at the Okpilak batholith. Uranium and tungsten skarns and residual tin have been reported at Mt. Fitton (<u>21</u>). At Bear Mountain, base metal veins and significant molybdenum and tungsten values in a rhyolite breccia occur. Within the Old Crow batholith tin, uranium, tungsten and base metal mineralization associated with both the rhyolite and granite were observed during the current study.

Interpretive Studies

Aeromagnetic Data

A preliminary aeromagnetic survey of this area $(\underline{8})$ indicates that concealed granitic intrusive rock extends well beyond the present mapped borders of the pluton, notably into the upper Porcupine River area (figure 4). Granitic basement is also indicated to extend west to the Rabbit Mountain area. Several mineralized veins and rhyolite dikes in the phyllites of Rabbit Mountain are possibly related to this crystalline basement.

Field Investigations

Investigations along the southern and western margins of the batholith indicate a multiphased history for the intrusive, and a roughly defined zonation, figure 5. The inner or core zone consists essentially of an equigranular to partly porphyritic medium to coarse-grained biotite granite, surrounded by a middle zone of variable grain-sized leucocratic intrusive rock ranging from aplites to porphyritic, biotite granite and quartz monzonite with muscovite. Locally extreme sericitic and chloritic alteration, and greisen-like alteration generally associated with shearing, has occurred. Silicification (sometimes

light green in color) and quartz veins with hematite are common in this zone. Several areas of volcanics (rhyolites), and tectonic shearing and brecciation have been noted. Tourmaline is common in the finer grain rocks.

The outer margin consists of black to gray carbonaceous(?) sericite granitic rocks, probably the result of contamination by, or at least in part, granitization of the host rock. This lithology has been found over an area of about eight square miles along the southern contact and intermittently on the west end of the intrusive. The granitized host may have been the carbonaceous black, limy shales of lower Paleozoic or Precambrian age that occur several miles to the south along the river. Higher than normal background concentrations of boron in the Paleozoic shales also tend to support this, as the black granite is typified by variable amounts of replacement tourmaline (granitic rock analyses range from 100 to 15,000 ppm boron). See table 1 for petrographic descriptions of this "border" phase and figure 6 for the sample locations described.

Portions of the batholith's intermediate zone appear to be indicative of the uppermost levels of a plutonic environment, which often are regions which are quite favorable for mineralization. Evidence suggests that the batholith is of the "plumasitic leucocratic" type as defined by Tauson and Kozlov (<u>41</u>). In summary, the batholith could be described as a hypabyssal (high level, shallow-seated) intrusive with implications especially for uranium, tin, and tungsten.

Air Photo Interpretation

ž

Interpretation of Landsat and high altitude false color infrared airphotos of the granitic terrane are shown in figure 7. Distinctive features possibly related to mineralization are:

TABLE 1. - Petrography of "Black Granites"1/ by T.C. Mowatt (32)

Sample Number	Remarks
OC 2211	Graphic(?) granitoid(?); highly altered/contaminated/ metamorphosed; feldspar strongly altered to sericite (<u>+</u> other indeterminate phases?); the latest-stage fractures contain hematitic-appearing infilling; these fractures transect an earlier-stage fracture set which is associated with clay (gouge?) material; much dark (carbonaceous, mostly?) material disseminated throughout the rock, and in optical/crystallographic configurations seemingly asso- ciated with the "graphic" texture of the rock (it is apparently graphically intergrown with quartz, and/or replacing feldspars); minor muscovitic mica; perhaps some tourmaline. Rock strongly stressed cataclastically.
OC 2414	Granitoid rock; one type (potassium?) of feldspar is com- pletely altered to sericite; the other feldspar (plagio- clase) grains are very strongly replaced by dark (tourma- line? or carbonaceous?) indeterminate phase(s)(some relict albite twins are recognizable in some of these)-, and sericite (to a lesser extent); there is ambiguity concern- ing this dark material - it is semi-opaque, its "acicularlath-like" habit may actually merely reflect its intimate intergrowth with micaceous materials; some of the micaceous material is pleochroic (colorless-grey), and probably is chlorite (after biotite?).
0C2418-A	Granitic rock; feldspars completely sericitized and also replaced by tourmaline(?); dark opaque (carbonaceous?) material disseminated through rock, some associated with red opaque (hematite-appearing) material, which latter also is seen lining fractures, as well as intergranular to the other phases.
0C2418-B	Breccia (fault zone?); angular quartz fragments, and larger fragments of granite (with feldspar altered to sericite <u>+</u> other phases;

 $\underline{1}$ / Location of samples shown in figure 6.

.

TABLE 1. - Petrography of "Black Granites", continued

Sample Number	Remarks
0C2418-B (cont.)	and replacement tourmaline [?] as well); some muscovitic mica; wall rock composed of granitic rock; matrix <u>heavily</u> impregnated/ dusted with dark opaque material (as are many of the more highly altered feldspars in some of the fragments); the fragments are a heterogeneous assemblage, and are <u>not</u> all from the same source material; presumably the ubiquitous dark opaque material is carbonaceous.

ί.

FIGURE 6.-Rock sample locations, VABM Orphan area

- Linear features similar to "horsetail fractures" on Rabbit Mountain that may be mineralized and coincide with minor mineralization found to occur there.
- A focus of lineaments around Spike Mountain that may localize any mineralization originating in the granite.
- 3) A circular feature in T. 31 N., R. 29 E. probably attributable to a lithologic unit but which coincides with an occurrence of copper, lead and zinc mineralization described in the White Mountain Creek prospect portion of this report.
- 4) An obvious lithologic linear south of the batholith, where a massive persistent quartzite bed outcrops over a strike length of about 20 miles. A circular feature with quartzite outcrops is noted along this linear in T. 29 N., R. 26 and 27 E., which may relate to basaltic lava found as float rock nearby. Chalcedony veining was also observed.
- 5) Although three miles north of the project boundary, an intensely fractured area of the intermediate zone of the Old Crow batholith in T. 33 N., R. 28 E. has potential for mineralization associated with the granite. These fractures or shears frequently show chloritic, clay and muscovite alteration. Some rhyolite volcanics found as rubble.
- East-west linear associated with uranium mineralization in T.32 N.,
 R.29 E. (see Rapid River Uranium Prospect).

Air photographs did not provide complete coverage in the batholith area, since flight lines diverged.

Possible Economic Deposit Types

Available information from previous investigations, the present field studies and occurrences of mineralization were combined in an attempt to define potential mineralization types associated with the Old Crow granitic terrane. Where possible, known prospects were then classified as representative of these various types. While other types of deposition are conceivable in this region, there was no direct evidence to support such possibilities. The results are preliminary at this time, but are a necessary step as an integral part of any land resource evaluation. Occurrence and prospect evaluations are described in more detail in a later section of this report.

Vein-Type Deposits

These are relatively small but high grade deposits of sulfide mineralization in metasedimentary rock. Occurrences of this type are found locally, especially in the black phyllites, confined to fractures, shear zones or faults. They were observed on Rabbit Mountain and at several localities in the "Cone area" (VABM Cone), figure 8. Economic minerals include copper, lead, zinc, and silver, occasionally with antimony and bismuth values. In Canada several veintype occurrences adjacent to the Old Crow batholith are reported to contain lead and zinc, and in one case tungsten (45). Barite occurs as veins in schist contact rock on the north side of the batholith (7), figure 8. Minor copper minerals are found in quartz vein swarms also cutting schist on the northwest side of the batholith.

The potential for this type of mineral deposition appears high in Paleozoic or older metasediments in close proximity to the granitic intrusive, particularly the rhyolites associated with black phyllites, calcareous units and schist.

FIGURE 8.- Mineral occurrences and anomalies--granitic terrane

Geochemistry*

us

gr

rhy

sch

Possible deposit types

Cu - anomaly <u> ୧</u>ଟ୍ଟି ଜ୍ଞା ଜ୍ଞ - Placer Cu - group of anomalies - Stratiform - "Skarn" type Ag - Silver Ni - Nickel - Vein or Breccia Au - Gold Pb - Lead - Vein in granite Ba - Barium Sb - Antimony - Mineralization of Be - Beryllium Sn - Tin unknown deposit type Bi - Bismuth U - Uranium - Potential placer Cr - Chromium - Tungsten W stream Cu - Copper Zn - Zinc Mo - Molybdenum

Rock Types (after Brosge and Reiser, 1968)

Undifferentiated sedimentary rocks and sediments.

Granitic rocks.

Rhyolite; some granite.

Quartz-mica schist; some greenschist quartzite.

mr Mafic volcanic rocks.

--- Terrane boundary.

Project area boundary

Prospects/Occurence

 Rabbit Mtn - copper, lead
 White Mtn Creek - copper, lead prospect
 VABM Barren-uranium
 4(a-b). Rapid River - uranium, tin occurrences
 Old Crow Hills - tin, tungsten, rare earths placer prospects
 Copper, lead, zinc prospect
 Barite veins

8. Minor copper occurrence

*See appendices for analyses and locations of individual samples.

-

This should include those areas believed to be underlain by granite as indicated by magnetics, figure 4.

Since tin is known to be associated with the batholith, the possibility of cassiterite veins in the metamorphics should be considered. Such veins are usually apical and the vicinity of western end of the batholith may be particularly favorable.

Granitic-Associated Veins, Brecciations, and Silicic Zones

Secondary quartz veins and late stage silica, hematite concentrations and muscovite development occur in the Old Crow batholith, and in several cases contain uranium minerals, lead, zinc and minor tin values (see prospect reports). High residual concentrations of cassiterite and scheelite also appear to be derived from these sources. The presence of veins may indicate relatively small to medium-size but high grade deposits of these minerals, such as those mined in France and Czechoslovokia.

Some muscovite development in hybrid granitoid rock was noted in an altered breccia zone which also contained tin and uranium values in T. 32 N., R. 29 E. Brecciation and associated alteration is probably related to the extensive shearing in the cntrusive and this should be considered favorable for remobilized, volcanic or late intrusive related mineralization. Silica-rich breccia zones in the batholith appear confined to the previously described intermediate zone. A moderate to very deformed cataclastic texture is common in the quartz material.

The potential for this type of deposit is confirmed by the mineral occurrences found, however further work is necessary to determine if mineralization is economic. An intensely sheared area just north of the project boundary should also be investigated for this type of deposition.
Porphyry

For the purposes of this report, this group will include consideration of intrusive breccias, breccia pipes, and uranium porphyries [as described by Armstrong, 1970 (1)], as well as the more well-known copper/molybdenum intrusive deposits characteristic of the North American Cordillera. They are often closely related to mineralized vein systems. Supergene and relic hypogene enrichment of secondary minerals possibly could also occur in this highly weathered, deeply leached and unglaciated terrain.

A brecciated rhyolite body near the Bear Mountain pluton, 55 miles to the north was found to be mineralized with tungsten, molybdenum and lead. These rhyolites are similar in composition and emplacement to those on the perimeter of the Old Crow batholith.

"Porphyry type" uranium deposition of large tonnage and relatively lowgrade mineralization is indicated to be possible in either differentiated phases of the granite or in rhyolite intrusives. However, due to deep leaching and weathering, subsurface evaluation would be necessary to further define the possibility. An occurrence of boulder rubble near VABM Barren of a highly altered zone of muscovite/minor biotite fine-grained granite rock, typical of that area (containing 31 ppm uranium) could be an example of a differentiated and altered phase with low grade "porphyry uranium" possibilities.

Some phases and tectonic structure of the finer-grained granites in the headwaters of the Rapid River have potential for lead, tin, and tungsten. The tin, tungsten and molybdenum geochemical anomalies (Appendix A) in upper Rapid River near the border may indicate sulfide phases of these elements associated with this type of deposit environment.

Particular emphasis for "porphyry-type" deposits should be given the region near the western extreme of the batholith.

Skarn

The possibilities for contact metamorphic/metasomatic deposits are probably limited to the intrusive granitic and/or rhyolite sill contacts with limestone, black shales to phyllites, and calcareous argillites along the southeastern perimeter of the pluton. The nature of the granitic rock suggests reasonably good potential exists for deposits of this type in the limited region. Several small showings of skarn development containing high-grade magnetite, sphalerite, bornite, and other sulfides were found at a calc-argillite contact with rhyolite near a geochemically anomalous area at the head of White Mountain Creek. Thermally altered calc-argillites containing up to 0.08% tin are found nearby. Eastward in Canada, a reported skarn contains tungsten, copper, and uranium at the contact with the genetically related Mount Fitton granite (21).

Placer

Alluvial gravels of the Rapid River and Strangle Woman drainages were found to be consistently enriched with cassiterite, scheelite, monazite, zircon, allanite, xenotime and minor amounts of lead and niobium minerals. Surface sampling indicates that extensive economic placers may exist. Other smaller drainages of the Old Crow pluton may also be mineralized at locations within and downstream of the granite or its contact metamorphic surroundings. Residualtype placers are likely in the deeply weathered (saprolite) zones, but would be of lower grade and extensively frozen. Preliminary work by the Bureau has identified possible tin placers in the the high bench ancient channels of the Porcupine River near the the International Border.

The probability for placer formations is enhanced by the lack of glaciation and the evidence of significant and recent uplift and subsequent erosion. Drilling and/or subsurface sampling will be necessary to confirm the presence and grade of possible economic placers.

Other Deposit Types

A number of soil samples from the "intermediate" zone of the intrusive have indicated a high background in lithium which is probably being derived from greisen-like alterations of the intrusive. No further investigation was made.

No pegmatities have been observed by the author in the Old Crow area, but they might be anticipated in this type of plutonic environment. High concentrations of certain trace elements often associated with pegmatites were detected in pan concentrate samples from streams within the granitic terrane.

Tantalum- and niobium-rich phases, either as pegmatites or in other deposit forms, may be of economic interest due to the high unit value of these elements. Minor niobium values were frequently found in granitic samples analyzed by the Los Alamos Laboratory, however, no significant tantalum was detected.

Mafic/Ultramafic Igneous Rocks and Associated Sediments

Geology

ī

Mafic and ultramafic igneous rocks interlayered with maroon and green chert, shale, basalt flows and graywacke occur within the study area north and west of the Porcupine River. The predominantly intrusive igneous rocks, which form a portion of the Christian River sequence have been assigned a Jurassic age based on two K-Ar determinations on hornblende ($\underline{35}$). Large sheared blocks of Triassic and possibly older sedimentary rocks occur as "rafted" inclusions in the igneous assemblage. The interlayered chert, shale, and graywacke, which tend to dip toward the center of the complex lie in a structural basin and have been dated late Paleozoic to Jurassic ($\underline{35}$). A prominent northeasterly trending linear which parallels the Coleen River valley forms the eastern margin of the complex and suggests a down-thrown basement to the west.

Recent studies of radiolarian chert indicate that older ages, i.e. from Carboniferous to Permian, are probably more likely to be valid (7). The igneous rocks may represent sheeted dikes or a differentiated body, though the interbedded cherts and shales strongly suggest an ophiolitic affinity.

Reiser and others (<u>35</u>) have noted that the igneous complex can be separated into two distinct groups. The predominant rocks are dark colored and consist largely of gabbro, diabase, and basalt. Generally these rocks have been hydrothermally altered. The light colored group consists primarily of interbanded hornblende leucogabbro, anorthosite, hornblende gabbro, pyroxenite and peridotite, and hosts at least one known chromite occurrence, figure 9. The relations of the two groups have not been established.

Interpretive Studies

Aeromagnetic data $(\underline{8})$ infers that the complex is bounded by faults to the northwest and by faults and a granite basement to the south. It has been suggested that portions of the complex may have been thrust northward into the area, similarly to the situation which has been interpreted for a mafic/ultramafic unit in the Beaver quadrangle to the southwest (7).

Very little is known about this complex of rocks, as outcrops are scarce, particularly on the eastern end which is the portion in the study area. The vegetation cover is so nearly continuous that float rock is often difficult to find, even on ridge tops and in creeks. The drainage systems generally consist of tundra seeps between thermokarst ponds, rather than down-cutting streams. Geochemical sampling in this terrain is therefore of dubious value. Very little field investigation was possible in the area.

Airphoto interpretation of the complex (figure 10) has indicated strong north-northeast lineations within and to the east of the complex, which trend subparallel to the previously mentioned major lineament following the Coleen River valley. Fairly conspicuous alternating resistant and non-resistant lithologic units are also noted in the complex. It is on the basis of sudden discordancies in trends of these lithologic traces that two probable fault traces are shown in the vicinity of Boulder Creek in T. 32 N., R. 22 E. on figure 10.

Linear features similar to "horsetail" fractures, which may be mineralized, are evident north of Vundik Lake (T. 30 N., R. 17 E.) and also in T. 30 N., R. 19 and 20 E.

Intersecting lineaments in T. 31 N., R. 22 E. coincide with barium and copper geochemical anomalies and an occurrence of barite float rock, figure 9, No. 6.

FIGURE 9.- Mineral occurrences and anomalies--mafic/ultramafic terrane

EXPLANATION

Possible deposit types Geochemistry* Placer Cu - anomaly Cu - group of anomalies (M) - Magmatic-mafic/ ultramafic Ni - Nickel Ag - Silver Au - Gold Pb - Lead ⑦ - Mineralization of un-Sb - Antimony Ba - Barium known deposit type Sn - Tin Be - Beryllium U – Uranium Bi - Bismuth 🐅 - Potential placer stream W - Tungsten Cr - Chromium Zn - Zinc Cu - Copper Sn − Strataform Mo - Molybdenum Prospects/Occurrences Venetie chromite (22) 1. Bedded barite (7) 2. Sheenjek gold occurrence (11) 3. Manganese vein (23) 4. Procrastination Creek gold placer 5. Coleen River copper, barite 6. Geology (Modified after Brosge and Reiser, 1962 and 1969 KJs - sandstone Jurassic or Cretaceous. . Jm]- gabbro, basalt, quartz diorite leucogabbro, anorthosite and JI Jurassic. . ultramafic rocks - Shublik Formation-black, partly Triassic. . ħS calcareous shale Jpc] - chert, sandstone, shale Jurassic or Permian . Mss - sandstone Ms. - siltstone MI - Lisburne Group - limestone Lisburne Group - brown MIb weathering limestone MK - Kayak shale Mississippian . . Kekiktuk or Kanayut conglom-Mississippian or Devonian MDK | erate Dsg]- quartzite, slate, graywacke DK] - Kanayut conglomerate Dgw]- micaceous lithic graywacke Upper Devonian. . and shale Pzp - phyllite Paleozoic . . Contact Fault, dashed where inferred Project area boundary

*See appendixes for analyses and locations of individual samples.

FIGURE 10.- Air photo lineaments--mafic/ultramafic terrane

Topography from USGS Christian and Coleen Quadrangles 1:250,000

Possible Economic Deposit Types

There is little known mineralization within this enigmatic complex of rocks. The following list of possible deposit types and mineral potential is based on a few known occurrences, as well as deposit types characteristic of mafic/ultramafic associations elsewhere.

Mafic/Ultramafic Associations

There have been no reported occurrences of chromite, or other economic minerals typical of mafic/ultramafic associations and magmatic segregations (including iron, nickel, cobalt, and platinoid minerals) within the project area. But, since very little is known about the nature of the complex, the potential existence of such deposits should be tentatively considered.

Chromite, as well as traces of platinoid metals, are known to occur within ultramafic rocks at one location immediately west of the report area in the Christian River sequence, figure 9. The occurrence is located in T. 30 N., R. 9 E. The following description of the occurrence was reported by Hawley and Garcia (22).

[On Hill 2470] peridotitic rocks are exposed and the yellowish soil contains residual nodules one to two inches across of a weakly magnetic dark material. Analyses of about a 2 pound sample of nodules showed 4.5 percent chromium and a trace (0.10 ppm) of platinum and a lesser concentration of palladium. Anomalous chromium and detectable platinum metals were also found.

Until this sequence of rocks is better understood, the significance of this chromite occurrence cannot be determined. If the ultramafic rocks are part of a layered intrusion, possible significant chromium and platinum values might be expected. If instead they are of "alpine" affinity, which is more likely, the chromite would perhaps be more likely to occur only as probably uneconomic, small, podiform deposits, although this is not always the case.

Massive Sulfide Deposits

The possible ophiolite sequence of interbedded mafic volcanic rocks, radiolarian cherts and shales could be a potential host for copper, with gold and possibly zinc, in massive sulfide deposits. This type of deposit would be similar to marine basaltic lavas and pyroclastic associates which host the well known Cyprus copper sulfide mineralization. A few gold and copper anomalies occur in the northeastern part of this rock sequence (i.e. Procrastination Creek) and are shown in figure 9.

Placer-Platinum and Gold

The potential for economic concentrations of minerals within the alluvial gravels of the Christian complex is generally unassessed and surficial expression of their existence would be poor in this covered terrain. Platinum placers are found associated with mafic/ultramafic complexes elsewhere. Gold is known to occur with greenstone-volcanic sequences. On Procrastination Creek, a tributary to the Coleen River, several gold placer claims were staked in the 1950's. A rock sample containing traces of gold has also been reported from this last location (11). Brosge also reported a single occurrence of gold placer on the Sheenjek River (figure 9, map No. 3).

Sedimentary-Barite

Bedded barite occurs within the Christian complex [north of the report area (T. 36 N., R. 17 E.)] in interlayered chert, argillite, and mafic rocks, figure 9. The largest barite bed is about 20 feet thick, and is exposed for about 100 feet. Several other thinly bedded occurrences and barite nodules in shale have been noted in this vicinity (7).

Fragments of white massive barite in stream gravel, and pan concentrated samples also containing barite were found in the same units at location 6 (T. 31 N., R. 22 E.), figure 9, (see prospect description).

Based on these two occurrences, upper Paleozoic to lower Mesozoic shales and cherts associated with the mafic complex appear to have potential as host rocks for bedded barite deposits. A sedimentary origin (with or without volcanogenic affinities) for the barite is possible, as is, alternatively, a hydrothermal source related to the mafic complex which intrudes the sediments.

The quality of barite that occurs within the area is unknown, but it appears to be free of sulfides.

Other Deposit Types

Manganese has been reported to occur in the Lois Dome area (T. 34 N., R. 22 E.) as a one inch vein of psilomelane within red ferruginous argillite $(\underline{23})$, figure 9. Brosge and Reiser $(\underline{11})$ report minor gold values in a manganiferous pebble from this same vicinity. Manganese oxide was common in heavy mineral concentrates.

The origin and extent of manganese mineralization within the project area is unknown. The possibilities for several different deposit types exist, including a sedimentary origin within the Paleozoic(?) shales, or more likely, a source associated with the mafic volcanics. Similar Paleozoic and Mesozoic chert-greenstone ophiolite complexes in the western United States are host to massive stratiform manganese deposits. It is believed that these deposits were formed by submarine hot springs at localities such as a midocean rise or the base of an island arc (40).

Asbestos associated with serpentinized ultramafic rocks is a possibility; however, the ultramafic portion of the Christian complex has been reported to be fairly small and no serpentinization has been noted. Since very little is

38 ′..

known about the geology of the complex, the potential for asbestos mineralization is unknown. Attention should be focused on the mafic complex intrusive units near the region believed to be underlain by a granitic basement of unknown age, figure 4. If the latter is younger, the potential for serpentine alteration would be enhanced.

Sedimentary Rocks

Geology

Sedimentary rock units of the Porcupine study area are shown in figure 11. The rocks are best described where they are exposed along the Porcupine River canyon; very little is known of the sediment units in the study area to the south of the river. Early to middle Paleozoic rocks consist predominantly of limestone and dolomites that formed on the Yukon carbonate shelf which extended eastward into Canada. In the Yukon Territory these rocks probably correlate to the clastics (i.e. Road River Formation) (<u>17</u>) which host some Canadian lead-zinc deposits.

A mid-Devonian disconformity is mapped through these rock units within the Porcupine River sequence, and generally a regional angular unconformity has also been recognized between Late Devonian and younger rocks relating to tectonic activity which began in that period within this part of Alaska.

The Carboniferous section consists of partly carbonaceous and hematitic sandstones overlain by thinly interbedded limestone, shale and chert. The Permian is predominantly a detrital facies of chert-pebble conglomerate, sandstone, siltstone, and argillaceous rocks which are possibly equivalent to the Siksikpuk Formation of northern Alaska. Highly carbonaceous shales of this age outcrop along the Porcupine River. Locally, limy interbeds occur indicating a shelf margin facies change, and these limestones may reach thicknesses of several hundred feet.

۰.

FIGURE 11.- Correlation chart for rock units of the Porcupine area

Carboniferous to Permian rocks of the Black River region consist predominently of quartzite and shale. Immediately east of the study area within the Black River Quadrangle is a large poorly known area of Precambrian bedrock. This unit consists of semi-phyllite, sandstone, graywacke, slate and meta-carbonates.

н. Н

Along the Porcupine River, close to the Canadian border, a thick sequence of white and orange weathering dolomite, pyritic quartzite and black carbonaceous and limy shales occur, and these are intruded by younger greenstone dikes. Although mapped most recently as Paleozoic, earlier workers have considered these sediments to be Precambrian in age (13). Canadian geologists consider these to be part of the Precambrian Tindir group (20). Dolomites of this area frequently contain extensive and numerous randomly oriented veinlets and breccia fillings of chalcedony.

Triassic units, not recognized throughout most of the report area, are mapped only in the Strangle Woman sequence (figure 11) which occurs in the northcentral portion of the study area. Here highly sheared, deformed and partially silicified Triassic black shales, sandstone, and limestone of the Shublik Formation occur within relatively small areas along the Coleen River (<u>12</u>). The tectonic activity is probably related to movement along the "Coleen lineament".

Jurassic and Cretaceous rocks, predominantly products of detrital sedimentation, occur in the Porcupine River area and consist of sandstones, siltstones, shales, with some cherts. Units of these rocks five to ten miles south of the Porcupine are either in fault contact or unconformably overlie the older sediments. Thick beds of gray chert breccia are also recognized, within the Porcupine River sequence, to be of Permian or Jurassic age. In the Black River area these units appear to be predominantly quartzite to slate and shale in composition. Tertiary sediments consist predominantly of weakly to moderately lithified gravels, mudstone and sandstone with clay, lignite, ash and minor tuff. They outcrop in the "Coleen Basin" near Fishhook Bend of the Porcupine River (34). Residual hematite, partially petrified wood and plant fragments are common in the gravels. Fossils indicating both non-marine and some marine facies are also present (12).

Tertiary or Quaternary basalt flows cap the Porcupine sequence in the vicinity of the Porcupine River, and to the south into the Black River quadrangle. Some areas of the Tertiary sediments east of the Coleen River appear to be covered by these flows.

It is likely that a thick stratigraphic section of Tertiary sediments underlie the expansive Yukon Flats. Vegetative cover is continuous in this area but the occurrence of remobilized soda-ash precipitate lake beds suggest an original origin within a climate typical of the Tertiary period, as reflected by Tertiary sedimentary rocks elsewhere in this region.

Interpretive Studies

Aeromagnetic Data

Aeromagnetic data shows inferred crystalline basement extending from the Old Crow batholith to beneath sedimentary rocks of the upper Porcupine River, figure 4. This crystalline basement, which would have intruded the Lower Paleozoic sedimentary units, could have unresolved implications for mineralization as proposed by Baadsgaard and others ($\underline{2}$) below a major Devonian - Mississippian unconformity.

Also indicated are extensive areas of mafic intrusive and extrusive rock that are inferred to lie within the Yukon Flats Tertiary basin. Small areas of concealed mafic rocks are also indicated in the vicinity of the basalt flows on the Upper Porcupine River.

Air Photo Interpretations

Air photo interpretations for the sedimentary terrane of this report are shown in figures 12 and 13. Time and funds available for on the ground followup generally limited field work to only the northern portion covered in figure 12, which was accessible to the Porcupine River. Very little is known of the geology or mineral potential of the area to the south, which can only be described as "most extensively" vegetated. Further geologic, geochemical and geophysical surveys are necessary to adequately interpret the airphoto data.

In the northern portion (figure 12), the most favorable foci of fracturing which might serve as localizing agents for mineralization are as follows:

- A zone around the northwest and west-northwest lineaments in the area north of Fishhook Bend, where they are intercepted by numerous northeasterly lineaments (T. 28 N., R. 26 E.). A pan concentrate sample was anomalously high in molybdenum in this area (sample No. 89).
- An intensely fractured area north of John Herberts Village is located near the intercept of a north-northeasterly megalineament and several northeasterly and northwesterly lineaments (T. 26 N., R. 21 E.).
- 3. An area north of the Salmon Trout River, about 12 miles upstream from the confluence with the Porcupine River, where several northeasterly lineaments converge and intersect northerly and northwesterly lineaments. Zinc and silver geochemical anomalies have been noted in this vicinity by a previous study (<u>11</u>). Brief follow-up did not indicate readily apparent mineralization, however.
- 4. A sub-circular feature about 6 miles south of Old Rampart may represent a center of uplift with possible associated mineralization, or may be related to the nearby Quaternary basaltic flows. A sample of pyritic limestone and calcite veins to the east contained minor values

FIGURE 12.-Air photo lineaments-northern portion, sedimentary terrane

FIGURE 13.- Air photo lineaments--southern portion, sedimentary terrane

of silver and molybdenum. Iron-stained carbonates interbedded with black shales just south of Old Rampart are highly anomalous in copper, lead, zinc, barium and silver (figure 14).

5. Along the Upper Porcupine (T. 29 N., R. 29 E.), air photographs show abandoned river channels several hundred feet above the present elevation of the river over a distance of approximately ten miles. Pan concentrate samples contained detectable tin, tungsten and rare earth minerals (Refer to discussion of the Porcupine River ancient placer occurrences).

The southern portion of the study area is shown in figure 13. Numerous linear features were discernible on the Landsat images in this area. Only those features were added to the map which did not coincide with linear features already identified from study of the NASA photographs. This area, which is mapped (6) as predominantly covered by Quaternary loess, has many linear features evident on both NASA photographs and satellite imagery. These linears may be due to regular drainage and erosion of a formerly horizontal planar sheet of homogeneous loess, but it is more probable that the predominantly regular northeasterly and northwesterly pattern is caused by structures underlying the loess, probably at no great depth. Basalt flows known to be extensive to the southwest may also underlie this area and account for the structural ... pattern.

South of Black River, a single obvious sub-circular feature, as well as several obvious northeasterly and a few northerly trending features are observed on Landsat images. Many less obvious, but quite persistent northeasterly and northwesterly linears are visible on the NASA photographs, and some of them coincide with those interpreted from the Landsat images. These linears probably relate to subsurface fractures, and possibly to a slight domal uplift south of

Topography from USGS Coleen and Black River Quadrangles 1:250,000

FIGURE 14.- Mineral occurrences and anomalies--sedimentary terrane

Geochemistry*					Possible deposit types				
Cu - ano <u>Cu</u> - gro	maly up of anom	alies		P -	Placer				
Ag - sil Au - Gol Ba - Bar Be - Ber Bi - Bis Cr - Chr	er um llium uth mium er	Ni - Nickel Pb - Lead Sb - Antimony Sn - Tin U - Uranium W - Tungsten Zn - Zinc	y n	99 - (?) - (8) -	 Stratiform (Marine) Mineralization of unknown deposit type Breccia filling 				
Mo - Mol	ybdenum			- U	and coal	mmerars			
	<u>Geology (after Brosge and Reiser, 1969; Brabb, 1970)</u>								
	Quaterna Tertiary	ry or	QTv] Basalt flows.					
	Tertiary	• • • • • •	[Tc]	Cong clay	lomerate, s , lignite a	andstone, nd tuff			
	Cretaceo Jurassic	us or •••••	KJs	Gray sand	, ferrugino stone	us			
	Jurassic	• • • • • •	Jm	Mafi basa	c rocks, ga lt, quartz	bbro, diorite			
	Paleozoi	C	• • PzUs	Undi Sedi	fferentiate mentary roc	d ks			
	Contact, dashed where inferred Fault, dashed where inferred Terrane boundary Project area boundary								
	Prospect	s/Occurrences							
1.	Coleen Mountain or River prospect - copper (23)								
2.	Shale/ca	Shale/carbonate - copper, zinc, lead							
3.	Porcupin	Porcupine River - ancient channel placer							
4.	Zinc val	Zinc values in carbonate breccia							
5.	Soda ash (not sho	Soda ash deposits, north and south of Chalkyitsik, (not shown on figure 14, located in T 20 N, R 18 W)							
6.	Lead, si	lver prospect	by Doyon	Ltd. (<u>44</u>)				
7.	Coal (li	gnite)							
8.	Lead, si	lver prospect	by Doyon	Ltd. (<u>44</u>)				

the Little Black River in the vicinity of T. 15 and 16 N., R. 20 and 21 E.

