Source and Bedrock Distribution of Gold and Platinum-Group Metals in the Slate Creek Area, Northern Chistochina Mining District, East-Central Alaska

By: Jeffrey Y. Foley and Cathy A. Summers

UNITED STATES DEPARTMENT OF THE INTERIOR Manuel Lujan, Jr., Secretary

BUREAU OF MINES T S Arv. Director

TN 23 .U44 90-14 c.3

UNITED STATES BUREAU OF MINES

JAMES BOYD MEMORIAL LIBRARY

CONTENTS

;

	page
Abstract	1
Introduction	2
Acknowledgments	2
Location, access, and land status	2
History and production	4
Previous work	8
Geology	8
Regional and structural geologic setting	8
Rock units	8
Dacite stocks, dikes, and sills	8
Limestone	9
Argillite and sandstone	9
Differentiated igneous rocks north of the Slate Creek Fault Zone	10
Granitic rocks	16
Tertiary conglomerate	16
Geochemistry and metallurgy	18
Mineralogy	36
Discussion	44
Recommendations	45
References	47

ILLUSTRATIONS

1.	Map of Slate Creek and surrounding area, in the northern Chistochina Mining District	3
2.	Geologic map of the Slate Creek area, showing sample localities and cross section (in p	ocket)
3.	North-dipping slaty argillite with lighter-colored sandstone intervals in lower	·
	Miller Gulch	10
4.	North-dipping differentiated mafic and ultramafic sill capping ridge and	
	overlying slaty argillite at upper Slate Creek	11
5.	Dike swarm cutting Jurassic-Cretaceous turbidites in Miller Gulch	12
6	60-ft-wide diorite porphyry and syenodiorite porphyry dike at Miller Gulch	13
7.	Map showing the locations of PGM-bearing mafic and ultramafic rocks and major	
	faults in the east-central Alaska Range	14
8.	Major oxides versus Thornton-Tuttle differentiation index	17
9.	Typical platinum-iron alloy (tetraferroplatinum) grains from Miller Gulch placer	
	concentrate	38
10.	Osmiridium grain recovered from argillite talus at Miller Gulch	38
11.	Back-scatter SEM image of copper-gold alloy from Miller Gulch placer	
	concentrate	40
12.	Back-scatter SEM image of concentrically zoned silver-gold	
	and copper-gold alloy nugget from upper Slate Creek	41
13.	Back-scatter SEM image of dendritic native gold in native lead placer grain	
	from Miller Gulch	41
14.	Back-scatter SEM image of placer grain from Miller Gulch showing complex	
	intergrowth of electrum, lead-gold alloy, and copper-silver-gold alloy	42
15.	Back-scatter SEM image of minute platinum-iron alloy grain along ilmenite-	
	magnetite grain boundary in mafic rock fragment from Miller Gulch placer concentration	ate 42

16.	Back-scatter SEM image of equant 7-micron gold particle in guartz	
	fragment from crushed argillite sample from Miller Gulch	43
17.	Back-scatter SEM image of numerous bright gold inclusions in pyrite	
	from crushed argillite sample from Miller Gulch	43

<u>page</u>

TABLES

1.	Gold, silver, and platinum production from the Chistochina Mining District	5
2.	Major oxide chemistry and chemical classification of igneous rocks from the	
	upper Chistochina Mining District	16
3.	Analytical data for rock samples from the Slate Creek area, northern	
	Chistochina Mining District	19
4.	Geochemistry summary statistics for igneous rocks in the Slate Creek area,	
	northern Chistochina Mining District	28
5.	Geochemistry summary statistics for Jurassic-Cretaceous turbidites in the	
	Slate Creek area, northern Chistochina Mining District	29
6.	Analytical data for heavy mineral concentrates panned from regolith,	
	pulverized bedrock samples, and tailings produced by panning pulverized	
	rock samples from the Slate Creek area, northern Chistochina Mining District	31
7.	Analytical data for stream sediment samples, sluice box concentrates,	
	and pan concentrates from the Slate Creek area, northern Chistochina	
	Mining District	37

UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT

ft	foot	pct	percent
lb	pound	ppb	parts per billion
mi	mile	ppm	parts per million
oz	troy ounce	yd ³	cubic yard
oz/st	troy ounce per short ton		

OFR 14-90

SOURCE AND BEDROCK DISTRIBUTION OF GOLD AND PLATINUM-GROUP METALS IN THE SLATE CREEK AREA, NORTHERN CHISTOCHINA MINING DISTRICT, EAST-CENTRAL ALASKA

By Jeffrey Y. Foley¹ and Cathy A. Summers²

ABSTRACT

Placer gold and platinum-group metals (PGM) in the Slate Creek area, northern Chistochina Mining District, are derived from silicified and carbonate-altered, Cretaceous-Tertiary (?) dikes and related mafic and ultramafic rocks. Gold in the placer deposits is also derived from Tertiary conglomerate and altered Jurassic-Cretaceous argillite. The argillite and igneous bedrock sources show a unique Ag-Au-Cu-Hg-PGM association that is attributed to a combination of magmatic, hydrothermal, and supergene processes. The bedrock and placer deposits contain a variety of gold-silver-lead-copper and PGM alloys. The observed geochemical, mineralogic, and alteration features are consistent with current geological models for turbidite-hosted gold deposits. No economic gold or PGM lodes were identified, but several areas warranting more detailed investigation were identified.

Conventional geochemical sampling and analysis of small sample splits weighing between 10 and 30 grams were shown to be unreliable as a consistent means of identifying gold- and PGMbearing bedrock. Pan concentration of pulverized rock samples was shown to be a more effective, but still imperfect means of identifying gold and PGM source rocks. Geochemical data and mineralogic examination indicate that gold and PGM in potential lode sources are very finely and erratically disseminated, are chemically combined with other elements, and may not be entirely free-milling or amenable to simple gravity concentration.

¹ Physical Scientist, Bureau of Mines Alaska Field Operations Center, Fairbanks, AK.
² Geologist, Bureau of Mines Albany Research Center, Albany, OR.

INTRODUCTION

Since World War II, the Bureau of Mines has intermittently investigated strategic and critical mineral resources in Alaska. Strategic and critical minerals include those minerals for which the nation relies upon foreign and potentially unreliable sources. Since 1981, the Fairbanks Section of the Bureau's Alaska Field Operations Center (AFOC) has investigated chromium, tin, tantalum, columbium (niobium), rare-earth element, platinum-group metals (PGM), and other strategic and critical mineral resources in Alaska. This report summarizes the Bureau's mineral investigations in the upper Chistochina Mining District, in the east-central Alaska Range where, since World War I, minor amounts of PGM have been recovered as a consequence of placer gold mining. The east-central Alaska Range contains numerous other PGM occurrences in a variety of geologic settings. This investigation is part of a broader study, by the Bureau, of PGM resources in the Alaska Range.

Field work during the present investigation was conducted during several one- to two-week periods, beginning in 1984 and ending in 1988. No field work was done in the area in 1986. The field work was conducted primarily on foot from a camp site at the mouth of Miller Gulch. Helicopter-supported traverses were conducted during three days in 1988.

ACKNOWLEDGMENTS

Many people have supported and assisted the authors in the present investigation. Mineralogical characterization, electron microprobe, and scanning electron microscope data were provided by the Bureau's Research Centers. Mineralogical data were provided by L.L.Brown, C.L. Mardock, and W.K. O'Connor, all from the Albany (OR) Research Center, J.J. Sjoberg, Reno (NV) Research Center, and A.L. King, Salt Lake City (UT) Research Center. Assistance in the field and laboratory was provided by J.C. Barker, Arne Bakke, K.K. Lamal, W.S. Roberts, and D.D. Southworth, all at one time employed by AFOC, and C.M. Rumsey, from the Bureau's Western Field Operations Center, Spokane (WA).

Mine property owners and operators in the study area also provided invaluable assistance and support in conducting this investigation. Messrs. William Beerman, Big Four Gulch owner and operator, Yakima (WA), George Cochetas, Slate Creek-Ruby Gulch owner and operator, Golden (Co), Howard Hayes, Miller Gulch claim owner, Douglas (AK) and Dan Livermore, mine operator, Anchorage (AK), donated PGM, gold, and placer concentrate samples and provided continuous logistical support during the Bureau's field investigations.

In addition to review of this report by other Bureau employees, critical reviews were also performed by T.K. Bundtzen of the Alaska Division of Geological and Geophysical Surveys and T.D. Light, U.S. Geological Survey.

LOCATION, ACCESS AND LAND STATUS

The study area (fig. 1) is in the Chistochina Mining District (<u>31</u>)³, 180 mi southeast of Fairbanks, in the southeastern part of the U.S. Geological Survey Mt. Hayes Quadrangle. The area is between 63⁰09' and 63⁰12' latitudes and between 144⁰43' and 144⁰54' longitudes. Ice-covered, 10,300-ft-high Mt. Kimball is located 6 mi northeast of the study area, and is the highest mountain in the eastern Alaska Range. The study area lies between the 3,600- and 6,100-ft elevations and is characterized by moderately-steep slopes that are generally negotiable on foot.

³ Underlined numbers in parentheses refer to items in the list of references at the end of this report.

Access to the study area is possible by fixed-wing aircraft to either of two primitive airstrips in the Slate Creek-Chisna River area. Another airstrip is located on patented mining claims along the Chistochina River Valley, at the mouth of Slate Creek.

There are no established roads connecting the area to the Alaska Highway system, but overland travel along several winter routes has been used in the past to haul fuel and mining equipment into the area. A winter trail provides access to the area from the community of Chistochina on the Tok Cutoff Highway. That trail covers a distance of 38 mi to the abandoned community of Dempsey on the Chistochina River. At Dempsey the trail bifurcates, and reaches the Slate Creek Valley by either proceeding up the Chisna River to Ruby Creek and over the divide to Slate Creek or, up the Chistochina River to the mouth of Slate Creek. Use of this trail requires snow removal and construction of ice bridges on the Chistochina and Chisna Rivers. Avalanches pose hazards to use of the lower Slate Creek route in the winter and spring.

Another overland route starts at Mentasta Village and covers about 50 mi to the head of Slate Creek. This route traverses up the Slana River, then across the Chistochina headwaters, and up the Chisna River to the Slate Creek Valley. Deep snow accumulation up to 20 ft or more along the higher reaches can present difficulty to travel along this route.

Finally, another trail provides winter access to the area from Fish Creek, about 26 mi to the southwest, on the Richardson Highway. With construction of grade crossings and switch backs, it is reported that all-weather access to the property could follow this route (1).

The entire study area is within a block of Federal land that has been selected by the State of Alaska, according to the State's entitlement as provided by the Alaska Statehood Act (Public Law 85-508). The selection was tentatively approved in October, 1987, but no patent has been conveyed. There are over 200 active mining claims in the area, including 37 patented Federal placer claims, 57 unpatented Federal placer claims, and over 100 State mining claims.

HISTORY AND PRODUCTION

Gold was discovered at the confluence of the Chisna and Chistochina Rivers by J.A. Hazelet in 1899 (21). Gravels in the lower Chisna River Valley were very limited in extent; therefore, Mr. Hazelet and other prospectors moved into the Slate Creek and upper Chisna River Valleys. In 1900, gold was discovered on Ruby Gulch by Mr. Hazelet and on Slate Creek and Miller Gulch by Messrs. Coles, Jacobson, Kraemer, and Levell. There has been no recorded lode mineral production in the district.

Total placer production for the district is estimated to be greater than 178,000 troy ounces of gold, 17,000 troy ounces of silver, and 83 troy ounces of platinum, for a total value of about \$17,000,000 at the time of sale. Annual production figures for the district, through 1988, are listed in table 1. The platinum production figures reflect only recorded platinum sales and are probably incomplete. Because PGM were not always separated from gold concentrates at the minesite, complete records were not always maintained or preserved, and PGM were sometimes claimed by the U.S. Mint as seigniorage during refining of gold, complete and accurate records for individual mines or districts are not available. Platinum-iron alloy and osmiridium have been recognized in placer concentrates from the Slate Creek area since shortly after gold was first produced in the district. Chapin (7) estimates that "platinum" makes up a little more than 1 pct of the precious metal concentrate recovered during mining. Production records do not, however, confirm that estimate. PGM are recognized in concentrates from Big Four Gulch, Miller Gulch, Slate Creek, and Ruby Gulch. Placer deposits in the upper Chistochina Mining District are also noted for the presence of abundant cinnabar and native copper.