Although topographic linear features are numerous in the southern portion of this terrane, except in a few instances they do not seem to form definite foci. The following represent only the most obvious locations where mineralization might be expected to be localized (figure 13):

- 1. In the vicinity of T. 16 N., R. 21 E., in a salient of the Little Black River, a sub-circular megalineament is intersected by northeasterly and northerly linear features. Several smaller-scale features also intersect nearby. A similar situation exists in the center of the township to the north.
- A focus of intersections of quite persistent but narrow linears occur northeast of Whitefish Lake, and this radial pattern may be caused by local uplift.
- 3. A northwesterly megalineament "horsetail" between R. 22 and 23 E., T. 18 N., and the bifurcation coincides with the projections of two subparallel northerly megalineaments. A color anomaly readily visible as greenish-blue coloration of the falsecolor infra-red photographs is present in the same area which is probably due to unusually heavy growths of white spruce.
- 4. Two other small areas of color anomalies, both yellowish-blue, occur at the contact of the Permian quartzite and Devonian limestones in T. 21 N., R. 24 E., and T. 22 N., R. 22 E. These were not investigated.

Geochemistry

Geochemical studies were limited by the time and resources available for this study and did not permit a full regional reconnaissance of the sedimentary terrane. A survey was made, however, of all accessible streams that drain into the Porcupine and Coleen Rivers. This made possible a limited interpretation of geochemical background in many of the sedimentary units that comprise the terrane. For specific sample locations and analyses, refer to the Appendixes and to the analyses being open-filed by the D.O.E.

The following discussions should be considered strictly preliminary until more reliable analytical data is thus available.

Ĩ

- T. 25 N., R. 19 E. Carboniferous or Permian sandstone: Exposures of brecciated ferruginous and manganiferous sandstone and argillites contain anomalous copper and zinc.
- 2. T. 26 N., R. 23 E. Lower Paleozoic (Precambrian?) limy black shales: These rocks contain lenses of high carbon content with anomalous molybdenum and barium. Stream sediments in this area which also drain Devonian argillaceous dolomite are additionally anomalous in copper, lead and silver.
- 3. Howling Dog Canyon, (T. 27 N., R. 27 E.): Greenstones and conglomerates overlain by Quaternary/Tertiary basalt lavas: In the Howling Dog Canyon area, stream sediments were anomalous in barium, copper, chromium and silver, which might be expected. In the upper portion of the canyon, the lavas overlie Paleozoic siltstone and limestone.
- 4. Old Rampart, (T. 27 N., R. 28 E.): An outcrop of iron-stained Devonian limestone is anomalous in copper, zinc and lead. Vanadium and nickel were also found to be above background levels. A nearby spring is reported to contain nickel alum, possibly originating in Middle Devonian rocks (39).
- 5. Half-way Pillar, (T. 28 N., R. 28 E.): An area mapped as pre-Tertiary siltstone overlain by younger basalt flows contained values of copper, molybdenum, barium, silver and boron. Pan concentrate samples of a small eastflowing creek 1.5 miles south of Half-way Pillar contained

tourmaline and monazite. Siltstone in this drainage was slightly radioactive, apparently due to thorium.

6. T. 29 N., R. 28 E. Quaternary/Tertiary basalt lavas overlie Precambrian(?) dolomite and limy black shales. Stream sediments contain anomalous copper, molybdenum and chromium. It is not certain whether the copper and chromium values were from the basalts or the sedimentary rocks, however, a sample of the black shale contained anomalous copper and lead.

1

- 7. T. 29 N., R. 29 E. Northwest flowing streams west of "VABM Chasm" are anomalous in chromium, copper and molybdenum.
- Upper Porcupine: The upper ten miles of the Porcupine River traverses 8. a geologically complex region of lower Paleozoic or Precambrian dolomite, quartzite (commonly pyritic) and black shale to slate. Thin mafic sills intrude the sequence. Several samples of brecciated dolomites and limestones were found to contain minor occurences of lead and zinc minerals. Sediment samples indicate the area to be anomalous in lead, barium, chromium, copper and molybdenum, and thus suggest the rock units to be favorable for base metal and barite mineralization. Sample map no. 97 (CC-58) contained very anomalous values of selenium, lanthanum, tin and molybdenum. No followup was possible of this site. Brecciation is widespread with silica, chalcedony, calcite, goethite and hematite fillings and veins. Bleaching and argillitic alteration was prominent in several outcrops. This geochemical regime may be an expression of basement intrusive rock and consequent partial assimilation at depth.

•Possible Economic Deposit Types

The following list of possible deposit types within the sedimentary terrane is based on the limited data available for this area, in conjunction with projections from Canada where there is known mineralization in similar rock units. Refer to figure 14.

Carbonate-Hosted, Including "Mississippi Valley Type"

ī

Potential host rocks for epithermal(?) lead-zinc mineralization are found in the lower Paleozoic and Precambrian(?) units which occur within approximately 5,000 square miles of the project area. Shale/carbonate facies intergradations, paleokarst evaporite strata, unconformities, and extensive tectonic activity could provide favorable loci for mineralization. While this region remains largely unexplored, to the southeast in the Yukon significant base metal mineralization is found in equivalent rock units.

Mineralization in the Yukon's Dawson district is reported to occur above and below unconformities between Precambrian and Ordovician carbonates, within Precambrian buff-orange weathering dolomites, and in breccia zones within structures in lower Paleozoic limestone, dolomite and shale (37). Another example of this type of deposit is the Pine Point Mine, Northwest Territories, where lead-zinc mineralization occurs in Devonian dolomitized paleokarst structures related to shallow marine reefs and intertidal evaporites (38).

Exploration targets within the project area would include rock units bounding the Mid- or Late-Devonian unconformity mapped within the Porcupine River sequence and/or the regional unconformity of Devonian-Mississippian time. The possibility of mineralization in the lower Paleozoic-Precambrian, chalky weathering and orange dolomites appears favorable, as suggested by minor sulfide occurrences and goethite. Mapped and interpreted lineations and structures, as described previously, should be explored. Several recently discovered lead-silver prospects of unknown geologic setting occur within several miles of the study area in the headwaters of the Salmon Trout River (44). A major exploration effort is also underway at a Canadian silver, lead and zinc prospect several miles east of the project area. Shale-Hosted Lead-Zinc

2

Deposits of this type occur to the southeast of the study area in Canada. They are found in black shale, chert and limestone of deep water, basinal margin origin. Mineralization is sometimes recognized to be related most likely to volcanogenic or exhalative activity, such as the Grum deposit, while other localities are thought to be simply sedimentary (i.e. associated with connate brines). This mode of deposition, or one possibly due to a biogenesis association with highly pyritic and carbonaceous shale, is exemplified by the Tom deposit (<u>16</u>). Mineralization is commonly lead, zinc and copper, sometimes accompanied by silver. Distal barite horizons are often found in this association. The shales hosting these deposits often have high background values in zinc, molybdenum, vanadium and other trace elements.

Possible facies equivalents to the known Canadian shale-hosted deposits are found within the Porcupine project area. These units mapped as Silurian and Devonian or Mississippian, as well as Upper Mississippian chert, shale, black silty shales and limestones, appear to have potential for this type of deposit.

An example of possible shale-hosted mineralization occurs in T. 30 N., R. 30 E., where an extensive area of highly fractured, weathered and iron-stained shales with interbedded black clay are found about one-half mile up a small southerly tributary of the Porcupine River. The area is completely devoid of vegetation and the creek water smells of hydrogen sulfide. Several stream sediments draining this area were not anomalous, but two soil samples contained 135 and 370 ppm lead.

Sedimentary Uranium

A recent airborne radiometric survey (47) has indicated anomalies in areas along the margins of the Yukon Flats. The Flats contain non-marine sediments of probable Tertiary age which could act as host for sedimentary-type deposits. In the Coleen Basin (34), bedrock consists of uncorrelated conglomerates, sandstone, mudstones, lignite and weakly cemented gravels with hematite; clay and petrified wood. Tuff, locally welded, and ash are also found in the section. Some strata of mudstone contain abundant nodules of an earthy blue phosphate mineral known as vivianite, which was also found to be replacing partially carbonized wood fragments.

Sandstones range from well indurated to poorly cemented silty sandstone. Frequently they contain plant fragments, hematite and goethite. Fossils indicate some marine facies are also present (<u>12</u>). No pyritic enrichment was found, but iron-stained outcrops were observed. The Tertiary sediments are locally overlain by Tertiary and Quaternary lava flows, such as the area of Fishhook Bend on the Porcupine, which could aid in preserving or trapping uranium mineralization. This type of geologic environment is presently one of active exploration for uranium deposits in southern and central British Columbia and Washington.

Gray, ferruginous sandstone of Jurassic or Cretaceous age could also represent a potential host for sedimentary uranium. Carbonaceous beds within these rocks are of possible non-marine origin (e.g. Graphite Point on the Porcupine River). Particular study should be made where these units overlie the pre-late Devonian angular unconformity.

Potential uranium source rocks are found in the Old Crow granite of Devonian(?) age, a multiphase intrusive having associated uranium and thorium minerals (see granitic terrane discussion). Another possible source is the volcanic tuff interbedded with the Tertiary sediments. Water-lain ash and mudstone in the western Yukon Flats contains anomalous values of uranium (up to 50 ppm uranium). Black shales of Precambrian(?) and Paleozoic age were found to be slightly radioactive and might also have potential as a uranium source rock.

Numerous stream sediment samples from areas along the Porcupine River were found to have moderately high thorium values (to 50 ppm) but uranium values did not exceed normal background. A slightly radioactive pre-Tertiary [Permian(?)] siltstone appeared to be the source of monazite in heavy mineral concentrate from creeks draining the area.

It is not known what effects past and present climatic conditions have played in northeast Alaska in the formation and preservation of stratiform uranium deposits. However, occurrences of soda ash and potassium minerals in the Flats do suggest a past climate of the type normally associated with these evaporite-type mineral environments.

Soda Ash

Some dry lake beds large enough to be readily visible on satellite imagery of the Yukon Flats are mantled with soda ash minerals. A sample from one mile west of Ohtig Lake (T. 20 N., R. 18 E.) contained thermonatrite, feldspar and trona. Smith, in 1926, also reported potassium salts in lake waters north of Ft. Yukon (<u>39</u>). Similar occurrences of calcium carbonate, feldspar and quartz southwest of Ft. Yukon appeared to have been formed in conjunction with degassing of the substrata, and ground water-fed lakes that intermittently dry up. Sources and geologic significance of these minerals are uncertain, but one interpretation might be to suggest remobilization of various marine and non-marine evaporite sequences that may be found at depth; e.g. gypsum, soda ash and potash. Origin of the sodium and potassium minerals perhaps is more likely associated with the extensive Tertiary felsic and intermediate volcanism to the north of the Yukon Flats.

Sand and Gravel

ī

Although sand and gravel accumulations cannot be identified uniquely with any particular geologic terrane, for convenience they are discussed here with sedimentary rock deposits.

Any construction activity in the upper Porcupine region would require large supplies of gravel fill to protect the continuous and unstable permafrost, and to provide a stable work base.

Extensive near surface deposits occur in the Yukon Flats, as either active alluvium or terraces. The Coleen and Sheenjek Rivers flow through broad alluvial valleys for nearly their entire length, and these areas could be easily utilized for any forseeable demand. The upper half of the Porcupine River, except for a small alluvial-filled basin near Fishhook Bend, lies in a deeply incised canyon with limited alluvial but extensive high bench gravels which would contain a variable ice content. Difficulties of access into the canyon, in addition to environmental considerations, would probably preclude use of the active alluvial material. Small amounts could be derived from portions of tributary streams such as the Salmon Trout, Rapid, and the Campbell Rivers. Elsewhere, crushed rock, particularly limestone and quartzite, will have to be produced from local sources. This has been the case with the Kandik oil exploration wells immediately to the south of the study area, where crushed limestone was used.

Other Deposit Types

Low grade, high ash coal occurs in the Fishhook Bend area. A channel sample of a typical two foot thick seam exposed in a river cut bank was analyzed as follows:

		-	Table 2 - Coal	Analysis			
	Basis	Moistu	Volatile re Matter	Fixed Carbon	ASH I	leating Value BTU/1b	
	PR11407R 1	34.0	2 28.09	19.42	18.47	5,155	
	2		42.57	29.44	27.99	7,812	
	3		59.12	40.88		10,849	
-	Basis	5 1. 2. 3.	As received Moisture free Moisture-ash	free basis			,

As described in the "Prospects and Occurrences" section, potential tin and rare-earth placers may be found in perched ancient channels of the upper ten miles of the Porcupine River.

The nickel alum occurrence at Old Rampart (39) may indicate nickel mineralization in nearby gabbro/diorite units.

No analyses of the limestones were made for cement qualities, but such is probably present as a resource.

Kandik Province and Yukon Flats Basin

Mesozoic-Paleozoic Province-Kandik Basin:

A 3,000 square mile province (figure 15) has been outlined and defined as a possible petroleum province due to the presence of Mesozoic and Paleozoic rocks along the Yukon and Porcupine Rivers according to Miller and others (<u>31</u>). A stratigraphic sequence reveals the presence of the following formations: Middle Cretaceous, Early Cretaceous, Late Triassic, Permian, Pennsylvanian, Late Mississippian, and Mid-Devonian.

The Kandik Province may be the best place to test the Paleozoic sequence in central Alaska because intrusive volcanics are absent or pre-date the sediments. This province includes the southern part of the study area, figure 15.

In the Committee Report $(\underline{49})$, a short dissertation suggests that although Cretaceous sediments in the Kandik basin do not possess favorable reservoir characteristics, the possibility of finding structures in which the Paleozoic sediments may be within drillable depths makes exploration of the basin attractive.

Another Geological Survey report (<u>18</u>) indicates that an area which might have the most petroleum promise to test Paleozoic sediments is that between the Kandik River to the north and the Nation River to the south. Of note is the fact that Paleozoic rocks in the Eagle Plains area of Canada have been tested and have yielded natural gas. This area lies about 100 miles east of the Kandik province.

Summarized, the information contained in the Geological Survey reports would indicate that the Kandik basin area is a very likely and prospective spot to be categorized as a possible petroleum province. The geologic targets would be primarily the Paleozoic sequence and, secondarily, the rocks of Mesozoic age.

The southwestern quarter of the study area includes a portion of the prospective province, figure 15. The interpretation of the nature of the deposits and their relationships in the Yukon Flats basin has changed over the years as additional data has been obtained $(\underline{31}, \underline{49})$. Present thinking by the Geological Survey, based largely on interpretation of aeromagnetic data, indicates that only a small portion of the basin is part of a Cenozoic province. Although the gravity and density work done to date is far from adequate, the work defines the "lows" in the basin which may represent troughs filled with Tertiary

(Cenozoic) sediments $(\underline{3})$. Thus, the information available suggests that part of the Yukon Flats Basin within the southwestern quarter of the study area appears to hold promise as a possible petroleum province.

There is no information indicating oil or gas seeps in the Kandik province. However, oil shale, bituminous limestone, organic-rich rocks and reef-like carbonates outcrop in Mississippian formations. Oil has been test-retorted out of limestone. A Bureau of Mines field party reported (<u>25</u>) that when the limestone outcrops near the Tatonduk River were broken, they emitted a fetid odor.

T. G. Payne reported approximate locations of oil seeps on the Porcupine and Coleen Rivers (31). These sites were not revisited during this investigation.

There is also no information indicating the presence of oil or gas seeps in the Yukon Flats basin. There are some occurrences of coal outcrops within the basin however.

The first well to be drilled in the Kandik Basin was completed as a dry hole in 1976. The well was drilled to a depth of 11,044 feet. Two more wells were drilled in 1977, one to 9,123 feet and the other to 13,533 feet. All of the wells were dry holes. The wells were drilled by Louisiana Land and Exploration as part of an exploration agreement with Doyon Ltd., the Native Regional Corporation which owns exploration rights on the land the wells were drilled in.

In the Yukon Flats basin, surface geological exploration has taken place by both Geological Survey and private industry in the past years. The upland areas surrounding the basins have had thorough, although generally unpublished, geologic work. Seismograph operations have taken place on the Yukon River across the entire basin. Overland seismic operations have been conducted by industry in the the last few years, and interest in further seismic work continues. Aeromagnetic studies have been undertaken and provide the justification for further detailed seismic work and surface geologic studies. There have been no exploratory wells drilled in the Yukon Flats basin. Although not officially acknowledged, industry has hinted that past seismic work has located several structures within the basin.

SAMPLING AND ANALYTICAL PROCEDURES

Stream Sediment Samples

Stream sediment samples were collected with a steel shovel from the finer sandy portion of the active channel or deepest, most active part of a dry creek bed. Organic rich material was avoided. Samples were put in water-resistant paper sample bags, then air-dried before screening and analysis. Float rock and stream characteristics were noted and recorded at each sample station.

A pulverized fraction (-200 mesh) of the -80 mesh portion of each sample was analyzed by 6-step, D-C arc semiquantative emission spectrographic methods for 42 elements. These analyses were made by the Mineral Industry Research Laboratory, University of Alaska, under the direction of Dr. P. D. Rao. In some cases, samples were also analyzed using atomic absorption methods. Results are presented in the analyses tables of Appendix A, Table A-1 and in tables associated with specific site or prospect discussions.

Uranium and thorium analyses were made by the State of Alaska, Division of Geological and Geophysical Surveys laboratory, under the direction of H. S. Potworowski. Samples were analyzed fluorometrically for uranium, after a hydrofluoric acid-nitric acid digestion and preparation of a pellet by fusion with a carbonate, fluoride flux. Thorium values were determined by colorimetry.

Splits of sediment and rock samples, where available, have been analyzed by the Los Alamos Scientific Laboratory for beryllium and lithium by emission spectrography, and for silver, bismuth, cadmium, copper, niobium, nickel, lead, tin and tungsten by x-ray fluorescence. Sediment samples will also be analyzed for aluminum, barium, calcium, chlorine, dysprosium, potassium, magnesium, manganese, sodium, strontium, titanium, and vanadium using neutron activation with a short time delay before analysis; and for gold, cerium, cobalt, chromium, cesium, europium, iron, hafnium, lanthanum, lutetium, rubidium, antimony, scandium, samarium, tantalum, terbium, thorium, ytterbium, and zinc by using neutron activation with a long time delay before analysis. Results will be available in an open-file report from the D.O.E.

Pan Concentrate Samples

Pan concentrate samples were collected to enhance values of resistate minerals with high specific gravity, such as those containing tin, tungsten, radioactives, chromium, gold, zirconium, barium, some of the rare-earths and various trace elements. Generally, these minerals are difficult, at best, to detect with routine stream sediment sampling and analysis procedures.

As with the stream sediment samples, the pan samples were collected with a steel shovel from well sorted, silty gravel from the center of the active channel. A 14 inch pan was filled to slightly rounded with approximately minus one inch of material and panned to a minimum of a 40 gram sample, then carefully washed into a plastic bag. In the laboratory, the material was concentrated with bromoform (2.85 sp. g.). The heavy fraction was then screened at 14 mesh and the minus material was magnetically separated. A split of the -14 mesh, non-magnetic concentrate was then pulverized and analyzed for 24 elements by semi-quantitative emission spectrography. The 1976 sample analyses were made by the Bureau of Mines, Reno Metallurgical Laboratory, and the 1977-78 analyses by the Mineral Industry Research Laboratory, University of Alaska.

During 1977, 635 pan concentrate samples were taken using this procedure in metamorphic and igneous terranes of central and northeastern Alaska (including those of the study area.) The limits of anomalous values calculated from

histograms compiled from these 635 sample analyses can be seen on figure B-1, Appendix B.

Sluice Box Samples

ĩ

An 8 inch by 30 inch portable sluice box with expanded wire riffles was used to further evaluate the heavy mineral content of the Rapid River and Strangle Woman Creek. In order to obtain sufficient samples for petrographic examination and further analytical work, larger samples consisting of approximately one-tenth of a cubic yard of finer (approx. -1/2 inch) gravel and sands were taken from the active channel and put through the sluice box. All concentrates, as well as the box bedding carpet were placed in a plastic bag. In the laboratory, the sample was air dried and the collected material was shaken from the carpets. These samples were then analyzed as pan concentrate samples. The samples were also assayed for several elements by analytical methods. Recovery efficiency of heavy minerals with the small sluice box is not known, but considered poor.

Soil Samples

Soil samples, taken from the "B" (usually missing) or the "C" horizon (frequently from frost boils), were dried and sieved at minus 80 mesh. Copper, lead, zinc, silver and generally molybdenum were analyzed by atomic absorption. Uranium, when it was analyzed, was done fluorometrically as with the sediment samples.

Rock Samples

Rock samples for analysis were usually taken as random chip samples across a geologic unit of interest, for example, a mineralized area or a zone of alteration. The area traversed by the chip sample was recorded. If a sample consisted of an individual high-graded rock, or was representative of a
formation, this was noted as well as outcrop characteristics. Samples collected in either case totaled approximately 1-2 pounds.

Samples were crushed, pulverized, and analyzed by atomic absorption for specific elements. Rock sample splits were retained for specimen purposes, as well as petrographic and mineralogic analysis. Splits of these samples are also being analyzed by LASL for the same elements sought in the sediment samples.

PROSPECTS AND ANOMALIES

White Mountain Creek -- Copper, Lead, Silver Prospect

(T. 31 N., R. 29 E., figure 8)

Geology

A vein occurrence of sulfide mineralization is associated with a northeasterly striking shear zone in carbonaceous black phyllites and interbedded green and maroon slaty argillites. These Paleozoic metasediments are part of a raised and breached topographic feature near the southern perimeter of the Old Crow batholith. Limestone, calcareous argillites and shales, and quartzites also make up this sequence. The rocks overlie and are intruded by rhyolite sills and dikes. One such dike, with phenocysts of smoky quartz, intrudes argillites approximately three-quarters of a mile north of the prospect. Numerous mafic greenstone dikes, some of which are mapped as Jurassic (<u>12</u>), also intrude the metasediments, but do not appear to be related to the mineralization.

Minor occurrences of iron-stained gossan are frequently found throughout the metasediment sequence, but appear preferentially associated with the black phyllites.

Outcrop mapping done as part of this investigation indicates that specific units could be projected across White Mountain Creek Valley, figure 16. Several tentative dip and strike measurements indicated a moderate southerly bedding dip,

FIGURE 16.- Outcrop geology--White Mountain Creek area

to which the strike of the mineralization appears to conform.

Air photo interpretation suggests a circular feature near the east end of the mineralized zone.

The prospect lies on the east limb of a horseshoe-shaped topographic feature about seven miles north of the Porcupine River, four miles west of the International Border. Mineralization occurs across a low tundra-covered saddle at an elevation of 1,950 feet.

In this vicinity, the tree line is about 1,800 feet elevation, with continuous tundra above that, except for the tops of ridges. Residual bedrock is exposed only in occasional frost boils through the tundra and as weathered scree on the ridges. Permafrost is continuous in the vegetated and colluviumcovered areas.

Mineralization

In 1977, sulfides were found by the Bureau of Mines during a ground reconnaissance of the area.

Geochemical data collected and reported by Brosge and Reiser in 1968 (<u>11</u>) noted several undescribed mineral occurrences on the other side of the valley, about three miles to the west.

A zone of disseminated copper and lead sulfides, with values of silver, occurring in frost boils, trends east-northeast apparently conforming to the bedrock strike. Host rock appeared to be a silicified and propylitized shear zone in phyllites. The mineralized float was found along the strike for approximately 1,200 feet, and over a width of 50 to 150 feet (figure 17). True width of the vein is likely to be significantly less. No in-situ bedrock could be seen in the vicinity. Mineralization is open to the southwest, where the zone goes under heavy vegetation cover. A few discontinuous occurrences were found further along strike another quarter mile to the northeast

FIGURE 17.-White Mountain Creek prospect

in a zone of iron stained, leached, silicified rock and phyllite rubble. No anomalous radioactivity was found associated with the mineralized zone.

Two random chip samples of partially leached mineralized rock yielded copper values from 1,700 to 33,000 ppm, and lead from 26 to 6,600 ppm. Soil samples also indicate anomalous amounts of base metals. Results of analyses by atomic absorption are indicated on figure 17.

Geochemistry

Analyses of mineralized samples were noticeably lacking in zinc values, which is in contrast to the contact metamorphic mineralization seen four miles to the northwest.

Soil samples on the White Mountain prospect were taken from frost boils with inorganic silts and clays at depths of about 10 inches. As part of the Bureau's work, 61 sediment and 27 rock samples were taken near and along White Mountain Creek and various small side tributaries, figure 18. Some samples are slightly anomalous in base metals, table 2. Limited follow-up indicates more vein-type prospects may be found, although surface evidence will be generally obscured by vegetation.

Results and Recommendations

Vein-type mineralization exists in the metasedimentary sequence at the head of White Mountain Creek. Minor mineral occurrences of oxides and carbonates(?) are frequently found in the vicinity. Due to the vegetative cover and deep weathering, any potentially significant mineralization will probably not be seen in place at the surface. Further area-wide soil sampling and ground geophysics appears warranted. The circular feature seen on air photos of the area should also be investigated, figure 7. The absence of zinc values indicates possible zonation away from the intrusive contact region.

FIGURE 18.- White Mountain Creek area sediment and rock sample location map

Stream se	diments						
Map No.	Sample No.	Cu	Pb	Zn	Ag	U	<u>Th</u>
]* 2* 3*	0C1959 0C1960 0C1961					6.6 7.8 3.5	13.3 15.3 12.8
4 5 6*	CC 27 CC 19 0C1945	48 41	390 110	540 150	N N	3.8 3.1 5.3	14.5 11
7 8*	CC 16 0C1930	24	230	250	<5	2.1	11.8
9 10* 11*	CC 15 0C2339 0C2323	25	30	125	<5	2.3 3.7 3.2	11 12.5 10.8
14 26 27	CC 28 CC 71 CC 70	30 26 14	90 60 200	190 75 130	N N N	4.2	14
28 29 30	CC 67 CC 65 CC 64	8 8 10	100 100 50	70 80 60	N N N	12.7 12.3 6.1	26.3 53.5 21.3 26.8
31 32 33 35*	CC 65 CC 66 CC 69 0C2331	13 7 10	60 90	50 90	N N	12.7 10.2 8.6	28.3 43 37.5
36* 37 38* 44*	0C2208 CC 6 0C1924 0C1922	13	50	52	Ν	7.8 3.4 4.8 3.8	57.5 12.5 12.8
45* 46* 47 48	0C2343 0C2346 CC 21 CC 22	28	30 60	110 160	N N	4.1 2.9 1.3 5.4	11.3 9.75
49* 50*	0C2313 0C1948	43	30	90	N	3.3 2.7 2.9	11.5 9.5 8.3
52 53*	CC 25 0C1947	33	50	130	N	2.7	10.5
54 55* 57	CC 29 OC2316 CC 11	26	40 40	100	N N	3.2 3.0 2.9	10.3

TABLE 3 - White Mountain Creek Stream Sediment and Rock Analyses (in ppm)1/

1/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless indicated (*). U analyzed by fluorometry, Th by colorimetry.

* Analyzed by emission spectrograph. Refer to appendix A, Table A-1.

TABLE 3 - White Mountain Creek Stream Sediment and
Rock Analyses (in ppm) 1/ (continued)

Stream sediments

Map No.	Sample	No.	Cu	Рb	Zn	Ag	U	Th
58	CC 13		39	<30	87	N	1.4	12.5
84	CC 37		5	Ν	9	Ν		
85	CC 36		11	30	30	Ν	2.4	6.5
86	CC 35		8	Ν	40	Ν		
87	CC 34		7	N	30	Ν	1.7	5.8
88	CC 33		12	Ν	35	N		
89	CC 32		11	N	35	N	1.6	6.8
90	CC 31		14	40	35	N		
91	CC 30		20	N	60	Ν	2.7	9.8
227	CC 72		23	N	100	N	2.3	
231	CC 62		10	30	60	N		

<u>1</u>/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless indicated (*). U analyzed by fluorometry, Th by colorimetry.

 Analyzed by emission spectrograph. Refer to appendix A, Table A-1.

TABLE 3 -	White Moun	tain Cree	ek Stre	am Sedimer	it and
Rock	Analyses	(in ppm)	1/ (continued))

Rocks							
Rock No.	Cu	РЬ	Zn	Ag	U	Th	Field Description
26	13	80	80	N			float gossan, rock in area of green
40	12	540	500	N	3.4	2.0	iron oxide cemented breccia float rock
600	10	<30	130	N	0.8	7.5	black, fine grained, silicic intrusive
601	19	<30	33	N			medium grained, biotite granite
602	<5	30	30	N	0.4	3.8	fine grained, grani- tic rock, slight iron stain
604	<5	100	60	N	2.3	47.5	fine grained, black "granite"
609B	<5	70	55	N	18.9	26.8	rhyolite with slight manganese stain
1915	15	13	20	N			limonite stained, shale with unidenti- fied black fracture filling material
1917*	1	N	N	L			dark green phyllite
1918	120	N	78	N			mafic dike (gabbro?)
1921*	L	Ň	N	· N			rhyolite
1925*	. 2	N	N	N			rhyolite with occas- sional specks of fluorite
1926*	15	Ľ	N	N			sheared and resilic- ified quartzite and . phyllite in contact with rhyolite
1932	6700	6600	1300	47			Mo-6, Au-<0.1, dissem- inated galena and chalcopyrite in shear- ed and resilicified black phyllite. Ran- dom chips of mineral- ized float rock in frost boils

1/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless indicated (*). U analyzed by fluorometry, Th by colorimetry.

* Analyzed by emission spectograph.

TABLE 3 -- White Mountain Creek Stream Sediment and Rock Analyses (in ppm) 1/ (continued)

Rocks	5							·
Rock	No.	Cu	Pb	Zn	Ag	U	Th	Comments
1938		1700	6000	29	25		 .	Mo-4, Sb-85, galena and chalcopyrite in leached
								rock. This sample was
								a random grab of miner-
								alized chips of float
								rubble.
1940		33000) 26	212	N			Mo-/, Au-<0.1, same description as #1932
1946		10) L	<u>N</u>	N			rhyolite float
1957		90) 400	200	N			random chips of rhyo- lite scree with manga- nese stain
1958		10) 5	N	Ľ			chips of rhyolite with
								specks of fluorite
1995		10) N	N	1			metasedimentary skarn(?
								with magnetite, manya-
2200		26	37	120				granite
22147	*	10	<u>N</u>	<u>N</u>	N			chips of black sili-
								ceous granite, from
								scree along 1/4 mile
Rock	No.	Cu	Pb	Zn	Ag	Мо		Comments
								Sn-698 <u>2</u> /
2325		8	10	92		10		near rhyolite/argil-
								lite contact. Argil-
2215		57	2300	110	2	10		areen stained argil-
2345		57	2300	110	4	10		laceous limestone
								Sn-142, U-26.72 2/
2389		6500	12000	11000	2	10		strong manganese
								stain in argillite,
								some epidote, vuggy.
								rubble.
2390		6000	90	360		6		guartz veins in argil-
2000			2.0					lite, small amount of
								limonite, chlorite
								(grab).

1/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless in-dicated (*). U analyzed by fluorometry, Th by colorimetry.
2/ Reported by the Los Alamos Scientific Laboratory.
★ Analyzed by emission spectrograph.

TABLE 3 -- White Mountain Creek Stream Sediment and Rock Analyses (in ppm) 1/ (continued)

					•	
Rocks						Commonts
Rock No.	Cu	<u>Pb</u>	Zn	Ag	MO	Comments
2395	13	250	1000	3	<5	quartz veins in phyl- lite, weak limonite, yellow-green mineral common as sugary coat- ing, high graded from rubble
2404*	5	20	N	N		rhyolite, smoky quartz phenocrysts, dark gray, aphanitic 1/2" diameter inclu- sions with biotite
2407*	5	N	N	N		rhyolite

1/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless indicated (*). U analyzed by fluorometry, Th by colorimetry.

Analyzed by emission spectrograph.

·. •

The prospect itself, due to its possible size, should be further evaluated by geophysics, hand pitting and, if further warranted, by shallow drilling to intersect the vein at depth, perhaps below the level of extensive oxidation.

Copper, Zinc Prospect

(T. 31 N., R. 29 E., figure 8)

Geology

Copper, lead, zinc and minor tin mineralization was found associated with intrusive rhyolite near the southern margin of the Old Crow batholith. A sequence of Paleozoic metasedimentary rocks, including black phyllites, slaty maroon and green argillites, calc-argillites, quartzites and limestone, is intruded by rhyolite dikes and sills, figure 16. This sequence appears to correlate to the upper intervals of the Neruokpuk Formation further north.

The rhyolite is undated but perhaps is younger than the Paleozoic granite. Thermal effects of the rhyolite have formed extensive hornfels in the country rock. The rhyolite here, as elsewhere on the perimeter of the batholith, contains biotite, abundant phenocrysts of smoky quartz and rare disseminated fluorite.

The prospect area lies at the head of a small westerly-flowing creek draining the area of contact between an overlying rhyolite sill and metasediments just west of the head of White Mountain Creek, figure 19. The location is approximately 10 miles north of the Porcupine River. Elevation ranges from 1,600 feet to 2,400 feet and the area is completely above tree line. Weathered bedrock is occasionally exposed, but most of the terrain is scree on the slopes and ridge tops with tundra in the flatter areas. Permafrost is continuous in the vegetated and colluvium-covered areas.

FIGURE 19.- Copper-zinc prospect and sample location map

TABLE 4 -- Copper, zinc Prospect Analyses (in ppm) 1/

1.11

Stream see	diments -				·	•	
Map No.	Sample No.	Cu	РЬ	Zn	Ag	U	<u></u>
12*	0C2319		•			7.4	16.5
13*	0C1915					7.8	14.3
15	CC 96	32	370	370	<5	3.1	12.5
16	CC 95	32	780	930	<5	2.7	11.3
17*	0C2201					4.1	12.0
18	CC 94	31	50	890	<5	5.6	
19	CC 93	34	530	1000	<5	10.2	14.0
20	CC 92	29	170	370	<5	4.1	11.0
21	CC 91	17	60	120	<5	-	
22	CC 90	15	40	90	<5	2.9	
23	CC 88	19	40	100	<5	2.2	14.5
24	CC 87	16	40	90	<5	2.4	17.3
25	CC 86	17	30	75	<5	1.8	11.3

Soil				
Map No.	Cu	Pb	Zn	Ag
CC 618	17	<30	63	<5
CC 617	22	<30	57	<5
CC 616	15	40	79	<5
CC 615	19	130	160	<5
CC 614	19	80	110	<5
CC 613	15	180	150	<5
CC 612	20	510	450	<5
CC 611	22	2500	1000	<5
CC 609	· 33	420	800	<5
001956	290	4100	6400	0.9
0C1955	44	540	440	0.5
001952	47	25	80	0.1

- 1/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless indicated (*). U analyzed by fluorometry, Th by colorimetry.
- * Analyzed by emission spectrograph.

TABLE 4 -- Copper, zinc Prospect Analyses (in ppm) 1/, (continued)

Rock Samples

	Map No		Dh	7n	Aα	11	Th	Comments
	мар но.	<u> </u>	F 0	211	ng			
Ч.Ч.	CC 610	1100	37000	9700	7	14.8	9.5	Manganese stained quartzite and shale, minor gossan, near
-	<u> </u>							rhyolite contact
	0C1953*	20	N	N	ł	1./	3.2	tactite, fractured
								heavy manganese and
	001054	86000	8700	3800	43	3.3	2.5	Calc-argillite, skarn
	061954	00000	8700	5000	40	0.0	200	(?), secondary quartz
								with magnetite and
								copper sulfides, Mn
								and Cu stain, random
								chips of mineralized
								Tloat rock, taken
	001007+	<u>_</u>	20	N	N	-27 721	29 42	1000000000000000000000000000000000000
	001997*	C	20	IN	11	21.11	23.4	Rhvolite porphyry
								(grab sample)
	0C1998	16	170	1040	N	14.42/	55.62	/ Nb-78
								Thermally altered
								argillite from con-
-								tact with rhyolite,
	000000		11400	0100		10 17	6 /	Brecciated argillite.
	002392	690	11400	9100	/	10.17	0.7	strong limonite and
								clay, some boxwork.
								Sample high-graded
								from rubble outcrop.
	0C2391	5500	11000	12000	84	160.2	2 N	Mo-8, Sn-767 Be-102 2/
								amount of malachite
								in light orange gos-
								san. High-graded
								trom rubble.

1/ Cu, Pb, Zn, Ag, Mo, Sb analyzed by atomic absorption unless indicated (*). U analyzed by fluorometry, Th by colorimetry. 2/ Reported by the Los Alamos Scientific Laboratory.

 $\frac{2}{N}$ - Detected

Analyzed by emission spectrograph. *

History

Samples collected by the Geological Survey (<u>11</u>) in this vicinity indicated possible mineralization along the rhyolite contact. A soil sample contained 2,000 ppm lead and 2,300 ppm zinc, from a site 0.5 miles east of the prospect, which was also near the contact. Another rock sample on the White Mountain Creek side of the ridge contained 300 ppm copper, 20,000 ppm zinc, 1,500 ppm lead and 6 ppm silver. The latter sample was described as from a local area of manganiferous granite near the rhyolite/metasediment contact.

There has been no known exploration by private industry in the area.

Mineralization

The principal occurrence consists of locally high grade lenses of chalcopyrite, bornite, sphalerite, galena, and magnetite in a thermally altered calcareous argillite intruded by rhyolite. Mineralization could only be viewed on a rubble slope for about 75 feet. Abundant iron and manganese stain was prevalent along the contact in the area.

Malachite staining was noted in argillites 0.25 miles to the north of the main occurrence. Rock samples collected in this area (OC 2325, 2389, 2390, 2391, 2392 - see tables 3 and 4) generally contained several percent of base metals and up to .08% tin. Tin minerals could not be visually identified however, so it is uncertain how extensive this element may be in the prospect area.

A heavily iron-and manganese-stained area, approximately 1.0 miles north of the prospect, was grab sampled. Analysis gave 3.7% Pb, 0.97% Zn, 0.11% Cu (No. CC 610), figure 19. Analysis of a panned concentrate of a small creek draining north of this site yielded 2% zinc. The strong presence of zinc associated with the tactites suggests a zonation between the intrusive rhyolite and the hydrothermal vein-type occurrence to the east.

Geochemistry

Figure 19 shows the locations of samples taken in this vicinity. Analysis of sediment samples (map numbers 15 through 20) taken from the west flowing drainage (table 4) gave values for zinc between 370 and 1,000 ppm, lead 50 to 780 ppm, and minor copper of 29 to 34 ppm. A panned concentrate sample contained 2% lead. Emission spectrograph data (Appendix A, Table A-1) also indicated anomalous amounts of manganese and antimony in sediment samples.

Geophysics

The airborne radiometric survey $(\underline{46})$ indicated a "preferred" uranium anomaly (high ratio U/Th) over the rhyolites in this area. Ground follow-up did not discover uranium mineralization near the surface, although the rhyolite as a whole has a higher radioactive background than the granite, as well as being considerably higher than the metasediments. Trace amounts of uranium (up to 160.2 ppm) were noted in samples of the argillite tactites.

Airphoto interpretation shows a northeast trending lineament following the trace of the drainage.

Results and Recommendations

Mineralization due to thermal effects of the intruding rhyolite has taken place, suggesting a potential for contact metamorphic and metasomatic deposition. Occurrences examined appeared to be derived from small lenses and pods of high grade mineralization in tactites. However, the moderately strong geochemical anomalies, the numerous occurrences and the presences of zinc and lead in the pan concentrate suggest that further prospecting and sampling of the calc-argillite-rhyolite contact is warranted. This should include detailed soil sampling, petrography and geophysics. Particular attention should be directed toward the distribution of tin and its mode of occurrence as well as the possibility of contact veins of uranium.

Rabbit Mountain (T. 31 N., R. 24 E., figure 8) Geology

Rabbit Mountain is an abrupt topographic rise consisting of black to gray phyllites, siltites, quartzites and slaty argillites which appear to overlie a massive quartzite unit. These rock units apparently dip moderately to the northeast. The sequence tenuously correlates to the upper intervals of the Neruokpuk Quartzite of the Brooks Range. Numerous small faults and shear zones cut the phyllites, particularly the southern and higher portion of the mountain. Several rhyolite dikes, each less than 100 feet thick, intrude the argillites on the northern limb. Strong northeasterly trending lineaments and horsetail fracture patterns, visible on air photographs, intersect this locality, figure 8.

The bedrock exposures are located about 12 miles west of the Old Crow batholith, with elevations ranging from about 1,500 feet to 3,050 feet at the summit. The surrounding relatively flat terrain drains on a gentle gradient to the Coleen River, 8 miles to the west. The vegetation of the lower elevations is a continuous mat of tundra, with black spruce, which overlie continuous permafrost. Access is by helicopter or on foot from a float plane landing site on the Coleen River.

History

Mineralization is reported to have been first found by E. Owens, a prospector who formerly lived in the Coleen River Valley. Since then, it has been examined briefly by at least one mining company. Reports by government geologists, and subsequently published geochemical data (<u>11</u>) confirmed occurrences of copper, lead, zinc, including values up to 20,000 ppm Cu, 15,000 Pb, 2,200 ppm Zn, and 26 ppm Ag. However, neither detailed prospect evaluation nor any subsurface work to evaluate the mineralization has been done. As a result of these reports,

FIGURE 20.- Rabbit Mountain stream sediment and rock sample location map

<u>-</u>·

FIGURE 21.- Rabbit Mountain soil sample location map

Str	eam :	sedimen	ts						
Мар	No.	Samp	le No.	Cu	Рb	Zn	Ag	<u> </u>	
184 185 186		B499 CR53 CR53	* 2 1	5 25 28	20 40 40	N 89 87	L <5 <5	1.0 20.0	
187		CR 2 CR 2	3 4	22 28 26	50 40	90 110 92	<5 <5 <5	1.5 $12.01.5$ - 1.7 10.3	
190 191		CR54 CR54	3	47 27 21	30 30 30	90 80 70	<5 <5 <5	0.8 13.8 0.8 11.3	
693 693		CR54 CR54	4	50	30	70	<5 <5	1.7 12.3	
<u>Roc</u> Map	ks No.	Cu	Pb	Zn	Ag	U	Th	Remarks	
CR	5	15	120	150	<5			iron stained pl with secondary	nyllite quartz
<u>CR5</u>	01	8	<30	60	< 5	0.8	14.3	phyllite	
<u>CR5</u>	03	7	90	70	< 5	3.2	32.5	rhyolite	
CR5	09	<5	100	20	<5	10.7	16.3	100' chip samp argillite	le in
<u>CR5</u>	10	<5	40	20	< 5	9.0	10.5	rhyolite	<u>. </u>
C R 5	14	23	<30	90	<5			gray slate wit veins	h quartz
CR5	21	13	30	50	<5	1.0	10.0	iron stained gossan and sla	te
CR5	25	1100	112000	6700	115	1.8	7.5	high graded fr shear zone in phyllite with	om small black galena
CR5	34	68	610	390	<5	1.6	12.0	800' chip samp pyrite bearing	le from <u>quartz</u> ite
CR5	78	<5	30	20	< 5	0.8	16.0	rhyolite	

TABLE 5 - <u>Rabbit Mountain - stream sediment and</u> rock analyses (ppm) <u>1</u>/

1/ Cu, Pb, Zn, Ag analyzed by USBM Reno Metallurgical Center by atomic absorption unless indicated (*); U by fluorometry; Th by colorimetry.

* Analysis by emission spectrograph.

TABLE 6 - <u>Rabbit Mountain soil sample analyses (ppm) 1</u>/

<u>1</u>/

Analysis by USBM Reno Metallurgical Center, atomic absorption.

Map No.	Sample No.	Cu	Рb	Zn	Ag	
75	CD 5 2 2	40	40	85	< 5	
75	CR524	19	330	270	11	
79	CR527	31	40	90	и	
80	CR533	57	220	170	н	
81	CR535	17	70	140	н	
82	CR536	28	120	115	11	
83	CR537	30	30	80	18	
85	CR539	20	<30	86	11	
86	CR 46	28	30	79	11	
87	CR 57	26	40	80	11	
89	CR 96	7	<30	10	11	
91	CR 98	25	30	49	н	
92	CR 49	23	<30	48	62	
93	CR 50	23	<30	56		

TABLE 6 - Rabbit Mountain soil sample analyses (ppm) 1/ (cont'd)

1/ Analysis by USBM Reno Metallurgical Center by atomic absorption.

the vicinity was reexamined and sampled in greater detail as part of the Bureau of Mines program.

The primary mineral targets are hydrothermal vein-type deposits, as well as perhaps massive, disseminated, or replacement mineralization in the black phyllites. The rhyolites were also examined for possible mineralization of intrusive origin.

Mineralization

Minor occurrences of malachite, chalcopyrite and galena were observed in gossans near sample No. CR 525, figure 20. Mineralization appeared controlled by fault traces or shear zones. Minor argillic alteration was noted, with silicification. The best of exposed mineralized zones were small lenses, no more than several feet wide by 30 feet along exposed strike, with spotty galena. Most observations were limited to weathered frost rubble and scree slopes.

Geochemistry

Sixty soil and ten stream silt samples (figures 20 and 21) were taken from exposed or tundra covered areas encircling the mountain. Due to the extensive weathering and soil formation, soil samples from the intermediate slopes were felt to be potentially most indicative of any extensive mineralization. Lower elevation sampling appeared futile due to very thick colluvium, the lack of ground water circulation and the swampy surface conditions.

Results from atomic absorption analyses of the soil, stream sediment and rock samples are listed in tables 5 and 6. Semiquantitative emission spectrographic data are included under the same map numbers in the appendix for stream sediments samples, Table A-1.

Soil samples indicate a moderate lead anomaly on both sides of the headwaters of a small creek draining the west side of the mountain. Values were inconsistent, but ranged up to 420 ppm. Several rock samples in this area were also anomalous, including the occurrence of minor mineralization mentioned earlier. Random chips of pyritic quartzite taken over 800 feet along strike showed 610 ppm lead, 390 ppm zinc, and 68 ppm copper. Very small amounts of disseminated base metal sulfides were probably present, but were not observed.

Results and Recommendations

Vein-type occurrences do exist at Rabbit Mountain, but, considering the remote location, lack of extensive alteration and only very minor surface showings, they appear too small to be of economic interest.

The possibility of stratiform sulfides in the metasediments is suggested by the geochemistry, however, field investigations based on surface exposures have indicated that the mineralization would likely be of a very low grade.

It should be reiterated that this level of reconnaisance hardly represents a complete assessment, although no further work appears warranted at this site for the present study.

Thorough investigation was not feasible in the vegetated lower elevations surrounding Rabbit Mountain, and hence, these areas should not be included in the foregoing summary.

Rapid River Uranium and Tin Prospects

Geology

Minor occurrences and favorable geology and geochemistry indicating uranium and tin mineralization were identified in highly altered granitized (anatectite) zones of the Devonian(?) Old Crow batholith. The intrusive as previously described is generally a multi-phase, sericitized, equigranular, biotite granite which in the region of the mineralization displays widespread muscovite and chloritic alteration. Generally the area discussed here lies within the intermediate level of the batholith (fig. 5) which consists of coarse- to fine-grained biotite granite, muscovite and muscovite/biotite granitics, quartz-biotite and tourmaline-aplite phases, as well as massive quartz veins (frequently cataclastic). The sites of mineralization are further characterized by breccia and resilicification, secondary muscovite development, and hematization of granitoid material, with primary hematite disseminated and pervasive in quartz veins up to 8 inches wide in some cases.

The Old Crow intrusive is a broadly domed body with granitization of the former host rock (the outer zone described earlier) primarily within its upper reaches. Underlying this is the intermediate multi-phase zone which apparently contains the mineralization.

On the surface the granite is highly weathered, with widespread permanently frozen saprolite development which inhibits mineral evaluation. Vegetation of scrub black spruce and tundra is nearly continuous and rock outcrop is generally limited to frost-jacked rubble.

A complex structure due to extensive shearing and possible northeasterly offsets is evident from airphoto studies. Mineral occurrences and geochemical soil anomalies appear at least spatially related to this post-intrusive structural pattern (fig. 22). The cause, age and orientation of the structural

FIGURE 22.- Rapid River--rock sample location map

deformation has not yet been resolved but the regional proximity to the Kaltag lineament (33) is suggested to be a contributing factor.

Mineralization

Cassiterite occurs in amounts up to 40 percent of panned concentrates in the Rapid River, region as described in the accompanying report on placer potential of the Old Crow Hills. Monazite, allanite and occasionally scheelite are also abundant, although the primary sources have not yet been found. Monazite frequently exceeds 50% of the heavy mineral fraction of stream gravels.

At sample location 2231 secondary uranium minerals and anomalous amounts of tin, copper, lead, zinc, and arsenic were found to occur occasionally disseminated as pods in leached and brecciated vein quartz rubble over a distance of 800 feet on a ridge top.

X-ray diffraction showed the presence of xenotime (YPO4), a mineral often containing uranium, thorium, and rare earths, uranophane $[Ca(UO_2)_2(SiO_3)_2(OH)_2.5H_2O]$ and arsenuranylite $[Ca(UO_2)_4(AsO_4)_2(OH)_4.6H_2O]$. Metatorbernite $[Cu(UO_2)_2(PO_4)_2.8H_2O]$ was tentatively identified in this sample. Fluorometric analysis indicated 1,600 ppm uranium. Bedrock examination was limited to the frost rubble along the ridge top.

Rock samples taken within the uranium-bearing quartz vein (2231 and 2232) show variable amounts of sericite and muscovite as fracture fillings, as well as abundant hematite. These rock sample analyses, along with others from this area, are listed in Table 7.

Air photo examination indicates this ridge to be a more resistant block, bounded on the north by a strong topographic lineation about a half mile wide and at least three miles long. High concentrations of cassiterite were found in a creek immediately to the west. It appears that the cassiterite is derived from similar vein or replacement sources associated with this lineation.

1

Within the lineation valley an outcrop of leached frost rubble at location no. 12495 was identified by T.C. Mowatt (32) as a metamorphosed highly altered granitoid with feldspar replaced by sericite and with secondary muscovite and hematite. The rock is moderately cataclastic and contains unidentified opaques. The rubble outcrops were found to be radioactive and typical samples contained 50 to 115 ppm uranium, 80 to 300 ppm tin and 30 to 850 lead. Rubble occurred over a tundra area of 250 by 250 feet from which a natural spring emanated noticeable amounts of radon gas. Creek water for several hundred yards below this site was measured during an examination in September and found to have levels up to 1,200 cps by a hand held scintillometer. One and a quarter miles below this site the creek water was again similarily radioactive, but no rock rubble was visible there (fig. 22). A visit in July showed no detectable radon.

Near and downslope of location OC 2133 a uranium soil anomaly was found in a tundra-covered area approximately 2,400 by 600 feet in extent (fig. 23). No bedrock was observed within this area although tourmaline/muscovite aplite rubble was found nearby. Residual soil samples (Map No. 1 through 9; Table 8) were taken over the zone from depths of about 18 inches, immediately above the continuous permafrost layer. At this depth, there was no visually recognizable organic material. Soil was relatively dry silt with minor sand and traces of residual rock fragments of sericitic granite and quartz.

Uranium analyses (table 7) were done by fluorometric procedures. Thorium was analyzed by colorimetry. It should be noted that thorium values were usually lower than the uranium.

Map Location	Ag <u>1</u>	/ <u>8</u> 2/	Be <u>2</u> /	cս1⁄	Cu <u>2</u> /	Ga_2/	N i.2/	Ma]/	M02/	₽ <u>ь</u> 1∕	Pb <u>2</u> /	Sn2/	w2/	Zn1/	Zn2/	<u>u3</u> /
2052A		20	5		150	1	300		<10		100	<20	<50			
2052B		30	7		150	<.2	150		"		70	14	н			
2052C		1000	20		100	0.7	150		и		100		**			
2127		100	5		500	3	500		70		700	70	L			
2133		1500	50		150	1	300		70		<20	<20	<50			4.7
2218		>2000	7		200	<.2	500		<10		**	*	4			
2231	2.8	10	2	290	20	10	10	5	н	590	150	14		210		1600
2232		150	7		200	и	100		H		3000	100			1500	
2356		30	н	•	20	L	150		н		100	<20	L			
2421		50	10		100	1	u		**		150	N	< 50			
2422	<3	50	L	280	500	<.2	Ĺ	7	14	125	L	L		322		
2425	н	100	11	9	20	3	150	8	24	27	<20	200	н	74		
8520	м			77				<15		3300		2004/		1400		30
8643																
8644	<3	200	<1	14		8	10	<15		18		9		10		5.7
8645	14	90	н	250		4	9			44		9		39		2.9
8646	*	**	4	3.7		20	20	н		60		20		180		4.9
8647	H	100	3	18		<3	10			65		30		510		14.0
8648	*		<1	5.4		7	10	4		23		7		25		1.8
8650	н	90	2	#		- 10	100	н		<15		30		100		3.4
11313A																2.3
12495A	<3			120				<15		30		2004⁄		15		110
12495A-2	14			69				н		11		3004⁄	·	20		80
12495B				150				н		850		н		75		35
12495C	"			7				14		125		<1004/		40		2.6

1/ 2/ 3/ 4/

Samples analyzed by atomic absorption methods Samples analyzed by emission spectrographic methods Uranium by fluorometry Tin by quantitative - x-ray analyses Less than detection limits used Not analyzed for Detected but lower than detection limits

-L

* Rock sample descriptions listed on following page

TABLE 7 - Rock sample analyses continued

Map location number	Rock sample descriptions
2052A	fine-grained biotite granite
= B	gray-green, fine-grained siliceous granitic rock
- C	sheared granitic rock with disseminated hematite and highly altered biotite
2127	gray-green siliceous granitic rock (?)/micaceous quartzite(?) with some limonite-stained vugs and secondary(?) muscovite
2133	green, fine-grained granite/aplite with muscovite and tourmaline
2218	siliceous tourmaline bearing granite
2231	fractured vein quartz and sheared siliceous green granitic(?)/ quartzite(?) rock with leached vugs and secondary green and yellow uranium minerals, some disseminated hematite, goethite and manganese.
2232	random chips along 300 feet of vein quartz rubble near site of #2231. Bismuth analyzed 70 ppm.
2356	sheared, iron-stained, fine-grained biotite granite
2421	gray-green siliceous sericitic granitic rock with argillic alteration
2422	dark siliceous dike(?) rubble in area of coarse biotite granite
2425	gray-green siliceous granitic rock with iron-staining
8520	intermingled aplite and coarse grained granitoid, sericitic with biotite altered to chlorite, primary muscovite
8644	granitic with schistose fabric and quartz porphyroblast
8645	highly altered porphyritic quartz/muscovite/sericite/aplite, some black opaques and iron minerals, limonite stained vugs
8646	granitoid/pegmatite texture (cataclastic), sericite and carbonate altered feldspars, chloritic alteration of biotite, secondary muscovite, manganese stain
8647	metamorphic/cataclastic strongly altered granitoid, apparent primary muscovite, sericite alteration of feldspars. Black opaques and hematite as fracture fillings.

94

TABLE 7 - Rock sample analyses continued

Map location	
	Rock sample descriptions
- 8648	porphyritic aplite with feldspars altered to sericite; chloritic alteration of biotite, both primary and secondary muscovite
8650	metamorphosed granodiorite/diorite dike(?) with hornblende/ actinolite; epidote, argillic and sericitic alteration of plagioclase; biotite altering to chlorite
11313A	veined quartz (coarsely crystalline) and iron minerals
11313D	(not analysed) - metamorphic/cataclastic, altered granitic, complexly deformed feldspars altered to sericite; minor musco- vite and hematite development
12140	fine grained quartz, muscovite, biotite/chlorite granitic
12495A	Altered, metamorphosed granitoid (cataclastic), feldspars altered to sericite and muscovite, faint chloritic development and finely disseminated hematite. Several stages of alteration are apparent; sericite, muscovite and muscovite/hematite fracture
12495A-2 -	metamorphosed granitoid with muscovite (secondary?) a major con- stituent, sericitic alteration of feldspars with ferruginous and argillaceous black opaques
12495B	similar to above
12495C	metamorphosed sericitic granitic, extensive secondary(?) mus- covite; breccia fabric and intensively leached.

This prospect was first found with a hand-held scintillometer, from which radioactive contours, in counts per second, were derived. Elsewhere in the region, above-surface background readings averaged about 150 cps over similar tundra terrain, and 200 cps over exposed granite. Readings over the tundra anomaly ranged up to three to four times this level.

Soil (no. 2128) from a small radiometric anomaly at location 2127 (fig. 22), contained 20 ppm uranium, as well as 2,400 ppm lead and 1,360 ppm zinc. Rubble at this site was a silicic, chloritic granitic rock with limonite vugs and secondary muscovite. A soil sample near no. 8645 also contained 29 ppm uranium.

At location no. 8520 about one mile further west, a frost boil area detected by radiometrics contains 120 ppm uranium, 3,100 ppm lead and 3,100 ppm zinc. Rock chips from nearby consisted of a vuggy, green silicic, muscovite granitic with similar metal values.

At location no. 11313 (fig. 24) approximately six miles to the north, the area flanking the west side of VABM Barren is characterized by considerable fracturing and chloritic/argillic alteration with general muscovite development. A series of six soil samples traversing this zone contained 15 to 21 ppm uranium.

On the south and southeast sides of VABM Barren extensive areas of "twomica" granites and aplites, locally containing tourmaline, were observed. These rocks are intruded in at least one case by porphyritic rhyolite.

At location no. 12140 frost-heaved boulders of a highly altered fine grain muscovite and minor biotite to chlorite granite were slightly radioactive. A composite chip sample along 100 feet of this rubble contained 31 ppm uranium.

No tin analyses are yet available from the VABM Barren vicinity.

FIGURE 23.- VABM Orphan prospect and sample location map

			Fluoro-	Colori-	Atomic absorption					
Map #	Sample #	Sample	U	Th	Cu	Pb	Zn	Ag	As	
1	2134	Soil	16	20	26	21	60	0.1	5	
2	2132	Soil	32	32	42	26	53	0.1	5	
3	2130	Soil	50	24.8	20	32	66	0.1	5	
4	2224	Soil	37	36	120	38	54	0.1	5	
5	2225	Soil	44	24	32	19	64	0.1	5	
6	2135	Soil	45	25.8	20	27	66	0.1	5	
7	2136	Soil	52	26	99	27	68	0.1	5	
8	2137	Soil	45	23.3	25	19	60	0.1	5	
9	2138	Soil	46	21.5	21	15	56	0.1	5	
	2128	Soil	20	58	28	2400	1360	0.3	10	
(near 8520 fig. 22)	8519	Soil	120			3100	3100			
247	2129	Sediment	6	46						

TABLE 8 - VABM Orphan - Sample analyses (in ppm)

- Abundant secondary quartz
- Soil sample location

FIGURE 24.- VABM Barren uranium prospect
Stream sediment samples (OC 2240 and OC 2238; fig. A-1, Appendix A) from the upper-most tributaries to the Rapid River were found to contain 50 and 100 ppm Sn, 500 and 700 ppm W, and 63 and 120 ppm Th, and 10 and 11 ppm U respectively. No follow-up investigation of this area was possible, however the unusually high values of these elements, considering the poor response to stream geochemistry elsewhere in the Old Crow terrane, may suggest sulfide phases of a different depositional type (i.e. porphyry or volcanic breccia pipes) for the tin and tungsten, and possibly molybdenum.

2

Geochemistry

Stream sediment sampling in this highly weathered terrain was found to be poorly correlative of mineralization, probably due to lack of subsurface water, and to extensive permafrost clay. The highest value found for uranium was 25.8 ppm from CC-74, but generally most values were less than 10ppm. Anomalous tin was detected at only several locations, such as described above. Lead gave a poor but correlative response to the apparently mineralized areas.

Stream sediment values are probably more of a function of composition/ mineralization of very limited bedrock exposures in the Old Crow region than of buried mineralization below the permafrost level.

Soil sampling from subsurface material in frost boils was generally effective in isolating some mineralized localities, but soils near the radiometric location no. 12495 contained no appreciable values of tin or uranium and were only weakly anomalous for lead and zinc as contrasted to rock sample analyses from that same site.

There appears to be a direct association of lead, zinc, and occasionally copper, boron, yttrium, and arsenic with the uranium and possibly tin. These can be used as path-finders for soil and bedrock sampling.

Although considerable contents of thorium minerals, primarily monazite, occur in the heavy mineral fractions of the streams, there was no such concentration in rock and soil samples where anomalous tin or uranium were found. Soil samples taken north of the ridge in figure 22 showed anomalous values

of lithium, up to 0.5 percent at one site.

Results and Recommendations

Uranium mineralization occurs in hydrothermal vein-type and greisen-like breccia structures of the Old Crow batholith. Tin and minor tungsten apparently also occur in this environment, although they probably represent a different phase of mineralization.

Although most of these occurrences and anomalies appear rather isolated, the widespread distribution of sites found by this very brief survey would certainly suggest that this area warrants further study. Shallow drilling or augering should be undertaken on some of the radiometric targets. There is a direct association to alteration patterns and open-space fracturing which should be further investigated.

Further evaluations for contact mineralization or vein systems of tin, tungsten, and uranium should be made north of Spike Mountain and the west end of the batholith where the apical zone of the intrusive is overlain by metasedimentary units. Evidence of tin mineralization was apparent in the argillite tactites near the copper-zinc prospect.

·Old Crow Hills Placer Prospects

(T. 30-32 N., R. 27-29 E., figure 8)

Geology

1

Potential alluvial and residual placers of tin, tungsten and rare-earth elements occur within and downstream of the Old Crow batholith (see earlier discussion on the geology of the granitic terrane). Extensive gravel deposits of the Rapid River and Strangle Woman Creek drainages have formed, uninterrupted by glaciation, apparently since the batholith was unroofed. The absence of roof pendants suggests that the upper levels of the intrusive have been eroding for a substantial period of time. Alluvial surface material consists of poorly sorted coarse rounded cobbles, small boulders and sands typical of weathered granitic terrane. Extensive feldspar alteration has led to the development of widespread saprolite within which residual placers may have also formed.

Physiography

The Rapid River, a southwesterly flowing tributary to the Porcupine River, drains the southwest quadrant of the batholith, a drainage area of approximately 200 square miles of granitic rocks. Due to the subdued nature of the terrain, it is a relatively slow, meandering stream with a gradient of less than 20 feet per mile along the primary channel. Maximum annual variation in water level appears to be only 4 to 6 feet. The alluvial valley bottom ranges in width from 200 feet to over one half mile. The valley profile is broadly rounded, and the actual limits of alluvial gravels are difficult to discern. No outcrops of bedrock were observed along the river, except where sedimentary units are encountered fifteen miles downstream of the batholith. The lower portion of the stream forms a low canyon as it approaches the Porcupine River. Interpretation of Landsat photos suggest that the broad, low-gradient Rapid River channel may be an ancient remnant of the Porcupine River.

Although the gravel benches can be expected to be permanently frozen, the active channel should be thawed, with limited drainage year-round. No residual overflow ice (aufeis) was encountered in the early summer season of 1976 and 1977.

Strangle Woman Creek has two major tributaries which flow north, then east to the Coleen River. They drain approximately 150 square miles of granitic terrane. Topography on the north side of the batholith is yet more subdued and eroded than on the south. Strangle Woman Creek has a higher gradient (estimated at 35 to 100 feet per mile) than the Rapid River and a corresponding higher percentage in coarse cobbles and boulders. There also appears to be less ground water drainage on the north side and apparently a lower annual precipitation.

The climate of this region is quite dry, averaging about 8 inches of annual precipitation (24). Lower elevations are normally snow free by late May.

History

White $(\underline{43})$ reported radioactive minerals in the gravels from a site on the Rapid River. Elements other than uranium and thorium were not analyzed. Several panned concentrate samples from Sunaghun Creek, a separate smaller south flowing drainage with headwaters in the batholith (Appendix B) were reported by the Bureau of Mines ($\underline{42}$) to contain anomalous amounts of lead, thorium, tin, tungsten, and lanthanum. There has been no known exploration by industry in the area.

. Mineralization

A pan concentrate survey, followed by sluicing of larger gravel samples (0.1 cubic yard) at 15 locations (fig. 25) indicated the granitic gravels to be consistently enriched with monazite, cassiterite and scheelite, with minor amounts of zircon, niobium (mineral form unknown), allanite, xenotime, and powellite, table 9. Cassiterite nuggets up to 1/2 inch were found on Strangle Woman Creek.

ł

Sampling was done with an 8 by 30 inch box with expanded wire riffles set in the stream and limited to the surface gravels only. Therefore, lacking subsurface sampling, the average tenor of the deposit cannot be evaluated at present. It can be presumed, however, that the amount of concentrate will increase substantially with depth, particularly in these coarse granitic sands and gravels. Based on the sluice samples, and ignoring inefficiencies of the sluicing recovery system, an average of approximately 0.99 lbs of concentrate per cubic yard occurs in the finer (approximately -1/2 inch) portions of the surface gravels. Recovery in the sluice box was considered to be poor particularly with the larger size fractions of heavy minerals.

Surface mineralization was significantly richer in the smaller tributaries, owing in part to the shallower depths to bedrock and less stratification.

No data is available on the depth of the gravels, therefore, estimates of total yardage can only be speculative at this time.

Geochemistry

There were 115 panned samples taken in the vicinity of the batholith. Analyses by a semiquantitative emission spectrograph method indicate a zone of highly anomalous tin, tungsten, and rare-earth elements at least 24 miles wide and about 18 miles north and south. The zone is bounded on the east end by the Canadian Border. Figures 25 and 27 indicate amounts of anomalous tin and

FIGURE 25.- Sluice sample sites--Old Crow Hills

+	
TABLE 9	Petrographic Report
	Sluice Samples

×* .