(oz) (oz) of Mines 1900 1,209 108 NA 3 12 \$25,000 1901 5,563 445 NA 30 150 225,000 1903 10,885 925 NA 30 150 225,000 1904 12,084 1,088 NA 45 230 250,000 1905 14,029 1,332 NA NA NA NA 0.000 1906 7,256 812 NA NA NA NA 0.000 1907 1,335 232 NA NA NA NA 60,000 1907 1,335 232 NA NA NA NA 60,000 1910 2,620 274 NA NA NA NA 60,000 1911 3,628 3870 329 NA NA NA 80,000 1913 3,870 326 240 NA NA </th <th>Year</th> <th>Gold</th> <th>Silver</th> <th>Platinum</th> <th>Number</th> <th>Employees</th> <th>Value</th> <th></th>	Year	Gold	Silver	Platinum	Number	Employees	Value	
1900 1,209 108 NA 3 12 \$25,000 1901 5,563 445 NA 10 75 115,000 1902 10,885 1,142 NA 30 150 225,000 1904 12,094 1,088 NA 45 230 250,000 1905 7,256 812 NA NA NA 100 250 290,000 1906 7,256 812 NA NA NA 100 100,000 1908 3,870 274 NA NA NA 80,000 1910 2,902 255 NA NA NA NA 80,000 19113 3,870 329 NA NA NA NA 80,000 1912 3,870 329 NA NA NA NA 80,000 1913 3,683 399 NA NA NA NA 80,000 1912 <th></th> <th>(oz)</th> <th>(oz)</th> <th>(oz)</th> <th>of Mines</th> <th></th> <th></th> <th></th>		(oz)	(oz)	(oz)	of Mines			
1900 1.209 108 NA 3 12 \$25,000 1902 10,885 1.142 NA 30 150 225,000 1904 12,094 10,885 1.142 NA 30 150 225,000 1904 12,094 10,88 NA 45 230 250,000 1905 14,029 1,332 NA NA 50 250 290,000 1906 7,256 812 NA NA NA NA 100 50,000 1907 1,303 232 NA NA NA NA 80,000 1908 3,870 274 NA NA NA NA 80,000 1911 3,628 399 NA NA NA NA 80,000 1914 2,660 212 NA NA NA NA 80,000 1914 2,660 212 NA NA NA NA 10								<u></u>
1900 1,209 108 NA 3 12 \$25,000 1901 5,563 445 NA 30 150 225,000 1903 10,885 9,25 NA 30 150 225,000 1905 14,029 1,332 NA 50 250 250,000 1905 7,4256 812 NA NA NA NA 40,000 1907 1,935 232 NA NA NA NA 40,000 1907 1,935 232 NA NA NA NA 80,000 1907 1,935 232 NA NA NA NA 80,000 1907 1,935 232 NA NA NA NA 80,000 1910 2,902 255 NA NA NA NA 80,000 19112 3,870 329 NA NA NA NA 80,000 1912								
1901 5.563 445 NA 10 75 115.000 1902 10.885 925 NA 30 150 225.000 1904 12.094 1.088 NA 45 230 225.000 1905 14.029 1.332 NA 50 250.000 1000 1906 7.256 812 NA NA NA NA 40.000 1906 7.256 812 NA NA NA NA 40.000 1908 3.870 274 NA NA NA NA 60.000 1910 2.902 255 NA NA NA NA 60.000 1911 3.628 399 NA NA NA NA 60.000 1912 3.870 322 NA NA NA NA 60.000 1914 2.866 212 NA NA NA NA 10.000 1917	1900	1,209	108	NA	3	12	\$25,000	
1903 10.885 925 NA 30 150 225.000 1904 10.885 NA 45 230 250.00 1905 14.029 1.332 NA 50 250 290.000 1905 14.029 1.332 NA NA NA NA 40.000 1906 7.256 812 NA NA NA NA 40.000 1907 1.935 232 NA NA NA NA 80.000 1910 2.902 255 NA NA NA NA 60.000 1911 3.628 399 NA NA NA 80.000 1911 3.628 399 NA NA NA NA 80.000 1912 3.870 426 NA NA NA 80.000 1914 2.660 NA NA NA 10 40 80.000 1912 3.873 410	1901	5,563	445	NA	10	75	115,000	
1904 12,044 1,088 NA 30 150 225,000 1905 14,029 1,332 NA 50 250,000 1906 7,256 812 NA NA NA NA 45 220,000 1906 7,256 812 NA NA NA NA 40,000 1908 3,870 274 NA NA NA NA 60,000 1910 2,902 255 NA NA NA NA 60,000 1911 3,870 426 NA NA NA 80,000 1913 3,870 426 NA NA NA 80,000 1913 3,870 329 NA NA NA NA 80,000 1914 4,837 377 NA NA NA 100,000 1915 2,902 271 NA NA NA 100,000 1918 4,837 377 <td>1902</td> <td>10,885</td> <td>1,142</td> <td>NA</td> <td>30</td> <td>150</td> <td>225,000</td> <td></td>	1902	10,885	1,142	NA	30	150	225,000	
1949 12,094 1,088 NA 45 230 280,000 1905 14,029 1,332 NA S0 220,000 1906 7,256 812 NA NA NA NA 40,000 1907 1,355 232 NA NA NA NA 40,000 1908 3,870 274 NA NA NA 40,000 1909 2,418 205 NA 24 100 80,000 1911 3,628 399 NA NA NA NA 60,000 1912 3,870 426 NA NA NA 80,000 1912 2,902 240 NA NA NA NA 10 40 80,000 1914 2,660 212 NA NA NA NA 100,000 1914 4,837 410 NA NA NA 100,000 1914 4,837	1903	10,885	925	NA	30	150	225,000	
1906 1,322 NA 300 250 2500 2500 1906 7,256 812 NA NA NA NA 4000 1908 3,870 274 NA NA NA NA 4000 1908 3,870 274 NA NA NA NA 60,000 1910 2,902 255 NA NA NA NA 60,000 1911 3,620 426 NA NA NA 80,000 1913 3,870 426 NA NA NA 80,000 1914 4,837 377 NA NA NA NA 60,000 1915 2,902 271 NA NA NA NA 100,000 1917 4,837 377 NA NA NA 1400,000 1920 3,628 359 20 5 75 75,000 1921 3,73 4	1904	12,094	1,088	NA	45	230	250,000	
1906 7,250 612 NA NA NA NA NA A BOD 1907 1,935 232 NA NA NA NA 40,000 1908 3,870 274 NA NA NA NA 80,000 1911 3,628 399 NA NA NA NA 80,000 1911 3,628 399 NA NA NA NA 80,000 1913 3,870 329 NA 10 40 80,000 1914 2,660 212 NA NA NA NA 60,000 1914 4,837 410 NA NA NA NA 100,000 1917 4,837 410 NA NA NA 100,000 1912 3,628 359 20 5 75 75,000 1920 3,628 359 20 5 75,000 1922 1,60,	1905	14,029	1,332	NA	50	250	290,000	
1906 1,935 232 NA NA NA NA AUX 4000 1908 3,870 274 NA NA NA NA 80,000 1910 2,902 255 NA NA NA NA 60,000 1911 3,620 255 NA NA NA NA 60,000 1913 3,870 426 NA NA NA NA 80,000 1914 2,660 212 NA NA NA NA 60,000 1915 2,902 240 NA NA NA NA 100,000 1917 4,837 377 NA NA NA NA 100,000 1919 2,902 271 NA NA NA NA 100,000 1918 4,837 377 NA NA NA NA 100,000 1921 3,628 359 20 5 75 <td>1906</td> <td>7,256</td> <td>812</td> <td>NA</td> <td>NA</td> <td>NA NA</td> <td>150,000</td> <td></td>	1906	7,256	812	NA	NA	NA NA	150,000	
1908 3,870 274 NA NA NA NA NA OX 6000 1910 2,902 255 NA NA NA NA 6000 1911 3,628 399 NA NA NA NA 80000 1913 3,870 329 NA 10 40 80,000 1913 3,870 329 NA 10 40 80,000 1915 2,902 240 NA NA NA 55,000 1917 4,837 410 NA NA NA 100,000 1918 4,837 377 NA NA NA NA 100,000 1920 3,628 359 20 5 75 75,000 1921 3,773 490 NA NA NA 74,000 1922 3,628 359 20 5 75 75,000 1921 3,773 490<	1907	1,935	232	NA NA	NA NA	INA NA	40,000	
1910 2,418 205 NA 24 100 30,000 1910 2,502 255 NA NA NA NA 60,000 1911 3,620 325 NA NA NA NA 80,000 1912 3,870 329 NA 10 40 80,000 1914 2,660 212 NA NA NA NA 50,000 1915 2,902 240 NA NA NA NA 50,000 1917 4,837 377 NA NA NA NA 100,000 1919 2,902 271 NA 2 22 60,000 1920 3,628 359 20 5 75 75,000 1921 3,733 490 NA NA NA 22 60,000 1922 3,628 359 20 5 75 75,000 1922 1,548	1908	3,870	2/4			100	50,000	
ISID 2,302 233 NA <	1909	2,418	205	IN/A	24 NA	100	50,000	
IBIT 3,020 399 NA NA NA NA NA NA NA BA BO 1912 3,870 329 NA 10 40 80,000 1914 2,660 212 NA NA NA NA 50,000 1916 7,256 800 NA NA NA NA 10 40 80,000 1917 4,837 377 NA NA NA NA 100,000 1919 2,902 271 NA 2 22 60,000 1920 3,628 359 20 5 75 75,000 1921 3,773 490 NA NA NA 74,000 1922 3,650 340 15 NA NA NA 20,000 1924 1,011 100 NA NA NA 20,000 1924 1,239 134 NA 1 1	1910	2,902	200		INA NA	N/A N/A	75,000	
1912 3,670 420 NA 10A NA S0,000 1914 2,660 212 NA NA NA NA NA S0,000 1915 2,902 240 NA NA NA NA S0,000 1917 4,837 410 NA NA NA NA 100,000 1918 4,837 377 NA NA NA NA 100,000 1920 3,628 359 20 5 75 75,000 1921 3,773 490 NA NA NA 74,000 1922 3,580 340 15 NA NA NA 40,500 1924 1,011 100 NA NA NA 32,000 1925 1,548 1855 NA NA NA 14,000	1012	3,020	399				75,000 90,000	
1914 2,660 212 NA NA NA NA SOUD 1915 2,902 240 NA NA NA NA NA SOUD 1916 7,256 800 NA NA NA NA NA 100,000 1917 4,837 310 NA NA NA NA NA 100,000 1918 4,837 377 NA 2 22 60,000 1920 3,628 359 20 5 75 75,000 1921 3,733 490 NA NA NA 74,000 1922 3,580 340 15 NA NA 74,000 1922 1,548 185 NA NA NA 20,900 1924 1,011 100 NA NA NA 20,900 1925 1,548 185 NA NA NA 14,000 1926 612,991 108 NA NA 14,000 1929 677 80	1012	3,070	320	NA	10	40	80,000	
1315 2,002 240 NA NA NA NA BOD 1315 2,902 240 NA NA NA NA NA 60,000 1917 4,837 377 NA NA NA NA 100,000 1918 4,837 377 NA NA NA NA 100,000 19120 3,628 359 20 5 75 75,000 1921 3,773 490 NA NA NA NA 76,000 1922 3,628 359 500 6 NA NA 76,000 1923 1,959 500 6 NA NA 40,500 1924 1,011 100 NA NA NA 20,900 1925 1,548 185 NA NA NA 20,000 1926 1,209 108 NA NA NA 1 12,7,900 1926 1,279 80 NA NA NA 1 1 2,7,900 <td>1014</td> <td>3,670</td> <td>212</td> <td>NA</td> <td>NA</td> <td>NA NA</td> <td>55,000</td> <td></td>	1014	3,670	212	NA	NA	NA NA	55,000	
1316 7,266 800 NA NA NA NA 100,000 1917 4,837 410 NA NA NA NA NA 100,000 1918 4,837 377 NA NA NA NA 100,000 1919 2,902 271 NA 2 22 60,000 1920 3,628 359 20 5 75 75,000 1921 3,713 490 NA NA NA 74,000 1922 3,580 340 15 NA NA 40,500 1924 1,011 100 NA NA NA 22,000 1925 1,548 185 NA NA NA 22,000 1926 1,209 108 NA NA NA 22,000 1926 1,349 134 1 1 27,900 1929 615 52 NA 5 5 12,712 1930 1,112 106 NA 1 1	1015	2,000	240	NΔ	ΝA	NΔ	60,000	
1917 4,837 410 NA NA NA NA 100,000 1918 4,837 377 NA NA NA NA NA 100,000 1919 2,902 271 NA 2 22 60,000 1920 3,628 359 20 5 75 75,000 1921 3,773 490 NA NA NA NA 74,000 1922 3,580 340 15 NA NA NA 40,500 1924 1,011 100 NA NA NA 20,000 1925 1,548 185 NA NA NA 20,000 1926 1,209 108 NA NA NA 14,000 1927 7798 92 NA NA 14,000 122,7,900 1929 677 80 NA 1 12,2,000 1331 575 49 NA 4 1 11,885 1930 1,112 106 NA 1 1	1016	7 256	800	NΔ	NA	NA	150,000	
13184,837377NANANANA100,00019192,902271NA22260,00019203,6283592057575,00019213,773490NANANANA74,00019223,58034015NANA40,50019231,9595006NANANA40,50019241,011100NANANANA20,90019251,548185NANANANA20,00019261,209108NANANANA20,000192779892NANANANA16,50019281,349134NA1127,900192967780NANANANA14,00019301,112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANA1110519351494NA11105193676973NA32522,750193970064NA32724,8501944NANANANANA1944NANANA112801	1917	4 837	410	NA	NA	NA	100,000	
13192.902271NA22260,00019203.6283592057575,00019213.773490NANANANA74,00019223.58034015NANANA40,50019223.58034015NANANA40,50019231.9595006NANANA20,00019241.011100NANANANA20,00019251.548185NANANANA25,00019261.209108NANANANA16,500192779892NANANANA16,50019281.349134NA112,23,00019301.112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANA11105193676973NA31526,915193725522NA278,925193865057NA32522,750193970064NA32522,750194030024NA112801944NANANANANA<	1918	4 837	377	NA	NA	NA	100,000	
19203,6283.692.057575,00019213,773490NANANANA74,00019223,58034015NANANA74,00019231,9595006NANAA40,50019241,011100NANANANA20,00019251,209108NANANANA25,00019261,209108NANANA122,00019261,209108NANANA14,000192967780NANANA14,00019301,112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANANANANA19343NANA1110519351494NA1105,215193676973NA32522,750193970064NA32724,850194030024NA112801944NANANANANA1945NANA31027,230194677872NA31027,2301944NANANA<	1919	2 902	271	NA	2	22	60.000	
1921 3,773 490 NA NA NA NA T 76,000 1922 3,580 340 15 NA NA NA 76,000 1923 1,959 500 6 NA NA 40,500 1924 1,011 100 NA NA NA 20,900 1925 1,548 185 NA NA NA NA 20,900 1926 1,209 108 NA NA NA NA 20,000 1926 1,209 108 NA NA NA 14 20,900 1928 1,349 134 NA 1 1 27,900 1829 677 80 NA 4 1 11,885 1930 1,112 106 NA 1 1 105 12,712 1931 575 49 NA 1 1 105 12,871 1933 NA	1920	3.628	359	20	5	75	75.000	
19223,58034015NANANA74,00019231,9595006NANAA40,50019241,011100NANANAA20,90019251,548185NANANANA22,00019261,209108NANANANA25,000192779892NANANANA11192967780NANANANA14,00019301,112106NA4111,885193261552NAA5512,71219331,112106NANANANA19343NANANANANA19351494NA1105,215193676973NA31526,915193725522NA278,925193865057NA32522,750194030024NA61210,500194156553NA136,16019438NANANANANA194677872NA31027,2301944NANANANANANA194677872NA31027,2301947<	1921	3,773	490	NA	NĂ	NA	78.000	
19231,9595006NANANA40,50019241,011100NANANANA20,90019251,548185NANANANA20,00019261,209108NANANANA25,000192779892NANANANA16,50019281,349134NA1127,900192967780NANANA14,00019301,112106NA4111,885193261552NA5512,7121933NANANANANANA19343NANA1110519351494NA1105,215193676973NA32522,750193970064NA32724,850194030024NA1128019438NANANANANA194677872NA31027,230194752850NA2814,4451949411NANANANA194677872NA31027,230195159261NA31019,215195261NA	1922	3.580	340	15	NA	NA	74.000	
19241,011100NANANANA20,90019251,548185NANANANA32,00019261,209108NANANANA25,000192779892NANANANA16,50019281,349134NA1127,900192967780NANANANA19301,112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANANANANA19343NANA110519351494NA1105,215193676973NA32522,750193865057NA32522,750193970064NA11280194156553NA31519,46019421768NANANANA1944NANANANANA1945NANANANANA194677872NA310194841344NA28194841344NA28194841344NA	1923	1.959	500	6	NA	NA	40,500	
1925 1,548 185 NA NA NA NA 32,000 1926 1,209 108 NA NA NA NA 25,000 1927 798 92 NA NA NA NA 16,500 1928 1,349 134 NA 1 1 27,900 1929 677 80 NA NA NA NA 14,000 1930 1,112 106 NA 1 2 23,000 1931 575 49 NA 4 1 11,885 1932 615 52 NA NA NA NA 1933 NA NA NA 1 1 105 1933 769 73 NA 3 15 26,915 1937 255 22 NA 2 7 8,925 1938 650 57 NA 3 25 22,750 1939 700 64 NA 3 15 19,460 </td <td>1924</td> <td>1,011</td> <td>100</td> <td>NĂ</td> <td>NA</td> <td>NA</td> <td>20,900</td> <td></td>	1924	1,011	100	NĂ	NA	NA	20,900	
19261,209108NANANANA25,000192779892NANANANA16,50019281,349134NA1127,900192967780NANANANA14,00019301,112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANANANANA19343NANA1105,21519351494NA1105,215193676973NA31526,915193725522NA278,925193865057NA32522,750194030024NA61210,500194156553NA112801944NANANANANANA1945NANANANANA194677872NA31027,230194752850NA2818,480194841344NA11210195154950NA31019,215195261NA31019,2151955 </td <td>1925</td> <td>1,548</td> <td>185</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>32,000</td> <td></td>	1925	1,548	185	NA	NA	NA	32,000	
192779892NANANA1127,9001929 677 80 NANANANA14,00019301,112106NA1223,0001931 575 49NA4111,885193261552NA5512,7121933NANANANANANA19343NANANANA19351494NA11105193576973NA32522,750193865057NA32522,750193970064NA31519,460194156553NA31519,46019421768NANANANA19438NANANANANA1944NANANANANA19457872NA31027,2301944NANANANANANA194677872NA31027,230194752850NA2814,445194841344NA2814,4451949411NA2814,44519501,02891NA31012,2301951549 <t< td=""><td>1926</td><td>1,209</td><td>108</td><td>NA</td><td>NA</td><td>NA</td><td>25,000</td><td></td></t<>	1926	1,209	108	NA	NA	NA	25,000	
19281,349134NA1127,900192967780NANANANA14,00019301,112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANANANANA19343NANA1110519351494NA1105,215193676973NA32522,750193865057NA32522,750193970064NA32724,850194030024NA136,160194156553NA31519,46019438NANANANANA1944NANANANANA1945NANANANANA194677872NA31027,230194841344NA2814,4451949411NA2814,4451949411NA2814,4451944NANANANANA1945NANANA1121019501,02891NA310<	1927	798	92	NA	NA	NA	16,500	
1929 677 80 NANANA14,00019301,112106NA1223,0001931 575 49NA4111,885193261552NA5512,7121933NANANANANANA19343NANA1110519351494NA1105,215193676973NA31526,915193725522NA278,925193865057NA32522,750193970064NA31519,460194156553NA31519,46019421768NA112801944NANANANANA1945NANANANANA1945NANANANANA194677872NA310194841344NA2814,4451949411NA2814,4451949411NA2814,4451949411NA31019,215195261NA31019,2151955929NA343,2201	1928	1,349	134	NA	1	1	27,900	
19301,112106NA1223,000193157549NA4111,885193261552NA5512,7121933NANANANANANA19343NANA1110519351494NA1105,215193676973NA32526,915193725522NA278,925193865057NA32522,750193970064NA32724,850194156553NA31519,46019421768NA136,16019438NANANANANA1944NANANANANA1945NANANANANA194677872NA31027,230194752850NA2814,4451949411NA281,4451949411NA31535,980195154950NA33101953302NA331,05019549110NA443,1851955929NA32098,035 <td>1929</td> <td>677</td> <td>80</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>14,000</td> <td></td>	1929	677	80	NA	NA	NA	14,000	
193157549NA4111,885193261552NA5512,7121933NANANANANANA19343NANANA1119351494NA1105,215193676973NA32522,750193865057NA32522,750193970064NA32724,850194030024NA61210,500194156553NA31519,46019421768NA136,16019438NANANANANA1944NANANANANA1945NANANANANA194677872NA31027,230194752850NA2814,4451949411NA281,43519501,02891NA31019,2151953302NA331,05019549110NA443,1851955929NA343,220195686882NA11030,38019572,801323NA3209	1930	1,112	106	NA	1	2	23,000	
193261552NA5512,7121933NANANANANANA19343NANA1110519351494NA1105,215193676973NA31526,915193725522NA278,925193865057NA32522,750193970064NA32724,850194030024NA61210,500194156553NA31519,46019421768NA1128019438NANANANANA1945NANANANANA194677872NA31027,230194752850NA2814,4451949411NA2814,4451949411NA281,43519501,02891NA31019,215195261NA112101953302NA333195154950NA331,05019549110NA443,1851955929NA343,220<	1931	575	49	NA	4	1	11,885	
1933 NA NA NA NA NA NA 1934 3 NA NA 1 1 105 1935 149 4 NA 1 10 5,215 1936 769 73 NA 3 15 26,915 1937 255 22 NA 2 7 8,925 1938 650 57 NA 3 25 22,750 1939 700 64 NA 3 27 24,850 1941 565 53 NA 3 15 19,460 1941 565 53 NA 1 1 280 1942 176 8 NA 1 1 280 1943 8 NA NA NA NA NA 1944 NA NA NA NA NA NA 1945 NA NA NA NA NA NA 1946 778 72 NA 3	1932	615	52	NA	5	5	12,712	
19343NANA1110519351494NA110 $5,215$ 193676973NA315 $26,915$ 193725522NA27 $8,925$ 193865057NA325 $22,750$ 193970064NA327 $24,850$ 194030024NA612 $10,500$ 194156553NA31519,46019421768NA112801944NANANANANA1945NANANANANA194677872NA31027,230194752850NA2814,4451949411NA281,43519501,02891NA31019,215195261NA331,0501953302NA331,05019549110NA443,1251955929NA343,220195686882NA11030,38019572,801323NA32098,035	1933	NA	NA	NA	NA	NA	NA	
19351494NA110 $5,215$ 193676973NA315 $26,915$ 193725522NA27 $8,925$ 193865057NA325 $22,750$ 193970064NA327 $24,850$ 194030024NA612 $10,500$ 194156553NA315 $19,460$ 19421768NA13 $6,160$ 19438NANA11 280 1944NANANANANA1945NANANANANA194677872NA310 $27,230$ 194752850NA28 $14,445$ 1949411NA28 $1,435$ 19501,02891NA310 $19,215$ 195261NA112101953302NA33 $1,050$ 19549110NA44 $3,220$ 1955929NA34 $3,220$ 195686882NA110 $30,380$ 19572,801323NA320 $98,035$	1934	3	NA	NA	1	1	105	
1936 769 73 NA 3 15 26,915 1937 255 22 NA 2 7 8,925 1938 650 57 NA 3 25 22,750 1939 700 64 NA 3 27 24,850 1940 300 24 NA 6 12 10,500 1941 565 53 NA 3 15 19,460 1942 176 8 NA 1 1 280 1943 8 NA NA NA NA NA 1944 NA NA NA NA NA 1945 NA NA NA NA NA 1946 778 72 NA 3 10 27,230 1947 528 50 NA 2 8 14,445 1948 413 44 NA 2 8 1,435 1950 1,028 91 NA 3 10 <td< td=""><td>1935</td><td>149</td><td>4</td><td>NA</td><td>1</td><td>10</td><td>5,215</td><td></td></td<>	1935	149	4	NA	1	10	5,215	
1937 255 22 NA 2 7 8,925 1938 650 57 NA 3 25 22,750 1939 700 64 NA 3 27 24,850 1940 300 24 NA 6 12 10,500 1941 565 53 NA 3 15 19,460 1942 176 8 NA 1 1 280 1943 8 NA NA 1 1 280 1944 NA NA NA NA NA 1945 NA NA NA NA NA 1946 778 72 NA 3 10 27,230 1947 528 50 NA 2 8 18,480 1948 413 44 NA 2 8 1,435 1949 41 1 NA 3 10 19,215 1950 1,028 91 NA 3 10 19	1936	769	73	NA	3	15	26,915	
1938 650 57 NA 3 25 $22,750$ 1939700 64 NA 3 27 $24,850$ 1940 300 24 NA 6 12 $10,500$ 1941 565 53 NA 3 15 $19,460$ 1942 176 8 NA 1 3 $6,160$ 1943 8 NANA 1 1 280 1944NANANANANA1945NANANANANA1946 778 72 NA 3 10 $27,230$ 1947 528 50 NA 2 8 $14,445$ 1948 413 44 NA 2 8 $1,435$ 1950 $1,028$ 91 NA 3 15 $35,980$ 1951 549 50 NA 3 10 $19,215$ 1952 6 1 NA 3 3 $1,050$ 1953 30 2 NA 3 4 $3,220$ 1955 92 9 NA 3 4 $3,220$ 1956 868 82 NA 1 10 $30,380$ 1957 $2,801$ 323 NA 3 20 $98,035$	1937	255	22	NA	2	7	8,925	
193970064NA32724,850194030024NA61210,500194156553NA31519,46019421768NA136,16019438NANA112801944NANANANANANA1945NANANANANA194677872NA31027,230194752850NA2818,480194841344NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,0501955929NA343,220195686882NA11030,38019572,801323NA32098,035	1938	650	57	NA	3	25	22,750	
194030024NA61210,500194156553NA31519,46019421768NA136,16019438NANA112801944NANANANANANA1945NANANANANANA194677872NA31027,230194752850NA2818,480194841344NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,05019549110NA443,1851955929NA343,220195686882NA11030,38019572,801323NA32098,035	1939	700	64	NA	3	27	24,850	
194156553NA31519,46019421768NA136,16019438NANA112801944NANANANANANA1945NANANANANANA194677872NA31027,230194752850NA2818,480194841344NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,0501955929NA343,220195686882NA11030,38019572,801323NA32098,035	1940	300	24	NA	6	12	10,500	
19421768NA136,16019438NANA112801944NANANANANANA1945NANANANANANA194677872NA31027,230194752850NA2818,480194841344NA2814,4451949411NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,05019549110NA443,1851955929NA343,220195686882NA11030,38019572,801323NA32098,035	1941	565	53	NA	3	15	19,460	
19438NANA112801944NANANANANANA1945NANANANANANA194677872NA31027,230194752850NA2818,480194841344NA2814,4451949411NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,05019549110NA443,1851955929NA343,220195686882NA11030,38019572,801323NA32098,035	1942	1/6	8	NA	1	3	6,160	
1944 NA NA NA NA NA NA NA 1945 NA NA NA NA NA NA NA 1945 NA NA NA NA NA NA NA 1946 778 72 NA 3 10 27,230 1947 528 50 NA 2 8 18,480 1948 413 44 NA 2 8 14,445 1949 41 1 NA 2 8 1,435 1950 1,028 91 NA 3 10 19,215 1951 549 50 NA 3 3 1,050 1951 549 50 NA 3 3 1,050 1952 6 1 NA 4 4 3,185 1953 30 2 NA 3 4 3,220 1954	1943	8	NA	NA	1	1	280	
1945INAINAINAINAINA1946 778 72 NA310 $27,230$ 1947 528 50 NA2818,480194841344NA2814,4451949411NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,05019549110NA443,1851955929NA343,220195686882NA11030,38019572,801323NA32098,035	1944	NA	NA		NA	NA	NA	
1940 778 72 NA310 $27,230$ 194752850NA2818,480194841344NA2814,4451949411NA281,43519501,02891NA31535,980195154950NA31019,215195261NA112101953302NA331,05019549110NA443,1851955929NA343,220195686882NA11030,38019572,801323NA32098,035	1945	NA 770	NA ZO		NA	NA 10		
1947 528 50 NA 2 8 18,480 1948 413 44 NA 2 8 14,445 1949 41 1 NA 2 8 14,445 1949 41 1 NA 2 8 1,435 1950 1,028 91 NA 3 15 35,980 1951 549 50 NA 3 10 19,215 1952 6 1 NA 1 1 210 1953 30 2 NA 3 3 1,050 1954 91 10 NA 4 4 3,185 1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1940	//8	12		3	10	27,230	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1040	328	50		2	0	18,480	
1973 1 1 1 2 0 1,433 1950 1,028 91 NA 3 15 35,980 1951 549 50 NA 3 10 19,215 1952 6 1 NA 1 1 210 1953 30 2 NA 3 3 1,050 1954 91 10 NA 4 4 3,185 1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	10/0	-113	44	NΔ	2	0	14,440	
1950 1020 91 NA 3 15 35,980 1951 549 50 NA 3 10 19,215 1952 6 1 NA 1 1 210 1953 30 2 NA 3 3 1,050 1954 91 10 NA 4 4 3,185 1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1949	41	01	ΝA	2	0 15	1,430	
1951 049 00 140 3 10 19,215 1952 6 1 NA 1 1 210 1953 30 2 NA 3 3 1,050 1954 91 10 NA 4 4 3,185 1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1051	540	50	ΝΔ	ວ ຈ	10	10 215	
1952 3 3 1 1 210 1953 30 2 NA 3 3 1,050 1954 91 10 NA 4 4 3,185 1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1052	545	1	NA	ა 1	10	19,210	
1954 91 10 NA 4 4 3,185 1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1052	20	י ס	NA	2	2	1 050	
1955 92 9 NA 3 4 3,220 1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1954	Q1	10	NA	4	4	3 185	
1956 868 82 NA 1 10 30,380 1957 2,801 323 NA 3 20 98,035	1955	92	, Q	NA	3	4	3 220	
1957 2,801 323 NA 3 20 98,035	1956	868	82	NA	1	10	30,380	
	1957	2,801	323	NA	3	20	98,035	