•				(~							
lumber	26	25	13	15	14	22	20	12	30	134	142	140
s	1		1		1		1	1	<u>, </u>	1	1	
	1			1	1	1	T	<u> </u>	<u> </u>	<u>†</u>		
als:		1	1	1	1	† – –	<u> </u>	<u>† </u>	1	.	+	1
anite	1	1	1	1	i	<u>†</u>	<u> </u>	 	1 M	;	+	+
hibole	1	1	1	İ	<u> </u>	Ι T	1	†		<u> </u>	 	+
tite	T	1	T	1	İ F	<u>†</u> T	<u> </u>	-j	1	1	+	
ite	1	7	Ť T	<u>i</u>	İ T		÷	<u> </u>	1	.	<u> </u>	+
tite-chlorite	T	S	S	Т м	<u>і м</u>	Т м Г	т м			1-0-	<u> </u> м	
siterite	S	A	A	A	Ì F.	м	<u> </u>					
omite	F	Ì	1	1		†	<u> </u>	 	+	<u> </u>	$\frac{1}{1}$	
dote	T	İ	i s	is	Í M	1 5	1	1	+			
dspar-quartz	<u> </u>	i –	1	†	<u> </u>		1 5					$\frac{1}{1}$
net	S	S	М	İs		1 9						
thite	S	I M	I S	F			P					
atite	<u> </u>	F	T T	i			<u> </u>	+			$\frac{1}{1}$	
enite	S	F	i s	A	s	1 5	+	<u>+</u>				
netite	T	T	İ T		г с		 	<u> </u>	 	A		
) .	1	i	†	T		<u> </u>	<u>.</u>	<u> </u> 	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
ybdenite	İ.	i	i	T		i	<u>i</u>	<u> </u>				
zite	A	S	P	A		Δ	<u> </u>			V 1		
hedrite	M	I M	F		м		<u> </u>			M	r	
ellite f	S	i	<u> </u>								 	
elite	j	F	T	न								
ene	S											
maline	T	A	S	S	A	S	M		мТ			7
time	F	T		F							<u> </u>	
on f	T	F	T	1 7	 				I			I
		<u>-</u>							¦	<u> </u>		
								1	1			

Legend:

P - Predominant A - Abundant

S - Subordinate

. .

M - Minor

•

<u>،</u> د

- F Few T Trace
- Over 50 percent 10 - 50 percent 2 - 10 percent .5 - 2 percent .1 - .5 percent Less than .1 percent

f - Fluorescent

_

•

95

:

TABLE 9Petrographic Report

Sluice Samples, Continued

Sample Map No	2-	<u>79</u>	63
Minerals:			
allanite		Т	
amphibole		•	Т
ankerite			М
apatit e			
augite		· A	
baddeleyite	2		F
barite			М
biotite-chl	orite		S
cassiterite		F	
chlorite	•	Т	S
chondrodite		S	
chromite		M	•
epidote		Т	Т
garnet		F	
goethite		М	S
hematit e			
ilmenit e		۰F	
magnetite			
MnO			
monazite		F	
octahedrite			
olivine	_	• • • • A	
powellite	f	Т	-
pyrite	_	T	Р
scheelite	f	Т	
sphene			
tourmaline	-	Ţ	_
zircon	f	T	Т

tungsten as a percentage of the concentrate recovered from one rounded full 14 inch pan (approximately 16 pounds) at each sample site. It should be noted that the values shown are uncorrected in terms of the actual amount of nonmagnetic material recovered. They represent a percentage of the concentrate recovered, not a percentage of the sample (one full pan) as a whole, Table 10.

1

Sediment samples were also taken at most sample sites, however little correlation could be made to the pan concentrate results, due partly to the scarcity of fine material on the surface of the active channels, as well as the immobile nature of these elements. However, some above-background levels of arsenic, lead, and thorium were observed. Sediment results are listed in Appendix A, Table A-1.

Sluice samples were prepared and analyzed in the same manner as the pan concentrates. Analyses are shown in tables 11 and 12. Sluice samples were. also tested for tin and tungsten by atomic absorption and for thorium by colorimetric procedures. For uranium analyses, the splits were intitially prepared using a hydrofluoric acid-nitric acid digestion. Fluorometric analyses gave values ranging from 51 to 325 ppm. Because higher concentrations of uranium were suspected in minerals such as monazite, allanite, and xenotime, duplicate samples were also prepared by lithium metaborate fusion followed by dissolution in 10 percent nitric acid and extraction into diisobuty1 ketone containing aliquat 336. Fluorometric analysis by this latter procedure gave values 3 to 20 times higher, as shown in table 11.

Geochemical results of the sampling suggest an association of these placer minerals with the intermediate zone of the batholith, as described earlier under the geology of the granitic terrane. Correlation of the higher values in the Strangle Woman drainage to particular phases of the intrusive, is somewhat more tenuous at this time. Interpretation of previous analyses (7) of rocks from the

Base adapted from USGS Coleen Quadrangle, 1:250.000

FIGURE 26.- Tin analyses--Old Crow Hills

Dase adapted from USGS Coleen Quadrangle, 1:250.000

FIGURE 27.- Tungsten analyses--Old Crow Hills

а <u>г</u>	Number	Weighta	Sn (ppm)		m)	No.	Number	Weightq	Sn (111	Л_
1	1994	1 90 9	20,000	7.000		71	3200	na	N	
1	1002	• 52 56	20,000	10,000		• 72	1900	1:10	5,000	
2	1774	2.0	7,000	3,000		73	1895	0.53	5,000	
5	2240	0.10	7,000	1,000		74	3181	na	N	
4	627	0.07	3,000 ·	2,000		75	663	2.93	L	
5	628	0.18	20,000	2,000		75	1882	11 97	т.	
6	2248	2.26	5,000	N		70	1980	7 16	300	
7	621	0.43	20,000	G		77	2170	7.10	N	
8	625	0.16	10,000	2,000	•		1975	36.42	T	
9	622	0.07	G	G		00	1075	3 19	. т	
10	630	0.75	30,000	G		81	10/2	2.60		
11	629	0.25	7,000	G		82	1000 ·	2.00	I I	
16 -	83	0.25	G	3,000		83	1885	0.20		
17	2353	1.61	500	N		84	100/	7.05	L N	1
18	2354	0.25	7,000	5,000		85	1854	7.95		
19	2355	0.48	1,000	700		86	1852	8.20		
21	620	0.38	50,000	G		87	1850	8.34		
23	2053	1.67	7,000	7,000	1	88	1847	5.6/	200	·
24	2243	1.70	100,000	G		89	1842	17.01	300	1 I
27	619	0.48	100,000	G		90	1840	2.16	700	1
28	2411	1.01	700	700		91	1835	3.05		
29	2420	0.35	1,000	700	1	101	No Anal	yse s		
31	2376	0.93	5,000	7,000		102	No Anal	yses		
32	2237	1.56	50,000	10,000	1	103	No Anal	yse s		
33	2234	0.10	5,000	5,000		104	No Anal	yse s		
34	2239	3.54	10,000	7,000		105	No Anal	yse s		
35	2241	0.01	15,000	t 🖾 G		106	No Anal	yse s	_	.
36	2216	6.41	20,000	7,000		107	657	0.39		
37	61	0.24	N	2,000		108	652	1.0/	3,000	
38	68	0.09	N	N	1	109	653	0.75	3,000	
39	2330	1.84	150	N		110	647	0.//	60,000	3
40	5	0.25	2,000	N		112	12503	6.11	2,000	
41	1923	4.58	700	N		113	12500	3.70	2,000	
42	No Anal	yses		•		114	12549	0.62	2,000	
43	7	0.23	N	N		115	12545	0.55	2,000	2
44	3197	na	500	. 500		116	12548	0.07	7,000	5
45	3195	na	30	N	ŀ	117	11357	0.99	1,000	
46	3194	na	20	N		118	8181	0.30	500	
47	2101	1.55	5,000	7,000		119	8182	0.52	2,000	
48	2103	1.22	5,000	3,000		124	12492	0.62	2,000	-
49.	2347	2.64	200	N		125	12166	0.56	5,000	
50	2000	4.02	700	N		126	12176	2.41	20,000	2
51	89	0.15	L ·	N		12/	8492	0.65	100,000	
52	2100	4.29	700	N		128	12488	2.66	100,000	10
53	642	0.12	7,000	N		129	11384	1.21	13,000	
54	643	1.08	70,000	G		130	11382	0.40	10,000	,
55	644	0.44	L	1,000		131	8504	2.99	10,000	
56	23	0.24	L	N		132	8484	5.61		
57 .	2312	2.97	300	N		133	12226	1.78	2,000	
58	10	0.08	L	N		135	12220	1.06	2,000	2
59	12	1.32	. L	N		136	12223	3.48	100,000	,د
60	14	1.28	L	N		137	. 8438	2.78	2,000	,
61	3192	na	2,000	L		138	8440	2.08	30,000	
62 🛛	3182	na	N	N	1	139	12236	3.46	70,000	Z,
64	1971	2.57	500	N		141	12238	5./3	70,000	1,
65	1973	6.87	300	N		143	8452	2.13	2,000	,
66	1985	2.07	N	N		144	8436	1.79	20,000	1,
67	42	0.79	L	N		147	10992	1.50	5,000	~
68	3202	na	N	N		148	12266	2.61	2,000	Ζ,
69 📗	49	0.51	L	L	1	149	11344	10.54	500	
11		-							<u> </u>	

TABLE 10 - Tin/Tungsten Analyses - Old Crow Hills

- 1/ Recovered -14 mesh non-magnetic heavy mineral fraction, in grams
- G = greater than detection limits (100,000 ppm Sn and 10,000 ppm W)
- N = not present

L = detected, but lower than detection limits

na = not available

TABLE II - STUTCE CONCENTIALE Sample Analyses

			ANALYSES (in percent)								
	Quantity 1	Concentrate	Atomic		Color-	Fluoro-	Sem1-0	Quantitat	ive		Monazite
Sample	of Material	Recovered	Absorpt	10n2/	metric	metric 1/	Spect	rographic	<u>4</u> /		(est'd. by
Map No.	Concentrated	(non-magentic)	Sn	<u> </u>	Th	<u> </u>	Ce	La	Nb	<u>Y</u>	fluorescence)
79	0.1 yd	13.68 grams	-	-		-	N	N.	L	0.1%	10%
63	0.1 yd	24.49 grams	-	_ ·		- .	N	N .	L	0.1	· · Ń
26 ·	0.1 yd	48.90 grams	5.1%	0.66%	9.0%	0.09%	7.0%	2.0%	.05%	2.0	50
²⁵	0.1 yd /	11.67 grams	11.6	0.75	5.75	0.09	5.0	1.5	0.1	3.0	40-45 ·
13	0.1 yd	28.34 grams	2.5	0.44	3.3	0.10	G	: 3.0	0.1	3.0	60
15	0.1 yd	45.43 grams	21.0	0.23	1.0	0,10	5.0	1.5	0.1	3.0	35
14	0.1 yd	37.67 grams	1.6	0.31	1.1	0.08	5.0	2.0	0.05	1.5	35
. 22	0.1 yd	34.169 grams	1.8	0.53		0.08	5.0	2.0	· O•05	2.0	40
20	0.1 yd	12.37 grams	7.8	0.32	4.3	0.04	א [.]	0.2	0.02	0.7	low
12	0.03 yd	7.13 grams	4.8	0.35	3.4	0.1	G	3.0	0.1	1.5	• 60
30	0.03 yd .	9.52 grams	1.45	0.66	1.2	0.09	3.0	4.5	0.02	1.0	25
	0.1 yd	26.44 grams	1.05	0.03	-	e 4	L,	L	N .	>0.2	low
142	0.1 yd	99.72 grams	1.6	0.24		-	G	>2.0	N	> 0.2	>50
140	0.1 yd	· 106.95 grams	15.0	0.23			G	L	0.2	G	20-40
111.	0.1 yd	75.28 grams	2.5	0.14	- '	-	>0.3	0.1	N	>0.2	5

1/ The material concentrated consisted of the coarse sand to silt fraction of the creek gravels.

2/ Analyzed by Resource Associates of Alaska, Fairbanks.

.

not detected

detected

not analyzed for .

113

i

TABLE 12 - Trace Elements in Sluice Concentrates

		ţ,					•								n ari					
		, 		•																
mple	Quantity 1/ of Material	Concentrate Recovered	Tra	ce El	.ement	Analy	sis	by Sem	i-Quai	ntitat	ive S	pect	rograj	phic	. Metho	od 2/ (pr	om)			
p No.	Concentrated	(non-magnetic)	Ag	As	В	Ba	Be	Bi	Co	Cr	Cu	Mo	Ni	P	Pb	Pt	SЪ	Sr	V	Zn
79	0.l yd	13.68 grams	3	N	1000	N	3	50	70	1000	300	10	1000	-	150	N	N	-	150	700
63	0.1 yd	24.49 grams	· L	· N	200	>5000	3	100	70	1500	500	20	300	-	5000	N	N	-	50	1000
26	0.1 yd	48.90 grams	L	N	700	N	15	L	L	1000	150	20	100	-	2000	N	N	-	100	N
25	0.1 yd	11.67 grams	15	N	5000	N	10	, r	N	1000	500	50	1500	-	2000	L	N	-	100	N
13	0.1 yd	28.34 grams	10	N	1000	_N	20	150	Ĺ	1000	50	20	1500	-	5000	N	N	-	200	N
15	0.1 yd .	45.43 grams	10	N	2000	N	5	L	N	1000	7,00	20	2000	-	5000	L	N	-	150	<u>N</u>
. 14	0.1 yd	37.67 grams	10	N	2000	N	10	150	N	1000	300	10	500	-	2000	N '	ท	-	150	N
22	0.1 yd	34.169 grams	5	N	2000	N	15	150	N	1000	300	10	300	-	1000	N	N	-	100	N
20	0.1 yd	12.37 grams	20	3000	5000	N	20	150	Ĺ	1000	500	20	200	-	2000	N	N	-	100	1000
12	0.03 yd	7.13 grams	2	1500	1000	N	15	150	L	500	700	20	200	-	2000	N	N	-	_ 200	N
30	0.03 yd · .	9.52 grams	5	N	2000	'N	15	100	-N	500	. 300	10	150	-	500	N	N		50	N
34	0.1 yd	26.44 grams	30	N	2000	i	200	Ń	L	>5000	150	300	3	-	2000	N	N	-	5000	L
42	0.1 yd	99.72 grams	70	N	5000	Ň	L	>1000	>2000	1000	150	L	150	-	3000	e N	. N	-	>10000	L
40	. 0.1 yd	106.95 grams	50	N	2000	N	300	L	N	L.	150,	L	. N	-	7000	N	500	-	>10000	·L
11	0.1 yd	75.28 grams	L	N	2000	Ľ	3	N	N	N	150	L	L	-	L	N	Í	-	2000	N
The	material concer	trated consiste	d of	the	coars	e sand	to	silt f	racti	 on		> -	above	lev	vel sho	own	L	- d	etected	
ofc	reek gravels.	Separation was	done	with	n an 8	" x 30)" ex	panded	meta	1			- - no	ot a	analys	ed	N	- n	ot dete	cted
slui	ce box set in a	ictive channel.											i - 1	ntei	rferen	ce	•	•		فبنو

,

•

فسو

.

Old Crow batholith indicated anomalous zirconium to tin ratios, and coinciding lead and zinc occurrences which appear related to the possible occurrence of tin, tungsten, lithium, beryllium, tantalum, and niobium mineralization (cf. <u>5</u>). This relationship has been documented for similar deposits in the Soviet Union.

Complete emission spectrographic results of the pan concentrate samples are listed in Appendix B.

Results and Recommendations

Fin, tungsten, thorium, and rare-earth elements, with lesser amounts of uranium, lead and niobium are consistently present and may exist in recoverable amounts as extensive placer deposits of the Rapid River, Sunaghun and Strangle Woman Creek drainages. Both Strangle Woman Creek and the Rapid River appear amenable to dredging or dragline placer mining if sufficient grade of mineralization is proven. Further exploration of these deposits is certainly warranted. The possibility of residual placer deposits should also be further investigated.

The geologic setting of the Old Crow batholith is similar, in general, to the weathered and eroded tin bearing granites in other parts of the world, such as Malaysia, where a considerable portion of the U.S. supplies of tin are mined from placer deposits.

Further work should include bulk sampling of subsurface gravels with a more accurate method of recovery of the concentrate than was possible in this preliminary study. Drilling will eventually be necessary to define the depth and extent of the gravels, and their grade.

A major factor that will determine the amount of potential reserves in the Old Crow area is the distance downstream of the granite over which enriched gravels can be found. In this study anomalous tin was found at least 10 miles downstream of the batholith on the Rapid River. In addition, the Porcupine River has carried tin values even further distances along its present channels.

Porcupine Ancient Channel Placers (T. 29 N., R. 29 E.)

Geology

Segments of ancient alluvial channels of the Porcupine River are found at elevations of 100 to 300 feet above the present water course. The Porcupine River in this region has cut deep canyons into steeply dipping marine sedimentary rocks. The depth of the present canyon is as much as 600 feet.

Alluvial deposits are tightly confined within the canyon walls and range in width from approximately 600 to 2,000 feet. At least ten miles of perched, abandoned channels were observed in the upper canyon area. A well defined three mile segment was chosen for specific study for this report.

Bedrock in the vicinity consists of shale, carbonates, and quartzites. No felsic intrusive rocks are known to occur within ten miles of this locality. Gabbroic dikes and basalt lavas are found several miles to the southeast.

Alluvial material is primarily chert, quartz, quartzite and includes minor amounts of granitic material derived from outcrops of the Old Crow batholith upstream in Canada. The abandoned channels are covered with silt, are permanently frozen, and are thickly vegetated.

Mineralization

During the present study small amounts of heavy minerals were found in alluvial gravels of the present and ancient Porcupine River channel. These contained up to 0.7% tin and varying amounts of rare-earth elements. Pan concentrate sample locations are shown with their tin and tungsten content in figure 28. All samples except PR 12546 were taken from reworked surface exposures of water worn gravel. The sample at PR 12546 was taken from accumulated soils and colluvium that were laid down after the last gravels were deposited. It appears that the ancient gravel deposits are relatively thick, and heavy mineral

1.94

accumulations if present in these large channel deposits would be largely concentrated close to bedrock. It was not possible to sample the tenor of the deposits at depth and therefore no estimate of potential merit will be attempted.

14- L

A sample (PR 11374) concentrated from active alluvium of the Porcupine River was found to contain cassiterite, monazite and other minerals (table 13) typical of concentrates of the Old Crow granitic region (refer to the discussion of the Old Crow Hills placer prospects).

The heavy minerals consisted of very fine sized fractions reflecting the effects of mechanical transport from sources 10 to 35 miles upstream in Canada. In that region there is an outpouring of granitic material in numerous small south flowing tributaries to the Porcupine River. It would be expected that overall grade of any potential placer mineralization would decrease as one progressed further downstream.

Geochemistry

Nine panned concentrates of alluvial material were sampled and analyzed (table 14) as described under the "Sampling and Analytical Procedures" section of this report. A series of stream sediment samples were also obtained from this area (Appendix A) but no anomalous values were found.

Panned sample PR 1900 contained 10,000 ppm zinc, which suggests local bedrock sources. Boron values were moderately high due to tourmaline. Some tungsten (PR 12598) was also detected in addition to the tin values. Generally tin and tungsten are not found in pan samples derived from the sedimentary bedrock formations along the Porcupine River.

FIGURE 28.- Porcupine ancient channel placer prospect

1	PR	113		74	
Minerals:		_ !			
ankerite					
apatite					
biotite				<u> </u>	
cassiterite				$+$ $\frac{1}{\tau}$	
chlorite				+	
diopside					
dolomite	<u></u>			+	
epidote				<u>M</u>	
garnet					
goethite				$+ \frac{A}{T}$	<u> </u>
hematite					
hornblende					
ilmenite				+	
monazite					
powellite f					<u> </u>
scheelite T					+
sphene			<u> </u>		<u> </u>
staurolite			··	- _	†
tourmaiine				$+\dot{\tau}$	1
zircon i				<u>_</u>	a

٠.

.

•

1	0	nΔ	nd	•
1.	C	ye	nu	•

1.

: F F S N F T)		Predominant Abundant Subordinate Minor Few Trace Detected Sought but not detected Fluorescent	Less	0ver 10 - 2 - .5 - .1 - than	50 50 10 2 .5 .1	percent percent percent percent percent
-----------------------------------	--	--	------	---	---------------------------------	---

Petrography by W. L. Gnagy, Alaska Field Operations Center, Juneau Table 13 - Heavy minerals in Porcupine River Gravels

•

•

120

,

.

						•	· · · · · · · · · · · · · · · · · · ·		
le er	PR1895	PR1900	PR8181	PR8182	PR11357	PR12545	PR12546	PR12548	Р
	5	1.5	L	30	30	5	5	7	
	N	N	· N	N	N	N	N	N .	
	N	. N	N	N	N	N N		N	
	3000	2000	1500	2000	200 0	2000 2000 20		200 0	
••	N	2000	G	G	G	L	N	Ģ	
	70	100	15	N	50	100	70	3	
	N	N	N	N	N	L	L	20	
	N	N	N	N	Ń	L	N	L	
	30`	30	L	L 、	N	300	700	, r	
	100 0	1500	L	G	3000	1000	1000	2000	
	150	150	50	150	150	100	20	200	
	5000	7000	1500	L	1500	300 0	5000	1500	1
	N	N	L	L	L	L .	L	L	
	L	L	N	N	N	N	N	N	
	200	1500	L	L	L	300	50	30	
-	N	200	L	50	100	-	-	· -	
	N	N	N	N	N	N	N	Ň	
	N	N	N	N	N	N ·	N	N	
, 	5000	5000	500	2000	1000	2000	L	7000	2
	-	-	-	_	_	-	-		
			_	-	-	-	-	-	
	500	1000	700	1500	1500	1500	2000	1500	1
	N	N	N	N	N	N	N	3000	
	3000	500 0	L	G	G	G	G	G	
	1500	10,000	N	N	N	N	N	N	
	G	G	G	G	G	G	· G	G	

· · · ·

- greater than

not found
 detected not analyzed

TABLE 14 - Analyses of concentrate samples from an ancient channel of the Porcupine River

Coleen River Barite Occurrence (T. 31 N., R. 22, 23 E., figure)

Geology

Barite and minor copper values were found associated with an extensively sheared and faulted area of the Christian River sequence and the adjoining Triassic Shublik Formation (12). Interlayered gabbros, argillites and cherts were found on the ridge immediately west of this location, figure 29. Basalt and cherts and intensely sheared black shales mapped as the Shublik were observed in outcrop along the river bluff. The shales were iron-stained and contained numerous quartz veins and iron nodules.

ž

Northeasterly trending and intersecting linears (figure 10) cut through this location generally parallel to the course of the Coleen River.

Bedrock outcrops are very limited in the area except for along the river bluff. Vegetation is dense and continuous.

Mineralization and Geochemistry

Massive white to gray barite was observed only as creek float at locations 1, 18, and to a lesser extent at 6. Due to the heavy vegetation cover no barite mineralization was seen in place. Minor copper and zinc oxides were observed at location 23. One slightly mineralized sample of chert contained 0.03% copper and 0.077% zinc.

Soils at locations 12 and 13, and sediments from locations 2 and 5 were somewhat anomalous (table 15) in copper (up to 460 ppm). These anomalies align well with the linears.

Pan sampling was also done at locations 17 to 21 and confirmed the presence of barite (analyses listed in Appendix B-2). The concentrate from location 21 also contained greater than 10,000 ppm vanadium, perhaps reflecting the high background level of vanadium in the Shublik shales. No traces of gold were detected in the pans.

FIGURE 29.- Coleen barite occurrence

Results and Recommendations

Barite in a similar form, color, and geologic setting also has been reported from the Christian River sequence near the Sheenjek River (figure 9) in beds up to 18 feet thick. This occurrence further suggests a strong barite potential in the Christian River mafic complex.

Ā

The Shublik Formation elsewhere in the Brooks Range is known to have somewhat higher concentrations of copper, zinc, and vanadium. Remobilization and possible deposition associated with the volcanic activity and/or the intersecting linears is the most likely explanation of the minor mineralization observed at the present locality, since no anomalies of these elements were found derived from the mafic complex.

TABLE 15 : Sample Analyses - Coleen Barite Occurrence

Map No.	Sample No.	Cu	РЬ	Zn	Ag	Мо
STREAM SEDIMENTS 1 2 3 4 5 6 7 8 9	PR 12517 TB 47 PR 12514 PR 12515 TB 44 PR 11377 TB 45 PR 12481 PR 11380	23 55 19 17 140 32 26 16 12	N N N 30 N N N N	98 150 74 77 170 110 130 72 63	N	N
<u>SOILS</u> 10 11 12 13 14 15	PR 12512d PR 12513d PR 11379d PR 11376d PR 12480d PR 12479d	23 15 460 55 17 13	N N 25 N N N	85 58 180 110 71 72	17 11 11 11 11 11 11	U 11 11 11 11 11
<u>ROCKS</u> 23 24	TB 48 PR 11388R	310 37	N N	770 20	11	11
PAN <u>CONCEN</u> . 17 18 19 20 21	PR 12516p PR 12518p TB 46p PR 11378p PR 12482p	(See Ap	pendix	B for An	alyses)	

The Shublik outcrops along the river were also examined in 1948 for radioactivity $(\underline{43})$. However, no significant levels were found.

EXPLORATION POTENTIAL

The present work by the Bureau of Mines in the Porcupine River region was limited to a preliminary regional assessment of potential mineral resources. The principal objective of this report was to identify mineral occurrences of deposit types that may be found with known associated metallogenic provinces of the region. To actually delineate economic or sub-economic mineral reserves would require many times this magnitude of effort. For example, during the period 1955 to 1969, approximately \$910 million was spent on mineral exploration in the United States (<u>48</u>). This amounts to \$300 per square mile for this time, the total investment in mineral exploration in the Porcupine area amounts to less than \$10 per square mile (this excludes basic geologic mapping). That a number of mineral occurrences have been found even with this low level of exploration effort is certainly indicative of the high favorability for mineralization of at least portions of the region (figure 30).

Strategic considerations: The following commodities are known to occur(*), or might be anticipated to occur in the study area. Geologic evidence indicates potential economic scale deposits may be found. The commodities are shown as a percentage of U.S. dependence on imports, Table 16.

CONCLUSION AND SUMMARY

 Christian complex -- that area lying west of the Coleen River and somewhat north of the Porcupine River. Cost restrictions of the present study essentially prevented evaluation of this unit. The geology is very poorly known but indications suggest that the mafic/ultramafic ophiolite sequence and related rocks may be valuable for barite, chrome, platinoid metals, and gold. Mapping,

FIGURE 30.- Mineral rotential map of the Porcupine River region

.. 126

*Minerals Presently Known to Occur in or Near Project Area

والدارية والم

U. S. Net Import Reliance 1/ As a Percent of Apparent Consumption in 1976

Minerals And Metals	Known Localities		02	25%	50%	75 %	100	Ľ	Major Foreign Sources (1972-75)
*Columbium	Old Crow Hills	100							Brazil, Thailand, Nigeria
Cobalt		98						ľ	Zaire, Belgium-Luxembourg, Finland, Norway
*Manga <i>n</i> ese	Boulder Cr.	98							Brazil, Gabon, Austrailia, South Africa
*Tantalum	Old Crow Hills	94							Thailand, Canada, Australia, Brazil
Platinum Grp. Metals	Christian R. (Trace Amts. only)	92							U.K., U.S.S.R., South Africa
*Chromium	Christian R.	89							Phillipines, Turkey
*Tin	Old Crow Hills	85							Malaysia, Thailand, Bolivia
Asbestos		83							Canada, South Africa
*Nickel	Old Rampart	71							Canada, Norway, New Caledonia
*Gold	Procrastina- tion Cr.	70							Canada, Switzerland, U.S.S.R.
*Antimony		61				,			South Africa, P.R. China, Bolivia. Mexico
Selenium	. e	59							Canada, Japan, Mexico
*Tungsten	Old Crow Hills; Bear Mt.	59							Canada, Bolivia. Peru, Thailand
*Zinc	White Mt. Cr.; Old Crow H.	59				<u> </u>			Canada, Mexico, Australia, Peru. Honduras
*Silver	White Mt.Cr.; Salmon Trout R.; Midnight H.; Bear Mt.	47							Canada, Mexico, Peru
Petroleum (in Nat. Gas Liq.	c.)	41							Canada, Venezuela, Nigeria, Saudi Arabia
*Barium	Sheenjek R.; Coleen R.	38							Ireland, Peru, Mexico
Gypsum		38		<u>.</u>					Canada, Mexico, Jamaica
Titanium (ilmenite)		37							Canada, Australia
Vanadium		31							South Africa, Chile, U.S.S.R.
*Copper	White Mt.Cr.; Bear Mt.	15							Canada, Peru, Chile, South Africa
*Lead	Salmon Trout R.; White Mt. Cr; Midnight H; Bear Mt.	15		L					Canada, Peru, Australia, Mexico
Natural Gas	Eagle Plains, Yukon Terr.	4							Canada
1/ Net import - Adjustmen Stock chan and Natura	reliance = imports-exports nts for Gov't and industry ges (except for Petroleum 1 Gas).				IMPORTS U. S. CA	PACITY			
Apparent Co - Secondary Reliance Pe cludes inde	onsumption = U. S. Primary y production - Net import troleum and Nat. Gas in- ustry stock changes.						Bureau of the data fr	of Mi Inter om Bu	nes, U. S. Department ior (import-export reau of the Census).

TABLE 16. - Potential mineral resources of the Porcupine Plateau area

i≊ 1 a ar

heavy mineral surveys and soil sampling should be undertaken.

2. Sedimentary units -- Paleozoic shales and carbonates occur in the southeastern portion of the study area. As discussed in the text, these rocks are anomalous in lead, zinc, copper, barium and silver, and there are known mineral deposits in similar rocks to the east in Canada and immediately to the southeast in Native corporate lands. Uranium deposition in terrestrial sedimentary host rocks is another possibility which should be further studied. This region also contains portions of the Kandik and Yukon Flats basins which have petroleum potential. Detailed geologic mapping is required for further assessment of the mineral resources.

÷

3. Old Crow granite vicinity -- investigation results suggest a geologic environment characteristic of a tin province, with significant values of tungsten, uranium, and rare-earth elements, both from placer and lode sources. This intrusive environment appears similar for example, to those of France and East Europe where uranium is produced. Elsewhere in the world, significant mineralization is known to be associated with leucocratic granites and/or related metamorphic rocks of granitic intrusives of this Devonian-Mississippian age. In addition to tin, tungsten, and uranium, other potential associated elements of interest would include beryllium, niobium, tantalum and molybdenum. Copper, lead, zinc, and silver occur in a variety of intrusive-related deposit types along the southern perimeter of the batholith.

REFERENCES

- Armstrong, F. C. Uranium Resource of the Future 'Porphyry' Uranium Deposits. Formation of Uranium Deposits. International Atomic Energy Agency. Vienna. 1974.
- Baadsgaard, H., Folinsbee, R. E., and Lipson, J., Caledonian or Acadian Granites of Northern Yukon Territory, 1961, p. 458-465 in Raasch, G. O. Geol. of the Arctic v. 1; Toronto Univ. Press 732 p.
- Barnes, D. F. Preliminary Bouguer Anomaly and Specific Gravity Maps of the Seward Peninsula and Yukon Flats, Alaska. U. S. Geological Survey Open File Report 467, 1971, 11 pp.
- Beikman, H. M., and E. H. Lathram. Preliminary Geologic Map of Northern Alaska. U. S. Geological Survey Miscelaneous Field Studies Map MF 789, 1976. 1:1,000,000, 2 sheets.
- Beus, A. A., and A. A. Sitnin. Geochemical Specialization of Magmatic Complexes as Criteria for the Exploration of Hidden Deposits. XXIII International Geology Congress. Vol. 6, 1968. pp.101-105
- Brabb, E. E. Preliminary Geologic Map of the Black River Quadrangle East-Central Alaska. U. S. Geological Survey Miscellaneous Geol. Inv. Map I-601, 1970. 1:250,000, 2 sheets.
- Brosge, W. P., U. S. Geological Survey. Personal verbal communication, 1977
- Brosge, W.P., E.E. Brabb, and E.R. King. Geology Interpretation of Reconnaissance Aeromagnetic Survey of Northeastern Alaska. U.S. Geological Survey Bull. 1271-F, 1970, p.6
- Brosge, W. P., and A. Conradi, Jr. Magnetic Susceptibilities of Crystalline Rock Samples, Yukon River-Porcupine River Area, East-Central Alaska. U. S. Geological Survey Open File Report 466, 1971, 8 pp.
- Brosge, W. P., and H. N. Reiser. Preliminary Geologic Map of the Christian Quadrangle, Alaska. U. S. Geological Survey Open File Map 229, 1962. 1:250,000, 2 sheets.
- 11. _____ Geochemical Reconnaissance Maps of Granitic Rocks, Coleen and Table Mountain Quadrangles, Alaska. U. S. Geological Survey Open File Report 323, 1968. 1:250,000, 4 sheets.
- 12. Preliminary Geologic Map of the Coleen Quadrangle, Alaska. U. S. Geological Survey Open File Map 370, 1979. 1:250,000, 1 sheet.
- Brosge, W. P., H. N. Reiser, J. T. Dutro, Jr., and M. Churkin. Geologic Map and Stratigraphic Section, Porcupine River Canyon, Alaska. U. S. Geological Survey Open File Report 263, 1966. 1:63,360, 4 sheets.

- 14. Brosge, W. P., H. N. Reiser, and T. E. Moore. Chemical Analysis of 97 Stream Sediment Samples from Coleen and Christian Quadrangle, Northern Alaska. U. S. Geological Survey Open File Report 77-458, 1977, 4 pp.
- Cairnes, D. D. Geological Section Along the Yukon-Alaska Boundary Line between Yukon and Porcupine Rivers. Geol. Soc. Am. Bull., v. 25, 1914, pp. 179-204.
- 16. Carne, R. C. Stratabound Barite and Lead-Zinc-Barite Deposits in Eastern Selwyn Basin, Yukon Territory. Dept. of Indian and Northern Affairs, Open File Report EGS 1976-16, 1976, 41 pp.
- Churkin, M. Jr. Paleozoic and Precambrian Rocks of Alaska and Their Role in its Structural Evolution. U. S. Geol. Survey Prof. Paper 740, 1973, 64 pp.
- Churkin, M. Jr., and E. E. Brabb. Petroleum Potential of the Kandik Basin, East-Central Alaska. U. S. Geological Survey Open File Report 385, 1969, 11 pp.
- Churkin, M. Jr., and E. E. Brabb. Devonian Rocks of the Yukon-Porcupine Rivers Area and Their Tectonic Relation to Other Devonian Sequences in Alaska, Ch. in International Symposium on the Devonian, v. 2, Alberta Soc. Petroleum Geologists, Calgary, Canada, 1967, pp. 227-258.
- 20. Geological Survey of Canada. Northern Yukon Territory and Northwest District of MacKenzie, Map 10-1963, 1963,
- Goodfellow, W., Geological Survey of Canada. Personal verbal communication, 1977.
- 22. Hawley, C. C., and G. Garcia. MIneral Appraisal and Geologic Background of the Venetie Native Lands. A report prepared for the Bureau of Indian Affairs and the Bureau of Mines. 1976, 43 pp.
- 23. Industry data, verbal communications, J. Hammit, Bear Creek Mining Co., 1977.
- 24. Johnson, P. R., and G. W. Hartman. Environmental Atlas of Alaska. Institute of Water Resources, University of Alaska, College, Alaska, 1966, 111 pp.
- 25. Kimball, A. L. Reconnaissance of Tatonduk River Red Beds. Bureau of Mines Open File Report 1-69, 1969, 11 pp.
- 26. Kindle, E. M. Geologic Reconnaissance of the Porcupine Valley, Alaska. Geological Society Am. Bull., v. 19, 1908, pp. 315-338.
- Laudon, L. R., A. E. Hartwig, D. L. Morgridge, and J. B. Omernik. Middle and Late Paleozoic Stratigraphy, Alaska-Yukon Border Area Between Yukon and Porcupine Rivers. Am Assoc. Petroleum Geologists Bull., v. 50, 1966, pp. 1868-1889.

- 28. Maddren, A. G. Geologic Investigations Along the Canada-Alaska Boundry. U. S. Geol. Survey Bull. 520-K, 1912, pp. 297-314.
- 29. Maddren, A. G., and G. L. Harrington. Geologic maps of the area along the Alaska-Canada boundary between the Porcupine River and the Arctic Ocean. U. S. Geological Survey Open File Map 118, 1955, 11 sheets.
- 30. Mertie, J. B., Jr. Unpublished notes and maps of surveys along the Porcupine River, Alaska, in files of U. S. Geol. Survey, 1941.
- Miller, D. J., T. G. Payne, and G. Gryc. Geology of Possible Petroleum Provinces in Alaska. U. S. Geological Survey Bulletin. 1094, 1959, 131 pp.
- 32. Mowatt, T. C., Personal Communication, 1978-1979.
- 33. Norris, D. K. Geologic Maps of Yukon Territory and Northwest Territories. Geological Survey of Canada Open File 499, 1977.
- Payne, T. G., Mesozoic and Cenozoic Tectonic Elements of Alaska.
 U. S. Geological Survey Misc. Geol. Inv. Map I-84, 1959.
- Reiser, H. N. M. A. Lanphere, and W. P. Brosge. Jurassic Age of a Mafic Igneous Complex, Christian Quadrangle, Alaska. U. S. Geological Survey Prof. Paper 525-C, 1965, pp. C68-C71.
- Sable, E. G. Geology of the Western Romanzof Mountains, Brooks Range, Northeastern Alaska. U. S. Geological Survey Prof. Paper 897, 1977, pp. 81.
- 37. Sinclair, W. D., J. M. Malony, and D. B. Craig. Mineral Industry Report, 1974, Yukon Territory, 1974, 216 pp.; available by mail from Information Canada, Ottawa, KIA 059.
- 38. Skall, H. The Paleoenvironment of the Pine Point Lead-Zinc District. Economic Geology, v. 70, 1975, pp. 22-47.
- 39. Smith, P. S., 1929, Mineral Industry in Alaska in 1926, U. S. Geological Survey Bulletin 797, 1929 p. 123.
- Snyder, W. S. Manganese Deposited by Submarine Hot Springs in Chert-Greenstone Complexes, Western United States. Geology, v. 6, 1978, pp. 741-744.
- 41. Tauson, L. V., and V. D. Kozlov. Distribution Function and Ratios of Trace-element Concentrations as Estimates of the Ore-bearing Potential of Granites. Geochemical Exploration 1972, Inst. of Mining and Metallurgy, London, 1973, pp. 37-44.

- 42. Thomas, B. I., and C. L. Sainsbury. Location of Anomalous Concentrations of Metals in Alaskan Placer Concentrate Samples. Bureau of Mines Open File Report 56-76, 1975. (29 mylar overlays to Alaska topog. quadrangle maps).
- White, M. G. Reconnaissance for Radioactive Deposits Along the Upper Porcupine and Lower Coleen Rivers Northeastern Alaska. U. S. Geological Survey Circular 185, 1952, 13 pp.
- 44. Williams, D. Testimony presented to the U. S. Senate Subcommittee for Energy and Minerals on behalf of Doyon Ltd., Anchorage, Alaska, Feb. 1978.
- 45. Yukon Chamber of Mines. MIneral Occurrences of Yukon Territory, 1973. (map)
- 46. Ziegler, P. A. Development of Sedimentary Basins in Western and Arctic Canada, Alberta Society of Petroleum Geologists, Alberta, Canada, 1969, 89 pp.
- 47. U. S. Energy Research and Development Administration, Aerial Gamma Ray and Magnetic Survey of the Bethel and Yukon Areas, Alaska. Prepared for U. S. ERDA, Grand Junction Office, Grand Junction, Colorado 81501, 1976.
- 48. U. S. Geological Survey. Comparative Study of Canadian U. S. Resource Programs. Unpublished report to Sen. Ted Stevens, 1975, 96 pp.; available through the office of Sen. Ted Stevens, Wash. D. C.
- 49. U. S. Geological Survey and State of Alaska Department of Natural Resources. Mineral and Water Resources of Alaska. A report prepared at the request of Senator Ernest Gruening of the U. S. Senate Committee on Interior and Insular Affairs; U. S. Congress, 88th, 2nd session, Comm. Print, 1964, 179 pp.

APPENDIX A - Table A-1

Sediment sample analyses (ppm)

L - Detected

.

N - Less than lowest detection limit

G - Greater than highest detection limit

Not analyzed
i - interference

<u>1</u>/ Sample by U. S. Geological Survey refer to Brosge and Reiser, 1968 (<u>11</u>); and Brosge and others, 1977 (<u>14</u>).

Analyses by semi-quantitative emission spectrograph except Th by colorimetry; U by fluorometry; Cu, Pb, Zn and Ag by atomic absorption.

Detection limits -- Semi-quantitative emission spectrograph

Lowest detection limits (ppm unless indicated as %)

Elements	Sample nos. prefixed by PR or OC	Sample nos. prefixed by CC,TB,CB,CR,CS
Si	7%	
A1	1%	
Fe	0.05%	
Mg	0.02%	
Ca	1%	
Na	0.4%	
K	interference	
Ti	0.005%	
Mn	5.0	
Ag	1.0	20
As	1000.0	800
Au	50.0	20
В	5.0	100
Ba	1000.0	700
Ве	1.0	10
Bi	20.0	200
Cd	100.0	400
Со	10.0	40
Cr	20.0	20
Cu	1.0	40
Ga	0.2	20
La	500.0	200
Li	· · · 	10,000
Мо	10.0	10
Nb	100.0	800
Ni	2.0	20

Detection limits -- Semi-quantitative emission spectrograph, · (continued)

Lowest detection limits (ppm unless indicated as %)

•

Elements	Sample nos. prefixed by PR or OC	Sample nos. prefixed by CC,TB,CB,CR,CS							
Р	500.0	800							
Pb	20.0	80							
Pd	20.0	20							
Pt	50.0	20							
Sb	100.0	500							
Sc	10.0	10							
Se		300							
Sn	20.0	60							
Sr	50.0	30							
Ta	interference	300							
Те	500 . 0	200							
۷	20.0	40							
W	50.0	200							
Y	100.0	70							
Zn	200.0	10							
Zr	200.0	20							
Map No.	1	2	3	4	5	6	7.	8	136 _C
--	---	--	--	--------------	---	--	--	--------------------------------------	--
Sample No.	OC 1959	OC 1960	OC 1961	<u>CC.27</u>	CC 19	<u>OC 1945</u>	CC16	OC 1930	CCI
Niap No. Sample No. Sample No. Fe % Mg % Ca % Nz % K % Ti % Mn Ag Ag As Au B Ba Be Bi Cd Co Cr Cu Ga La Li Mo Nb Ni P Pb Pd Pt Sb Sc Se Sn Sr Ta Te V W Y Zn Zr	I OC 1959 I.5 7 7 7 7 7 9 0.3 5000 L N 150 2000 2 200 N 150 200 150 3 N 150 150 150 N N N N N N N N N N 150 200 2 200 N N 150 200 2 200 N N 150 200 2 200 N N 150 200 2 200 N N 150 200 2 200 N N 150 200 2 200 N N 150 200 2 200 N N 150 150 3 N N 150 150 150 150 150 150 150 150	2 0C. 1960 3 5 7 G - 0.3 3000 L N 200 L N 200 L 10 L N 200 15 N N 200 1.5 N N N 200 1.5 N N N 200 1.5 N N N 200 1.5 N N N N 200 1.5 N N N N 200 1.5 N N N N 200 1.5 N N N N 200 1.5 N N N N N N 200 1.5 N N N N N 200 200 N N N N N N N N N N N N N	3 OC 1961 7 3 7 1.6 0.5 5000 L N 150 150 150 150 N N N N N N N N N N N N N		5 CC 19 6.6 1 0.036 0.40 N 0.12 2400 N N N N N N N N N N N N N	6 OC 1945 7 3 2 1.6 - 0.3 5000 3 N 200 L 7 20 L 7 70 N N N 20 N N 20 N N 20 N N N 20 N N N N N N N N N N N N N	7 CC16 6.5 1.5 0.21 0.60 2.1 0.22 20000 N N N N N N N N N N N N N	8 OC 1930 Void No Sample	136 C CC 1: 8.3 1.9 0.52 0.91 2.600 N N N N N N N N N N N N N
Zn Zr	<u>N</u> 200	N	N	660 ·	40 50		<u> </u>	·	30
Th	13.3	15.3	12.8	14.5			11.8		11
Cu - AR	6.6	7.8 24	3.5 35	5.8 48	41	5.3	24		25
Pb - AA Zn - AA	81	62	92	390 540	150	7 Z 1 70	230 250		120
Ag-AA	N	N N	N	Ν	N	N	25	-	. 45
1		1 1		I	B 1	•	•	•	

					•				•
Map No.	10	11	12	13.	14	15	16	17	137
Sample No.	OC 2 339	OC 2323	OC 2319	OC 1950	CC28	CC 96	-CC.95	002201	CC
	1	<u> </u>	Ι.	}					
				15					
Fe %	2	2	15	1.5	3.9	5.9	4.0	3.0	. 3
Mg %	3	5	50	5.0	1.1	4.9	2.9	5.0	3.:
Ca %	5	5	10	5	0.13	0.35	0.26	7	<i>o</i> .
Na %	G	G	(-	G	0.46	0.40	0.41	1.6	0.
K %	<u> </u>	<u> </u>			N	2 9	3.6	-	41
Ti %	0.3	0,2	10	0.7	0.12	0.15	0.12	0.3	
Mn	3000	IFDO	5000	3000	1600	2400	2000	G	8100
Az	7.	2	7	1	N	N .	 	-2	L
Λς			Ň	1			λi ·		
Δ11	N	<u>_</u>	/•				<u>, /v</u>		
R		150	150	150				10	
Bo		<u></u>	2000			- <u>/N</u>		1000	
Da. Ro		0.	3000					1000	
				· <i>f</i>	N		<u>N</u>		<u> </u>
BI CU	13	$\sim N_{\rm c}$	20	L	N	I.N.		14	N
	N	<u> </u>	<i>N</i>	N	<u>N</u>	<u>N</u>	<u>N</u>	N	<u> N </u>
	\sim	30	L	N ·	N	N	40	N	N
Cr	_ <u>_</u>	20	300	<u> </u>	40	60	60		-70
Cu	50	.20	200	150	N	N -	N	- 150	N
Ga	<u> 50 </u>	_30	2		_N	<u> N </u>	<u>N</u>		<u> N </u>
La	N	N,	N	N	N	N	N	N	N
Li	N_{-}	_ <u>N</u>	N	<u>N</u>	<u>N</u> .	<u>N</u>	<u> </u>	N	<u>N</u> _
Mo	N	N	N	N	N	N	⁻ 20	N	10
Nb	_N			L	<u>N</u>	<u>N</u>	N	<u> </u>	N
Ni -	50	.20	200	2 <u>0</u> 0	N	50	70	. 150 .	30
P	1500	1500	1000	1000	N	<u>N</u>	<u>N</u>	1000	_N
Pb	100	70	500	150	N	460	N	1000	N ·
- <u>Pd</u>	N	_N	<u> </u>	<u>N</u>	N	<u>N</u>	<u>N</u>	N	<u>N_</u>
Pt	N	N.	N	N	N	- N	N	N,	N.
Sb	N	N_{-}	<u>N</u>	N	N	<u>N</u>	<u>N</u>	N	N
Sc	NI	N	N	N	20	N	30	N	20
Se					N	N	<u>N</u>	·	<u>N_</u>
Sn	\sim	NI	N	N.	N	N	N	N	N
Sr	N	N	N	N	10	30	30	N	20
Ta	N		N	N.	N .	N.	N	N.	N
Те	N	N_	Ň	Ň	N	<u>N</u>	N	<u>N</u>	N
v	150	150	300	150	50	50	70	150	60
W .	N	N	N	N	N	N	N	<u>N</u>	N
Y	N	N	L	L	N	N	80	N	150
Zn	N.	N	N	N	70	810	810		25C
Zr	1	Ĺ	Ľ	L	50	40	100	300	110
		10.0	11.5	14.2				12	
Th		10.0			14	12.5	11.3		
	3.7	3.2	7.4	7.8	4.4	1.5	2.7	4.	يا .و
<u> </u>	25	38	51	50	30	32	32	35	31
Pb T	85	110	100	70	90	370	780	650	Em
Zn	170	290	210	220	140	370	430	1200	54
Aq	N	N	N	N	N	N	N	N	890
			· · .						1
1	1	1.	•	•		-	-	-	

Map No.	10	2.0	21	~ ~ ~	~ ~	0.1	á a		138
		20			23	<u></u>	25	26	
Sample No.	· <u>CC43</u>	<u>CC92</u>	<u>CC91</u>	<u>CC90</u>	<u>CC 88</u>	<u>CC87</u>	<u>CC86</u>	CC71	<u>C(</u>
			•						
Fe %	6.3	6.4	5.3		5.0	. 2.7.	6.5	5.9	6
Mg %	3.2	1.4	0.89		1.3	1.3	1.2	0.43	.
Ca %	0.30	0.33	0.6	0.21	0.33	0.2	0.26	0.02	0.(
Na %	0.36	0.57	P.	0.78	1.0	0.65	0.77	0.67	9
<u> </u>	2.5	1.9	2.8	3.3	2.2	X.4		0 10	
Nn	9500	0.11	330	350	470	320	490	430	591
Az	N	N	N	L	N	<u> </u>	Ň	N	N
As	N	Ň	N	N	N	N	N	_ N	N
Au	N	N	N	N	N	N	N .	N	N
B	N	N	N	120	<u>N</u>	N	<u>N</u>	<u>N</u>	N
Ba	N	N	N	N	N	N	N		N
Be	N	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N · ·</u>	N		N
Bi	N N And And	N		N ·	N	N,		N.	
	<u>N</u>				<u>/\</u>				
Cr.	50	00		20	120	90	100	60	60
Cu	N	- <u>0</u> - <u>0</u>	N	50	N	N	N/	N	N
Ga	N ·	20	40	30	30	N	30	Ň	30
La	N ²	N ⁱ *	N	N	N	N	N	N	N
Li	N	N "	N	N	N	N	ः N	<u>N</u>	N
Mo	N	20 .	10	20	10	N	10	10	N
Nb	<u>N</u>	<u>N</u>	N	N	N	N	<u>N</u>	<u>N</u>	<u>N</u>
Ni -	50	40	N	30	40	50	N	N	N
P	N	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	N	N	<u>N</u>
PD ·	300	N.							
Pr	N		N						N-N-
Sb	N	N	N	N.	N	N	N	N	Ń
Sc	N	20	20	20	20	10	20	10	10
Se	Ň	N	N	<u>N</u>	N	<u>N</u>	N	N	<u>N.</u>
Sn	N	, N	N	N	N	N	N	N	N
Sr	30	30	30	20	30	20	40	20	30
Ta	N	N 1 ²¹ 2- 1	N	N	N		N		N
<u>1e</u>	<u></u>			<u>N</u>	<u>N</u>			50	50
V VV	Λ/ 	40 NI		NI NI		N	N	N.	N
Y	$\frac{1}{N}$	190	110	200	130	130	N	130	T N
Zn	1200	430	80	60 :	100	30	70	30	130
Zr	N	90-	30	60	50	70	30	30	N
							119	10 0	20
'l'h				29		-11.3	1.5	7	
	10.L 24	*' 29	17	15	19	16	17	26	14
Ph	530	170	60	40	40	40	30	60	20
Zn	1000	370	120	90	100	90	.75	75	13
Aa	N	N	N	N	N	N	N	N	. N
C' '	, ,	·		t			1		
}]	1	· •		l	I a second	1	3	1

Alap No. 28 29 30 31 32 33 34 35 Sample No. $CC67$ $CC65$ $CC64$ $CC63$ $CC66$ $CC2334$ $OC2334$ $Occ2334$ $Occ2334$ $Occ2334$ $Occ234$ $Occ2334$ $Occ2334$ <td< th=""><th>139 3 1 0C2 0.3 0.2 2.0 1.6 0.2 2.0 N N 100</th></td<>	139 3 1 0C2 0.3 0.2 2.0 1.6 0.2 2.0 N N 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0C2 0.3 0.2 2.(1.6 0.2 2.(1.6 N 20 N N N 00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3 0.2 2.(1.6 0.0 20 N N N 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3 0.2 2.(1.6 0.0 20 N N N 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 2.(1.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.(1.6 20 N N N 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 0.02 200 N N 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.a 20 N N 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20' N N 100
Min 560 700 350 720 130 360 760 760 Azg N </td <td>N N 100</td>	N N 100
AsNNNNNNAuNNNNNNNAuNNNNNNNBNNNNNNNBaNNNNNNLBaNNNNNLNBeNNNNNNLBiNNNNNNNCdNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNLaNNNNNNNLiNNNNNNNNiNNNNNNNNiNNNNNNNNiNNNNNNNNiNNNNN <td< td=""><td>N 100</td></td<>	N 100
AuNNNNNNNNNBNNNNNNNN 200 BaNNNNNNNLNBeNNNNNNNZ5BiNNNNNNNNNCdNNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCoNNNNNNNCuNNNNNNNCuNNNNNNNCuNNNNNNNCuNNNNNNNLaNNNNNNNLiNNNNNNNNiNNNNNNNNiNNNNNNNNiNNNNNNNPiNNNNNNNNNN	N 100
B N	1 100
Ba N N N N N N N N L N Be N N N N N N N Z 5 Bi N N N N N N N N N Cd N N N N N N N N N Co N N N N N N N N N N Cu N<	
Be N	
DI CdN NN NN NN NN NN NN NCoN 40NN SON SON SON SON NN NN NN NN NCr40 405050 SO5050 FO70 SOL LL LCuN CaN NN NN NN NN NN NN NCa La NoN N NN N NN N N N NN 	
CuNNNNNNNCoNNNNNNNNCr40505050507050LCuNNNNNN2015Ca2020N202020NLaNNNNNLLLiNNNNNNNNoNNNNNNNNbNNNNNNNNiNNNNNNNNiNNNNNNNPiN130NNNNNNPtNNNNNNNNPtNNNNNNNN	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
LaNNNNNNLLLiNNNNNNNNMoNNNNNNNNbNNNNNNNNiNNNNNNLNiNNNNN5020PNNNNNN1000PbN130NNNNNPdNNNNNNPtNNNNNN	
LiNNNNNNMoNNNNNNNNbNNNNNNNNiNNNNNNLNiNNNNNNLPNNNNNN5020PNNNNNN10001000PbN130NNNNNNPdNNNNNNNPtNNNNNNN	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{1}{k!}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
PNNNNN10001000PbN130NNNNNNPdNNNNNNNPtNNNNNNN	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N_{-}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N
Pt N N N N N N N N N	$-\frac{N}{N}$
$ \alpha_{k}\rangle = \langle \overline{\lambda}_{1}\rangle - \langle \overline{\lambda}_{$	N
$\frac{N}{N} = \frac{N}{10} = \frac{N}{10} = \frac{10}{N} = \frac{10}{20} = \frac{10}{N} $	N
Se N N N N N N	
Sn N N N N N N N	
Sr 20 30 30 30 30 20 N N	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{1e}{V} = \frac{N}{N} = N$	N
W N N N N N N N N	N
Y N 90 N N 120 N N N	
2n 50 60 60 70 50 90 N N	-
Zr 20 20 40 20 50 20 L N	
The 26.3 53.5 21.3 26.8 28.3 43 12.8 37.5	57.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.9
	6
Pb 100 100 50 50 60 90 16 39	16
zn 70 80 60 80 50 90 100 67	39
AS N N N N N N N N	

Coleen Map No.	37	38	39	40	41		43	<u> </u>	.40 <u>∠</u>
Sample No.	CCG	0° 1924	CCI	CC2	CC3 (<u>)C2102</u>	<u>CC4</u>	OC 1922	<u>OC 2</u>
Ko G		7.0	•			10		7.0	0.
Mg %	and the second sec	1.5	• •			3		7.0	
Ca %		2.0	·			5	· · · · · · · · · · · · · · · · · · ·	 (. G
Na % K %		1.0	:, · · ·	· · · _	1	<u> </u>	s 1 ; 3		
Ti %		0.15		• •		0.3		G	2.0
<u>Mn</u>	· · · · · · · · · · · · · · · · · · ·	5000	`					5000	
As		Ň		· · · · · · · · · · · · · · · · · · ·	<u> </u>	N	<u> </u>	<u>N</u>	
Au	. Υ	N	S S	, S	s. S	N 150	S .	L	150
B Ba	- 0	 N			2	N		1500	L
Be	1/2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	5		2	
Bi	Inc		. g	2 4	Le la Company	L	R	N ¹	N
Co	X	N	Ŕ	_		30		50	N
Cr		· L 150 ·			0	200	_0	100	10
Ga	2	L	Ó	\sim	2	30 -	2	3	10
La		N	2	24 2 - 63		N	0.55		
Li		<u>N</u>			-	/ <u>\</u>	·e 1	N	N
Nb		L				L		<u>L</u>	<u></u>
Ni		150	2 ¹ · · ·	, 1 ,	2 I ⁴ 1	1500	· · · · ·	1000	10
P Pb	<u>.</u>	70				500	-		
Pd		<u>N</u>				N_{N}		$-\frac{N}{N}$	
Pt Sh		N				N		N	A
Sc		N	3	- 24 - 27 	2 ··· 2*	N			N
Se						N	-	.N	N
Sr		N				<u> </u>		- <u>N</u>	
Ta	.1 1		n ²	3 2	a a a L			N ¹	<u> </u>
V .	· · ·	L			-	200		300	32
<u>W</u>		<u> N </u>				1 <u>150</u> N		$-\frac{N}{N}$	
Y Zn		N		Ta		N		<u>N.</u>	N
Zr		L		, 		1000		- 1000	
Th		12.5	33.5	37.3	24.3	27		12.8	_
Ū	3.4	4.8	5.0	2.9	8.2	9	. 3.1	3.8	4
-Cu Ph	13 50	63	15	40	40	57	40	25	
Zn	52	150	140	80	100	190	86	120	ç
Aa	N	N	N	Ň	N	N	М	Ņ	· · ·
		1	1	ł.	1	l	I] .	1

:

Map No.	47	117	// 0	110	היה	<u> </u>		~ 7	141 r
Sample No.	00 2711	$\frac{17}{CC71}$	0 -	00 2313		<u> </u>	<u> </u>	~ 1947	
	0(2,746		<u> </u>		001140		<u> </u>	\mathcal{O}	
Fe % Mg %	10 5	<u>5.0</u> 1.4	6.9	- <u> </u> - <u> </u>	1.5 0.3	- <u>6,3</u> - 1,2	G 2.2	1.5 3.0	3.4 1.C
Ca %	7	0.13	0.16	3	3.0	2.2	_2.6_	7.0	0.2
K %		1.3	2.5			1.8	3.1	-	_1.3
Ti % ≒ Mn	G 3000	0.13	0.10	0.:0	0.01 500	0.15	0.26	0.2	0 - 12 950
Ag	2	N	N	N	N,	N	N	L.	N
As	N	N	N N		<u>N</u>	<u>N</u>	<u> </u>	<u> </u>	<u>N</u>
B	200	N	N	150	N 150	<u>N</u>	100	150	<u>N</u>
Ba Be	2000	N N	N N	L 2	N 2	N.	N N	· N 2	N N
Bi Cd	15	N N	N	N		N N	N	L	N
Co	N	N	N	N	N	N 50	N	N	N
Cr Cu	150	N	80	10	50	N	N	. 150	N
Ga	100	N	<u>N</u>	29	N N	<u>N</u>	20		N
La Li		N N -	N	N	Ň	<u>N</u>	N	N N	_N
Mo	N	10	N	- N	N	N	20	Ņ	10 N/
Ni	50	<u>N</u> 30	N,	 20	30	N,	90	150	40
P Pb	<u>1500</u>		<u>N</u>	1500	1000	<u>N</u>	N ioo	1000 70	
Pd	Ň	N	N.	N	Ň		N	N.	N_
Pt Sh	N	N N			N	N	N	N N	N- N
Sc	N	20	N	N/	N	N	20	N	20 N
Se Sn		 	/V	N	N	N N	/\ N	.N	N
Sr	<u>N</u>	20	20	N_{-}	<u>N</u>	50	_6.0	N	20
Ta Te	L K	N N	$N_{\rm e} = 1$		N		N	N.	N
v	300	70	N	30	N	N	120	50	80
W v	<u> </u>	N	<u>_N</u>		/V		180		120
Zn .	N	50	140	N:	<u>N</u>	100	140	N	50
Zr	1000	40	<u>N</u>				60	300	+0
Th	9.75	·		11.5	9.5	8.3	10.5	7.3	11.3
U	2.9	1.3 28	5. 1 25	3.3	2.7	43	- 2.1	3.3	24
Pb	33	30	60	48	27	30	50	40	40
Zn	170	110	160	150	120	90	130	170	130
Ag	N	<5	<5	N	N	<5	<5	Ņ	. <5
1]			ł	1	I	I	1	1

Coleen					. .			· 1	42
Map No.	5.5	56	57	CB ·	59	60	61	62	•
Sample No.	00 2316	Cra	.001	<u>CC13</u>	R 427	PP 19/7	PP1970	PP 1972	PR I
					1/				
Fo G	· · ·	117	56	53	<u></u> /	-7	Void	Void	Vc
Nσ %	2	0.91	1.2	3.4		5			
Ca %	1	0.21	0.23	0.081	1 .	7			
Na %	G	G	1.0	0.79		G	1 -	1 1 1 a.	
K %		4.1	3.1	4.6	<u>`</u>				
Ti %	0.3	0.060	0.13	0.15					
<u>Mn</u>	1500	1100	110.0	720		3000			
Ag		N N			• :		· · · · ·	s 1 1 ₁ 1	
AS Au		<u>N/</u>		<u></u>		N		·	·
B	100	N	N	N		300			
Ba	L	N	N	N	·	1000			
Be	2	N	N	N		2		<u> </u>	
Bi	N	N	N,	N	÷ **	N			
Cd		<u>N</u>		<u>N</u>					
Co C-	/N 50	N 20	80	N RO		2,000			
Cu	10	<u></u> 	N	N		150	· · · · · · · · · · · · · · · · · · ·	-	
Ga ti ti	30	Λ.	20	20	27.5	2			· ·
La	L	Ň	N	N		N	C:12:		
Li	N	<u>N</u>	_N	N			÷.		
Mo	N	N	20	10					
Nb-	<u>N</u> .	<u>N</u>	<u>N</u>	<u>N</u>	17.2				
NI P	20	20 NI	50 N	N	1	L.			
·Ph	1500 NI	N N	 	- <u>N</u>		100			
Pd	N	Ň	Ň	Ň		N			
Pt	N	Ň	N.	N		N			
Sb	_N	<u>N</u>	<u> </u>	<u>N</u>	· · · · · · · · · · · · · · · · · · ·	L			-
Sc	N	Ň	30	20		N			
Se									
Sr			30	20	· ·	N			
Ta	Ň	<u></u> N	Ň	N		N	1 1		1
Te	N.	N	Ň	_N		<u>N</u>			
V	200-	N	60	50		200			1
W .	N_{-}	<u> </u>	<u>N</u>	<u>N</u>		1-N		- -	
Y			30		1. 1. 1.		• • • •		
-/.n		_ <u>_</u>	10	70		500	-{		
••••		<u>_/N</u>					=	-	
Th	10.3		23.0	12.5	-				
U	3.0	1.9	2.9	1.4		. . .			
	37	45	Z.6	39					
rb Zn	120	- 40	40	230					
Aa	N	45	<5	<5	1	-	1	1	1.
	i ,				l			·	

COLEON	Col	een
--------	-----	-----

Map No. 64 65 66 67 68 69 70 71 Sample No. CCa 1007 PR 1982 PR 1981 PR 1983 PR 1980 PR 1978 PR 1984 PR 1987 PR Fe % 3.5 5 7 2 7 1 1.5 1	7.19
Sample No. CCa 1007 PR 1982 PR 1981 PR 1983 PR 1980 PR 1978 PR 1984 PR 1987 PR Fe % 3.5 5 7 2 7 1 1.5 1	19
Fe % 3.5 5 7 2 7 1 1.5 1	i i
Fe % 3.5 5 7 2 7 1 1.5 1	1
	5
Mg % 8.6 7 3 7 1 1 0 1	F
$\frac{13}{12}$ $\frac{15}{12}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{12}$ $\frac{15}{16}$ $\frac{15}{16}$	
K% 2.9	-
$Ti \frac{\pi}{5}$ 0.090 0.3 G 0.3 / 0.5 0.2 0.2 0.	5 A
$\frac{\text{Min}}{\text{A1}} = \frac{620}{15} \frac{2000}{15} \frac{500}{15} \frac{5000}{15} \frac{2000}{1000} \frac{500}{50$	$\frac{\alpha}{2}$
As N N N N N N N	<u> </u>
Au N N N N N N N N	J
$\frac{B}{P_{0}} = \frac{N}{100} \frac{300}{50} \frac{300}{200} \frac{200}{150} \frac{150}{150} \frac{100}{100} \frac{100}{150} \frac{150}{100} \frac{100}{100} \frac{150}{150} \frac{100}{100} \frac{100}{150} 100$	50
Be A L L $I.5$ I Z I L	Ž
Bi N N N N N N N	\checkmark
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.
Cu N 100 100 100 100 100 20 20 150 1	5
G_a N 1.5 2 1.5 1.5 1	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
Mo 10 N N L L N L N A	T
Nb $N - L - L - L - L - L - L - L - L - L - $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
Pb N 100 L 100 200 100 70, 200 N	/
I'd N N N N N N N	!
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/
	Ĵ
S_{e} N $ -$	- 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]
$\frac{SO}{N} = \frac{SO}{N} = \frac{N}{N} = \frac{N}{L} = \frac{N}{L} = \frac{1}{N} = \frac{1}{L} = \frac{1}{L} = $	
The N N N N N N N	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Y Y Y N N N N N N N	V
Zn 60 N N N N N N	Δ.
$\frac{1}{2x}$ 40 L 1000 500 500 L L 500 1	\underline{o}
Th 10.5 14.3 9.0 8.0 8.5 6.8 4.8	0
U , Z, I 4, 9 - 6, 8 4, 3 2, 4 2, 2 2, 2, 2, 2	3

ColePr	\sim
--------	--------

Map No.	73	74	. 75	76	77	78	79	80	8
Sample No.	CG 1002	PR 1911	6.6 50	CC 48	CC47	OC 1964	CCUS	CCUU	CC
		· ·	T						
Fe %	4.1	1.5	0.80	1.5	0.75-	0.7.	0.41	2.2	
Mg %	4.8	7	1.8	5.7	1.3	0.3	5.6	2.6	0.
Ca %	8.4	15	0.60	3.0	0.49	0.7	G	4,4	0,
Na %	0.13	G	0.049	0.10	N N	0.4	0.12	0.11	7
<u> </u>	2.4		1.4	2.6	<u>N</u>		_1.5	4	<u> </u>
Ti %	0.087	0.3	0.088	0.10	0.041	0.1	0.080	0.074	0.0
<u> </u>	1200	3000	1 210 N	360	<u> 170 </u>	_150	250	<u>750</u>	
Ag Ag				NI -	N	N		1 /V 1 N/	IV N
Δυ							<u>/v</u>	<u>/\</u>	
·B		200	N	N	N	100	N	N N	
Ba	890	2.000	N.	Ň	N	L	N .	N	N
Ве	N	1,5	Ň	N	N	L	N	Ň.	Ň
Bi	N	N	N	Ň	N	. N	Ν	N	N
Cd	N	N	<u>N</u>	N	N	N	<u>N</u>	<u>N</u>	_N_
Co	N	N	N	N	N	N	N	N	N
Cr	50	- 300	30	60	N	<u> </u>	30	30	_ <u>N_</u>
Cu		60				20		N	Ņ
<u> </u>	<u>N</u>						<u>N</u>	<u>N</u>	
Ti						N.	N ⊨ N		
Mo	10		N	N	<u>N</u>		N		
۸Nb •			N	N	N	L.	Ň	N	N
Ni	40	100	20	40	Ň	150	N	N	N
- P	Ň	Ĺ	<u>N</u>	<u>N</u>	N	Ĺ	_N		N
Pb	N	L	N	N	N	150	N	Ň	N.
-Rd	N	N	<u>N ·</u>	N	<u>N</u>	<u>N</u>	<u>N</u>	\sim	<u>N</u>
Pr .	N		N	N,	N		N	N	N
stSb	<u>N</u>		<u> </u>	<u>N</u>	<u></u>		<u>N</u>		
30 . Sa									
Sn			 	_/ <u>\</u>	N'	- <u></u>		/\ /	
Sr	30	Ň	N.		N	Ň	N	N	N
'l'a	N'	N	N ·	N	N	Ň	N	N	N
Te	N	N	N	<u>N·</u>	N	N	N	N	
v	70 -	200	N	60	N	N	N	N	N,
W	_N	<u>N</u>	_ <u>N</u>	<u>N</u>	<u>N</u>	<u> N </u>	N	<u>N</u>	<u> </u>
Ŷ	70		80	60	N.		110	90	N
Zn	60	N.		60	N	<u> </u>		100	
۲۲.	70		140	60	120	1000	60	170	
Th	-	4.3	4.5	·	4.0			7.8	
U	-	2,9	1.8		1.7	-	-	2.0	. —
Cu	-		9	14	6	7	N	- 8	05
Pb	(·)		30 30	70	40	73	30	50 120	30 30
<u> </u>			- JO - Q	N	N	- 3 T N	N	N	N
eri	-	-	Ĩ	17					ľ

.