Table 1 - Gold, silver, and platinum production from the Chistochina Mining District

Year	Gold	Silver	Platinum	Number	Employees	Value	
	(oz)	(oz)	(oz)	of Mines			
				······································	<u></u>		
1958	2,137	266	NA	2	22	74,795	
1959	898	72	NA	1	14	31,430	
1960	507	38	NA	3	15	17,745	
1961	40	3	NA	1	1	1,400	
1962	NA	NA	NA	NA	NA	NA	
1963	NA	NA	NA	NA	NA	NA	
1964	18	2	NA	1	1	630	
1965	NA	NA	NA	NA	NA	NA	
1966	NA	NA	NA	NA	NA	NA	
1967	NA	NA	NA	NA	NA	NA	
1968	3	NA	NA	1	1	105	
1969	8	NA	NA	. 1	1	280	
1970	NA	NA	NA	NA	NA	NA	
1971	NA	NA	NA	NA	NA	NA	
1972	NA	NA	NA	NA	NA	NA	
1973	500	NA	NA	1	2	20,000	
1974	NA	NA	NA	NA	NA	NA	
1975	500	NA	NA	1	2	67,500	
1976	NA	NA	NA	NA	NA	NA	
1977	NA	NA	NA	NA	NA	NA	
1978	NA	NA	NA	NA	NA	NA	
1979	4,505	360	NA	3	35	1,350,000	
1980	4,220	379	NA	3	30	2,743,000	
1981	7,500	781	NA	3	30	3,750,000	
1982	3,950	323	NA	2	22	1,639,250	
1983	4,600	504	NA	3	22	1,924,000	
1984	1,260	119	NA	1	15	453,600	
1985	4,911	471	NA	1	15	1,596,075	
1986	NA	NA	NA	NA	NA	NA	
1987	277	25	15	1	6	126,035	
1988	650	84	27	. 1	6	276,250	
Total	178,926	17,344	83			17,171,527	

Table 1 - Gold, silver, and platinum production from the Chistochina Mining District (continued)

- Data compiled and released to the Bureau by T.K. Bundtzen, Geologist, Alaska Division of Geological and Geophysical Surveys (ADGGS), Fairbanks, AK. Production data mainly derived from Smith (<u>39</u>) for years 1900-1930, unpublished mint returns from 1931-1969, and unpublished State of Alaska records from 1979-1988. Records also obtained from Ranchers Exploration and Development Corporation, Alaska Mineral Resources Company, and Chesna Mining Company. Employment estimates from Biennial Reports of Territorial Department of Mines and ADGGS. Value reported in U.S. Dollars at the time of sale.

- NA indicates not available.

From 1900 through 1910, when gold was valued at \$20.67 per fine troy ounce and silver was worth about 60 cents per fine troy ounce, more than \$1,500,000 in gold and silver (about 73,000 fine troy ounces of gold and 6,800 fine troy ounces of silver) were produced in the Chistochina District (24). Gold from the district was valued at between \$18 and \$18.72 per raw troy ounce, indicating a fineness range of about 870-910. Based on six gold fineness determinations, Smith (40) reports a range of 857-887 for the Slate Creek area. Prior to 1911, most of the production in the district came from rich shallow gravels on Miller Gulch and the alluvial fan at the mouth of Miller Gulch, on lower Slate Creek (21). The upper Slate Creek gravels were not as rich, and bedrock was as much as 90 ft beneath the surface.

From 1911 to 1942, an additional \$1,200,000 was produced from the district (25). In 1934 the gold price was increased from \$20.67 to \$34.88 per fine troy ounce and the value of silver increased to about 72 cents per fine troy ounce. In 1942, most placer mines were considered non-essential industrial operations and were shut down by Federal order for the duration of the second world war.

Prior to 1942, mining in the district was done primarily by hydraulic-methods, hand-mining, and sluicing. After the war, when mining revived in the district, more modern, gasoline- and diesel-powered heavy equipment gradually replaced the older methods.

Gold production in the district essentially ceased from 1965 to 1979.

In 1972, following deregulation of gold prices, Ranchers Exploration and Development Corporation consolidated all but the Miller Gulch and Big Four Gulch mining claims in the upper Chistochina-Slate Creek area. They conducted an exploration program from 1972 until 1983, and began mining on Slate Creek in 1979 (<u>1</u>). Using heavy equipment, sluice boxes, jigs, and gravity concentration tables, Ranchers produced 19,666 fine troy ounces of gold at an average grade of 0.0177 fine troy ounces per yd³ from their operation on upper Slate Creek from 1979 through 1983. In 1984, Ranchers produced 1,260 fine troy ounces of gold from their operation on lower Slate Creek. During the 1984 mining season, Ranchers was acquired by Hecla Mining Corporation.

In 1985, Alaska Minerals Resources Company (1) acquired Hecla Mining Corporation's mining rights in the Chistochina placer district and moved the mining operation from lower Slate Creek to Ruby Gulch (1). That operation produced 4,911 fine troy ounces of gold at a grade of 0.0232 fine troy ounces per yd³. The company conducted no mining operations on Slate Creek or Ruby Gulch in 1986 or 1987. In 1988, Chesna (the original spelling of Chisna) Mining Company, Denver (CO), acquired an option on the Slate Creek-Ruby Gulch property and is currently conducting tests on tailings and unmined ground.

According to Mr. Howard Hayes, present owner of claims on Miller Gulch, since 1973, smallscale mining operations on Miller Gulch have produced about 3,750 troy ounces of gold.

Mr. Hayes also estimates that during small-scale mining operations between 1973 and 1984, he has recovered over 15 troy ounces of PGM from Miller Gulch concentrates.

Mr. George Cochetas received payment for 7 troy ounces of platinum, recovered during 1988 from a 13.6 troy ounce precious metal concentrate that he produced by tabling several tons of black sand left by Ranchers at the upper Slate Creek property. Ranchers had magnetically separated the material from sluice box concentrates during their mining operations. Also in 1988, Mr. Cochetas shipped 12 tons of concentrate that contained 18 to 20 troy ounces per ton gold and 0.25 troy ounces per ton platinum.

PREVIOUS WORK

Since the early 1900's, local miners referred to the Tertiary conglomerate in the district as "round wash", and they believed, as some still do, that the conglomerate is the source of the placer gold in the district (20-22). Mendenhall (20), however, recognized that "gold-bearing creeks in the district are all within an area whose extent coincides with a region of local metamorphism in the Permian shales". Mendenhall concluded that the gold originated in the shales, which have since been assigned to the Jurassic and Cretaceous Periods, and that in its genesis, the gold is related to the local metamorphism. Chapin (7) stated that gold and "platinum" in the district were derived from the round wash, glacial gravels, and recently-deposited stream gravels. Chapin also stated that there were no nearby basic rocks from which the platinum is likely to have been derived. More recently, Moffit (25) recognized mafic dikes in the area, and Cobb (8) concluded that the platinum probably came from ultramafic rocks in the area.

GEOLOGY

Regional and Structural Geologic Setting

The geology of the Slate Creek area is dominated by two structural features. These are the Denali Fault Zone to the north, and the Slate Creek Fault Zone, near the southern border of the mapped area (fig. 2). The Denali Fault Zone is about 1 mi wide and is covered by glacial ice and moralnal debris. The Denali Fault Zone separates low-grade, schistose, Paleozoic and Precambrian metamorphic rocks of the Yukon-Tanana Tectonostratigraphic Terrane (<u>12,27,45</u>) to the north, and outside the study area, from Jurassic-Cretaceous argillite and sandstones of the Kahiltna Terrane. Up to 240 mi of right-lateral displacement, mostly during the Cretaceous and Tertiary Periods, has been demonstrated along the Denali Fault Zone by Turner and others (<u>47</u>) and Tempelman-Kluit(<u>45</u>). The Slate Creek Fault Zone is interpreted by Chapin (<u>7</u>) to be a graben, with high angle faults at the northern and southern margins of the valley. The graben is filled with poorly lithified Tertiary conglomerate with associated sandstone and coal seams. On the slopes north of Slate Creek and parallel to the graben, are high-angle, south-dipping, slickensided surfaces in the Tertiary conglomerate and Jurassic-Cretaceous argillite. These are interpreted as normal fault surfaces that are related to the graben structure. On the south side of the Slate Creek Fault Zone, is a thick section of Permian dacite stocks, dikes, sills, and dacitic extrusive rocks (<u>28</u>).

Intrusion of igneous rocks in the area apparently post-dated the formation of the tighter folds, but, some of the igneous dikes are offset by small-scale faults with displacements ranging from less than one foot to tens of feet. Because the Tertiary conglomerate is cut by faults, at least some of these faults occurred during or after the Tertiary Period.

Rock Units

Dacite Stocks, Dikes, and Sills

The oldest rocks in the study area are south of Slate Creek. These are Permian dacite stocks, dikes, sills, and tuffaceous igneous rocks (28). These rocks contain abundant pyrite and they weather to form conspicuous gossans. Dacitic rocks south of the Slate Creek Fault were found to contain no anomalous concentrations of precious metals, and little or no gold has been produced from streams draining these rocks.

Limestone

A fault-bounded block of massive gray limestone of the Permian Eagle Creek Formation (28) underlies the lower end of Quartz Creek. Buff- to orange-weathering, locally pyritic limestone bodies, too small to be mapped were also observed at the heads of Slate Creek, Ruby Gulch, and Quartz Creek. No metallic minerals other than pyrite were observed in the limestone.

Argillite and Sandstone

The predominant lithology north of the Slate Creek Fault Zone is a black, graphitic, slaty argillite with pale green, locally calcareous, sandstone intervals (fig. 3). The sandstone intervals range in thickness from less than an inch to about 1 ft; most are less than 2-3 in. This sequence changes in metamorphic grade and fabric from relatively unmetamorphosed, slaty, carbonaceous argillite, near Slate Creek, to graphitic phyllite in the upper part of the section, near the Chistochina Glacier. Easterly strikes, parallel to the local and regional structural grain are characteristic throughout the section. In the middle to upper end of Miller Gulch, beds become thinner and grain size in the sandstone intervals decreases. Rhythmic bedding and convolute laminations were observed in the argillite from about midway to the upper end of Miller Gulch. Local variations in strike direction are the result of small-scale folds and faults. Bedding surfaces generally dip between 30 and 80 degrees to the north, toward the Denali Fault Zone. Less abundant, steep southerly dips were locally noted, however, and are interpreted as evidence of overturning of beds, by faulting and folding; consequently, structural thickening of the section has occurred.

Throughout the section are abundant fine calcite veinlets and stockworks with lessabundant quartz veins. Calcite veins and fracture fillings are both contemporaneous with and postdate the quartz veins. The argillite is locally rich in very fine-grained pyrite and is cut by clay gouge-filled, small-scale faults, with offsets measuring from several inches to 1- or 2-ft. The orientation of these faults is very erratic and locally they were observed to change from nearvertical to sub-horizontal within several hundred feet. The faults have two primary strike directions, east, and north. As a result of intensive faulting and brittle deformation caused by intrusion of igneous rocks in the area and deformation associated with movement along the nearby Denali Fault Zone, the entire argillite section is highly fractured.

The argillite section was believed by Mendenhall (20,21), Mendenhall and Schrader (22), and Moffit (25) to be part of the Mankommen Formation, variously assigned to the Carboniferous and Permian Periods. More recently however, Nokleberg and others (28) noted similarities among the argillites in the Slate Creek area to fossil-bearing turbidites in the Nabesna Quadrangle, to the east, and interpreted the turbidites in the Slate Creek area to be of Jurassic or Cretaceous age. During the present investigation, a fossil assemblage was collected in the Miller Gulch and upper Slate Creek areas. Included in the assemblage were an ammonite and a pelecypod specimen that was recognized in the field by Arne Bakke⁴ as *Buchia*, an important indicator fossil of Jurassic and Cretaceous turbidites in Alaska. The pelecypod specimen was identified by D.L. Jones⁵ as Late Jurassic *Buchia concentrica* and the ammonite as probably *Phylloceras*, of indeterminate age (written communication from D.L. Jones⁵).

⁴Geologist, formerly employed by Bureau of Mines, Fairbanks (AK). ⁵Paleontologist, University of California, Berkeley (CA).