Coleen Map No.

Colection					•			14	15
Map No.	82	83	84	85	86	87	- 88	89	90
Sample No.	CC 41	<u>(C 38</u>	<u>C:C 37</u>	CC 36	CC 35	CC 34	CC 33	CC 32_	<u>CC 3</u>
						· · {			
V. C	. 92	12		20	, ט	13	19	20	2.9
r e 70	0.15	1. <u>)</u>	6 0/2		6 27		0 22	0.2%	019
	0.064	0.054	0.063		0,24	0.15	0.20	0.26	
Va 70	0,020	0.010	0.019	0.071		0.035	0.050	0.017	A 12
v c. s	0.036 N	0.042	1 5	N N		15	N N	N	N
Ti %	0 13	018	0.16	0.086	0.15		0.10	0.11	0.12
Mn	170	60	100	320	400	270	360	370	550
Ar	N	L	L	N	N	N	N	. N ·	- <u>N</u>
As	Ň.	Ň	N N	Ň	N	N I	N	$\sim N^{-1}$	Ň
Au	N .	N	N	Ň	N	N	Ν.	N	N
В	Ň	N	N	N	N	N	<u>N</u>	<u>N</u>	<u>.</u> N_
Ba	N	N	N	N	N	N	N	N	N,
Be	N	N	. N	<u>N</u>	<u>N</u>	<u>N</u> .	N	N.	
Bi	N	N	N	N S	N	N	Ņ	Ň	N
Cd	N	<u>N</u>	<u>N</u>	N	N	N	N		
Co	N	Ň	N	N	N	N	N .	N	N
Cr	30	40	40	20	40	40		50	30
Cu	N	N	N	N	N	N	N	I N	N
Ga	<u>N</u>	_N	<u>N</u>	N	<u> </u>	N	<u> </u>		
La	N ·	N.	N	N	N	N			
Li	_N	_N	<u>N</u>	<u> </u>	<u>N</u>	<u>N</u>		1	
Mo	10	20		N	N	N.	N		
1\D \	N	<u>N</u>	<u>N</u>	<u> </u>				20	
INI D	N	20	30		N				N
1 125	_N	_ <u></u>	/V N		<u> </u>	 N	N	N	N·
го . Ра	IN. N	40						N	Ń
P ₁		_/\	/N	N	N	AI	N	N	N
Sb ⁺ ⁺		N	N	ที่	Ň	N.	<u>N</u>	N	N_
Se	10	10	10	N	10	10	io	20	10
Se 1	N	Ň	N	N	N	<u>N</u>	_N	<u> </u>	N_{-}
Sn .	N	Ň	Ň	N	N	[•] N	N	N	N
Sr	N_	<u>N:</u>	<u> N </u>	<u></u>	<u>N</u>	N	10		<u> N </u>
Ta	N	N	-	N	N	N	N	N	
Te		N		<u>N</u>	<u> </u>	N	<u> _N</u>	<u> </u>	
V i	N.	N	N	N	N	N		60	
W	_ <u>N</u>	<u>N</u>	_N	<u> </u>	<u>N</u>	<u>N</u>	<u></u>		
Y	80	120	120	N					
Zn	<u>_N</u>	N	IV					1250	90
7.1	210	420	320_	140	320	60	60	<u></u>	<u></u>
75	5.3	7		6.5		5.8	-	6.8	
U	1,5	1.3		2.4		1.7		1.6	-
Cu	Ň	N	5	ίι	8	7	12	IV	14
РЬ —	N	N	N	30	N	N	N	N	40
Zn	10	10	q	30	40	30	35	35	35
Aq	Ν	N	N	. N	N.	N	N	N	. N
					ł	1.	1	1 ·	1

$\int data$									• -
No. No.					•			. 1	46
Map No.	91	92	93	94		96	97	98	, (
Sample No.	CC 30	CC51	FC 52	CC 54	CC 56	CC57	CC 58	CC59	CC.
· · · · · · · · · · · · · · · · · · ·		· ·						<u>, </u>	
D- 07		0	· ·	$\left \begin{array}{c} a \end{array} \right $	20	ιú	0.45	1.4	1.
re %	6.6			2.6		2 2	0.10	20	2
Nig %		0.13	0,007		1.7 0 72	3, L	0,001	ia	0.
Va %		0.024		0.43	0.45	0.079	0.015	0.091	0 0
K C	25			1/	1 9	1 9	28	1.6	2.
Ti %	0.13		0.079	0.089	0.077	0.080	0.13	0.088	0.
Mn	460	140	150	620	370	370	Ň	410	36
Ag	N	N	N	N	N	N	L	N	N
• As	N :	<u>N – </u>	N	<u> </u>	<u>N</u>	<u>N</u>	N	<u>N</u>	\mathbb{N}
Au	N	N	N	:N	N	N	L	^N N	N
В	N	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u> </u>	<u>N</u>	-N
Ba	N	N.	N	N		N	N		
Be	<u>N</u>		<u>N</u>	<u>N</u>					
	N			N				N N	
		<u>N</u>	<u> </u>	N N	/V	<u></u>	N	- N - N	N
Cr		40	30	40	50	50	60	40	40
Cu	N N	N	N	N	N	N	N	• · N	N
Ga	30	N	N ·	N	N.	N	20	N	N
La	N	N	N	Ň	N	N	270	N	N
Li	Ň	N -	N	N	N	<u>N</u> .	<u>N</u>	<u>N</u>	
Mo	10	N	N	N	N	N	20	N	N
Nb	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	$-\Lambda$
Ni Ni data	30	20	N	20	20	30	50	20	50
P	<u>N</u>	N	1100	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u> N </u>	
ePb apr	N	I N	N					N	
Pd D.	<u>N</u>		<u> </u>		<u> </u>				/¥ A
Sh '			N SQD	N ~		N .	N	N	N
Sc	20		<u></u>	N	N	N	30	N	N
Sa	Ň	N	Ň.	N	N	<u>N</u>	1000	<u>N</u>	N
Sn	N	N	N ·	N	N	N	60	.N	N
Sr	20	N:	<u>N</u>	<u>N</u>	10	10	N		
Ta '	N	N ·	* · · · · · · · · · · · · · · · ·	N	N	N	-		
	<u>N</u>	<u>N</u>		<u> </u>		<u> </u>			-N E
V V	50	40	N	N N					
v v	<u></u>		<u>_/\</u>	70	90	100	190	140	14
$\frac{1}{2} \frac{1}{2n} $	4'0 ···	N		30	40	70	N.	50	81
Zr	90	130	190	40	20	40	100	70	14
				<u>t×</u>	<u></u>				
Th	9.8	8.5		. 11.3	-			5.8	-6
U sava	2,7	1.2	1.4	2.2	2.3		. 017		4.
Cu	20	9	8	15	13	16		10	16
Pb	N	N ZA	N 20	.30	40	40	30	30	30 131
<u></u>	N	N	N	N N	N	N N	- M		t. N
13									

Coleen Map No.				-				•	147
Sample No	100		102	103	104	105	106	107	
	<u>PK 1907</u>	- <u>PR 1906</u>	<u>PR 1902</u>	2 <u> PR 1901</u>	PR1899	PR 1897	PR1896	PR1894	CCa
Fe % Mg %	<u>1.5</u> 5	1 2		3	1.5	3	3	1.6 3.0	6
Ca %	10	2	15	3	7	7.	7	5.0	0.
Na % K %=	0.8	0.8	- 1.2	0.6	6	0.4	0.4	1.2	0.
Ti %	0.5	0.3	0.2	0.5	G.		G	0.3	0.
Mn	1500	700	5000	2000	500	2000	2000	2000	0.0
Az	1.5					2	L		N
AS Au	-N		N	N N	N_{-}		<u>N</u>	<u> </u>	-N
B		150			N	150	150	N	
Ba	N	N	N	1500	1000	2000	2000	150	<u> </u>
Be		L		L	2	2	L	1500 NI	
Bi	N	N	N	N	Ň	N	N	Ň	N
Cd	N	<u>N</u>	N	N	N	N	N:	N	LN.
Co	L	N	N	N	20		N	N	40
Cr	1000	500	200	1000	1500	1500	1000	20	<u>14 C</u>
Cu Ca	50			30	150	300	200	- 30	N.
La	<u> </u>	N	<u>IV</u>	<u> </u>					
Li		N.	L N	N		n/	"≅ n/		
Mo	N	N	N	N	50	1.	N		$\frac{70}{2c}$
Nb · ·	L,	<u>'L_</u>	L	N	Ň	Ň	Ň	Ň	N
Ni	500	500	150	300	700	1000	500	200	190
P	N	- <u>-</u> N	<u> </u>	L	<u> </u>	_L		<u> </u>	
1'D 1 D.1		N N	200 NI	L	70	150	150	L	
Pr			/	<u>N</u>	N	<u>N</u>	<u>N</u>		
Sio '	N	N I	Ň	N	N	n/		N	
Se	N	N	N	N	N	N	N	N	20
Se	-		-	-		-	-	-	N
Sa	N	N	N	N	N	N	N	N	N
Sr.	<u>N</u>	<u> </u>	<u>N</u>	<u>N</u>	<u>N</u>	N	<u>N</u>	<u> </u>	50
D a TCo	N		N	N	N		L	N	N
V	7.00	200	200	<u> </u>		 	/V	<u>_/V</u>	$-N_{-}$
W	N	N	N	N N	N)	100 N/	,50 N	$\frac{1}{n}$	
Y	N	N	N	- <u>-/</u>	\overline{N}	\overline{N}	Ň	N	90
Zn	N'	N	N -	N	Ň	N	N	Ň	60
Zr	500	L	L	1000	G	G	1000	L	60
Jh 17	12,5	34.0	- 18.8-	-16,3	31.5	12,8	37.5-	28.0	
U	507	615	1-6	306	5.8	סיי	3.0	2-8	
		•							
	·								
	-						(•	

	Coleen								۲	18
	Map No.	109	110		110	· .				.40
~	Sample No	PR 100	PRIOR		IIK_		<u>114</u>	//5		/
-	·	<u> </u>	<u>- F K 1891.</u> 	<u>- lla 101</u>	<u>6 TK 1890</u>	<u> </u>	<u> K404</u>	K 40.3	<u>PR1881</u>	
	Fo	7		23	7	15	1/	1/	10	
	Ng %		5	3.9	3	7		<u>·</u>	7	
	Ca %	10	10	0.39	3	15	· ·		7	$\hat{2}$
	Na %	G	G	0.24	1.6	N			1.2	E
	<u> </u>		-	$\frac{12.+}{12}$				-		2
	Mn	2000	1500	0.044	3000	G		T A	G	0.
	Ag	2		L	3	3		و م	7	Ň
	<u>^As</u>	N		<u> </u>	<u>N</u>	N N			N	<u>· </u>
	B		100		N 100	N 150		· •	N 150	
÷	Ba .	L	1	N	N	1500			1500	$\overline{\Lambda}$
+••	Be	L	2	<u>·N</u>	3	2			3	
	Bi Cd	N			N N				N	N
	Co	30	\overline{N}	N	20	20			70	1
•	Cr	500	500	90	100	500	·		500	25
	Cu Cu	150	150	N	150	300		· 1	.500	N
	La	<u> </u>	1,5 N		N .	\overline{N}			-/	<u>3(</u>
	Li	N	N.	N	N	N		ē 1	N	N
	Mo	N	N	10	N	N			Ν.	30
	nb Ni	200	<u> </u>	N	<u> </u>	200			<u> </u>	<u> N</u>
	P	3000	1000		5000	3000			2000	94
	-Pb	70	50	Ň	L	70			200	Ň
	- APd - Pt	N			$\frac{N}{N}$	N N			<u>N</u>	<u> </u>
	*~S5	N	N		N	N D			N	N 59
	eSc	N	N	20	N	N			N	2
•	<u>Se</u>	<u> </u>	— —	<u>N</u>						A
	Sr	n/		N	N	nl .			N	N 12
	Па	N,	N	Ň	N	N	·····	·······	N,	N
	Te		N	_ <u>N</u>	<u> </u>	N_			N	<u> </u>
	AV .	- 300 N	<u>500</u> M	,50 N		.700 NJ			130 N	
	Y	N	N	110	N	N	······································		N	13
·	"Zn "	<u>N</u>	Ň.	30	<u>"N</u>	Ň			Ň	13
	. Zr	200	_ <u></u>	70	<u> </u>	200			200	90
	Th	16.3	19,3	—	12,3	13,3		• -	53.8	_
	.U	-215	3.0		2.6	3.9			3.0	
		·	-						~	37
	Zn	~	_	-					-	N
••	Ag			_						. N
	· ~ .		. [•			

Coleen			· ·	-	•		•	1	49
Map No.	118	119	120	171	122	123	1011	105	
Sample No.	PP 1079	PP 1074	$\cdot CCUC$	PP 1071	PRIOLO	<u> </u>	DDIONT	DPIDI	PP
	<u>IN 1871</u>	<u>IN 1877</u>	((660	INIOPL	161867	((6/26	1 1 1 867	1/066	-/-\
F <i>G</i>	- - ,	Δ7	25		10	26		15	
re % Ma S	7		0.66	· 2	3	- <u>0.</u>			
	· 15	15	0.17	j	5	0.017	15	15	
Na %	G G	G	0.51	1.2-	1.6	0.085	G	G .	
K <i>₹</i> ‰	-		N			N			
Tĩ %	G	0.3	0.14	· 1	1	0.14	0,1	G	-
Mn	5000	2000	700	2000		720	2	2	
Ag Ac	KI -	/∪ ™NI	N K I	<u>ل</u> الأن	N A		N		
Au		/V		· N)	N	N NI	N.	N	
B	100	150	N	300	200	Ň	100	50	15
Ba	N	Ň	N .	N	L	N	\mathbf{N}	1000	3
Be	N	<u> </u>	N	3	N	<u>N</u>	_L	N	
Bi	N	N	N	Ň	N	N			~
Cd	<u>N</u>	<u>N</u>	<u> </u>	<u></u>			50	100	1
Co Cr	200	V 50D	50	200	200	40	2.00	300	ΙĒ
Cu	70	15	 N	50	70	N	150	150	15
Ga'	3	1	Ň	* j.5	3	N_			
La	N	500	N	N	N	N	N	N	
Li	N	N ë	<u>N</u>	N	N	N	<u>N</u>		1
Mo	N	N	10	N		N			
	<u>1</u>	N	<u>N</u>				200	200	- <u>-</u>
op.	2000	1000	30 . N	150	L	N N	3000	3000	20
Pb	L	N	N	L	N	N	N	N	1
-Pd	N	N	N	N	N	<u>N</u>	N	N	<u>/</u>
Pt	N	N,	N	N	N	N			
Sb	N	<u>N.</u>	_N	/V	<u>N</u>	N			Λ I
150 104		N		-	-		-	-	-
Sn		 	_/\ N	N	N	N	N	N,	$\overline{\wedge}$
2Sr	N	Ň	30	N	N	20	N	N	$ \land$
Ta	N	N	N	N	N	N	N,		
Te	N	<u>N</u>	_N	N	<u>N</u>	N_{10}	200	200	1-2
V TU	300 N	200	60 N	100	N	40 N	N	N	1
V V		<u>/\</u>	 	- <u>N</u>	N	N.	N	N	$\overline{\Lambda}$
- Zn	N ⁻⁷	Ň -	110	N	N	70	N	N	1
Zr	500	L	240	300	.500	190	L	300	G
Th	10.0	12.5			31.8		260	2,4	· 4
- U	2.3	-	18		-	24		-	
- <u></u>			N		-	N	-	-	1
Zn	_		90	· • • • • • • • • • • • • • • • • • • •		130		<u> </u>	1
Ag			N		- 1	N	-		 .
- 					Ι.	I	1 .	1	1

Colee	う			•					1	50
Map N	lo.	127	128	129	130	131	132	123	174	
Sample	e No.	PR 1845	PR 1856	PR 1849	PR 1851	PR 1853	Roz	CC 668	R 620	R :
			· .	T			. / . 1			
Fe %		5	15	10.0	1.5	15.0	Void	1.9	1/1	<u> </u>
Mg %		1.5	7	7.0	5.0	7.0		4.7		
Ca %		3	15	15.0	7.0	7.0		3.7_		
Na %		1.6	G.	G	G	, G	•	0.32		
K %		2		02				1.2		
Mn		300	3000	1000	300	1500		220		
Az	<u> </u>	3	3	3	3	2	·	N	·····	
As	÷.	N	N	N	N,	Ň		N	. د	
Au		N.	N	N	N	N		N.		
B		100	100	_50_	150	150		<u>N</u>		
Ba Ba		1500	2000		3000	2000		N		
- Be Ri	1.	2	20	20	20	<u> </u>				
Cd		N	N	N		N				
Co		N	100	5D	N.	70				
Çr		100	1000	150	300	500		50		
Cu		20	150	150	100	150		N	•	
Ga	: 	<u>"L</u>	3	<u> </u>	2	3			·····	
La I:		N						^C N		
Mo			N			/\/		<u>N</u>		
Nb -			1000		IDOD	Ĺ		N		
Ni		150	500	500	200	300		40		
P		2000	3000	1000	2000	2000		N		
Pb			L.	N				N	· .	
2111					<u></u>	$-\frac{N}{N}$	··	<u> </u>		·
Sb		Ň	N.		\mathbb{N}		•			
Sc .		N	N	N	Ň	Ň		N		
Se								Ň		
_Sn		N	N	N	N,	N .		N		
Sr To		N in i	<u></u>	\underline{N}		- <u>N</u>		30	;	
54 2020				Ň						
V	†		300	150	300	300		50		
716		N ·	Ν	N	N	N		Ň		
tΥ		Ņ	N	N		.3		70		•
Zn		N -	Ň	N '	<u>N</u> .	Ň		60	· · · · · · · · · · · · · · · · · · ·	
Zt		<u> </u>	1000	300	<u> </u>			60		
Th		202	00	4.5	14.0	<u>م رر</u>				
·U	-	2,7	2,5	5.0	3.3	3,4				
Cu '	·	• <u>-</u>	_	<u>.</u>	····			22 .		
Pb								N		
<u></u>								100		
Hg		-	·	-		-				•
. ÷	1	• •	÷ [1	e i de la d			1	-	

-

Coleen			•,						151
Map No.	. .			• .					
	136	137	138	139	140		142	143	/
Sample No.	R377	PR 1841-	PR 1839	PR 1838	P 582A	PRIAZZ	PRIRZ	PRIDRU	RL
		· · ·				- <u></u>	1.1.10.26	<u>/////////////////////////////////////</u>	
	1/	_			11	, 7		2	
re %	<u>'''</u>	<u> </u>	2	<u> </u>	·····		2		
Mg %		2		2	•	· +	ر. ح .	ר. ד	
Ca %		2	0::0	<u>, r</u>		15		<i>F</i>	
Na %		0.8	0.8	G		1.6	• ا	بل ک	
<u> </u>				05			<u> </u>		
11.0		300	1000	500		300	300	2000	
		<u></u> z	2						
	1 .	N and	N	N	I	, N	N N		•
A11		N		N		N	N		
R		150	150	150		50	70	150	
Ba		N	N	2000		L		N	
Be	•	- 3	N	2		L	L	Ň	
Bi	1	20	'N	20	7 ²	N	' ZO '	N	
Cd		N N	N	N		N	N	N	
Co		N	N	50		N	N	N	
Cr		100	300	300		100	500	100	
Cu		150	15	50		15	20	. 20	•
Ga '	• • •	, ,	:5	Ť.5	3.	0.5			•
La		N	N	N		N	and N	N	
Li		N ,	N	N		N	N N	N	
Mo		N	N	Я		N	N	N	
Nb ·	· · · ·	L'	L	. L	-	L	<u>ل</u>	<u> </u>	
Ni	1	150	150	200		10	150	100	
°P		1000	<u> N </u>	2000		2000	2000	N	
SP6 -		N	N	L		N		N	
Pd		<u>N</u>	<u>N</u>	<u>N</u>		<u>N</u>		<u> </u>	·
Pt -		N	N	N	s ⁷			N	
Sb		<u></u>		<u>N</u>				<u> </u>	
Se -		N		N		N _			
<u>Se</u>				N		<u>N</u>	N		
C.				N		N	N	· N	
site in the second second second second second second second second second second second second second second s		N	NI NI	N	j ¹	N	N	N	
		N	N	N N		N	N	N	
N		1.50	300	200		30	300	200	
W.		N	N	N		N	N	N	
Y		N	N			N	N	Ņ	
"Zn"	2 2 7	N	N 1	N	Ŧ	Ň	N	N	l
Zs		200	500	G		G	1000	200	
Th		36.5				8,5	17.5		
U	i	2,3				2,1	. 4.2		-
	2. t.		*	· 7	Ţ			•	
	· · .						·		
					i.			· ·	
	.				с ¹ г.		ļ		
. 1	. 1	. 1		- 1		ł.	1	l ·	1

			•						
Coleen	•	1		• •					52
Map No.	1110			-	•				
• • • • • • • • • • • • • • • • • • • •	[43	146	147	148	149	150	151	152	
Sample No.	PRI833	PR1831	PRi828	TBSY	TB53	TR 56	TR58	PR 1826	T
·]			1				<u> </u>		[
		5		2	7	,1			
re %		5		3	3		3	<u></u>	>
Mg %	. 5	5		6	Ø	7	4	3	
Ca %	10	15	15	2	2	_3	2		
Na %	G	G	6	Na	N	N		1:6	
<u> </u>						4		~	
Ti %	G	0,3		0.5	N	0.5	0.5	0.07	1
Mn	2000	5000	G	400	500	200	400	1000	6
Ag	1	3	3	N	N		\mathcal{N}	· L	/
As	'N	N	N	\mathcal{N}	<u>N</u>		N	N	
Au	N	N		N	N	N	N.	N	j
В		300	200	90	90	100	90	150	
Ba	2000	1500		300	300	500	400	N	3
Be	N	3	5	\mathcal{N}	<u>N</u>	\mathcal{N}	N_{-}		 .
Bi	N	· L	30	N,	N	N	N	\mathcal{N}	
Cd	N	<u>N</u>	N_{-}	<u>N</u>	<u>N</u>	L	\mathbb{N}	N	L
Co	N	30	30	N.	N	N	N	N	. 1
Cr	500	300	300		<u>N</u>	20	10	_70	
Cu	150	200	500	N	N	L	L	. 70	
Ga	1	2		<u>`N</u>	<u>N</u>	<u>N</u>	<u>N</u>		
La	N	L	N	\mathcal{N}	N	N ·	$\sim N_{\rm e}$	N	1
Li	N	N_{z}	\overline{N}	N	<u>N</u>		N	N	
Nio	N	30	N	N	N	N	N	\sim	1
Nb•	N.	Ĺ.	L	N	N	L	Ň.	L	
Ni	Ż∞°	200	3:00	Ň	Ň	Ĺ	L	70	
Р	2000	2000	2.000	<u>N</u>	<u>N</u>	<u>N</u>	N	2000	· · ·
Pb	N.	150	500	N	Ν	N	N	50	/
:Pd	Ň	\sim	N	N	_N	N	\mathbb{N}	N	
Pt	N	N	N	N	N	N	N	N	1
infsb i	N	<u>N'</u>	<u> </u>	_N	<u>N</u>	<u> </u>	Ľ	N	
"Sc	N	•N	N N	N	N.	N	N		/ /
Se				_ <u>N</u>	_N	N	<u></u>		
· -Sn	N	N,	N	N	N	N	\mathcal{N}		
Sr	<u>N</u>	<u>N</u>	N	20	10	10	20	<u>N</u>	2
di Ma	N	N	N	N	Ň	N	N		♪
lie	N	N	N	N	<u>N</u>	<u> </u>			^
N V	300	500	300	$\sim N$	N	\mathcal{N}^{+}	N	<i>L</i> ,	
W	<u>N</u>	<u> </u>		_N	_ <u>N</u>	N_{-}	N		<u></u>
TY I	N	N	N	N	Ņ	N_{\perp}		N	./
<u>Zn</u>	N	700			10	30	10	\underline{N}	[]
Zr	500	500	1000	N	N	N_{\perp}	N		<u> </u>
Th	9.5	13.5	10.8					9.8	
U	2.9	5.7	3.5	-	-	-	-	z.3	
1 I		•		er 🕈 oon it faar e	, t , 		1 J	· · · · ·	
	. 1								
								1	
-		. · · · · · · · · · · · · · · · · · · ·							1
-	•	•	•	-					

Coleen Map No.	154	155	156		158	159			153
Sample No.	PR 1825	PRIAZY	PRISK	R78	R I	R 79	<u>190</u>		
Fe %	Void	Void	1.5	1/			1/	<u> </u>	
Ca %			5						
Na % K %	3		1.6				·:		
Ti % Mn			0.3 500						
Ag As'	2.	23		2 2 - 1 2 - 1					:
Au -B		-	N 100		· · · ·				
- Ba Be			N 1.5						
Bi Cd	:		N N						
Co Cr			N 100						
'Cu Ga'	· · · · ·		50 'N		33				
La _Li			N						
Mo Nb		¢	N				-		
Ni P		<u>-</u>	150			••••••••••••••••••••••••••••••••••••••	···	·	·
-Pb .Pd	·	· · · · ·	N				······	· · · ·	•
Pt Sb		- :		7					<u>`</u>
=Sc Se			-N		··				
Sn Sr					·		······································	•	
Ta Te		·····	NN						
V W			L						
Y Zn	1	<u>-</u>	N	22	5				•
Zr			L	-			·		
Th									
U .			-	;	1		•		
									-

Coleen								1	54
Map No.	164	165	166	117			170		15
Sample No.	<u> </u>	 Rea	Ř84	RRS	R 86	CR3005	Plau		
	1/						<u> </u>		
Fe %	· · · · · · · · · · · · · · · · · · ·		•ــــــــــــــــــــــــــــــــــــ	<u></u>		10			4
Mg %					·	7.3			• 3
Nz %-			<u>.</u>		·	5.2	·····		$-\frac{t}{N}$
K %						1.3	·		4
Ti % · Ma						0.29			0.0
Ag		1			.:	<u> </u>	·		
As	}					N		·	<u>N</u> _
Au B								•	
Ba					· · ·	N			400
Be			· · ·			<u>N.</u>	<u> </u>		N
Cd				-					N.
Со					· ·	40			N
Cr Cu				· ·		120 N			
Ga	• •	÷	7		1	N		3	N
La						N	ne Br		
Mo		ž			·	20			
Nb				· , 	· · · · · · · · · · · · · · · · · · ·	N	·		<u> L </u>
Ni P						70	·		
Pb	<u> </u>					N			Ň
Pd Pr				· · · · · · · · · · · · · · · · · · ·		<u>N</u>			<u>N_</u>
Sb	\$		3	;	2			1	
Sc					-	30			N
Se Sn						<u>N</u>			<u> -</u>
Sr						50			40
Ta Te									
V				· · · ·	·	120			
W	<u>.</u>		1	2		<u>N</u>			<u> </u>
Zn		1 1 1	T 1	,	5 2 3 5	140	1 1	1	_ <u>N_</u>
Zr						50			<u> </u>
Th						-			
Ŭ,	· • •		:	:			•		
	•								
							· ·	·	