Figure 3. - North-dipping slaty argillite with lighter-colored sandstone intervals in lower Miller Gulch.

Minerals identified during examination by petrographic microscope and scanning electron microscope of argillite samples include illite and other clay minerals, carbonaceous material, quartz, calcite, feldspar, and minor amounts of pyrite, magnetite, and barite. Minute gold particles, all less than 10 microns across, were observed in quartz and pyrite in the argillite. Very fine grains of gold were panned from argillite bedrock and argillite talus samples collected marginal to igneous dikes. Care was taken to avoid contamination by placer gold and placer platinum. Prior to panning, the samples were washed, crushed, washed again, and pulverized. In addition to gold, the heavy mineral concentrates produced in this fashion contained abundant very fine-grained pyrite. An osmiridium grain was also recovered in a heavy mineral concentrate panned from washed, crushed, and pulverized argillite talus from a steep slope on lower Miller Gulch (map number 88, fig. 2).

Differentiated Igneous Rocks North of the Slate Creek Fault Zone

Between the Denali Fault Zone and the Slate Creek Valley, differentiated and hydrothermally-altered dikes and sills of ultramafic, mafic, and intermediate rocks intrude the entire argillite section. Cross-cutting relationships observed among the dikes indicate that there were several episodes of igneous activity in the area. Two major rock units, defined as mafic to ultramafic stocks and sills (TKg), and intermediate to mafic hypabyssal dikes (TKd) were distinguished primarily on the basis of intrusive style, morphology, and composition (fig. 2). The plutons comprise mafic to ultramafic stocks and sills ranging from 1,000 to 4,000 ft in maximum horizontal dimension and smaller, intermediate to mafic, hypabyssal dikes, ranging from several inches to 100 ft wide, that occur in parallel sets and swarms with multiple orientations. For the most part, the larger plutons and the smaller dikes contain the same primary minerals. The only exception to this is the presence of potassium feldspar phenocrysts in some of the porphyritic dikes. The sills, stocks, and dikes contain the same alteration minerals. The larger stocks and sills comprise cumulate, coarse-grained, ophitic to subophitic gabbros with minor associated alkali

gabbro, dunite, magnetite-peridotite, serpentinite, hornblendite, plagioclase-hornblendite, and diorite. The smaller dikes tend to be much finer-grained than are the rocks in the larger plutons, although hypabyssal porphyritic rocks with aphanitic groundmasses are common in some of the wider dikes. The dikes are mostly altered diorites and andesites, but, they also include altered gabbro, diabase, hornblendite, diorite porphyry, syenodiorite, syenodiorite porphyry, and dacite.

The gabbros and associated ultramafic rocks (TKg) occur in three areas shown in figure 2. One mass, which contains mostly coarse-grained hornblende gabbro, commonly with coarse interstitial magnetite, and cut by numerous plagioclase-hornblendite dikes is exposed between Miller Gulch and the Chistochina River Valley, at the terminus of the Chistochina Glacier. Similar gabbroic rocks, mixed with altered diorite, also crop out in the igneous mass to the north of upper Slate Creek (fig. 4) on the south side of the Chistochina Glacier. Gabbro, with minor associated dunite, pyroxenite, and serpentinite also crops out in an igneous body of unknown extent at the head of Quartz Creek. The argillite at the southern margin of this mass is sheared and the igneous rocks are serpentinized along the intrusive contact. The gabbros and associated rocks in all three bodies are locally intruded by diorite, diorite porphyry, andesite, hornblendite, and diabase dikes. The close spatial relationship of the dikes and gabbro bodies, the presence of lithologies common to both suites, and cross-cutting dikes in the gabbro indicate that the two are genetically related. The dikes intrude the gabbro stocks and sills, are more siliceous, and are probably slightly younger differentiates of a mutual magmatic source.

Figure 4. - North-dipping differentiated mafic and ultramafic sill (TKg) capping ridge and overlying slaty argillite (KJa) at upper Slate Creek. View to the north.

The differentiated igneous rocks in the Slate Creek area, like the argillite country rock, are cut by calcite and less abundant quartz stockworks and veinlets. Very fine-grained sulfide minerals including pyrite, pyrrhotite, and chalcopyrite are commonly present in all igneous lithologies.

The dikes occur in swarms and as isolated dikes throughout the study area. The highest concentration of dikes is in the Miller Gulch area, where multiple structural orientations are observed among the dikes (figs. 2 and 5). The dikes are less abundant outside the Miller Gulch area; east of Miller Gulch, mostly easterly strikes are observed. The dikes are typically from several inches to 2 ft wide, but individual dikes of east-striking, near vertical, andesite, diorite porphyry, and syenodiorite porphyry up to 60 ft thick, are present in Miller Gulch (fig. 6) and upper Slate Creek Valley. Also, a 200-ft-wide, east-striking, diorite dike, which lacks the distinctive feldspar phenocrysts that characterize the diorite porphyry and syenodiorite porphyry in the Miller Gulch area, crops out at the mouth of Ruby Gulch. A similar, 100-ft-wide dike with several narrower, parallel dikes crops out at the head of Ruby Gulch. In the Miller Gulch area, narrow dikes less than a few inches thick and the margins of thicker dikes are, in many places, almost completely replaced by silica, calcite, and fine-grained sulfide minerals. In general, sulfide mineral content is greatest in the more extensively silicified dikes. Alteration has not only affected dike margins, but has indurated and increased the sulfide mineral content of the adjacent argillite. In addition to sulfide minerals, hematite is pervasive in the argillite where it is intruded by the igneous rocks.

In thin section and polished thin section, using both standard reflected and transmitted light techniques, the dikes, gabbros, and ultramafic rocks exhibit many common features. All of the igneous rocks have been affected by hydrothermal alteration to the extent that pseudomorphic feldspar, both interstitial and phenocrysts, are completely replaced by fine-grained aggregates of quartz, white mica, carbonate, epidote, and clay minerals. Based on the habit of the feldspar phenocrysts and the presence of relict concentric zoning and twinning in various phenocrysts,

Figure 5. - Dike swarm (TKd) cutting Jurassic-Cretaceous turbidites (KJa) in Miller Gulch. Tertiary conglomerate (Tc) mantles the erosional scarp beneath the ridge crest in upper portion of the photograph. View to the east. The larger, vertical dikes in lower right are diorite porphyry with quartz-calcite veinlets and disseminated pyrite (map number 69).

Figure 6. - 60-ft-wide diorite porphyry and syenodiorite porphyry dike at Miller Gulch. Map number 74, view to the east.

both plagioclase and potassium feldspar were originally present in the dikes. No feldspar phenocrysts were observed in specimens from the larger plutons, where feldspar is interstitial and anhedral. In addition to altered feldspar, major and minor minerals present in various amounts and common to all the igneous rocks are hornblende, orthopyroxene, clinopyroxene, and olivine. Poikilitic hornblende and orthopyroxene typically contain equant inclusions of clinopyroxene and olivine. Common accessory minerals include abundant very fine-grained apatite and secondary, microscopic amphibole overgrowths. Mafic minerals are variably altered to very fine-grained, complexly intergrown chlorite, serpentine, talc, sphene, and amphibole. In some of the more altered ultramafic rocks and diabase dikes, pyroxene and olivine are replaced by twinned calcite. Accessory and minor opaque minerals include pyrite, pyrrhotite, cinnabar, and magnetite. Some of the magnetite contains exolved ilmenite.

The differentiated igneous rocks in the Slate Creek area are within a 120-mi-long belt of intrusive mafic and ultramafic rocks, along the Denali, Broxson Gulch, and Talkeetna Fault Systems, in the eastern and central Alaska Range (2,3,16,24,26,28,32-35,41). Within this belt (fig. 7), numerous placer and lode PGM occurrences are known to exist (2,8,11). At many of these sites, differentiated igneous rocks include various combinations of serpentinite, dunite, peridotite, plagioclase-peridotite, gabbroic rocks, diabase, diorite, and quartz diorite. Where present, the dunites in this belt contain a remarkable paucity of chromite. Also at many of these sites, is a very distinctive rock which ranges in composition from a noritic gabbro to a troctolitic gabbro. Plagioclase generally makes up less than 20 pct of this rock which, in most cases, contains accessory to minor amounts of a very distinctive, deep reddish-colored biotite. Nokleberg and others (28) suggest that the ultramafic and related rocks in the Mt. Hayes Quadrangle represent oceanic basement or lithosphere accreted to the North American continent. Intrusive contacts in the Slate Creek area and at many other locations along this belt, however, indicate that these rocks were intruded as partially molten magma into the crust, possibly during accretion of the Kahiltna Terrane and deformation along the Denali Fault (18).

- 7. Ann Creek
- 8. Miller Creek
- 9. Glacier Lake
- 10. Canwell Glacier
- 11. Slate Creek

0

20

10

Scole, miles

No isotopic ages are available for the igneous rocks in the Slate Creek area. Potassiumargon ages of 92 million years and 97 million years for hornblende in hornblende diorite and hornblende gabbro from the Miller Creek area, 35 miles to the west of Slate Creek, are reported (T.K. Bundtzen, pers. comm., 1989). These data indicate that mafic and associated ultramafic intrusive rocks, elsewhere in the 120-mi-long belt, may be of Late Cretaceous age.

Similar rocks at numerous locations along the south side of the Denali Fault Zone and along the Broxson Gulch Thrust Fault, in the western Mt. Hayes and southeastern Healy Quadrangles, have been questionably assigned to the Late Triassic Period by Richter and Jones (<u>33</u>) and Nokleberg and others (<u>28</u>) who speculate that the intrusive rocks are comagmatic with the Nikolai Greenstone, which has variously been assigned a Triassic age (<u>10,33</u>). Smith and others (<u>41</u>) note that basaltic rocks of the Amphitheatre Group, also in the western Mount Hayes and southeastern Healy Quadrangles, which have been correlated with the Nikolai Greenstone, have been assigned a Late Triassic (Late Carnian or Norian age) by Csejtey and others (<u>10</u>) versus a pre-Late Carnian age for the Nikolai Greenstone on the basis of faunal evidence. The Triassic ages are not supported by radiometric data. Smith and others (<u>41</u>) also note that the Amphitheatre Group rocks in the Healy Quadrangle are intruded by upper Triassic stocks, dikes, and sills of mafic and intermediate rocks.

Because the differentiated igneous rocks in the Slate Creek area intrude upper Jurassic through Cretaceous turbidites, and are overlain by Tertiary conglomerates, the igneous rocks must be provisionally assigned to the Cretaceous or Tertiary (?) periods.

Major oxide analyses (table 2) show that the Cretaceous-Tertiary (?) igneous rocks in the upper Chistochina Mining District range from subalkaline (tholeiitic) to alkaline in composition. Hence, chemical classification of these rocks, according to procedures outlined by Streckeisen and Le Maitre (43), reflects the presence of either normative quartz or normative olivine and feldspathoid. Petrographic examination reveals that primary olivine is present in many of the igneous rocks. Most of the quartz in the rocks is, conversely, clearly secondary in origin and probably crystallized during hydrothermal alteration. The presence of secondary quartz could also explain the subalkaline character of some of the rocks as determined by major oxide chemical data. The most common explanations for the coexistence of alkaline and subalkaline igneous rocks include mixing of magmas or crustal contamination of alkaline or basaltic magmas (5,17,50). Others (30,48,49) have shown that fractional crystallization in the presence of water and carbon dioxide can also explain the coexistence of alkaline and subalkaline igneous rocks. The presence of alkaline and subalkaline igneous rocks include mixing of magmas or crustal contamination of the geneous rocks. The presence of an also explain the coexistence of alkaline and subalkaline igneous rocks include mixing of magmas or crustal contamination in the presence of water and carbon dioxide can also explain the coexistence of alkaline and subalkaline igneous rocks. The presence of amphibole and pervasive silica-carbonate alteration of the differentiated igneous rocks indicate that this may have been the case in the Slate Creek area.

Comparison of the major oxide chemistry (table 2) of the dikes to the major oxide chemistry of the larger sills shows that the two groups of rocks have similar compositions for most components, and that the two groups of rocks are magmatically related. Relative to the larger plutons, the dikes are enriched in silica, soda, and potash, and are depleted in ferric iron and titanium dioxide. The ranges of the other analyzed compounds, notably alumina and magnesia, for the two groups of rocks are similar. The relative abundance of silica, soda, and potash in the dikes are probably the result of differentiation by fractional crystallization and, in part, hydrothermal alteration. The depletion of ferric iron and titanium dioxide in the dikes is also probably a result of fractional crystallization.

Major oxide data and Thornton-Tuttle (<u>46</u>) differentiation indexes (DI) for sills and dikes in the Slate Creek area are plotted in figure 8. The data show continuity between the two rock suites and graphically illustrate the chemical differentiation trends among the various major oxides.

TABLE 2 Major oxide	chemistry and chemical	l classification of ign	eous rocks from the up	oper Chistochina Mining
District				

Map no.	Sample no.	SiO2	аі ₂ 03	Fe ₂ O	₃ FeO	MgO	CaO	Na ₂ O	к ₂ 0	TiO ₂	P ₂ O ₅	MnO	Chemical Classification ¹ and pluton type
28	AK23693	44.81	18.21	7.90	5.00	5.63	10.01	2.70	1.50	1.10	0.45	0.24	gabbro sill
29	AK23694	44.72	18.56	7.25	4.80	6.01	8.69	2.70	1.00	1.00	0.40	0.23	gabbro sill
30	AK24290	39.91	11.76	8.90	6.20	9.42	11.95	1.30	0.70	1.29	0.06	0.19	gabbro sill
33	AK24291	56.30	17.89	5.00	1.90	3.39	5.73	4.90	2.90	0.51	0.25	0.10	syenodiorite dike
34	AK24374	41.96	13.96	7.80	6.70	11.50	11.86	1.80	1.20	1.64	0.04	0.18	alkali gabbro sill
42	AK23690	51.77	19.86	3.65	3.70	3.21	6.48	4.00	3.90	0.69	0.40	0.10	syenodiorite dike
55	AK24389	41.23	8.13	14.80	6.20	8.84	14.47	1.20	0.60	1.33	0.08	0.29	ultramafic sill
56	AK24390	41.38	14.74	8.50	6.70	8.33	11.19	1.80	0.90	1.26	0.50	0.25	gabbro sill
62	AK24358	47.30	13.44	6.10	7.10	7.19	10.16	1.90	1.20	1.12	0.39	0.22	gabbro sill
65	AK24357	57.37	16.91	4.75	3.40	4.74	4.14	2.60	2.50	1.13	0.19	0.11	dacite dike
66	AK24356	52.39	17.77	4.80	5.20	4.67	7.15	3.30	3.30	0.98	0.38	0.18	diorite dike
74	AK23684	52.13	17.93	2.45	5.70	4.34	6.40	3.20	3.30	0.83	0.41	0.17	diorite dike
74	AK23688	49.58	13.00	3.90	6.80	8.54	7.39	1.40	2.30	0.93	0.28	0.21	gabbro dike
74	AK23689	52.37	18.00	1.80	5.20	4.60	5.73	3.20	3.50	0.83	0.43	0.17	diorite dike
106	AK24384	53.32	13.90	2.00	5.20	10.95	4.73	1.90	2.00	0.53	0.24	0.15	gabbro dike
108	AK23685	52.72	17.87	3.55	5.10	4.69	6.86	3.70	3.30	0.89	0.44	0.18	syenodiorite dike
109	AK23686	47.09	18.07	2.50	6.80	3.56	7.81	3.60	2.20	0.87	0.37	0.16	diorite dike
112	AK24382	47.82	16.27	4.65	6.40	4.67	10.77	2.10	1.80	0.81	0.30	0.19	gabbro dike

^T Rocks classified according to normative quartz-alkali feldspar-plagioclase-feldspathoid mineral composition as described by Streckeisen and Le Maitre (43). Values in weight percent.

Granitic Rocks

A small stock (TKq, fig. 2), measuring about 400 by 1,000 ft in area, and an east-striking dike of propylitically-altered granitic rocks crop out on upper Slate Creek. The stock is mapped as gabbro by earlier workers (<u>28</u>). No gabbro was observed at this location during the present investigation. Based on field identifications, rock types in the small stock and dike include monzonite, quartz monzonite, diorite, and quartz diorite. No metallic minerals were observed in these rocks. The age of these rocks is unknown, but, because the rocks intrude upper Jurassic-Cretaceous argillite, they are also assigned a Cretaceous-Tertiary (?) age.

Tertiary Conglomerate

Poorly lithified Tertiary conglomerate crops out in discontinuous patches at numerous locations in the valleys and south-facing ridges of Slate Creek and Chisna River Valleys (Tc, fig. 2). These terrestrial sedimentary rocks were correlated by Mendenhall (21) with the Eocene Gakona Formation. Locally associated with this conglomerate, in the Slate Creek and Chisna River Valleys, are fossiliferous sandstone and coal beds. The conglomerate contains very well-rounded boulders of greenstone, and rocks of granitic to dioritic composition that average about 1 ft in diameter. Smaller, flat pebbles of quartz-mica schist, hematite-stained quartz cobbles and pebbles, and sand make up the matrix of the conglomerate. On the north side of the valleys, decomposed, boulder-

Figure 8. - Major oxides versus Thornton-Tuttle differentiation index. Open circles represent sills and solid circles represent dikes.

rich rubble, formed by the weathering of the conglomerate, covers some of the south-trending ridges up to 5,500-ft elevations. Concentrations of this rubble occur on erosional scarps at several hundred foot vertical intervals on the slopes north of Slate Creek. The presence of hematite-stained slickensides in the conglomerate rubble are the result of steep, south-dipping faults that parallel the Slate Creek graben. The presence of these gravels at progressively higher elevations to the north indicate that normal faulting postdates or occurred contemporaneously with deposition of the conglomerate.

Mendenhall (20,21), Mendenhall and Schrader (22), and Moffit (24-26) reported competent beds of this conglomerate with southerly dips exposed in placer mine workings, but, such are not presently exposed. The sandstone and coal beds have been down-thrown in the Slate Creek graben and are believed to represent higher levels of the Tertiary sedimentary rock sequence than are the more deeply-eroded conglomerate on the ridges to the north (7).

Mendenhall (20,21), Mendenhall and Schrader (22), and Moffit (24-26) also recognized conglomerate on the south side of the Slate Creek Valley. They reported that the conglomerate did not contain clasts of the underlying dacitic bedrock, but, rather an abundance of greenstone, diorite, and schist, indicating that the conglomerate had its provenance to the north of Slate Creek and probably to the north of the Denali Fault Zone, where the Yukon-Tanana Terrane comprises schist, greenstone, and granitic rocks (12, 27, 45).

During this study, several coarse and numerous fine, very bright gold grains were panned from screened decomposed Tertiary conglomerate collected at several sites in the study area (e.g. map numbers 36 and 119, fig. 2, and several sites in the upper Slate Creek Valley).

GEOCHEMISTRY AND METALLURGY

Analytical results for rock samples collected during the present investigation are listed in table 3. Rock chip samples were collected for geochemical analyses at the numbered map locations shown on figure 2. Except for the granitic rocks on upper Slate Creek, all lithologies were sampled and analyzed. The collection and analysis of samples was concentrated on rocks that contained sulfide minerals. Aside from rocks selected for major oxide analysis, some apparently unmineralized rocks were also sampled and analyzed.

Summary statistics for igneous rock samples and Jurassic-Cretaceous argillite samples collected north of the Slate Creek Valley are listed, respectively, in tables 4 and 5. Because the igneous rocks in the study area are extremely differentiated, their chemistry is compared to average igneous rocks (table 4). The data show that, compared to average igneous rocks, the Cretaceous-Tertiary (?) igneous rocks are enriched in all the elements listed in table 4 except for nickel and palladium. Most striking among the enriched elements are arsenic, gold, mercury, platinum, and silver. Based on comparison of the observed means to the quoted averages for igneous rocks (<u>36</u>), the apparent enrichment in cobalt, chromium, and zinc is less salient.⁶

 $^{^{6}}$ If the mean gold composition for the igneous rocks in the Slate Creek area were compared to the average gold content of mafic rocks, as reported by Govett (<u>14</u>), the calculated enrichment factor in table 4 would be reduced to 4. Similarly, if compared to the average value reported by Petrovskaya (29) for mafic rocks, the enrichment factor would be 1.5.

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Hg	Mo	Ni	Pb	Pđ	Pt	Sb	Zn	
Number	Number	ppm	ppm	poio	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppb	ppb	ppm	ppm	Descriptions
1	AK26961	<0.5	<5	<5		••	10	70	4		••	2	<15	<5	••	Pyrite-rich, graphitic argillite gossan (KJa).
2	AK26269	<0.5	<5	<5			134	40	<1			8	<15	11	••	Fine-grained silicified diorite with pyrite
																(TKg).
3	AK26270	0.7	9	<5			84	60	<1	••		20	<15	18	• -	Fine-grained gabbro with anorthositic
																segregation (TKg).
4	AK26959	0.8	15	5			40	45	<1			20	30	<5		Anorthositic gabbro (TKg).
5	AK26957	<0.5	<5	<5			30	55	<1			6	<15	<5		Cumulate gabbro (TKg).
6	AK26958	<0.5	5	9			18	40	<1	••		<2	15	<5		Anorthosite (TKg).
7	AK26268	<0.5	<5	<5		••	127	100	<1			6	<15	11		Fine-grained silicified diorite with pyrite
																(TKg).
8	AK26962	<0.5	<5	<5	••		44	9 0	2			15	<15	<5		Fine-grained pyritic altered gabbro (TKg).
9	AK26277	<0.5	27	<5			44	50	<1			6	35	18		Medium-grained anorthositic gabbro with
																abundant pyrite (TKg).
10	AK26288	0.5	<5	10			13	330	<1			<2	15	<5		Quartz-hematite vein in altered diorite
																(TKg).
11	AK26289	0.7	<5	13			62	130	<1			20	15	<5		Pyritic quartz vein in diorite (TKg).
12	AK26287	<0.5	12	17			330	390	7			10	<15	<5		Malachite-stained quartz and calcite from
																fracture in diorite (TKg).
13	AK26286	<0.5	<5	5			217	80	<1			15	15	<5		Malachite-stained diorite (TKg).
14	AK26285	<0.5	<5	7			363	180	<1			8	<15	15		Pyritic altered diorite (TKg).
15	AK26284	1.0	<5	15			139	650	<1			4	<15	<5		Sheared and altered diorite (TKg).
16	AK26274	1.7	7	10			28	1050	1			4	<15	13		Silica-carbonate-altered diorite dike in
																autoclastic altered gabbro (TKg).
17	AK26276	<0.5	<5	<5			105	140	<1			15	15	20		Chloritic sheared diorite with calcite
																veinlets bounded by hematite (IKg).
18	AK26275	<0.5	<5	<5			90	350	<1			2	<15	7		Pyrite-rich silicified diorite (TKg).
19	AK26290	<0.5	6	<5			455	45	2			2	<15	<5		Pyritic quartz vein (TKg).
19	AK26291	1.8	12	12			53	215	2			2	20	7	••	Pyrite-chalcopyrite-quartz breccia from
																lateral moraine.

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Нg	Mo	Ni	Рb	٩d	Pt	Sb	Zn	
Number	Number	ppm	ppm	ppb	ppm	nog	ppm	ppb	ppm	ppm	pom	ppb	ppb	ppm	ppm	Descriptions
20	AK26273	<0.5	15	<5			60	45	1			6	<15	14		Silica-carbonate-altered pyritic diorite
																(TKg).
21	AK26272	0.8	22	5			88	35	<1	••		6	<15	9		Pyritic and graphitic, phyllitic argillite
																(Kja).
22	AK26267	<0.5	<5	<5	••	••	109	40	<1		••	15	15	12	••	Serpentinite with calcite and hematite (TKg).
22	AK26271	0.7	<5	7	••		117	25	<1	••		8	<15	24		Very fine-grained, silicified, and
																carbonate-altered diorite with fine calcite
																veinlets (TKg).
23	AK26281	<0.5	<5	6	••	••	70	30	3		••	6	<15	<5	••	Pyritic, carbonate-altered diorite (TKg).
23	AK26282	0.7	10	8			96	45	<1	••		6	<15	12		Argillite cut by quartz and calcite veins,
																adjacent to diorite dike (KJa).
23	AK26283	<0.5	<5	7			60	60	<1			<2	<15	22		Argillite cut by quartz and calcite veins,
																adjacent to diorite dike (KJa).
24	AK26312	<0.5	15	56			58	125	<1		••	<2	<15	<5		Red-stained, calcite-rich, fault gouge in argillite (KJa).
25	AK26314	1.1	69	17			2410	340	<1			10	25	8		Pyritic, altered and sheared diorite from
									-							contact with argillite (TKg).
26	AK26313	<0.5	12	13			119	55	<1			25	<15	<5		Coarse-grained pyroxenite with pyrite and
																chalcopyrite (TKg).
27	AK26315	2.0	12	10			1787	70	3			<2	<15	11		Pyritic, quartz-biotite schist from moraine.
28	AK23693											15	<50			Hornblende gabbro (TKg).
29	AK23694											15	<50			Hornblende gabbro (TKg).
30	AK24290											5	<50			Pegmatitic plagioclase hornblendite (TKg).
31	AK21802	1.8		<7	<2		120			220	<80				800	limonite-coated pyritic pyroclastic float.
32	AK24372			<9								5	70	••		Hornblende gabbro (TKg).
33	AK24291											<5	<50			Fine-grained diorite in gabbro (TKg).
34	AK24374		••						••			<5	<50			Pegmatitic hornblendite (TKg).
35	AK24375	<5	<30	<9	39	230	8			76	<10	20	<50	100		Hornblendite (TKg).

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Hg	Mo	Ni	Pb	Pd	Pt	SÞ	Zn	
Number	Number	ppm	ppm	ppb	ppm	ppm	pom	pob	pom	ррп	ppm	ppb	000	ppm	ppm	Descriptions
37	AK23692	9	60	45	40	120	970	12000		49	<10	20	90		140	Silicified and carbonate-altered dike with
									_							abundant pyrite and pyrrhotite (IKd).
38	AK23691	<5	97	<5	15	28	250	0.017	1	7		15	55		55	Silicified and carbonate-altered hornblende
																diabase dike (TKd).
39	AK24206	••		15	••				••			5	<50	••		Silicified and carbonate-altered diorite dike
																(TKd).
39	AK24207	<0.1	5	45	15		35	55			2	20	<15		175	Silicified and carbonate-altered diorite dike
																(TKd).
40	AK25371			<5			••		••	••		<5	<50			Silicified argillite (KJa).
40	AK25372			<5								<5	<50			Silicified argillite (KJa).
41	AK21994	<0.3	<7					••				<10	<10			Pyritic andesite dike (TKd).
42	AK23690											15	<50			Hornblende diorite with pyrite (TKd).
43	AK24366	<5	120	<5	12	81	48		••	23	<10	<5	60		87	Hornblende diorite (TKd).
44	AK24367	<5	72	<5	34	54	15		••	46	<10	<5	<50		100	Plagioclase hornblendite (TKd).
44	ak24368	<5	<2	<5	<1	130	32	12	••	30	<10	10	<50		930	Carbonate-altered hornblendite (TKd).
45	AK24361	<5	95	<9	17	81	200			30	<10	<5	<50		110	Fine-grained diorite segregation (TKg).
46	AK24362	<5	<2	<5	20	99	190	7000		32	<10	<5	<50		120	Andesite dike with pyrite, pyrrhotite, and
																chalcopyrite (TKd).
47	AK24365	<5	<2	<5	24	150	55	12000		67	<10	<5	<50		140	Argillite (KJa).
49	AK23678	<5	55	<5	38	360	320		••	99	<10	20	<50		120	Plagioclase hornblendite with pyrite,
																pyrrhotite, chalcopyrite, and calcite (TKd).
50	AK21800	0.5		<7	94		830			170	<80	<10	<10		170	Carbonate-altered, silicified and
20		••••														limonite-coated diabase dike (TKd).
50	AK21972	<0.3		<7	56		540			120	<80	<10	<10		180	hornblende gabbro with pyrite (TKg).
50	AK24265	<0.5	<100	<5	100	300	925			100	<10	40	70		200	Hornblendite with pyrrhotite and chalcopyrite
50	ARE4E05		100		100	500	/ 2.5									(TKg).
53	AK24360	<5	100	<9	15	49	110			22	<10	<5	<50		110	Fine-grained diorite (TKg).
54	ak24391	<5	89	<9	23	87	340			33	<10	15	60	••	100	Malachite-stained, pyritic gabbro (TKg).
55	ak24389					••				••		70	<50			Hornblende-olivine pyroxenite with magnetite (TKg).

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Hg	Mo	Ni	Pb	Pd	Pt	Sb	Zn	
Number	Number	ppm	ppm	ppb	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppb	ppb	ppm	ppm	Descriptions
56	AK24390	••		••					••	•••		25	<50			Ophilic hornblende gabbro (TKg).
57	AK17708		••	••			• •		••	••		29	<10		••	Hornblende gabbro with pyrite, pyrrhotite, and
																chalcopyrite (TKg).
57	AK24392	<5	<100	<5	30	150	203		••	<5	<10	20	55		<200	Ophitic hornblende gabbro with pyrite and
																pyrrhotite (TKg).
58	AK24479	0.1	3	<5	16		220	600			<2	15	<15		32	Pyrite-rich hornblende diorite (TKd).
59	AK24388	<5	97	<9	26	89	120		••	30	<10	15	<50		110	Hornblende dacite with pyrrhotite and
																chalcopyrite (TKd).
60	AK24387	<5	98	<9	20	64	140			23	<10	10	55		87	Hornblende dacite with pyrrhotite and
																chalcopyrite (TKd).
61	AK24359	5.3	<2	45	2	130	460	<2000		12	<10	<5	50		51	Andesite dike (TKd).
62	AK24358											15	<50			Hornblende gabbro with pyrrhotite and
																chalcopyrite (TKg).
63	AK24376	5.4	110	<9	18	120	97			51	<10	15	<50		120	Dunite segregation in gabbro (TKg).
65	AK24357	<5	<2	<5	14	120	100	<2000		37	<10	<5	<50	••	99	Pyritic, silicified, andesite dike (TKd).
66	AK24356	<5	<2	<7	18	99	150	<2000	••	39	<10	5	50		99	Diorite porphyry (TKd).
67	AK24355	6	<2		19	130	86	3000		54	<10	` 5	<50		130	Argillite (KJa).
68	AK26278	0.9	<5	6			224	1000	4			10	<15	<5		Fine-grained, hornblende-pyroxene gabbro
																float.
70	AK23687	<5	99		38	710	98			260	<10	10	60		160	Andesite dike cut by quartz-calcite veinlets
																(TKd).
71	AK21991		••		<2		170			<8	<80	<10	<10		110	Pyritic plagioclase hornblendite (TKd).
72	AK23683	<5	43	<5	<1	150	7			5	<10	5	<50		29	Quartz boulder float from Tertiary
																conglomerate (Tc).
73	AK17909				51		280	••		110	<80	<10	216		140	Plagioclase-hornblendite with pyrite,
																pyrrhotite, and chalcopyrite (TKd).
74	AK20545	1.6		<7	<2		3400			<8	<80	<10	<10		77	Malachite-stained argillite (KJa).
74	AK20596	<0.3		14	<2		160			<8	<80	65	163		120	Diorite porphyry (TKd).

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Hg	Mo	Ni	Pb	Pd	₽t	Sb	Zn	
Number	Number	ppm	ppm	pob	ррт	ppm	ppm	ppb	ppm	ppm	ppm	ppb	opo	ррл	ppm	Descriptions
74	AK23684		••				••		••	••		5	<50		••	Malachite-stained diorite porphyry with
																epidote veinlets (TKd).
74	AK23688		••	••			••		••			10	<50			Gabbro dike cutting diorite porphyry (TKd).
74	ak23689								••			<5	<50	••		Diorite porphyry (TKd).
74	AK24293	<5	94	<9	32	460	47		••	95	<10	10	<50		100	Serpentinized olivine pyroxenite in diorite
																porphyry (TKd).
76	AK25387	0.1	4	20	25		130	180	••		2	4	<15		88	Carbonate-altered diorite with pyrite,
																pyrrhotite, and chalcopyrite (TKd).
76	AK25388	<0.1	5	30	16		90	700		••	6	6	15		140	Fine-grained diorite dike bounded by
																clay and calcite fault gouge (TKd).
78	AK24204	<0.1	5	10	28		96	75	••		11	6	<15		74	Porphyritic hornblende diorite (TKd).
79	AK25363	0.2	5	5	20		440	400	••		7	8	<15		120	Malachite-stained argillite (KJa).
81	AK25389	0.5	<2	95	24		260	15			5	6	15		108	Fine-grained silicified diorite (TKd).
82	AK25366	0.2	6	5	8		138	1250		••	34	6	<15		40	Pyritic argillite (KJa).
83	AK20595	<0.3		532	<2		91			<8	<80	<10	<10		78	Diorite porphyry (TKd).
84	AK20544	<0.3		<7	<2		94	••		210	<80	<10	<10		96	Diorite porphyry (TKd).
84	AK23682	<5	110	<5	60	30	290			79	<10	10	<50		130	Malachite-stained diabase dike (TKd).
88	AK25381		••	25								<5	<50		••	Argillite talus containing osmiridium grain
																(KJa).
90	AK25380			35		••		••		••		<5	<50	••		Argillite talus (KJa).
92	AK25385	0.2	10	<5	24		240	470			4	10	<15		52	Pyritic hornblende diorite (TKd).
93	AK25386	0.3	7	<5	20		79	130			4	4	<15		126	Silicified magnetite hornblendite (TKd).
97	AK21999	<0.3		<7	51		<5		• -	79	<80	<10	<10		150	Plagioclase-magnetite-hornblendite float (IKd)
97	AK22000				64		170			67	<80	<10	<10		150	Plagioclase-magnetite-hornblendite float (TKd).
98	AK21974	<0.3		<7	<2	••	120			<8	<80				65	Pyritic dacite tuff (Pd).
98	AK21975	0.5		<7	••						••	••	••	••	••	Plagioclase-hornblendite float with pyrite.
99	AK25908	<0.5	22	5			220	30	1			40	85	<5		Hornblendite dike in dacitic tuff (Pd).

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Hq	Mo	Ni	Pb	Pd	P+	55	70	
Number	n Number	ppm	ppm	opo	ppm	pom	ppm	ppb	DOM	DOT	DOM	DOD	DOD	000	000	Descriptions
100	AK17756A	<0.3	5	<7	<2		<5	••		<8	<80				<2	Pyritic tuff (Pd)
100	AK177568	<0.3	22	<7	31		56	••		<8	<80				62	Pyritic tuff (Pd)
102	AK24208	<0.1	5	<5	5		36	450		••	8	4	<15		58	Puritic argillite cut by guests and calcite
											-					microveiplets (Kia)
102	AK24458	3.9	••	190				5000				<5	<50			silicified diseits (Trd)
102	AK25368	0.1	5	25	9		56	550			13	6	<15		09	Silicified enablish interval by (
											.5	U			70	invide altered dispite dily (TKA)
																in-wide altered diorite dike (ikd).
102	AK25369	<0.1	10	<5	20		30	325	••		6	6	<15		00	North contline unlined, editors as disting
											-	U			90	North argillite Wallrock, adjacent to diorite
102	AK25370	<0.1	5	10	13		72	305			5	6	~15		40	dike (kja and imzd).
								505			,	0			00	South argillite Wallrock, adjacent to diorite
102	AK25373			5								~5	~50			dike (kja).
												v	10			East end of silicified argillite outcrop
102	AK25374			5								~5	-50			(KJa).
				-								< 2	<50			Central portion of silicified argillite
102	AK25375			10								.5	.50			outcrop (KJa).
										••		<5	<20			Replicate of AK25369.
102	AK25376			10					••			~5	55		-200	
102	AK24447	0.5	<100	65	5	300	20			с	70	<5 -5	22	••	<200	Replicate of AK25370.
					-	300	20			5	30	<>	<>>>		<200	Argillite cut by silicified diorite dike (KJa
104	AK24385	<5	110	<9	19	140	87			50	~10	Æ	-50		400	and TMzd).
105	AK24386	<5	110	<9	23	120	05			52	<10	<5 .5	<50 75		100	Diorite (TKd).
		-		.,	23	120	74			21	<10	<>	75		110	Altered diorite porphyry float with limonite
106	AK24384											-				and epidote cavity fillings (TKd).
										* -		<5	<50			Diabase dike with hornblende phenocrysts
																(TKd).
107	AK26383	~5	120	~0	20	280	F7					_	_			
		•9	120	~7	20	200	22			64	<10	<5	<50		130	Altered diorite porphyry rubble with limonite
108	AK23685															and epidote cavity fillings (TKd).
108	AK26202	-5	110		10	~~						<5	<50	••	,	Diorite porphyry (TKd).
		. ,	110		IÀ	7 7	300		••	46	140	<5	<50		170	Diorite porphyry with malachite and pyrite
																(TKd).