Coleen								. 1	55
Map No.	172	174	175	17/	·	12.0	0		
Sample No.			-173	176	-1++		<u> </u>	/ 80	
	<u> 1851.</u> I	11347	<u>• TB 44,</u> 1	1845	<u>K185</u>	<u>R178</u>	RI	<u>TB4/</u>	B
-			-		1/	1/	. 1/		
Fe %	5	5	5					4	
Mg %	20	5	5	2			-	2	
Na %	<u> </u>	<u>0.3</u>		<u> </u>				0.3	
K 3%	2	5	3	マイ				·/V · ~	
Ti %	N	0.9	0.5	· 0. 6				0.7	
Mn	200	2000	600	300		-		1000	
Ag	N	—	N	N				N	
As '	N	N	N	N	: . 			<u> N </u>	
Au	N	N	N	N			· · .	N	
B	100	100	100	90_	<u></u>			90	ļ
Ba	300	5.000	20000	40				400	
Bi	<u>N</u>			<u> </u>			1.5 x .		
Cd	N KI						·		
Co		N	Ň	N				\overline{N}	
Cr	_N	. 70	60	20				20	
Cu	N	L	· L	L				·L	
Ga	Ň.	<u> </u>	Ň	<u> N </u>	ı' 	·	· · · · · · · · · · · · · · · · · · ·	N,	
La	N	N	N	N		· · ·	11.1 1		
	_ <u>N</u>	100					; 		
MO	Ŋ	N		N				10	
Ni -	_ <u>N</u>	<u></u>	<u>N</u>	<u>/</u> Y		··· •··•			
P									
Ръ	-N	 	Ň	N				N	
Pd	Ň	Ň	N	N				Ň	
Pt	N	N	N	N				N	
So	<u>Ľ</u>		<u> </u>	<u> </u>				<u> </u>	
Sc	N.	N	N I	N		•		\mathcal{N}	
53	$-\underline{N}$	N	<u>N</u>	<u>N</u>				<u>_</u>	
Sn Sr		L						1	
Ta		<u> </u>		<u> </u>				\overline{N}	
He .	N		N	N				Λ/	
V	N	L	N	N				Ñ	
·W	<u>N</u>	N	N	N				<u> </u>	··
· Y	N.	N	Ņ	N	Ţ			N	
Zn	_N						·		·
Zr	<u>N</u>	<u></u>	<u></u>	<u></u>			<u> </u>	<u></u>	
Th	_	_						-	
U									
T I	2 [°] - 1	T		2 [°]		х — I	· · · ·		
						•			ŀ
	. 1	·	·]					l .	l

r 1 ·	
Colect	
Map No.	-
-	

Map No.									
	182	1.83	184	185	186	187	188	189	1
Sample No		· 0 ~		10 500				<i>I</i> <u>/</u> -/	
	<u>CK574</u>	\$ 200	<u></u>	<u>, CR 532</u>	<u>CR 531</u>	<u>CR23</u>	<u>CR24</u>	<u>CR25</u>	<u>CR </u>
				I	}	-			
Vo C		<u>]</u> .			= 0	21	1.2	57	5
re o				6.4_				- 2 2	2
Nig %	1.2		1	1.4	1.2	4.6	1.9	1.4	2.
Ca %	0.25		l	<u> </u>	0.24	0.12	0.16	0.26	N
Na %	0.55	2 4 19 1		0.69	G	0.59	0.76	G	0.3
K %	N			1.6	1.4	4.7	1.5	N	1.2
Ti %	0.15			0.16	0.21	0.13	0.18	0.16	0.1
Mn	520			1300	1500	740	1500	1200	121
Δ σ				N	1000		<u></u>	NI NI	- î
Λe	KI -	:		N NI	NI -				
<u></u>			·····		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Au	N	-		N	N	N	N.	N	
<u>B</u>	<u> </u>	· · · ·		130	<u> </u>	<u> </u>	120	<u> </u>	<u></u>
Ba	N	1.1		N	N	IN		N	
Be	<u>N</u>				N	N.	N	N	N
Bi	N			N	N	N	460	420	N
Cd	1 N			N	N	N	N	N	N
Co				N	ΛΙ	<u></u>	N	N	N
Cr	50	1		60	100	TO	60	70	5r
Cu				NI	240	NI NI			
Ca			;	N .				N	
	<u>N</u>			<u>N</u>	<u>-IN</u>		<u> </u>	<u> N </u>	
La	N			N		230	$\sim N$		N
Li	<u>N</u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	N
Mo	I N			10	N	20	N	N	. N ∣
Nb -	N			N	N	N	.N	N	I NI
Ni	20	3.		5'0	50	40.	50	40	50
P	N				920			820	N.
Ph				N	490	N	1 1	NI -	N/
Pd				N					
Dr.	1				<u>/\</u>				
							N	N	
	<u></u>						N		
··· Se	N			20	N.	30	N.		
Se	N			<u> </u>	<u> N </u>	N	<u> </u>	<u> </u>	$-N_{-}$
Sn	N			N	N	N	N		N.
Sr	20			10	40	20	30	<u> 40 </u>	<u> </u>
Ta	N	:	2 .	N	N	N	N	N	N
í.Te	N			N	N	N		_N	<u>N</u>
V	$\overline{\mathcal{N}}$			60	50	80	40	50	40
· W				N	N	N	A.		Ń.
Y	80			110	90	130	<u></u>	N	100
7.1	50 -	L L		/in	120	30		100	50
				<u> </u>					
Z.I	100			50	<u></u>	140	<u>N</u>	20	30
				22	,72			102	123
Th					12.7	12		10.3	12.2
Ŭ	10	t _	,	75	0,1	1.5	1.5	1 1.1	0.0 EA
<u> </u>	10			<u> </u>	40	24	- 20	26	<u>+</u> T
РЪ. 7 ж	250			40	40	50	40	60 92	30
	+0			89	<u> </u>	40			- 40
49	43			N			N		
		·						I .	
	1.1	I				ł	1	I	1

•

Coleer Map No.				-	•			J	157
Sample No	191				195	196	/97	198	190
	<u>- CR 542</u>	<u>CR 540</u>	CRS44	L. C. R 580	CC 658	CC. 656	CC 655	<u>CC654</u>	<u>CC</u>
Fe % Mg % Ca %	5.5 1.2 N	3.3	2.0	3.4 1.4 0.060	<u>5.0</u> 1.2 0.57	2.6 2.6 0.39	2,5 1.3 0.32	3.9 2.5 0.49	4. 3. 0.5
K %-	2.0	N	1.4	11	4	0.85	0.63	9	
Ti %	0.16	0.13	0.13	0.14	0.17	0.15	0.11	0.16	0.1
Mn -	1000	710	380	2000	890	420	320	530	63
As As					N		N		N N
Au	N	N	Ň	N N	N	/ <u>N</u>	/\	<u>N</u>	<u>/V</u>
·B	<u>N</u>	N	<u></u>	<u>N</u>	N	N.	N	N	
Be	N	N	N	N	N		N	N	N
Bi '	1-X		N						N
Cd	<u> </u>	N	N	<u>N</u>	N	N	N		
Co	N	N	N	N	N	N	N	N	
Cu	50	<u>30</u>	50 N	50 N	80	80	<u> </u>	110	80
Ga	N.	N	N.	N N		N		30	
La	N	N	N	N.	N	N	N	N	$\frac{1}{N}$
Li	<u>N</u>	<u>N</u>	N	<u>N</u>	<u>N</u>	<u>N</u>	" N	N	N
.810 Nh	N	N		N	10	20	10	20	10
Ni	30	$\frac{1}{N}$	20	<u> N </u>		N	<u></u>		N
P	N	N	Ň	N	N	N	N	N	
Pb	N	N	N	N	N	N	N	· N	\overline{N}
1'd Pr		N_{N}		\mathbb{N}	<u></u>	<u>N</u>	_ <u>N</u>	<u>N</u>	<u>N</u>
Sb	N in		N						
Sc	N	10	N	Ň	N	40	20	50	20
Sa	N	<u> </u>	<u>N'</u>	N	<u>N</u>	<u>N</u>	<u>N</u>	_ <u>N</u>	_N
50 Sr			N 20	N 20	N	N	N		N
Ta	<u>N</u>	N	$\frac{20}{N}$	<u></u>	 		- <u>70</u> NI	<u> </u>	<u>60</u>
Te	N	N	<u> N </u>	Ň	· / ·	_ <u>N</u>	N	N	Ň_
V ur	N	N	N	N	50	60	- 50	80	50
······································	- <u>N</u> 70	<u>N</u>	<u> </u>	<u>N</u>	_N		_/V	_ <u>N</u>	<u>N</u>
Zn ² - 12	70	N	30	00 70	100	40	30	,130	40
Ζr.	N	110	70 -	70	40	400	130	670	570
[b	112	12	12.2		10.5	. <u> </u>	17 E	217	
····	0.8	1.6	1.7		-10.0	2.4	2.1	2.2	-11.5
່ ບ	27	31	50	32	27	17	19	2.2	
c	N	30	N	40	N	N	N	N	N
	<u> </u>	<u>+0</u>	+0 N1	100 N	<u>71</u> N1	<u>61</u>	75 N	72 NI	74 N
5			17						. / N

Coleen Map No.

	Coleen	N			•	•			1	58
	alap No.	200	201	202	203	204	205	206	207	ź
	Sample No.	R406A	CC 649	CC 645	·CC 646	CC 641	OC 2249	CC 633	B 177	CS.
			· ·							
	Fe %	11	1.0	5.9	3.7	3.4	7	5.7	<u> </u>	
	Mg %		0.13	1.1	1.0	1.6	3	1.0		
	Ca %		0.1	0.30	0.24	0.16	5.	0.47		
	Na %		G	G	G	0.93	6	1.0		
	<u> </u>	· · · · ·	3.8	3.2	6.5	2.3	<u> </u>	2.0		
	11 % Mn		0.013	0.14	270	0.15	3000	2300	•	
·	AT		N	N	<u> </u>	N	3	N		
:	As '	2 ¹ 1	λT		· · · · · · · · · · · · · · · · · · ·	Ň.	N	N	1 1 1	:
	Au		N.	N	N	N	N	N .		
	B		<u>N</u>	100		<u></u>	150	<u> N </u>		
	•Ba		N	N	N	N	1500			
	B:	· · · · · · · · · · · · · · · · · · ·	<u> </u>	N HILO	N N				· · ·	
	Cd						N			
-	Cu		N	N	N	N	20	N		
	.Cr		N	60	30	60	200	80		<u> </u>
	::Cu		N	N	N	N	200	N		
· · ·	Ga		<u> </u>		<u>N</u>	<u> N </u>	70			•
	La							e i ∧l		
	"Мо		<u></u>	<u></u>	/Υ /	20		N		
	Nb		Ň	N	Ň	N	Ĺ	N		
	Ni	· · · · · · · · · · · · · · · · · · ·	Ň	50	N	40	300	50		
	P		-N	N	N	_N	1000	N		
-	-Pb	·.	N					N		
	Pd Pp.					<u>N</u>				
· · ·	Sh .	1		530				520		1
	Sc		N	10	Ň	20	N	N		
	Se		N	N/	N	<u>N</u>		<u>N</u>	ļ. <u></u>	
	Sn		N	N	$\sim N$	N		N	•	
	Sc		20	<u> 40 </u>	<u>_30</u>	20	$\frac{1}{k}$	<u>40</u>		· -·
	Ta To		N N!			. IN . N		N		
4	V		N	40	N	80	200	50]
-	W		N	_ N	<u>N</u>	<u>N_</u>	N	<u>N</u>		
	<u>्र y</u>	-	N	Ņ	Ņ	130	$\cdot N$	90		
	<u>Zn</u>	• · · · · · · · · · · · · · · · · · · ·	N'	180	60	70		80		f
	7.r		N	30	<u> </u>	150	1000	50		
	Th		10.8		_	·	14.3	10		
,	U :		1.2			-	21	. 2		
	Cu '	. :	5	28	14	30	18	22	· · · · · · · · · · · · · · · · · · ·	· · · · ·
	Pb		N	40	N	N	15	N		1
	Zn		19	110	62	86	78	81		<u> </u>
	Ag		N	N	N	N		N	•	ŀ

Coleen					•			1	59
Map No.	209	210	211	212	213	214	215	216	2
Sample No-C	S2101	OC 2245	B-202A	OC 2247	B181	B 203	CC 626	<u>C c 84</u>	B21
			1/		1/	1/			1
Fe %	· · · · · · · ·	7		5			2.5	0.91	
Mg %		3		3			0.29	0.29	
Na %		G.		G	7. ·		G	G	
K % -	•	-	· · · · · · · · · · · · · · · · · · ·				4.7	N	
Ti %		0.2		2000		•	0.080	0.15	
Mn Ar		2.		D.I.		·	N	 N	
As As	2 1	N	يغد در	N	:		N	_N	
Au	10	N		N			N	N,	
B	<u> </u>	100	· `	2060	·····			N N	
Ba Ba	19	7		5			Ň	N.	
Bi	<u>v</u>	L	:	L	3		N	N	
Cd .	0	N		N			<u>N</u>	<u>N</u>	
Со		N		70			N	100 ···	
Cr		10		70			N	·) 0	1
Ga ¹	No.	10	at a th	35°	3 ·		_30	20	
La	· · · · · · · · · · · · · · · · · · ·	N	•	N			a:N	N	
. Li		N		 			<u>N</u>	<u>N</u>	
. Mo.				L I			N		
		100		150			20	N	
Р		L		<u>N</u>			<u>N</u>	N	
lPb	•	100						420 N/	
-Fd				N			1-N		· · · · · · · · · · · · · · · · · · ·
		N	· 3 ·	N	; ¹		<u>N</u>	N	
Sc		N		N			30	20	
Se .		-	, 			-		N	
Sn Sr				N			30	40	
Ta y	· · · · · · · · · · · · · · · · · · ·		T	N			N	N	
Te		N	. <u></u>	N		-	<u></u>	N	
V		300 N		N			N	NI NI	
AV N		N		N			140	N	-
Zn	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	s af Lat i	N.	1	· · ·		100	
Zr		L		700			90	30	
		44.5		33.5			120	18.8	
Th Th	1.3	13					. 14.8	12.7	-
Cu'	26		-	, ,	: /		7	18	
Pb	N	-		-	-		50	50	
Zn	67			-			<u>58</u>	1.100	- <u> </u> .
Ag		1 -	ł	-	1	1		N	1

	Map No.	218	219	220	221	222	223	224	225	
	Sample No.	· CC 85	CC 81	CC 1/0	. CC 80	CC 109	CC 79	CC 108	CC 78	С
							-			
	Fe %	6.0	5.2	3.0	4.7	1.3	6,5	4.0	5.9	0.
	Mg %	1.1	0.56	1.4	i. 0	0.22	0.93	1.7	0.80	0.
	Ca %	0.016	0.19	0.10	0.16	0.071	0.21	0.22	0.20	0.(
	Na %	0.73	G	0.80	G	G -	0.65	0.75	G)
·	<u> </u>	2.3	3.2	4.7	2.2	5.8	1.2	3.1	1.5	-4
	Mn ⁻	0.15	0.24	0.10	380	140	210	0.12 740	0.11	a a
	Ag	N	L			N	L	L	<u></u>	<u></u> Λ
	As	N 1	Ň	N	Ň.	N	N	. N	Ň	
	Au	N	L	N	N	N	N	N.	N	Ā
	<u>B</u>	<u>N</u>	<u>N</u>	N_{N}	<u>N</u>	<u>N</u>	N	_ <u>N</u>	<u>N</u>	<u> </u>
	Ba	N	N		N	N		N	N	
	Bi :									$\overline{\Lambda}$
	Cd					N			\overline{N}	
• • •	Co	N	N	N	N	N	N	N	Ň	$\overline{\wedge}$
- -	Cr	100	130	80	66	20	80	60	50	<u> </u>
	Cu	N	N	N	Ņ	N	80	N	- Ņ -	N
_	Ga	30	40	<u>N</u>	20		20	<u>N</u>		
					N					
	Mo		20				10	<u> </u>		
	Nb -	N				N	N.	N	Ň	N
	Ñi 🦾	N	70	30	20	Ň	N	50	Ň	N
	P	_N	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	N	<u>N</u>	<u>N</u>	N
	Pb	N.	N.	N	N	N	N,		460	N
	Pr		<u>N</u>				[<u>N</u>			$-\lambda$
	-Sb			N N				N	N KJ	
	Sc	20	30	30	10	N	10	30	10	Ñ
	-Se	Ñ	<u>N</u>	N	N	<u>N</u>	N	<u>N</u>	<u></u>	_ <u></u>
	Sn	N	N	N	N	N	N	N	N	N
	Sr	30	30	20	20	<u> </u>	30	30	<u> </u>	
	Me					· N			N	N
• •• •	V	90	110	60	50		70	60	50	N
	W	Ň	N	Ň	N	<u> </u>	N	_N	N	
_	Y	N	180	140	100	N	N	110	70	N
	Zn	50	N	N	40	_ <u>Ň</u>	80	N	40	
	Zr	<u></u>	+0	_70	30	<u>_N</u>	40	120	30	<u>N</u>
	Th	11.8	36.5	-	23.3	-	12.3	-	20	5.
	U	3.3	2.9	2.5	1.8		1.6	.4.2	11.1	1.5
	Cu '	22	15	12 .	11	11	12	19	16	6
	Pb	30	35	430	40	30	N	40	60	
-				52	60	1+	<u> </u>	62	00	10
	Hg	174	2	40	2		×1.	45	. N	·
	1	1	 	. 1	-		8	1	1	1 1.

.

. .

•

Colcon .

Coleen					•			·]	.61
Map No.	222	220	229	230	271	222	077	0711	,
Samula No		<u> </u>	- 261	230	4.51	<u> </u>	~35	239	
	CC72	<u>CC73</u>	<u>CC107</u>	<u>CC105</u>	<u>CC 62</u>	CC100	<u>CC 104</u>	CC.101	<u></u>
							•		
Fe %	5.9	5.0	4.4	5.0	2.0	_1.3	1.5	1.7	4-
Mg %	0.72	0.82	0.85	0.85	1.1	0.64	0.59	0,30	1.
Ca %	0.27	0.14	0.21	0.31	0.30	0.25	0.20	0.19	0
Na %	0.70	0.85	0.88	G'	G	G	G	G	6
K %	1.2	2.0	2.0	2.8	4.8	5.8	6.2	3.4	3
11%	0.12	0.10	0.14	0.16	0.10	0.060	0.05.5	0.022	0. • '
NIN A T	880	470 N	460	1000	460	<u> </u>	20	<u> </u>	<u>54</u>
Λe ···		N/	/ N 				20 1	. /∨ ∧/	
	 	N		N			/\/ 		
В	N	100		N	130	150	N.	·	
Ba	Ň	N	Ň	Ň	N	N	N	NI	N
Be	N	Ň	N	Ň	N	N.	Ń	N.	Ň
Bi	N	N	N	N	Ň	N	N	N	N
Cd	Ň	N	N	<u>N</u>	N	<u>N</u>	N	N	Ň
Co	N	N	N	N	N	N	N	N,	N.
Cr	70	70	70	70	50	30	40	<u>N</u>	<u> 8c</u>
Cu	N	N	N	N	Ņ	N	N	$\cdot N$	N
Ca '	<u>N</u>		20	Ń	20_	_20	<u>N</u>	N	20
La	N	N	N		N		- 0 N 		
.1.1	<u> </u>	<u>N</u>	<u></u>	<u> </u>	<u></u>	<u>N</u>	<u>"N</u>	<u>/N</u>	
NIO NIN	N	10					N		
ND -		<u>N</u>	 	<u>_/\</u>	/ <u>\</u>	20	N_{1}	<u> </u>	<u>IN</u>
·p	JN NI		30 M	40 N		N		N	
Pb	/\/	N	 	710	 		N	90	Ň
Pd		N/	Ň	λι ·	N	N	NI I	N	N
Pt	N	N	N	N	\overline{N}	N	N	N	N
Sb	N	N	<u>_N</u>	N	N_	<u>N</u>	<u> </u>	<u>N</u>	N
Sc	N	10	N	N	N	10	10	N	30
Se	N	<u>N</u>	<u>N'</u>	<u>N</u>		<u>N</u>	<u> </u>	<u> </u>	<u>N</u>
Sh	N	N	N	N	N	N	N		N
5r	30		<u> 40 </u>	40			_20	<u> </u>	-40
l'a m	N	N	\mathcal{N}	$\sim N$. N			Ň	
10		- 10	/V	/V				N	70
W	N	N	N	70 NI				N	N
Y	<u></u>	_/V	<u></u>	<u>/\</u>		120	110	N	9.0
Zn ¹	90	70	80	50	40	N	' N'	20	50
Zr	30	 	20	NI .	150	NJ		N	110
Th		26.3	17.5	41			21.5		20.3
U	2.3	3.2	3.4	6.6			2.4	1.4	3.6
	23	13	16 .	12	10	8	<u> </u>	13	
76 /	N	50,	70	50 85	30	30	40	30	40
Ac	NI		15	ری ۲	NI NI		15	41	
ניז	17	12	~5	\sim	1 17		3	45	· ~>
I	· · · · · · · · · · · · · · · · · · ·		1						

Map No.	236	22	7 220			•			162
Sample N	NO. CC 1- 2	<u> </u>	$\frac{\tau}{238}$		$\frac{1}{24_{t}}$	241	242	2 243	2
	<u> </u>	<u> </u>	$\frac{cc}{r}$	t cc 7	S CC 7	6 B217	CC R2	OC 242	27 00
Fe % Mg % Ca %	 0.22 	2 1.5 3	5.2 0.89 0.052	2.7 0.73 0.17	2_8 0.86	1/	1.3 0.53	0.7	1
Na %		Ģ	1.0	G	G	•••	G	0.8	
<u> </u>	4.9		2.3	2.7	4.6		5.2	-	-
Mn .	0.038	3000	0.046	0.071	0.12		0.059	0.01	42
Az		1	$-\frac{1100}{N}$	<u>460</u> N	380		620	70	200
As	N	N	N m					N	5
Au	N	N	N	N			- <u>-/N</u>	N	
B. De	-N	70	<u> </u>	N	N		N	. 100	150
Da Re		2		N	N		N ·	· N	N
Bi		. 20			<u> </u>		I.N	7	7
Cd		N					N		L
Co	N	N	N	N	1 <u>_/v</u>				
Cr	<u> </u>	500	20	20	60		30	N	70(
Cu	N	100	60	N	N		N	. 10	15
La		1.5 N.	30	_2:0		-	<u>N</u> .	<u> </u>	2
Li	N	N					. c:•N	N-	N-
Mo	N	N	N N	<u>N</u>	- <u>N</u>				<u>N</u>
Nb	N	150	N	N	N				N
Ni -	N	150	N	N	30	· · · · · · · · · · · · · · · · · · ·	\overline{N}	20	150
P		N	<u>N</u>	<u>N</u>	<u>N</u>		N	L	150
Pđ		N			N		N	N	1.00
Pt		N	N				<u>N</u>	N	<u>N</u>
Sb	N	N	N	\overline{N}	Ň		N^{1}		N
Sc	N	N	N	N	10	· · · · · · · · · · · · · · · · · · ·	N N	·N	N
<u>Sa</u>	<u> </u>		<u>_N</u>	_ <u>N</u>	N		N	-	-
Sr			N	N	N ·	•	N ·	N.	N
Ta	N.		<u></u>	$\frac{20}{\text{M}}$	30		20		<u>N</u>
Te		Ň	N	N	. N . N/			N	N
V	N	300	N	N.	40	·	N	N	200
<u></u>		<u>N</u>	_ <u>N</u> _	N	<u>N</u>		N	N	N
7		N	N	N	140		120	N	N
Zr			<u>140</u>	40	40		20	<u>N</u>	<u>N</u>
			_/=	-01	40		N	/N	N
Th		108		52.5	57		_	26.8	43
	2.2	8.0	25.8	13.5	4.9		3.4		<u> </u>
PL	10		43	8	13		17	<u></u>	``
Zn	3	_	120	65	50	·	40	-	
Aq	45		N	N	N		- 60 NI		
		-					12	_	. —

Coleen					•		•	1	63 [°]	
Map No.	245	246	247	248	249	250	251	252	20	
Sample No.	00 2019	B216	002129	0(2222	B215	B214	002377	002375	OCZ	
·					11	1/				
Fe %			0.5	2	-/		2	1.5		
Mg %	2	•	0-1	1.5		1	1	0.7	. 3	
Ca %	3		1	5 .			2			
Na %	G		1.6	G	**. *		G	G -	بی _	
K % =				0.5			01	0.07	0.5	
11 % Mn	1500		150	1000			1000	2000	2001	
Ag	L		N	2			2	L	2	
As	'N	I · ·	N	N	5 II - N.	-	N	<u>N</u>		
Au	N		N	N 200			N .	N 150	70	
B	100	ۍ ۲	N				1000	N	500	
Ba Re	3		7	7			5	ĨŎ	5	•
Bi	20	ş	N	۰ ۲	_2 _		Ľ	L	L	
Cd	N	· · ·	L	N			N		N	
Co	N	•	N				N 100	500	200	
Cr	300		15	150			.50	. 15	70	
Ga	2	÷	іс 1	. '70	r		3	L.	50	
La	N		L	N			and N	500	N	
Li	N		<u>N</u>	N				N	<u> </u>	
Mo	И		N	N	- -			IN.		
Nb	150		200	200	<u> </u>		100	150	15	
NI P	2000		1500	.1000			L	1500	L	1
<u>Pb</u>	50		N.	100			50	50	100	
Pd	N		N	<u>N</u>			N		N	
Pt	N			N	1		N N			
Sb	N		N	N			N	N	N	
Se	2 -			-				-		
Sn	N		N	N			N	N	50	
Sr	<u>N</u>	-	<u>N</u>	N				<u> </u>	<u> </u>	
Ta ····	N	j.	N	N			N	N	N	
v v	200			300			N	N	3c	
w	N		N	L		· · · · ·	N	N	70	
<u> </u>	Ņ		N	Ν	3		N N		N N	
Zn 1 📪	N	1	<u>N</u>	<u>'N</u>					G	
Zr	<u> </u>		<u>N</u>	1000						
<u>п</u> ъ	25.5		46	56			69	78	120	
<u> </u>			ف	17			8	6	11	
:	t i	41 1		- 7						
			_							

Coleen				•				· · · ·	164
Map No.	254	255	256	257	258	259	260	261	2 (
Sample No	·OC 2238	B213	<u>0c 2236</u>	<u>CC 2235</u>	B209	002242	OC 1988	P512L	OCT
		1			11		·	1/	
Fe %	2		0.5	2		0.5			2
Mg %	1.5		0.2	0.3		0.2	3		2
Ca %	<u> </u>		0:6	- <u>-</u>			5		5
K %	-		-	-		-	6		-
Ti %.	0,15		0.02	0.03		0.03	G		0.2
Mn	1000		1000	1000		200	1000		200
Ag As	<u>И'</u>		17	N	3	N	2 N		N
Au B	N 150		N 100	N 150		N 150	N 150		N 150
Ba	2000		N	N		L.	5000		200
Be	5		10	10		5	7		5
Bi	N		100	N					
	N	·	N	N	······	N	N		N
Cr	150		Ĺ	100		L	300		20
Cu	20 _	-	3 'N	70 2	•	10	100		201
La	N'		500	 N	· · · · · · · · · · · · · · · · · · ·	500	09 N		50
Li	N	Ţ	N	N		N	e N		N
Mo	N		N	2		N	N		N
Nb Ni	<u> </u>		150	700	د با منبعا معام المعار مستخد	50		·	
P			1500	200 L			1000		L
Pb	50 -		N	70		N	150		200
Pd	N		<u> </u>	<u>N</u>					N
-Sh	N N N		N	27	: · · ·			n at in a	
.Sc	N		N	N		Ν	N	• • • • • • • • • • • • • • • • • • •	N
Se									
Sn Sr	100 N		N	NN		N			70 N
Ta	N			N		N	N		
Te	N		N	N		<u>N</u>	N		N
"V	300		N	N		N	500 N		30C
N N	<u>N</u>		<u>N</u>	N		N	<u> </u>		N
"Zn	'N		N - 1	Ň	ज्य म्टब	N	N'		N
Zr	1000		N	N		N	500		100
Th	62.5		86.5	1 2,		78	15.8		134
U,	10	2	8	7.6		12	6.5		16
	. •								
									[
	-	-	-	-	-				

€.

Loleen								1	65
Map No.	263	244	265	266	267	268	269	270	× 12
Sample No.	OC 1990	RSIZR	oc 2374	OC 1991	OC 1993	B 186	B 187	CC 662	СС
		1/				1/	<u> </u>		
Fe %	1.5	-	1.5	3	1.5	<u> </u>		4.8_	3
Mg %	2	•	0.7	0.15	0.5			0.86	1.
Ca %				2	3			0.14	<u> </u>
Na %	6	2	1 4	ۍ –	G .			G 1.7	- G 2.
Ti %	0.3	•	0.07	0.03	0.05			0.20	0.2
Mn	_300		2000	1000	700				<u> </u>
Ag			N						
<u>As</u>	<u>N</u>			N				/N	/\/ /\/
B	70		30	50	100			$\cdot N^{\cdot}$	Ň
Ba	2000		. L	Ν	L			N	\overline{N}
Be	3		2	5		·		N	<u></u> N
Bi	N		· Ľ.		N	•		N^{\cdot}	N
Cd			<u>N</u>	N				<u>N</u>	
Co Cr	300		700	50	zo			130	FC
Cu	10		70	50	100			N	N
Ga *	- 70	2	<u>ч</u>	N SA	3			20	20
La	N.		N	N	L.		1099 11 1	N	N
Li	N		<u>N</u>	<u>N</u>	<u>N</u>	<u></u>	- 11 - 10		<u>N</u>
Mo	N		N	N					2C
ND - Ni	1:50		1'50	150	150	· · · · · · · · · · · · · · · · · · ·		(00	-1 4
P	1000		1500	N	N			N	N
7 Pb	.50		N	100	L			90	10.
Pd	N		N	N	N			N	<u>_N</u>
Pt	N		N	N	N				
Sb	N				<u>N</u>			<u>N</u>	10
Se Se			-	-	-	х.		Ň	Ň
-Su	N		N	Ν	N		· ·	.N	N
Sr	N		N	N	<u>N</u>			40	<u>_3ç</u>
Ta	N	23	<u>, </u>	N	N			N	
/ľe	<u>N</u>							90	90
V VV	200			N	N				N
Y	<u>N</u>			N	N			N	90
$Z_n \xrightarrow{1} Z_n$	N -	2 ¹	N	<u>N</u>	N		· · · ·	110	<u>7c</u>
. <i>7.c</i>	700		N	<u>N</u>	<u> </u>			30	_70
'l'h	33.3		145	148	45			11.5	12.5
U			10	16	10			1.7	1.3
CU B	-							230	<3
гь Zn					_			87	46
Aa								<5	. 45
ן כי	-		-			ł			!

Map No.	070							1	166
Sample No.	Rich			275	276	272	278	270	<u>298</u>
-	0171		15145	5200	3199	<u>B197</u>	<u>R 499</u>	<u>R</u> 5 <u>-</u> 2	22 494
Fe %	/		<u> </u>	/				1/	
Mg %		The second second		· · · · · · · · · · · · · · ·	** *** * * * * * *			· · · · · · · · · · · · · · · · · · ·	
Ca %									
Na %									
<u>K%</u>		·						н. 	
11% Mn									
<u> </u>									
As						ł			
Au	· · · · · · · · · · · · · · · · · · ·								
В									
Ba									
Be D:									
Cd									`
Co									
Cr									
Ču		· ·						·····	
Ga									ł
La									
Nb									
Ňi –				• • • • • • • • • • • • • • • • • • •					
Р									
Pb					-	an in the many of the completion flater and comp	ing particular constant program a		
Pd									
Pt									······
						•	· · · · · · · · · · · · · · · · · · ·	er of a constant	and some many as
Se	4								
Sn								1	
Sr								•	
Та									·
Te						an an an an an an an an an an an an an a			
W									
Y									
Zn			1						,
Zr									
Th									
U									
1	1	1	1	I	1			l	1

Map 1	No.
-------	-----

Map No.	231	282	283	284	295	201	267	-	200
Sample No.	<u>R484</u>	R 493	R 490	2483	R 484	3422	3320	2 < 2 2	
	1	1/	11				$\overline{\mathcal{V}}$		<u> </u>
Fe %	~						_	_	
Mg %							· · · · · · · · · · · · · · · · · · ·	All of the second second second second second second second second second second second second second second s	
Ca %							_ t		
Na % V C									
Ti 55									
Mn									
Ag				·					
As									
Au									
B									
Ba									
Be				ļ					
BI CJ									`
Cr									
Cu				-					
Ga	-								
La									
Li									
Mo		·							
Nb									
Ni		4.1				····	The second second second second second second second second second second second second second second second s	·····	••••••••••••••••••••••••••••••••••••••
P							American Construction and		
PD na									
ru D.									
C. Ch	4								
Se					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
Se									
Sn						a an an ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann a		•••••••••••••••••••••••••••••••••••••••	
Sc									
Ĵa 👘									
16									
V I									
W									
1 7.5			-						
7									
ام ا 									
Th I		ł							
u					5				·
		ł			l				
						1	1	1	1

-	•
Map	No.

shitp NO.	290	291	292	293	294	295	- 0.5.7		100 . D.D
Sample N	0.733051	R 530	R 5.29	8520	R 527	80271	RED.	<u>- 277</u>	
		1/	11	11	1/	1/	11	1/	
Fe %	2.6								
Mg %	1.3						·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Ca %							•		
K %	· • •								
Ti %	.10		-						
Mn	730								
Ag	L								
As	<u> </u>								
Au	N,								
Ba									
Be									
Bi	N								
Cd	Ń								
Со	50								
Cr	90								
Cu	N .	·							
(a)	20						· · · ·		
LA LI	270								
Mo		`		· ····					
Nb	N								
Ňi	30				· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
<u>P</u>	N								
Fo Fo	N					an ann an start an start an start an st	···· ••· •• • · · · ·	for finding and an approximation of the second	·
Pd	-N								
r u Sila	N								
Se	$-\frac{N}{60}$					••••••••••••••••••••••••••••••••••••••			المربقة فتوادين براد
Se	N		,						
Sn	N				1 of 14 or other and a second second second				
Sr	20							•	
Ta	N			 Medical Accession and a species contraction of a second sec		90 - 100 - Mar Information - 1	naria na a kuna kuna kuna kuna kuna		an chantan ana se an ar ar ar a
Te	N				-				
v W	40								
	- <u>N</u>						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Zn	10		4						
Z.t	170			·····					
									tan in ta da da ang ang ang ang ang ang ang ang ang an
Th									
U					· · · · · · · · · · · · · · · · · · ·				
			1						1

APPENDIX B - Table B-1 Pan concentrate analyses (ppm) (Sample nos. followed by "B" are sluice box concentrates)

L - Detected

- N Less than lowest detection limit G Greater than highest detection limit
- Not analyzed i - interference

All analyses except U and Th by semi-quantitative emission spectrography.