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Hg	Mo	Nî	Pb	Pd	Pt	Sb	Zn	
Number	Number	ppm	ppm	ppb	ppm	ppm	ppm	ppb	ppm	ppm	_ppm	ppb	ppb	ppm	ppm	Descriptions
109	AK23686			••		••			••		••	<5	60			Pyritic andesite dike (IKd).
110	AK24380	<5	110	<9	18	110	96			58	<10	5	<50		800	Diorite porphyry (TKd).
111	AK24381	5.5	110	<9	17	91	60	••		47	<10	10	65		470	Diorite porphyry with chalcopyrite altering to
																native copper (TKd).
112	AK24382								••			10	<50		••	Gabbro rubble in diorite porphyry rubble
																(TKd).
112	AK24205	<0.1	3	5	20		129	415			2	6	<15		46	Porphyritic hornblende diorite (TKd).
113	AK21801						••	••		••	••	<10	<10	••		Carbonate-altered, silicified, and limo-
																nite-coated diabase dike (TKd).
114	AK23677	5.4	10	21	10	110	91	7.3 ¹		35	<10	<9	<9		85	Cinnabar veinlets in silicified and
																carbonate-altered diabase dike (TKd).
115	AK24264		10	4	9		86	0.66 ¹		35		15	70		89	Silicified and carbonate-altered diabase dike
																with cinnabar (TKd).
116	AK24369	<5	86	<9	32	220	150			58	<10	10	80		100	Diabase dike (TKd).
117	AK24370	<5	110	<9	16	97	64			37	<10	10	60		100	Diorite porphyry (TKd).
117	4125808	<0 S	~5	0			116	000	1			15	8	<5		Carbonate-altered dike with corroded pyroxene
117	AK23070	NO. 5	\	,			110	,00	•				•			phenocrysts (TKd).
118	AK21776											<10	<10			Malachite-stained magnetite-hornblendite
110	ARETTO															(TKd).
120	AK25900A	<0.5	24	<5			80	125	<1		• -	20	30	<5		Meta-diorite cobble from Tertiary
																conglomerate rubble (Tc).
120	AK25900B	<0.5	26	5			98	3700	3			<15	4	<5		Meta-diorite cobble from Tertiary
				•												conglomerate rubble (Tc).
120	AK25900C	<0.5	15	18			37	155	2			20	4	<5		Meta-diortie cobble from Tertiary
																conglomerate rubble (Tc).
120	AK25900D	<0.5	18	<5		••	40	90	1			15	<2	<5		Meta-diorite cobble from tertiary
																conglomerate rubble (Tc).
121	AK24371	25	100	<9	34	320	110		•-	120	<10	15	<50	••	120	Diabase dike (TKd).
122	AK21626	<0.3		<7							••	17	<10			Magnetite-rich, altered peridotite float.

Мар	Sample	Ag	As	Au	Co	Cr	Cu	нg	Мо	Ni	Pb	Pd	Pt	sb	Zn	
Numb	er Number	ppm	ppm	ppb	ppm	ppm	ppm	ppb	ppm	opm	ppm	ppb	ppb	ppm	DOM	Descriptions
123	AK17758	••										<10	<10	÷ ÷	••	Magnetite-rich, altered peridotite float.
125	AK25826	0.5	14	6			74	175	30			6	<15	<5		Silicified argillite with abundant pyrite
																(KJa).
126	AK25827	<0.5	<5	8		••	10	135	<1		••	8	<15	<5		Diorite porphyry (TKd).
128	AK25829	1.3	22	5		••	82	225	5			4	<15	<5		Pyritic and graphitic argillite (KJa).
129	AK25830	<0.5	5	11	••		100	45	<1		••	8	<15	<5		Fine-grained mafic dike (TKd).
130	AK24202		••	<5		••	••	••			••	<5	<50	••	••	Dignite porphyry dike (IKd)
130	AK26960	2.6	8	<5			20	40	3	••	••	<2	<15	<5		Fine-grained clastic limestone with calcite
																stockworks and disseminated purite (Kia)
131	AK21973	<0.3	10	42	<2		110			<8	<8				130	Carbonate-altered and silicified andesite
																dike (TKd).
131	AK21995	<0.3	<90	<7	<10	<8	<20			20	20	<10	<10		70	Limonite-stained calcite veins in argillite
																(KJa).
133	AK24482	<0.1	18	<5	46		145	35				15	<15		98	Diorite dike (TKd).
134	AK26965	1.5	20	6			80	15	-1			,		_		
135	AK26963	<0.5	<5	-5			10	45	<1 -1			0	<15	<5		Pyritic argillite (KJa).
136	AK26964	<0.5	<5	-5			17	215	×1 2			2	<15	<5		Quartz vein marginal to diorite dike (TKd).
						-	.,	80	2			<2	<15	<>		Pyritic quartz vein in phyllitic argillite
137	AK26956	<0.5	<5	5			12	105	25			2	-15			(KJa)
138	AK26954	<0.5	6	7			42	60	25 ~1			2	<15	<) .5		Pyritic, gray, laminated limestone (KJa).
			•	•			02	00	~1			0	<12	<>		Hematite-rich, chloritic, clay-rich altered diorite (TKg).
139	AK26955	<0.5	7	7			75	40	-1					_		
			•	•			35	60	< I			10	15	(Fine-grained, phaneritic gabbro, with twinned
140	AK26280	0.6	6	<5			12	750	-1			2	.45	40		calcite veinlets (TKg).
			0				12	570	N		••	2	<15	18		Silicified and carbonate-altered diorite with
141	AK26966	<0.5	<5	6		• •	5	45	2				-15			pyrite (TKg).
142	AK26953	<0.5	<5	~ <5			122	000	2 -1			0 4	<15	0 -F	•-	Butt-orange-colored limestone (KJa).
			-	-2			122	700	N 1			D	<12	< 5		eyritic, hornblende diorite with calcite veinlets (TKg).

Мар	Sample	Ag	As	Au	Co	Cr	Cu	Нg	Mo	NĪ	РЬ	Pd	Pt	Sb	Zn	
Number	Number	ppm	ppm	daq	ppm	ppm	ppm	ppio	ppm	pom	pom	ppb	ppb	pon	ppm	Descriptions
143	AK26279	<0.5	13	<5	••		109	20	<1	••		6	<15	5		Hematite-coated, altered, cataclastic diorite (TKg).
145	AK25833	0.8	<5	8			8	65	1		••	<2	100	<5		Biotite pyroxenite (TKg).
146	AK25832	0.8	<5	7			8	20	2	••		4	230	<5		Serpentinite (TKg).
147	AK25831	1.4	<5	<5		• -	42	70	2		••	2	45	<5		Argillite (KJa).

-- Not analyzed.

< Less than indicated value.

¹ Hg reported in pct.

- Ag, As, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn, analyzed by flame atomic absorption spectrophotometry. Au, Pd, and Pt analyzed by fire assay-atomic absorption spectrophotometry. Hg analyzed by cold vapor atomic absorption spectrophotometry. All analyses by Bondar-Clegg, Inc., Lakewood, CO.

- TKd refers to Cretaceous-Tertiary (?) dikes. Other unit abbreviations are explained in the legend on figure 2.

	Ag ppm	As ppm	Au ppb	Co ppm	Cr ppm	Cu ppm	Hg ppb	Ni ppm	Pd ppb	Pt ppb	Zn ppm
max i mum	25	120	532	100	710	2410	12000	260	70	230	930
minimum	<0.5	<2	<5	<2	28	<5	15	<5	<2	8	32
arithmetic mean	2.4	35.9	16.3	25.9	161.8	181.8	902.5	63.4	11.1	38.7	160.5
standard deviation	3	43	56	21	140	293	2427	58	10	35	177
number of analyses	89	82	91	54	32	91	53	44	114	114	54
average abundance in igneous rocks ¹	0.2	2	1	18	117	70	60	100	20	5	80
average abundance in granite ²	0.04	1.5	2	3	20	12	30	0.8	3-6	8	50
average abundance in basalt ²	0.1	2	4	48	200	100	10	150	27	15	100
enrichment ratios ³	12	17.95	16.3	1.43	1.38	2.60	15.04	0.63	0.56	7.74	2.01

Table 4 - Geochemistry summary statistics for igneous rocks in the Slate Creek area, northern Chistochina Mining District

From Rose, Hawkes, and Webb (36)

2 Pd and Pt from Crocket (9), and other elements from Krauskopf (19) 3

mean/average abundance in igneous rocks

- In statistical calculations, zero (0) was substituted for values reported as less than a specified detection limit.

	Ag ppm	As ppm	Au ppb	Co ppm	Cr ppm	Cu ppm	Hg ppb	Ni ppm	Pb ppm	Pd ppb	Pt ppb	Zn ppm
max î mum	1.5	22	65	24	300	3400	12000	67	34	8	55	140
minimum	<0.1	<2	<5	<2	130	10	35	5	4	<2	<10	40
arithmetic mean	1.2	8.9	11.1	12.5	193.3	268.4	1187.8	33.5	13.4	5.2	29.8	102.1
standard deviation	1.7	6.9	13.6	7.8	92.9	787.3	2977.2	31.6	10.9	1.7	18.1	47.0
number of analyses	18	16	25	10	3	18	16	4	9	26	26	10
average abundance in shales ¹	0.04	10	3	20	100	50	300	80	20	<30	<30	90
enrichment ratios ²	12	1.35	11.1	0.62	1.93	4.71	2.97	0.35	0.67	nd	nd	1.28

Table 5 - Geochemistry summary statistics for Jurassic-Cretaceous argillites in the Slate Creek area, northern Chistochina Mining District

From Krauskopf (19)

2 mean/average abundance in shales

nd - not determined

- In statistical calculations, zero (0) was substituted for values reported as less than a specified detection limit.

.

The enriched background levels of silver, gold, mercury, copper and platinum in the local bedrock indicate that the abundant silver, gold, native mercury, cinnabar, native copper, and platinum in placer concentrates were derived from the local bedrock.

Similar patterns of geochemical enrichment are observed in the Jurassic-Cretaceous argillite and the Cretaceous-Tertiary (?) igneous rocks. The similarity of these enrichment patterns indicates that hydrothermal fluids have similarly affected both major rock types. Because of the lack of more definitive data for shales, enrichment ratios were not calculated for palladium and platinum in the argillites. Comparison of the means for gold and platinum in the two rock types to averages for similar rocks, as listed in tables 4 and 5, shows similar enrichment in gold and platinum in the argillites and igneous rocks. Arsenic and mercury are dramatically more enriched in the igneous rocks than in the argillites. Shales, however, typically contain more arsenic and mercury than do average igneous rocks. The notably high enrichment in these two elements in the igneous rocks is therefore attributed to assimilation from the argillite country rock during intrusion and subsequent extraction of these metals from the argillite during hydrothermal alteration. Various combinations of high gold, copper, mercury, platinum, and silver values were detected in argillite samples collected from areas intruded by silicified and carbonate-altered diorite dikes (map numbers 49, 74, 82, and 102, table 3).

Chemical data for two samples indicate that gold, mercury, PGM, and silver are chemically and mineralogically associated in the Miller Gulch area. A sample from a 1-ft-thick, pyritic, silicified, and carbonate-altered diabase dike, with cinnabar veinlets, (map number 114) contained 7.3 pct Hg, 21 ppb Au, and 5.4 ppm Ag. A similar dike, in the same area, (map number 115) contained 0.66 pct Hg, 15 ppb Pd, and 70 ppb Pt.

Because anomalous gold and PGM values were frequently either erratic or not reproducible, a revised sampling approach was tested. This method consisted of collecting large bedrock and talus samples weighing between 10 and 100 lb, washing the samples and discarding minus-1/4-inch material, and drying the samples prior to crushing and pulverizing. Pulverized splits, weighing between 2 and 10 lb were then carefully panned to concentrate heavy minerals. The analytical data are listed in table 6. Various combinations of anomalous amounts of gold, mercury, palladium, platinum, and silver in igneous rocks and argillite were analyzed and detected in this manner. Gold, mercury, palladium, platinum, and silver were effectively concentrated by panning pulverized igneous rock samples from map locations 40, 50, 52, 57, 78, 78, 80, 81, and 102. Various combinations of gold, mercury, and to a slight degree, palladium and platinum were concentrated by panning pulverized argillite samples from map locations 49, 85, 86, 87, 88, 89, 91, 94, 95, 96, and 102.

Because, in many cases a graphitic froth collected at the surface of the panning vessel, concentrates produced by panning tailings from the pulverized and panned igneous and argillite samples were also analyzed. It was suspected that gold- and PGM-bearing sulfide minerals and fine native precious metal grains might attach to bubbles or electrostatically charged mineral grains in the froth and slimes. Furthermore, a composite sample of tailings and slimes (sample AK25209, table 6), and several composite tailing samples from map numbers 51, 52, 57, and 95 (sample AK26317, table 6) and from map locations 86, 88, and 90 (sample AK25384, table 6) were also panned. These data indicate that precious metal recovery in the Slate Creek area may require a combination of very fine grinding, gravity concentration, flotation, and chemical leaching.

Because of the inconsistent concentration of gold and PGM by panning, combinations of gravity, flotation, and leach tests are currently being conducted at the Bureau's Salt Lake City (UT)

Table 6 - Analytical data for heavy mineral concentrates panned from regolith, pulverized bedrock samples, and tailings produced by panning pulverized rock samples from the Slate Creek area, northern Chistochina Mining District

Мар	Sample	Ag	Au	Cr	Fe	Hg	Ir	0s	Pd	Pt	Rh	Ru	
Number	Number	ppm	ppb	pct	pct	ppb	opb	ppb	ppb	ppb	ppb	ppb	Descriptions
36	AK24393		••	••	••				••	••		••	Soil sample from Tertiary conglomerate regolith
													(visible gold removed from concentrate).
39	AK24206		35	0.03	11.73		,	,	10	<15	,		Pyritic diorite dike.
39	AK24206	••	34 ¹				<11	<20 ¹	<20 ¹	<20 ¹	<5 ¹	<20 ²	Pyritic diorite dike.
39	AK24206		15			••			5	<50	••		Panned tailings.
39	AK24207	••	320	.03	13.90		••	••	40	<15	••	••	Pyritic andesite dike.
39	AK24207	•••	130 ¹			••	<11	<10 ¹	43 ¹	<20 ¹	<5 ¹	<20 ¹	Pyritic andesite dike.
39	AK24207		45						20	<50			Panned tailings.
40	AK25185	4.3	22260						1027	11062	<68		Silicified, pyritic, andesite dike.
48	AK24481	••	160	. 15	11.25				<2	<15	••		Hornblende diabase.
49	AK25919	••	327	.03		1800			4	15		••	Argillite bulk chip sample.
50	AK24265C	.4 ¹	32 ¹			1200	<10 ¹	43 ¹	43 ¹	48 ¹	<5	<5 ¹	Hornblendite with pyrrhotite and chalcopyrite.
50	AK24265C		876					••	25	40			Panned tailings.
50	AK24265D	.6 ¹	51 ¹			1900	<10 ¹	29 ¹	351	31 ¹	<5	<5	Hornblendite.
50	AK24265D		82	••					30	40			Panned tailings.
51	AK25889		89	.006		110		••	2	<15		••	Hornblende diorite porphyry.
52	AK25896		93	.05		90 0			15	280			Pyritic hornblende diorite.
57	AK24392C									27			Hornblende gabbro with pyrite and chalcopyrite.
57	AK24392C	.3 ¹	27 ¹			>5000	7 ¹	<10 ¹	<20 ¹	210 ¹	<5 ¹	32 ¹	Hornblende gabbro with pyrite and chalcopyrite.
57	AK24392C		322						15	20	••		Panned tailings.
57	AK24392D					••			<20	27			Hornblende gabbro with pyrrhotite.
57	AK24392D	.2 ¹	27 ¹			2200	3 ¹	<10 ¹	<20 ¹	<20 ¹	<5 ¹	46 ¹	Hornblende gabbro with pyrrhotite.
57	AK24392D		208		• -				20	30			Panned tailings.
57	AK25901		5	.02		1750			15	20		••	Gabbro with pyrite, pyrrhotite, and chalcopyrite.
58	AK24479		5	.05	8.20				15	<15		••	Hornblende diorite.
58	AK24479		7	••			<1 ¹	<10 ¹	22 ¹	<20 ¹	<5 ¹	<20 ¹	Hornblende diorite.

Table 6 - Analytical data for heavy mineral concentrates panned from regolith, pulverized bedrock samples, and tailings produced by panning pulverized rock samples from the Slate Creek area, northern Chistochina Mining District (continued)

Мар	Sample	Ag	Au	Cr	Fe	Hg	Ir	Cs	Pd	Pt	Rh	Ru	
Number	Number	ppm	ppb	pct	pct	ppb	ppb	ppb	opb	ppb	ppb	ppb	Descriptions
64	AK24480		10	.11	7.90				10	<15			Hornblende diabase.
69	AK25367		25	.42	12.50			••	10	<15	••	••	Diorite porphyry with quartz veinlets.
74	AK25290		92	.03	••	140		••	2	<15	• •		Diorite porphyry.
75	AK25362		1200	.22	14.15			••	10	<15			Diorite porphyry.
75	AK25188	1.0	4589					••	685	651	68	••	Silicified diorite.
78	AK24204		110	.04	9.15		••		10	<15			Dionite porphyry.
78	AK25187	1.3	7023						<68	1103	<68		Silicified diorite dike.
80	AK25364	••	180	.76	11.65		••		6	<15		••	Hornblende gabbro.
80	AK25365		10	.20	10.0			,	10	400	•••		Diorite porphyry.
80	AK25365		9 ¹				6 ¹	<10 ¹	35 ¹	3500 ¹	22 ¹	<20 ¹	Diorite porphyry.
81	AK25186	.5	3733						<68	2671	<68	••	Silicified diorite dike.
81	AK25189	.8	1678						<68	514	<68		Silicified diorite dike.
81	AK25190	1.5	3493						<68	479	<68		Silicified, pyritic, diorite dike.
81	AK25191	.5	1062						<68	582	<68	••	Silicified, pyritic, diorite dike.
85	AK25897	••	10	.01		600			2	15			Pyritic hornblende diorite.
85	AK25921		2240	. 16		4500			6	<15			Argillite bulk chip sample.
86	AK25382		520	.03	7.10				10	<15			Argillite talus.
87	AK25383		3200	.03	7.25			4	10	<15			Argillite.
87	AK25383		1290'				<10	<10 ¹	<20 ¹	<50 ¹	<5 '	<20'	Argillite talus.
88	AK25381	••	240	.02	7.20				4	<15			Argillite talus.
88	AK25381		25						<5	<50			Panned tailings.
89	AK25379		3800	.02	7.10				10	<15			Argillite talus.
90	AK25380		480	.03	7.30		••		10	<15			Argillite talus.
90	AK25380		35						<5	<50			Panned tailings.
91	AK25378		1800	.03	7.30				10	<15			Argillite talus.
9 2	AK25895		65	.01	••	460			2	15		• • ·	Silicified andesite dike.
93	AK25894		20	.01		150			4	14			Argillite bulk chip sample.
93	AK25894		15	••		 .			4	<15	••		Panned tailings.

Table 6 - Analytical data for heavy mineral concentrates panned from regolith, pulverized bedrock samples, and tailings produced by panning pulverized rock samples from the Slate Creek area, northern Chistochina Mining District (continued)

Мар	Sample	Ag	Au	Cr	Fe	Hg	١r	Cs	Pđ	Pt	Rh	Ru	
Number	Number	ppm	ppb	pct	pct	ppb	ppb	ppb	ppb	ppb	ppb	ppb	Descriptions
94	AK25893	••	26	.01		600	••		4	<15		- -	Argillite Bulk chip.
95	AK25886		163	.01		35	••		4	20	••		Argillite bulk chip.
96	AK25887		635	.02		240			4	15			Pyritic argillite.
96	AK25888		74	.02		1100	••	••	4	15			Clay fault gouge.
102	AK24457	3.9	10000			5000	••		<5	<50		••	Silicified diorite.
102	AK25371	•	85	.03	7.70				4	<15		••	Silicified diorite-argillite contact.
102	AK25371		<5			•-			<5	<50			Panned tailings.
102	AK25372		10	.03	7.80				10	<15			Silicified diorite in argillite.
102	AK25372		<5			••			<5	<50			Pannned tailings.
102	AK25373		10	.03	4.95	••	••		2	<15		•-	Silicified argillite intruded by altered diorite.
102	AK25373		5						<5	<50		••	Panned tailings.
102	AK25374		400	.03	4.90				4	<15			Silicified argillite intruded by altered diorite.
102	AK25374		5						<5	<50			Panned tailings.
102	AK25375		5	.03	6.90				10	<15		••	Silicified argillite intruded by altered diorite.
102	AK25375		10						<5	<50			Panned tailings.
102	AK25376		90	.04	6.70				10	<15			Argillite wallrock.
102	AK25376		10						5	<50			Panned tailings.
119	AK25900		>10000	2.74		1300			5	15			Minus 10-mesh Tertiary conglomerate.
119	AK25900		46096										Minus 10-mesh Tertiary conglomerate.
119	AK25900E	••	10	.07		100			4	<15			Minus 1-in, plus 10-mesh Tertiary conglomerate.
119	AK25900F		6	.06		110			4	<15			Rounded cobbles from Tertiary conglomerate.
120	AK25899		724	.01		1750			4	15			Pyritic argillite.
128	AK24202		10	.05	8.70				2	<15		•-	Hematite-stained diorite.
128	AK24204		<5		•-				<5	<50		••	Composite of tailings from AK24202.
*	AK25209		570						35	30			Composite of tailings and slimes from AK24265 and AK24392 (map locations 50 an 57).

Table 6 - Analytical data for heavy mineral concentrates panned from regolith, pulverized bedrock samples, and tailings produced by panning pulverized rock samples from the Slate Creek area, northern Chistochina Mining District (continued)

Мар	Sample	Ag	Au	Cr	Fe	Hg	Ir	Os	Pd	Pt	Rh	Ru	
Number	Number	ppm	ppb	pct	pct	ppb	ppb	ppb	ppb	pob	dag	ppb	Descriptions
*	AK25384	••	1800	.02	6.58			••	10	<15	••		Composite of pulverized tailings from AK25380, AK25381, and AK25382 (map locations 86, 88, and 90).
*	AK26317	••	144	.02		360	••		8	<15			Composite of tailings from AK25886, AK25889, AK25896, and AK25901 (map locations 51, 52, 57, and 95).

-- Not analyzed.

* See description for information regarding location.

- All analyses by Bondar-Clegg, Inc, Lakewood, CO. Ag, Au, Cr, Fe, Pd, Pt, and Rh by fire assay-flame atomic absorption spectrophotometry unless indicated otherwise. Ag, Au, Pd, Pt, and Rh preconcentrated by fire assay. Hg determined by cold vapor atomic absorption spectrophotometry. ¹ Ag, Au, Ir, Os, Pd, Pt, Rh, and Ru by fire assay-neutron activation. Research Center on four composite bedrock samples of mineralized lithologies from the study area⁷. Concentrates were produced by sulfide flotation or tabling minus-65-mesh, 1,000-gramsplits from bulk composite samples that weigh between 50 and 200 lb. Following rolling and pulverizing the concentrates and tailings to minus 200-mesh, five-gram splits of each were then leached, over heat, using various combinations of aqua regia, perchloric acid, and hydrofluoric acid.

The combination of acid-leach tests are intended to determine which minerals in a sample contain gold. Free gold and gold contained in sulfide minerals are dissolved by aqua regia. Free gold, gold in sulfide minerals, and gold contained in carbonaceous material are dissolved by leaching with aqua regia and perchloric acid. Free gold, and gold in sulfide minerals, carbonaceous material, and silicate minerals are all dissolved when leached with aqua regia, perchloric acid.

The results of tabling, sulfide flotation, and acid-leach tests on a composite argillite bedrock sample indicate that gold is present in more than one mineral in argillite from Miller Gulch and Quartz Creek. The composite sample consisted of pyritic argillite from map locations 93, 94, 95, 124, and 147. The tabled concentrate contained 0.008 oz/st (274 ppb) Au and the tabled tailings contained 0.005 oz/st (171 ppb) Au. Normally, free gold and other heavy minerals would be present in the tabled concentrate. A bulk sulfide flotation concentrate from another 1,000-gramsplit of the composite sample contained 0.0084 oz/st (288 ppb) Au and the flotation tailings, however, contained 0.012 oz/st (411 ppb) Au. These data indicate that free gold is present and that some gold is present in sulfide minerals. No gold was detected in acid solutions after leaching the flotation concentrate and flotation tailings. Because only a five-gram split was leached, and possibly owing to erratic gold distribution, the leach tests may be inconclusive. Acid and cyanide leach tests are currently being conducted on larger samples.

The presence of less gold in the argillite concentrate than in the argillite tailings indicates that gold may be present in carbonaceous material, as well as in other minerals and alloys. The aqua regia-perchloric leach test did not confirm this, but again, the five-gram split may have been too small for the leach tests to be conclusive. For these reasons, cyanide leach tests are being conducted on larger splits from the four composite samples at the Salt Lake City Research Center. Also, PGM analyses are being performed on the samples described above and on the concentrates to be produced by the cyanide leach tests.

A tabled concentrate from a sulfide-bearing gabbro and clinopyroxenite sill, at the head of Quartz Creek (map locations 145 and 146), contained 0.006 oz/st (205 ppb) Au. The midlings, which, compared to the tailings and concentrate, are generally intermediate in specific gravity, contained 0.003 oz/st (103 ppb) Au. The tailings contained 0.002 oz/st (68 ppb) Au. No gold was detected in the acid solution following leaching of five-gram splits of the tabled concentrate and tailings from this composite sample.

A tabled concentrate from a composite sulfide-bearing gabbro sample at the ridgecrest between Miller Gulch and the Chistochina Glacier (map locations 57 and 63) contained 0.033 oz/st (1130 ppb) Au. The midlings contained 0.005 oz/st (171ppb) Au and the tailings contained 0.006 oz/st (205 ppb) Au. Duplicate aqua regia-perchloric acid-leach solutions from five-gram splits of the tabled concentrate contained 0.0015 oz/st (50ppb) and 0.002 oz/st (80 ppb) Au. The other acid-leach solutions from this composite sample contained less than 50 ppb Au.

⁷ Results reported by W.R. McDonald, Metallurgist, Bureau of Mines Salt Lake City (UT) Research Center.

A tabled concentrate from the 60-ft-wide diorite porphyry and syenodiorite porphyry dike on Miller Gulch (map location 74) contained 0.02 oz/st (685 ppb) Au. The midlings and tailings both contained 0.001 oz/st (34 ppb) Au. Duplicate aqua regla-perchloric acid-leach solutions from fivegram splits of the tabled concentrate contained 0.003 oz/st (100 ppb) and <0.006 oz/st (<50 ppb) Au. The other acid-leach solutions from this composite sample contained less than 50 ppb gold.

Concentration of gold and PGM by panning pulverized rock samples (table 6), and the reported gold analyses for the composite samples indicate that gold and PGM are erratically distributed at the mineral-grain scale. Consequently, conventional sampling and analytical procedures in which a 30 gram or smaller split is analyzed may not be appropriate for gold and PGM investigations in the Slate Creek area.

No anomalous gold or PGM were detected in three stream sediment samples collected south of Slate Creek (table 7). The high copper content in sample AK21623 (map number 101) probably reflects the presence of accessory chalcopyrite and malachite.

Analyses of the pan concentrate and sluice box concentrates show that gold is much more abundant than PGM. The high silver content in amalgamation rejects separated from placer gold concentrates indicates that silver may be present in minerals other than native gold. The mercury analyses reflect the presence of cinnabar which is present in all the heavy mineral concentrates. The presence of greater than 10,000 ppb Au in a five-gram sample (AK25600, table 7) of placer cinnabar grains is further evidence for the geochemical association between gold and mercury in bedrock in the area.

A pan concentrate sample from Tertiary conglomerate regolith from map number 119 contained 1.34 oz/st (46,096 ppb) Au, but, virtually no PGM (table 6). This supports earlier workers assertions that some of the gold in the district was derived from the roundwash but does not support the conclusion that platinum is contained in the roundwash (7, 20-22).

MINERALOGY

Numerous samples, including placer concentrates from sluice boxes, rock samples, grain mounts, mineral grains, and concentrates produced by panning gold- and PGM-bearing rocks were submitted to various laboratories for electron microprobe and scanning electron microscope analysis.

Platinum-group metal-bearing minerals identified in placer concentrates include tetraferroplatinum (fig. 9) and osmiridium (fig. 10). Three microprobe analyses on the tetraferroplatinum grain in figure 9 gave very similar results and indicate a composition of about 96 pct Pt and 4 pct Fe. SEM and microprobe analyses for other placer tetraferroplatinum grains from Miller Gulch and Big Four Gulch indicated compositions between 83 and 85 pct Pt and between 15 and 17 pct Fe. SEM analyses indicate the presence of traces of palladium, rhodium, and ruthenium in the alloy. Semi-quantitative X-ray diffraction and X-ray fluorescence analyses on several platinum-iron alloy grains from Miller Gulch by W.S.Roberts⁸ indicated compositions of 70 pct Pt, 23 pct Fe and traces of palladium, rhodium, and copper.

⁸Physical Scientist, formerly employed by U.S.Bureau of Mines, Juneau, AK.

Sample	Ag	Au	Co	Cr	Cu	Fe	Hg	NÍ	Pb	Pd	Pt	Rh	Zn	
Number	ppm	ppb	ррп	ppm	ррт	pct	ppb	ppm	ppm	ppb	ppb	ppb	ppm	Descriptions
AK21623	<0.3	<7	<2		500			52	<80			••		Stream sediment sample (map number 101).
AK21993		1.1E5	••							68	10479			Minus 4-mesh magnetic concentrate from upper Slate
														Creek placer operation.
AK21996	<.3	<7	<2		180			<8	<80				73	Stream sediment sample (map number 98).
AK21998	.6	<7	<2		<5			76	<80			••	110	Stream sediment sample (map number 97).
AK24363	.4	>10000)				5000		••	15	<50			Pan concentrate sample from Miller Gulch (map number 77).
AK24363		8017					••					••		Do.
AK24379	.5	>10000)				1850			5	<50	••		Do.
AK24379		30445										•••		Do.
AK24483		>10000)	1600		9.55	••			10	<15	••	••	Pan concentrate of argillite bedrock fault gouge, upper Slate Creek (map number 132).
AK24483		1.34	••						••	••				Do.
AK25183A	.4	3288	••			••		••		479	6.8E4	377		Magnetic fraction from amalgamation rejects,
														Miller Gulch sluice box concentrate.
AK25183B	>50	1.5E6	••			6.7E6				31884	4.5E6	••		Non-magnetic fraction of amalgamation rejects from
														500 oz placer gold concentrate from Miller Gulch.
AK25184	130	1.3E5	••				••	••	••	1712	2.2E5	890		Amalgamation rejects from 500 oz placer gold
														concentrate from Miller Gulch.
AK25210		>10000)			••		••		••	200	••	••	Magnetic concentrate from Slate Creek placer operation.
AK25210	• •	>20000)				••					••	••	Do.
AK25600	113	>10000)				••			<15	<1	••	••	5 grams of cinnabar grains picked from Miller Guich pan concentrate and sluice box concentrate.
AK25601	85.7	2.4F5				~ -				685	68836			Minus 65-mesh amalgation rejects from 500 oz
ARESOUT	0511										00000			placer gold concentrate from Miller Guich.
AK25602	4458	1 5FA					••			36267	4 1FA	••		Plus 65-mesh amalgamation rejects from 500 oz
	4420									8767I	41120			placer gold concentrate from Miller Gulch.

Table 7 - Analytical data for stream sediment samples, sluice box concentrates, and pan concentrates from the Slate Creek area, northern Chistochina Mining District

-- Not analyzed.

- Ag, Au, Pd, Pt, and Rh determined by fire assay-flame atomic absorption spectrophotometry. Co, Cr, Cu, Fe, Ni, Pb, and Zn by flame atomic absorption spectrophotometry. All analyses by Bondar-Clegg, Inc., Lakewood, CO.

Figure 9. - Typical platinum-iron alloy (tetraferroplatinum) grains from Miller Gulch placer concentrate. The letters A-C correspond to microprobe analyses; all contained about 96 pct Pt and 4 pct Fe. Scale bar is 1,000 microns (1 millimeter).

Figure 10. - Osmiridium grain recovered from argillite talus at Miller Gulch (map number 88). Grain is 3 millimeters along longest axis.

Other minerals found in the placer concentrates from the district include abundant chalcopyrite, cinnabar, hematite, garnet, ilmenite, magnetite, pyrite, pyrrhotite, native lead and mercury. Accessory minerals include arsenopyrite, apatite, barite, chromite, cobaltite, epidote, galena, rutile, scheelite, sphene, and zircon.

A 1-micron-long tetraferroplatinum grain, with 90 pct Pt and 10 pct Fe, was observed during SEM examination of a quartz grain in pyritic argillite from map number 96.

A mineral containing about 25 pct Cu, 4 pct Zn, 7 pct Ag, and 4 pct Au was identified by SEM in silicified, pyritic diorite from map number 7. Several silver-mercury amalgam blebs were observed in syenodiorite from map number 74.

Minute particles of gold (from 3 to 60 microns across), and gold-mercury amalgam, were observed in polished sections of hornblendite and silicified dike rocks and grain mounts of heavy mineral concentrates produced by panning pulverized rock samples from map locations 50 and 81 (table 6). Gold and gold-mercury amalgam in these samples is included as discrete very fine microscopic grains in pyrite, chalcopyrite, Ca-amphibole and pyroxene. Other minerals observed in the gold-bearing samples include arsenopyrite, pentlandite, hematite, galena, molybdenite, scheelite, zircon, rutile, smithsonite, barite, an unidentified rare-earth mineral, quartz, plagioclase, orthoclase, pyroxene, and amphibole.

Several very bright osmiridium grains were picked from sluice box and panned concentrates from Miller Gulch and Slate Creek. Also, a 2-mm by 2-mm by 3-mm osmiridium grain (fig. 10) was recovered in a concentrate produced by panning a pulverized split of argillite talus from the steep slopes above Miller Gulch (map location 88, tables 3 and 6). The talus was screened and washed at 10-mesh (2-mm opening), prior to pulverizing. SEM analyses of numerous osmiridium grains from Miller Gulch and Slate Creek indicate compositions of these grains are all very similar with about equal portions of osmium and iridium, and traces of palladium, rhodium, and ruthenium.

The presence of osmiridium in the placer samples and panned heavy mineral concentrates demonstrate that osmium and iridium are indeed present in the area. The reported levels of osmium, iridium, and ruthenium in geochemical analyses listed in table 6 may be artificially low as a result of volatilization of these three metals during fire assay pre-concentration of samples prior to analysis (<u>15</u>).

Copper-gold alloy (fig. 11) was observed in several placer concentrate samples from Miller Gulch and upper Slate Creek. A 0.6 gram nugget from upper Slate Creek is cored by electrum with 90 pct Au and 10 pct Ag (fig. 12). Between the core and the rim is an intermediate zone of tetraauricupride with 77 pct Au and 23 pct Cu. The rim of the nugget is auricupride with 56 pct Au and 44 pct Cu. Native gold (silver-gold alloy), with up to 16 pct Ag, and relatively pure native copper nuggets also are found in the concentrates.

Dendritic native gold was observed in native lead in a grain picked from a Miller Gulch placer concentrate (fig. 13). Another grain from the same concentrate shows a complex intergrowth of lead-gold, copper-silver-gold alloys, and electrum (fig. 14). Not shown in figures 9-14, but frequently observed in the placer concentrates, are copper nuggets with relict chalcopyrite cores and grains containing copper cores with chalcopyrite rims. The alloy and mineral compositions can best be explained by supergene processes. The observed textures and the complex alloys are neither typical of magmatic or hydrothermal mineral deposits and they probably resulted from elemental leaching and metal replacement by percolation of meteoric waters through the alluvial gravels, talus, and highly shattered bedrock.