Elements	Sample nos. prefixed by PR or OC <u>1</u> /	Sample nos. prefixe by CC, CR, CS <u>2</u> /	ed.		
Ag	1	interference			
As	1000	200			
Au	50	20			
В	5	200			
Ba	1000	40			
Be	1	10			
Bi	20	800			
Ce	20,000				
Co	10	10			
Cr	20	20			
Cu	1	800			
La	500	200			
Мо	10	40			
Nb	100	70			
Ni	2	40			
Pb	20	400			
Pt	50	40			
Sb	100	3000			
Sn	20	300			
Th					
U		•• •			
V	20	20			
W	50	600			
Y	100	200			
Zn	200	500			
Zr	200				

Lowest detection limits (ppm)

Detection limits--Semi-quantitative emission spectrograph

1/Analyses by Mineral Industry Research Laboratory, University of Alaska.

2/Analyses by U.S. Bureau of Mines, Reno Metallurgy Research Center.

PAN CONCENTRATE SAMPLES HISTOGRAMS

Figure B-1. - Histogram portraval of concentrate sample results
THIS PAGE IS BLANK

	-							173	
Map No.		2	3		5	6		درر ع <u>ر</u>	9
Sample No.	001994	001992	002246	<u>CC 627</u>	<u> CC 628</u>	<u>CC224</u>	<u>CCG21</u>	00625	ĊÇĞ
Ag	5	3	10	_	_	10			
is	N	N	N		<u>N</u>	N :		i	
Au	N	N	N	N	N	N	<u> </u>		
В	700	1000	5000	5000	10000	2000	2000		
Ba	N	N	N	60	60	N	<u> </u>	<u>/000</u>	$\frac{t\circ}{90}$
Бе	5	5	15	10	30	10	10	20	
Bi	150	100	L	L	N	L			
Се	30,000	100,000	N		·	N	· · · · · · · · · · · · · · · · · · ·	·	
Со	15	L	50	N	N/	50	!	N	
Cr	150	200	1500	N	N	200		N	
Си	150	150	300	\mathcal{N}	N	150	<u> </u>	1	N
La	50,000	50,000	15,000	10,000	20000	700	60000	40000	6000
Mo	Ν	Ν	30	Ň	L	N	L	L	L
Nb	L	L	L	L	L	L	L	L	N
Ni	100	50	1500	N	L	10	100	N	40
Pb	700	700	2000	900	900	70	2000	1000	200
Pt	N	N	N.	~~~	_	N			
Sb	N	N	L	N	N	N	L	L	L
Sn	20,000	20,000	7000	3,000	20,000	5000	20000	60001	2200
Th				_		· .			
U	·	_							
v	150	3000	300	200	100	300	N	N	Λ/
W	7000	10,000	3000	1000	2000	N	5	2000	6
Y	000	2000	2000	5000	9000	1500	2 0000	10000	1000
Za	N	N	700	300	800	N	100	100	20
Z:	G	G	G	10000 .	4000	1000	8000	30000	1000
		1					1	·	I

.....

.

Map	No.	(1		12		<i></i>		174	F e s
Sam	ple No. CCG30	CC 6 29	077222	2 nd Dans	17		<u> </u>	1 2	<u> </u>
					100,003381	<u> </u>	<u> </u>	00,005	<u>oc 2.</u> 1
Ag	• •••••• •••••••••••••••••••••••••••••		2	10	10	10		7	15
As	L	L	1500	N	N	N.		N	N
Au	N	N	N	N	Ν	N		N	N
B .	1000	400	1000	0001	2000	2000	8000	20,000	20,00
Ba	.40	N	Ň	N	N	N	N	N	N
Be	<u>N</u>	10	15	20	(0	5	N	10	20
Bi	L	L	150	150	150	L	N	N	L
Ce			G	G	50,000	50,000	- <u>-</u>	N	30,0
Co	L	N	L	L	N	Ν	L	N	
Cr	N	N	500	1000	1000	1000	N	1000	1000
Cu	L	L	700	50	300	700	L	70	15C
La	60008	60000	30,000	30,000	20,000	15,000	7000	1000	30,00
Mo	N	N	20	20	ίŨ	20	L	N	20
Nb	80	N	1000	1000	500	1000	Ĺ	L	L_
Ni	00	L	206	1500	500	2000	N	1.50	700
РЪ	2000	2000	2000	5000	2000	5000	1000	150	500
Pt		_	N	Ν	N	L		N	N
Sb	Ĺ	L	N	N	N	N	Ĺ	N	N
Sn	30000	7000	100,000	100,000	30,000	G	G	500	700
Th			34,000	33,000	11,000	10,000			·
U		-	1000	1000	0 03	1000			
v	50	N	200	200	150	150	30	300	1500
₩ .	G	G	20,000	5000	3,000	3,000	3000	N	500
Y	30000	20000	15,000	30,000	15,000	30,000	30000	3000	20,0
Zn 📘	200	400	N	N	N	N	300	N	N
7.• -	10000	7000	G-	G	G	G	3000	G-	G

-1

Map No.	19	えつ	21	2.0	~ ~	2 11	2	175	-
Sample No	0.02355	CC23608	300620	CC2359B	002053	00 234	3 01 2222	CONNE	6.01
						T			1
Ag	7	20	-	5	10	.5	15	L	
As	N	3000	L	N	N	N ;	N	N	L
Au	N	N	L	N	N	N	N	N	N
B	20,000	.5000	1000	2000	20,000	.5000	5000	700	500
Ba	N	N	N	N	7	N	N	N	N
Be	15	20	30	15	N	10	10	15	20
Bi	N	150	L	150	N	N	L	L	
Ce	N	N		50,000	N	N	30,000	70,000	
Co	N	L	Ĺ	7	500	N	N	L	Ĺ
Cr	1500	1000	N	1000	20	200	1000	1000	N
Cu	100	500	L	300	2000	70	500	150	
La	3000	2,000	40000	20,000	N	10,000	15,000	20,000	500.
Мо	L	20	L	10	L.	N	50	20	Ĺ
Nb	Ĺ	200	L	500	70	L	1000	500	L
Ni	300	200	L	300	150	150	1500	100	N
Pb	150	2000	2000	1000	N	150	2000	2000	200
Pt	Ν	N		N	N	N	L	N	
S5	N	N	L	N	N	N	N	N	<u>i</u>
Sa	1000	100,000	50000	100,000	7000	100,000	G-	G	10 000
Th		4 3 ,000	, —	66,000			57,500	58,000	
U		400		800			900	900	
v	300	100	Ĺ	100	300	300	100	100	L
<i>V</i> ,	700	3000	G	5000	7000	20,000	10,000	5,000	G
Y	10,000	7000	G	20,000	N	N	30,000	20,000	1200
Za	N	1000	500	N	700	N	N	N	70
Z.e	G	G	20000	G	G	G	G	G.	800
ł									

;

Man	Toleen No							176	;
	<u>29</u>	29	<u> </u>	31	3.2	33	34		<u>.</u>
0.111	110 NO. OC 24.1	<u> </u>	002343B	002326	<u>pc2237</u>	003254	<u>CC 2239</u>	00.2241	<u>0000</u>
Ag	10	10	5	7	5	5	3	5	15
As	N	N	N	N	L	N	N	L	N
Au	N	N	N	N	N	N	N	N	N
В	20,000	5000	2000	10,000	5000	10,000	2000	2000	50
Ba	Ν	N	N	N	N	N	N	N	N
Ee	70	15	15	15	20	- 15	7	70	5
Bi	L	N	100	N	150	N	N	150	-5C
Ce	N	N	30,000	L	50,000	N	L	30,000	30,0
Co	N	20	N	N	L	30	N	30	N
Cr	500	1500	500	150	500	2000	20	150	150
Cu	70	50	300	150	150	150	100	150	70
La	5000	1000	15,000	20,000	50,000	1500	15,000	20,000	20,00
Mo	N	L	10	N	N	N		70	30
Nb	Ĺ	L	200	L	L	L	L	L	
Ni	70	200	150	10	70	700	10	N	N
РЪ	1500	150	500	700	700	150	150	700	300
Pt	N	N	N	N	N	N	N	N	N
Sb	N	L	N	N	N	L	N	N	N
Sn	700	(000)	10.000	5000	50,000	5000	10,000	1.5,000	20,00
Th			12,000						
U			900						
v [300	300	50	300	300	300	300	300	100
W	700	700	3000	7000	10,000	.5000	7000	15,000	7000
Y	10,000	1500	10,000	10,000	1500	N	N	N	N
Zn	Ν	700	N	N	N	N	N	N	N
7: [G	G	G	G	G	N	G	G-	G
Γ				- 2019 - 19 - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2				· · · · · · · · · · · · · · · · · · ·	

Map	No. <u>3</u> 7	30	20	t k see	4.1			177	,
Sam	ple No. CC 67	CCAR	00.2330		00 1322	<u> </u>	<u> </u>	2.27	710
				1			I	1 0172	3/
Ag		N	5	N	3		N	N	N
As	Ĺ	L	N		N	- 	N	N	N
Au	<u>N</u>	N	N	N	N		N	N	N
В	7000	10000	10,000	10000	300		1000	70	150
Ba	100	N	1500	N	. <u>Г</u>		N	100	150
Ee	20	30	15	20	3		N	3	5
Bi	L	L	N	L	N	J	L	N	N
Ce			N		N	0		3000	3000
Co	L	N	N	N	N	7	N	N	20
Cr	N	N	150	N	150	le	N	30	.50
Cu	L	L	50	L	100	~		15	1.5
La	8000	N	700	1000	N	N B	400	2000	1.50
Мо	L	Ν	N	L	Ν		N	15	N
Nb	Ĺ	1	L	L	N		L	30	20
Ni	N	N	50	Ĺ	10		N	7	15
РЬ	800	900	300	Ĺ	300		L	200	30(
Pt		N	Ν	N	N		N	N	N
Sb	L	N	N	۱ ۲	N		N	N	N
Sn	N	N	150	2000	700		N	500	30
Th			. —		- <u></u>			700	.500
U									
V	200	N	150	N	100.		N	100	150
n. Ui	2000	N	N	N	N		N	500	N
T.	10000	400	2000	3000	N		500	1500	300
Zh	200	200	N	600	N	1	60	N	N
7.	10000	1000	G	000		an the set of the set	2000	500	2000
ę									

C - Map I	No. 46	47	48	49	50	51	2	178	3
Samp	le No. 3194	CC 2101	002103	<u>02347</u>	00200r	CC 89	CC 2100	<u> </u>	<u> </u>
Ag	.N	10	3	10	15		10		
As	N	N	N	N	N		N		·}
Au	N	N	N	N	N	N N	N		
В	700	2000	1500	700	300	5000	1500	900	
Ba	500	L	N	1500	L	200	N	500	400
Ee	15	50	30	7	5	20	.5	<u>N</u>	
Bi	N	N	N	N	L	N	L_	N	1
Ce	10,000	50,000	20,000	N	N		N		
Co	30	N	L	20	70	N	50	L	1
Cr	70	700	200	200	1500	N	500	N	
Cu	20	100	70	150	700	L	150	L	
La	5000	50,000	20,000	500	N	2000	N	3000	600
Mo	N	N	15	N	15	L	15		
Nb	20	L	L	L	L		L	1	
Ni	30	1500	15	1.50	300	Ĺ	150	L	
Pb	300	700	700	70	20,000	N	150	600	200
Pt	N	N	N	N	N	-	N		
Sb	N	N	N	N	N	L	N	i i	
Sn	20	.5000	5000	200	700		700	7000	7000
Th	1000	-							
U	·····	-							
v	500	300	200	200	700	90	300	 NI	 λ /
w	N	7000	3000	\sim	N	N	N	 N!	6
Y	50Ĉ	L	N	N	N	4000	N	2000	200
Za	N	N	Ν	N	3000	L	N	600	400
Z::	500	G	G	1000	N	3000	500	10000	700
f						ł			

Map	No. 55	54	57	<u>5</u> 2	5 9	60	21	17	9
Sam	ole No. CC 644	06.23	002312	Coro	CC 12	CC (4	3192	3182	PRIG
Ag	-	_	15	_	_		15	N	
As	L	L	N	N	1	-	N	N	
Au	·		N	N			70	N	N
В	L	300	500	400	N	2.00	50	70	20
Ba	Ļ	70	1500	200	300	200	700	1500	G
Бе	N	N	10	N	N	N	2	2	3
Bi	L	N	L	N		L	N.	N	100
Ce			N				N	N	. N
Co	L	L	70	N	1		30	ઉં	70
Cr	N	L	L	N	N	N	50	70	150
Cu	L	L	300	L		L	100	.100	500
La	700	NE	N	N	1000	200	N	70	N
Mo	N	N	N	N	N	N	N	N	20
Nb	L	Ĺ	Ĺ,	L	N	L	N	N	L
Ni	L	L	150	L	L	L	70	30	300
Ph	L	L	2000	500	Ĺ	N	70	300	500
Pt			N	\mathcal{N}	_	N	N	N	N
Sb	L	L	N.	N	Ĺ	L	Ņ	N	N
Sn	L	L	300	L	Ĺ	L	2000	N	200
Th _			, <u> </u>				N	N	_
U						_		an de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina	L
v	20	N	200	100	70	60	100	100	50
W _	1000	N	N	\mathcal{N}	\mathcal{N}	N	L	N	N
Y	1000	200	N	200	300	100	20	30	500
Zn _	500	800	1 00	900	700	700	N	N	1000
7::	4000	N	N	2000	500	900	150	1.50	G
ł								-	

(•··. "

•----

<u> </u>		66	67	4. 2	6.9	7.0	180	
PR 1971	PR 1773	PRARS	CC42	3202		7 000	<u></u>	
						1	T	
3	5	(0)		11			N	1.5
N	N	N	L	N	L		N	N
N	N	N	N_{-}	N		Ĺ	N	N
1500	500	1500	300	100	200	600	50	200
. G	G	G	3000	2000	10000	1000	20,000	200
30	20	100	N	3	N	\sim	2	lo
N	L	N	L	N	N	1	N	N
N	Ν	Ň	-	N		+- <u>-</u>	N	N
20	70	70	L	30	L		30	30
1000	700	1500	100	150	400	200	70	150
150	200	200	Ĺ	70	1	1	150	157
N	N	N	500	70	800	700	N	700
15	20	L	L	N	L		N	N
L	L	L.	N	30	Ĺ	i.	N	L
150	150	1500		50	1		70	150
1500	150	500	1000	150	3000	10-0	150	201
N	N	N		N		1000	N	N
N	N	N	 NI	N	 	<u> </u>	· N	N
500	300	N		N	 L		N	500
				N		<u> </u>		······
500	700	1000	200	1.50	500	-	100	1007
N	N	N	<u></u>	N			N	
700	2000	2000	-14			N		IN Face
1500	1500	3000	+00	N	2000	800	20	3000
	<u> </u>	- J	<u> </u>	10.00	800	+00	+00	10,00
	3 N N N 1500 G 30 N 1500 N 1500 N 150 I50 N 150 I50 N 150 N 150 N 150 N 150 N 500 N 700 1500 G N 500 N 700 1500 G	3 5 N N N N N N N N 1500 500 G G 30 20 N L N N 20 70 1000 700 150 200 N N 150 200 N N 150 150 150 150 150 150 N N 150 150 N N 150 150 N N N N 150 150 N N N N N N N N N N N N N N N N N N N N N N N N N N N N 700 700 N N 700 700 1500 1500 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>3 5 66 67 56 3 5 10 11 N 1500 500 1500 300 100 G G G 300 100 N N N N N N N N 1000 700 1500 1000 150 1500 150 150 1500 N N N L L N N N N L L N N</td><td>31 35 46 67 58 64 BR1971 PR1973 PR 1973 PR 1975 CC42 SAMA CC43 3 5 10 - 11 - N N N L N L N N N N - - 1500 500 1500 300 100 200 G G G 3000 2000 1000 200 30 20 100 N 3 N N L N L N N N N N - N - 20 70 70 L 30 L 1000 700 1500 100 150 400 150 200 200 100 150 3000 150 150 1500 N 50 L 150</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 5 66 67 56 3 5 10 $ 11$ N 1500 500 1500 300 100 G G G 300 100 N N N $ N$ N N N $ N$ 1000 700 1500 1000 150 1500 150 150 1500 N N N L L N N N N L L N N	31 35 46 67 58 64 BR1971 PR1973 PR 1973 PR 1975 CC42 SAMA CC43 3 5 10 - 11 - N N N L N L N N N N - - 1500 500 1500 300 100 200 G G G 3000 2000 1000 200 30 20 100 N 3 N N L N L N N N N N - N - 20 70 70 L 30 L 1000 700 1500 100 150 400 150 200 200 100 150 3000 150 150 1500 N 50 L 150	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Map No.		.						181	
Sample No.	PRicae		<u> </u>	76	72		79	<u> </u>	<u> </u>
				<u> </u>	TRIECO	<u>3179</u> T	PRIEEY	PR1875	OCT
Ag	5	N	N	5	2	N	3	2	10
As	N	N	\mathcal{N}'	N	N	N.	N	N	N
Au	Ν	N	N	N	N	N	N	N	N
В	3000	N	N'	150	100	300	1000	200	50(
Ba	Ν	2000	N	G	N	1000	N	N	501
Pe	70	N	N	L	1	3	3		2
Bi	N	N	L	L	N	N	50	N	L
Се	N	N		N	N	500	N	N	N
Со	30	70	Ĺ	150	100	50	70	100	10(
Cr	1000	500	900	1500	1500	700	1000	1500	20(
Cu	150	30'	L	३००	150	30	300	100	15(
La	5000	N	\sim	N	N	300	N	N	N
Мо	N	N	N	20	N	N	10	N	50
Nb	L	20	L	L	L	20	L	L	L
Ni	200	500	200	500	500	300	1000	300	300
РЬ	Ν	N	N	N	N	30	150	N	150
Pt	N	N	N	N	Ν	N	N	N	N
Sb	N	N	L	N	L	N	N	L	
Sn	5000	N	L	70	300	N	5060	70	L
Th		N				N	······································		
U									
v	500	150	N	300	300	200	150	200	1500
W	N	N	N	N	N	N	N	N	N
Y	3000	20	NI	Ν	N	70	700	N	N
Zn	1500	N	100	N	700	N	700	N	1.50
Z:	G	150	L	300	200	200	1000	N	G

.

			·						
Map No.	82	<u>83</u>	<u> </u>	85	26	87	: <i>p</i>	ା 182 ତମ୍ଭ	: Gr
Sample N	10.00/ <u>968</u>	001885	<u>, cc667</u>	PR 1,054	PRIAS2	PR1850	PR 1847	PRIE42	PR/-
Λg		2							1
As	.10	3	 ,	10	5	5	2	3	_5
	N		<u> </u>	N	N		N		N
D			\mathbb{N}		. N	N	N		N
D	700	300	3000	.50	150	300	150	200	200
Ba	G	G	200		N	Ľ	5000	G	300
Be	N	N	10	L	L	L	L	N	50
Bi	L	L	L	N	L	L	N	L	N
Ce	N	N		N	N	N	N	N	N
Co	70	70	L	100	100	150	70	70	30
Cr	G	2000	2000	1500	1500	2000	1500	5000	1500
Cu	150	100	L	150	70	150	100	150	100
La	N	700	20000	N	N	N	N	N	100
Mo	20	Ν	L	N	N	30	N	70	N
Nb	L	L	L	L	L	L	L	·	L
Ni	300	150	L	1500	1500	1500	300	200	200
Pb	300	150	L	N	N	N	N	N	N
Pt	N	N	_	N	N	N	N	N	N
Sb	3000	L	L	N	L	L	L	Ľ	L
Sn	L	70	L	N	L	2	70	300	700
Th	·								
U .							_		
v	1500	500	300	300	300	300	300	2000	300
W	N	N	6	N	N	N	N	N	N
Y	700	1000	8000	N	N	N	N	N	2000
Zn	700	700	40.0	N	N	N	N	1000	3000
7.:	G	G	30000	N	Ν	N	L	N.	G-
ł								· · · · · · · · · · · · · · · · · · ·	

Map No.	91	92	55	94	95	96	97	18: بر بر	3
Sample No.	PR 1835	PR 1832	T352	PR1927	VOID	CR3004	<u>C33063</u>	<u>C33010</u>	<u>734</u>
Ag	5	2		5	No Sample taken	-			30
As	N	N	L	Ν			1	j	1
Au	N	N	N	N		N	N		
В	300	150	500	1500		N	N	L	N
Ba	· G	3000	6000	2000		70	50		9.00
Ве	N	L	N	N		ΛI		<u> </u>	N
Bi	N	N	L	N		L			
Ce	N	N	-	N					
Co	70	N	L	50		Ĺ	L	· L	N
Cr	1500	N	700	2000		300	500	 N	205
Cu	150	70	L	70		/	1	1	1300
La	1000	N	700	N		300	200	 N/	
Mo	N	50	L	N		L		1	1
Nb	L	L	L	L			1		
Ni	300	70	L	300				<u>k-</u>	<u> </u>
Pb	N	N		N		<u> </u>	 [1	
Pt	N	N		N					
Sb	L	N	L	L	*****	1		· · · · ·	
Sn	50	N	4000	150			1		
Th									
U									
v	700	300	400	700		1000	2000	1000	Roc
W-	N	N	1000	N		1000	2000	1000	
Y.	700	N	600	700		<u>1000</u>	00		
Zn	N	1000	400	700		<u>JV</u> 5~	50	200	11/2015
7::	G	G	20000	G		200	400	<u>200</u>	1300
						200-1		and a second second second second second second second second second second second second second second second	

C_S M

. -----

Map No.	ntz ICo	ía.	1. J	7.5.2			- (184	
Sample No	·CR 526	22530	02520	0350	<u> </u>	<u> </u>	<u> </u>		
				<u><>-/</u>	<u> </u>	<u>Clecci</u>	<u>CC 2006</u>	<u> CC 65 7</u>	
Ag				· · · · · · · · · · · · · · · · · · ·					
As						:			\mathbb{N}
Au									N
В								400	100
Ba	:	Ś	S	ysis	والعادي	ونعار	sis	30000	NI
Be	S	وباء	sys	ana	PUP	ene		N	
Бі	کیاہ	Sus	9 N	o V		ဦ	<u>ې</u>		<u> </u>
Ce		24	<u> </u>						
Co	04							L_	
Cr								2 2 2 2	
Cu		·						1 000	200
La	· · · · · · · · · · · · · · · · · · ·	z.							
Mo			27			a fali ang ang pang pang pang pang pang pang p		1000	300
Nb								1	1
Ni	·							<u> </u>	
Ph	4						، موند بسند کار ایک کار ایک کار ا	<u> </u>	<u> </u>
Pt								L	N
Sb		_							
Sa									
		-						_ <u>L</u>	300
T:	· · · · · · · · · · · · · · · · · · ·								-
									-
V								800	300
W				······································				1000	1000
Y		-	والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والم	ne anna afterairaig a golge ray geographic		,		300	600
25				•	regenderige stattes avwerte e			1000	100
Z.:							herts de antigen et het socialisation, es una de	9000	500
ŧ.						l			

) Map	No. 109	110	111	11-7				185	5
Sam	ple No. CC 653		2 00 125021		113			116	I
					00 12500	2 PR 12540	PR 12545	PR 12541	<u>3 PR 11</u>
Ag	-		L		30	7	5	7	30
As	L	<u> </u>	N	N	N	N	N	N	N
Au	N	N	N	N	N	N	N	N	N
В	1000	2000	2000	2000	2000	2000	2000	2000	200
Ba	<u>N</u>	600	I	N	1	N	5000	K/	T
. Be .	N	N	3	L	N	70	100	2	50
Bi	L	L	N	N	N	1		- 30	
Ce			G	N	N	N		20	
Со	L	N	N	N	150	70	700		
Cr	2000	N	N	5000	G	700	1000	2000	200
Cu	L	L	150	30	70	70	1000	2000	1300
La	6000	20000	1000	L	L	2000	2000	200	100
Mo	L.		L		·L	5000	3000	1300	130
Nb	L	L	N	N	N	N		N	
Ni	70	L	L	150	150	150	300	30	
Pb	L	1000	L	N	N			-	
Pt			N	N	N	N	N	N	N
Sb.	L	Ŀ	I	t	1000	N		N	
Sn	3000	60000	7000	2000	2000	2000	2000	700-	
Th				_				1000	1000
U			_					-	
v	200	N	2000	3000	1500	1000	1500	1500	150
W	1000	3000	2000	N	<u> </u>	N	1300	7000	150
Y -	3000	10000	G	1500			<u>N</u>	3000	N
Zn -	200	500	N	1300	1000	N	G	G	G
Z:	10000	4000	G	G	G	G		<u>N</u>	<u>N</u>
-		1000	<u> </u>	<u> </u>		<u> </u>	<u> </u>	9	6

		-					•		186	
Мар) No.	118		120	2	122	123	124	125	
"Sam	ple No.	PR 8181	-PR 8182	PR 12482	PR 11578	PR 12516	PR 12518	DCIZUA	001214	<u>. oc</u>
Ag		L	30	10	5	N	2			
As		N.	N	N.	N.				· · · · · · · · · · · · · · · · · · ·	
Au		N		N					<u>N</u>	
в		1500	2000	100	10				N	<u> </u>
Ba		<u> </u>	2000	2000			15	2000	2000	
Be		<u>L</u>		3000	G	N	G		<u> N</u>	
Bi			<u> </u>	<u>N</u>	1.5	1.5	N	70	30	
Co		N	<u>N</u>	<u> </u>	<u> </u>	<u> </u>	N	N	. N .	
		<u>N</u>	N	L	N	N	N	N		
	·····	L	L	L	150	300	300	N	N	
Cr	• · · · ·		G	1000	1000-	- 300 -	300	N	700	-
Cu		<u> </u>	150	150	70	70	150	70	100	•
La		1500	L	3000	L	2000	5000	L	500	30
Мо	;	, L	<u> </u>	Ĺ	L	Ľ	L	L	L	L
Nb		N	N	N	N	N	N	N	300	15
Ni		L	L	30	2	L	L	L	150	1
РЬ		L	50	-	· —		_	700	200	
Pt		N	N	N	N	N	N	N	N	· k
SЪ		I	I	.N	N	N	N	N	N	
Sn	•	500	2000	700	300	N	N	2000	5000	יסר
ть		-	_	-		· _			-	
ע_	ء ، ا	_ ,	2 2	• -	· • —		1			- 4
v		700	1500	G	1000	1000	700	1500	3000	15
w		N	N	N	N	N	N	N	7000	50
Y [1 va	· L	G	1000	L.	700	700	7000	<u>,,,,,,</u>	<u> </u>
Zn		N	N	N	N	N	N	000	<u> </u>	9
Zr		G	G	G	G	G	G	G	G	N G
U W Y Zn Zr	1 (2) 	 700 N L N G	- 1500 N G N G	- G N 1000 N G	1000 N L N G	- 1000 N 700 N G	- 700 N 200 N G	- 1500 N 2000 N G	- 3000 7000 G L G	- 5

	Man No							•		187	
	Ma	p No.	127	78	129	130	131	132	133	134	
e <i>r</i>	San	nple No.	OC 849;	2 00 12488	00 11384	OC 11382	QC 8604	008484	0001222	<u>(oc)17351</u>	Bc
	Ag		· · 7	15	10	3	7	30	50	30	
est. 4	As	1. L			N			Nia	1.545 1.1.2		F.J
	Au		N								+-
	В		2000						N		+
	Ba		2000	1000	2000	2000	2000	2000	1500	2000	<u> </u>
	Be		<u> </u>	I	G	G	N	2000	N		
	D:		7	<u> </u>	15	20	5	L	30	200	
	DI		500	100	L	.50	20	N	L	. N	
	Ce		N	G	G	G	G	G	L	L	
	Co		700	N	L	500	300	N	N	L	
	Cr		L	. <u> </u>	700	- L	150	1500	2000	G	
	Cu		100	150	150	70	100	300	70	150	
	La		5000	N	5000	3000	5000	1000	1500	L	
	Мо		N	L	L	Ν	N	N	ł_	300	
	NЪ		N	1000	N	И	N	N	700	N	
	Ni		N	N	N	N	N	7	N	3	
۲	₽Ъ		L	7000	1500	700	100	100	1500	2000	
	PÌ		N	N	N	N]	N			N	<u> </u>
	Sb		N	N	N	N	N	N		N	
.* 1	Sn		7000	100000	15 000	-7000			2000		
	Th	· · ·	/000	.00,000	10,000	7000	10000	G	2000	20000	~
	U						-	-	-		
,	v							-			
	w		1000	1500	3000	150	1000	3000	1500	5000	
	v		3000	10,000	700	300	1500	3000	L	N	
	x	د 	G	Ġ	G	G	G	G	G	G	
	Zn 7-		L	N	L	N	N	15	L	L	
		-	G	G	G	G	G	G	G	G	C

	na se na 1								100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar		
Man	No								188		
Мар		136	13'	7 138	139	140	141	142	2 143	epost in the	¥*
Şam	ple No.	OC 2223	OC 843	8-00844	0C 12236	0012241	6 OC1223	8 bc 12234	18	A	8
Ag									an an an and a second	in site ridials of	
A.0	*	30	15	i 7	7	50	70	70	15	3	
As 	x +c5	10 N	<u>u</u> N.		· · N	·	. – N	N	~~~~N	"N	
Au		N	a N	N	N	N	N	N	N	N	
В		5000	2000	2000	1500	2000	2000	5000	1000	20	
Ba		Ň	Ġ	1000	N	N	T	N	Ń		
Be		L	15	7	700	300	70	L	<u> </u>		
Bi		50	N	500	30	1		G	A	†	
Ce	-	G	L	G	G		6		<u></u>		
∞ [N		N	N			4		G	
cr [5000				N	N	G	N	N	
Cu		150	<u>b</u>			· L	2000	1000	1000	500	
La			70	200	150	150	70	150	150	150	
vo -		5000	3000	10000	L	L	10000	G	3000	30c	
			N	N	L	L	300	L	N	L	
		N	N	N	2000	2000	N	N	N	N	
		L	N	N	N	N	L	150	3	N	
Ъ -	,	1500	300	7000	3000	7000	7000	3000	Ľ	200	
ť		N	N	N	N	N ·	N	N	N	N	
Ъ		N	N.	. N	Ν.,	500	N	N	N	N	
n		100000	2000	50000	70000	G	70000	100.000	2000	2000	
ъГ		_	-	_	_		_	100000	-	2000	
, [• • -	· _					, .				
, †	,	2000	1500	200	1000			-		-	
,		2000	1300	5000	10000	G	1500	G	1500	300	
	ə	- G	N	1300	2000	10000	1000	3000	N .	150	
			G	G	G	G	G	G	2000	G	
			<u>N</u>	<u>N</u>	<u>N</u>	L	L	L	L	L	
		G	G	G	G	G	G	G	G	G.	

Q. 160

Ma	p No. 145	144	147	1118	(40	150		18	39
San	nple No PR 11330-	PR 11378	05 10997	As 17766	00 113411	PR 11374		and Area	isten.
2000 (B)					18/314			a sa salar	1
Ag	100	15	3	30	5	30			
As		a . N	- N		N	- N	en b	. .	Ene 2
Au	N	N	N	N	N	N			
В	50	200	1500	700	150	2000			
, Ba	G	Ġ	Ġ	'N	I	G	,		
Be	15	1 7	7	15	2	N			
Bi	N	N	50	L	N	N			
Ce	N	N	L	N	N	N	40		
Co	150	30	300	N	N	100	ы.		
Cr		5000	100	5000	. N	L			
Cu	200	70	- 150	1500	30	200	વ્યુવ		
La	Ľ	L	5000	1000	L	L			
Мо	200	·L	Ľ	L	L	70			
Nb	N	N	N	N	N	700			
Ni	500	50	N	15	L	150			
РЬ	N	¹ N	500	Ľ	. N	50			
Pt	N	N	N	N	N	N			
Sb	N	I	N	N	I	I			
Sn	200	N	5000	2000	500	2000	n de Zaak 2000 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999 en 1999	r * 1 -	
Th	.~	-	· _	-	· _	-			
U		, -					200 1		
v	1500	1500	300	1500	4	3000			
W	N	N	300	2000	N	N	5	÷.,	
Υ.	i L	2000	G	150	<u> </u>	G		• •	
Zn	7000	5000	N	20	N :	7000			
Zr	1000	700	Ģ	G	Ņ	'G			, .