A minute platinum-iron alloy grain was observed along a grain boundary between ilmenite, partially altered to sphene, and magnetite in a mafic rock fragment in a Miller Gulch placer concentrate (fig. 15). This mineral assemblage resembles those observed in igneous bedrock in the study area.

Figure 11. - Back-scatter SEM image of copper-gold alloy from Miller Gulch placer concentrate. The dense core is gold-rich (90 pct Au and 10 pct Cu) and the sponge-textured border is more copper-rich, but still dominated by gold (56 pct Au and 44 pct Cu). Scale bar is 100 microns (0.1 millimeter).

Figure 12. - Back-scatter SEM image of concentrically-zoned silver-gold and copper-gold alloy nugget from upper Slate Creek. Bright core contains electrum with 90 pct Au and 10 pct Ag. Light gray, intermediate band in upper center is tetra-auricupride with 77 pct Au and 23 pct Cu. Dark, outermost band is auricupride, with 56 pct Au and 44 pct Cu. Scale bar is 100 microns (0.1 millimeter).

Figure 13. - Back-scatter SEM image of dendritic native gold in native lead placer grain from Miller Gulch. Traces of silver, antimony, sulfur, and arsenic were also detected during energy-dispersive X-ray analysis. Scale bar is 1,000 microns (1 millimeter).

Figure 14. - Back-scatter SEM image of placer grain from Miller Gulch showing complex intergrowth of electrum, lead-gold alloy, and copper-silver-gold alloy. The electrum (medium-gray, on far right) contains 96 pct Au and 4 pct Ag. The copper-silver-gold alloy (dark gray) with 80 pct Au, 17 pct Ag, and 3 pct Cu, separates the lead-gold alloy and electrum and occurs as blebs in the lead-gold alloy.

Figure 15. - Back-scatter SEM image of a minute platinum-iron (Pt-Fe) alloy grain along ilmenite (il)-magnetite (mag) grain boundary in mafic rock fragment from Miller Gulch placer concentrate. Ilmenite is partially altered to sphene. Scale bar is 100 microns (0.1 millimeter).

A 7-micron gold particle was observed in a quartz grain from a crushed argillite bedrock sample from Miller Gulch (fig. 16) and numerous smaller gold particles were observed in a pyrite grain from the same sample (fig 17).

Figure 16.- Back-scatter SEM image of equant 7-micron gold particle in quartz fragment from crushed argillite sample from Miller Gulch. Scale bar is 20 microns (0.02 millimeters).

Figure 17. - Back-scatter SEM image of numerous bright gold inclusions in pyrite from crushed argillite sample from Miller Gulch. Scale bar is 20 microns (0.02 millimeters).

DISCUSSION

Placer gold production in the upper Slate Creek area is restricted to the Slate Creek Valley and streams north of Slate Creek and the Chisna River, where argillite has been intruded by igneous sills, stocks, and dikes. The placer gold is partially derived from Tertiary conglomerate, which, overlies the argillite and igneous rocks. The igneous rocks have thermally altered the argillite host rocks, and have, themselves, been subsequently altered and partially replaced by calcite and silica. The geochemical and mineralogic data and the close spatial relationship of the placer deposits to argillite intruded by igneous rocks indicate that PGM, mercury, copper, lead, and some of the placer gold, as well as many of the other observed sulfide and rock-forming minerals, were locally derived by erosion of the argillite and igneous rocks.

Minor amounts of platinum-iron alloy and osmiridium are generally found in concentrates from streams in the area, including Big Four Gulch, Miller Gulch, upper and lower Slate Creek, and Ruby Gulch. Placer concentrates from these streams also contain abundant chalcopyrite, cinnabar, garnet, hematite, ilmenite, magnetite, and pyrite, as well as native copper, lead, and mercury. Gold, copper, and mercury typically combine as an amalgam in the placer concentrates. Scanning electron microscope and energy-dispersive X-ray (EDAX) analyses indicate that the gold contains variable amounts of silver, and that natural alloys of gold, silver, lead, and copper are also present. Also chalcopyrite is replaced by native copper. Many of these alloys and mineral intergrowths appear to be the result of supergene processes. Accessory minerals in placer concentrates from the area include arsenopyrite, apatite, barite, chromite, cobaltite, epidote, galena, scheelite, sphene, and zircon. Assays of nonmagnetic fractions of sluice box concentrates from Miller Gulch indicate the presence of over 1 oz/st silver (AK25183B and AK25184, table 7). Xray analysis of another placer concentrate from Miller Gulch (AK21250, table 7) indicated between 5 and 7 pct Ag.

Analytical data indicate that gold and PGM are erratically distributed in bedrock in the area and that PGM are concentrated in igneous dikes and sills. Visible gold particles were identified in heavy mineral concentrates produced by panning pulverized samples of argillite and several igneous rocks in the Slate Creek area. Also, gold was identified in pan concentrates from several samples of decomposed Tertiary conglomerate collected from the ridges above Miller Gulch and Slate Creek. Anomalous copper and mercury were detected in pan concentrates of pulverized samples from the various rock types in the area and in unconcentrated bedrock samples of argillite and igneous rocks that intrude the area north of the Slate Creek and upper Chisna River Valleys. Similar geochemical enrichment of copper, gold, mercury, platinum, and silver was observed in the argillite and igneous rocks. These relationships indicate that hydrothermal fluids associated with intrusion of the igneous rocks, and perhaps subsequent supergene fluids, permeated the fractured argillite, resulting in similar geochemical signatures in both rock types.

Calcite veinlets are widespread in the igneous rocks and in metamorphosed and hydrothermally altered argillite wallrock, and are believed to be related to gold concentration in the area. Quartz veinlets are also present but are less abundant than are the calcite veinlets. The calcite and quartz veinlets could have formed during low-grade dynamic metamorphism or thermal alteration of the country rock as has been demonstrated in Cretaceous Valdez Group flysch deposits in south-central Alaska (<u>13,23,37,38,44</u>) and in many other auriferous regions in the world. Boyle (<u>4</u>) attributes the presence of gold-bearing quartz veins in metamorphosed argillite in the Yellowknife gold deposits, Northwest Territories, to high-pressure, low-temperature metamorphism and correlates the abundance of volatiles, including water, carbon dioxide, and sulfur, to lower metamorphic grade (e.g. greenschist facies rocks). In that region, however, gold is more abundant in higher-grade metamorphic rocks. Because calcite and quartz veinlets are

present in the Cretaceous-Tertiary (?) igneous rocks and are most abundant in the upper Jurassic-Cretaceous sedimentary rocks marginal to the igneous rocks, it is concluded that they are, at least in part, the result of intrusion of the dikes and igneous sills. Calcite veinlets were observed to contain hematite cores at the margins of several diorite dikes in the Miller Gulch and upper Slate Creek areas and on the south side of the upper Chistochina river. Also, hematite is ubiquitous throughout the study area and may be further indicative of the physical chemistry of fluids that were associated with the intrusive rocks, and which, concentrated gold in the igneous and sedimentary rocks in the area.

It should be noted that no greenschist facies rocks are present in the study area, and quartzcalcite velos are mostly limited to less than 1-in widths. Quartz-calcite alteration is mostly concentrated along dike margins and in argilite wallrock, adjacent to igneous contacts.

In his summary of gold deposits in turbidites, Boyle (5) asserts that thermal alteration of turbidite sequences by intrusion of igneous rocks can serve essentially the same role as regional metamorphism in forming turbidite-hosted gold deposits. Also, the chemical signature and mineralogical assemblages observed in the northern Chistochina Mining District are similar to those described by Boyle (5).

RECOMMENDATIONS

Geophysical surveys including magnetic, electromagnetic, and other methods may be helpful in ascertaining the subsurface configuration of dikes and intrusive contacts, where mineralization is apparently concentrated. Additional sampling and possibly subsurface exploration by diamond drilling should be concentrated at locations of anomalous gold, PGM, and mercury identified in this report. These include numerous sites in the Miller Gulch drainage (tables 3 and 6 and fig. 2), the diorite porphyry and syenodiorite porphyry dikes and argillite wallrock on Miller Gulch (map numbers 73-75), altered sulfide-bearing igneous rocks on the ridge to the west of Miller Gulch (map numbers 54, 55, and 57), the resistant indurated argillite outcrop to the east of Miller Gulch (map number 104, table 6 and fig. 2), and the pyrite-rich contact zone between argillite and the differentiated igneous rocks on upper Quartz Creek (map locations 145 and 146).

Additional mapping and sampling should be conducted during late summer months, after the snow cover has melted on north-facing ridges, to determine the extent, configuration, composition, and precious metal content of mafic and ultramafic rocks on the south side of the Chistochina Glacier, at the heads of upper Slate Creek and Quartz Creek. Also, more detailed sampling should be done in the Tertiary conglomerate.

Additional metallurgical and chemical testing are warranted to determine how gold and PGM are contained in, and might be recovered from, bedrock material in the Chistochina Mining District.

Mercury vapor surveys may also prove to be an effective means of identifying buried mineralized zones.

Because gold was detected in regolith samples, Biogeochemical sampling for *Bacillus cereus*, as described by Sporleder (<u>42</u>) or conventional soil sampling and chemical analysis with and without pan concentration, might aid in delineating additional prospects. It is suggested that future investigations in the area would benefit from an orientation survey designed to demonstrate exactly what types of sampling and analysis are best suited for gold and PGM exploration in the district.

Isotopic and fluid inclusion studies might be useful in ascertaining the role of devolatilization and metamorphic hydrothermal fluids and in the transport and deposition of precious and other valuable metals in the district.

In addition to the previous recommendations, this investigation has demonstrated that more comprehensive geochronologic data is needed to accurately interpret the history and evolution of the geology and ore deposits in the region. It is suggested that argon isotopic age dates or neodymium-samarium age dates be obtained for igneous rocks in the region during future studies.

REFERENCES

1. Alaska Mineral Resources Company. Ruby Creek-Slate Creek Property Report, June 1986, 32 pp. Available upon request from J.Y. Foley, Bureau of Mines, Fairbanks (AK).

2. Barker, J.C. Distribution of Platinum-Group Metals in an Ultramafic Complex near Rainbow Mountain, East-Central Alaska Range. Ch. in Process Mineralogy, VII, ed. by A.H. Vassiliou, D.M Hausen, and D.J.T. Carson. The Metallurgical Society, 1987, pp. 197-220.

3. Bond, G.C. Geology of the Rainbow Mountain-Gulkana Glacier Area, Eastern Alaska Range, with Emphasis on Upper Paleozoic Strata. Alaska Division of Geological and Geophysical Surveys Geol. Report 45, 1976, 47 pp.

4. Boyle, R.W. The Geochemistry, Origin, and Role of Carbon Dioxide, Water, Sulfur,, and Boron in the Yellowknife Gold Deposits, Northwestern Territory, Canada. Econ. Geol., vol. 54, 1959, pp. 1506-1524.

5. . . . Gold Deposits in Turbidite Sequences: Their Geology, Geochemistry, and History of the Theories of their Origin. Ch. in Turbidite-Hosted Gold Deposits, ed. by J.D. Keppie, R.W. Boyle, and S.J. Haynes. Geol. Assoc. Canada, Special Paper 32, 1986, pp. 1-13.

6.. Carmichael, I.S.E., F.J. Turner, and J. Verhoogen. Igneous Petrology. McGraw-Hill Book Company, New York, 1974, 739 pp.

7. Chapin, T. Platinum-bearing Auriferous Gravels of Chistochina River. U.S. Geol. Surv. Bull. 692, 1919, pp.137-141.

8. Cobb, E.H. Placer Deposits of Alaska. U.S. Geol. Surv. Bull. 1374, 1973, pp. 26-28.

9. Crocket, J.H. Geochemistry of the Platinum-Group Elements. Ch. in Platinum-Group Elements: Mineralogy, Geology, Recovery, ed. by L.J. Cabri. Canadian Institute of Mining and Metallurgy, Special Volume 23, 1981, pp. 47-64.

10. Csejtey, B. Jr., W.H. Nelson, D.L. Jones, N.J. Silberling, R.M. Dean, M.S.Morris, M.A. Lanphere, J.G. Smith, and M.L. Silberman. Reconnaissance Geologic Map and Geochronology, Talkeetna Mountains Quadrangle, Northern Part of Anchorage Quadrangle, and Southwest Corner of Healy Quadrangle, Alaska. U.S. Geol. Surv. Open-File Report 78-558A, 1978, 60 pp.

11. Foley, J.Y., L.E. Burns, C.L. Schneider, and R.B. Forbes. Preliminary Report of Platinum-Group Element Occurrences in Alaska. Alaska Division of Geological and Geophysical Surveys Public Data File 89-20, 1989, 32 pp.

12. Foster, H.L., F.R. Weber, R.B. Forbes, and E.E. Brabb. Regional Geology of Yukon-Tanana Upland, Alaska. Chapter in Arctic Geology: Amer. Assoc. Petrol. Geol. Memoir 19, 1973, pp. 388-395.

13. Goldfarb, R.J., D.L. Leach, M.L. Miller, and W.J. Pickthorn. Geology, Metamorphic Setting, and Genetic Constraints of Epigenetic Lode-Gold Mineralization within the Cretaceous Valdez Group, South-Central Alaska. Ch. in Turbidite-Hosted Gold Deposits, ed. by J.D. Keppie, R.W. Boyle, and S.J. Haynes. Geol. Assoc. Canada, Special Paper 32, 1986, pp. 87-105.

14. Govett, G.J.S. Rock Geochemistry in Mineral Exploration. Elsevier, New York, 1983, pp. 390-393.

15. Hall, G.E.M. and G.F. Bonham-Carter. Review of Methods to Determine Gold, Platinum, and Palladium in Production-oriented Geochemical Laboratories, with Application of a Statistical Procedure to Test for Bias. Journ.of Geochemical Exploration, vol. 30, 1988, pp. 255-286.

16. Hanson, L.G. Bedrock Geology of the Rainbow Mountain Area, Alaska Range, Alaska. Alaska Division of Mines and Minerals Geol. Report 2, 1963, 82 pp.

17. Hyndman, D.W. Petrology of Igneous and Metamorphic Rocks. McGraw-Hill Book Company, New York, 1972, 533 pp.

18. Jones, D.L., N.J. Silberling, P.J. Coney, and G. Plafker. Lithotectonic Terrane Map of Alaska (west of the 141st meridian). U.S. Geol. Surv. Map MF-1874-A, scale 1:2,500,000.

19. Krauskopf, K.B. Introduction to Geochemistry (second edition). McGraw-Hill Book Company, New York, 1979, pp. 545. 20. Mendenhall, W.C. The Chistochina Gold Field, Alaska. Ch. in Contributions to Geology, 1902, ed. by S.F. Emmons and C.W. Hayes. U.S. Geol. Surv. Bull. 213, 1903, pp. 71-80.

22. Mendenhall, W.C. and F.C. Schrader. The Chistochina Gold Field. U.S. Geol. Surv. Prof. Paper 15, 1903, pp. 48-59.

23. Mitchell, P.A., M.L. Silberman, and J.R. O'Neil. Genesis of Gold Vein Mineralization in an Upper Cretaceous Turbidite Sequence, Hope-Sunrise District, Southern Alaska. U.S.Geol. Surv. open-file report 81-103, 1981, 18 pp.

24. Moffit, F.H. Headwater Regions of the Gulkana and Susitna Rivers, Alaska; with Accounts of the Valdez Creek and Chistochina Placer Districts. U.S. Geol. Surv. Bull. 498, 1912, 82 pp.

25. _____. Mining in the Northern Copper River Region, Alaska. U.S. Geol. Surv. Bull. 943-B, 1945, pp. 24-45.

26. _____. Geology of the Eastern Part of the Alaska Range and Adjacent Area. U.S. Geol. Surv. Bull. 989-D, 1954, pp. 190-195.

27. Newkirk, S.R. Sulfur Isotope Signatures of Volcanogenic Massive Sulfide Mineralization in the Delta District, Central Alaska Range. in Abstracts with Programs, 1986, 82nd Annual Meeting, Cordilleran Section, Geol. Soc. Amer., v. 18, no. 2, 1986, pp. 163

28. Nokleberg, W.J. and others. Geologic Map of the Southern Part of the Mount Hayes Quadrangle, Alaska. U.S. Geol. Surv. Open-File Rep. 82-52, 1982, 26 pp., 2 sheets, scale 1:250,000.

29. Petrovskaya, N.V. An Outline of the Geochemistry of Gold. Ch. in Gold: History and Genesis of Deposits, ed. by R.W. Boyle. Van Nostrand Reinhold Company, New York, 1987, pp. 135-150.

30. Presnall, D.C. and others. Liquidous Phase Relations on the Join Diopside-Forsterite-Anorthite from 1 Atmosphere to 20 Kilobar: Their Bearing on the Generation and Crystallization of Basaltic Magma. Contributions to Mineralogy and Petrology, vol. 66, 1978, pp. 203-220.

31. Ransome, A.L. and W.H. Kerns. Names and Definitions of Regions, Districts, and Subdistricts in Alaska. BuMines IC 7679, 1954, 90 pp.

32. Richter, D.H. Geology of the Upper Slana-Mentasta Pass Area, southcentral Alaska. Alaska Division of Mines and Minerals Geol. Report 30, 1967, 25 pp.

33. Richter, D.H., and D.L. Jones. Structure and Stratigraphy of Eastern Alaska Range, Alaska. Ch. in Arctic Geology, Proceedings of the Second International Symposium on Arctic Geology, Feb. 1-4, 1971, San Francisco (CA), ed. by M.G. Pitcher. AAPG Memoir 19, 1973, pp. 408-420.

34. Rose, A.W. Geological and Geochemical Investigations in the Eureka Creek and Rainy Creek Areas, Mount Hayes Quadrangle, Alaska. Alaska Division of Mines and Minerals Geol. Report 20, 1966, 37 pp.

35. _____. Geology of the Upper Chistochina River Area, Mt. Hayes Quadrangle, Alaska. Alaska Division of Mines and Minerals Geol. Rep. no. 28, 1967, 41, pp.

36. Rose, A.W., H.E. Hawkes, and J.S. Webb. Geochemistry in Mineral Exploration (second edition). Academic Press, New York, 1979, pp. 549-581.

37. Silberman, M.L., D.L. Madden, P.A Mitchell, and R.B. Hoekzema. Characteristics of Lode-Gold Deposits in the Valdez Group, Western Prince William sound, Alaska. in Abstracts with Programs, 1984, 80th Meeting, Cordilleran Section, Geol. Society of America, v. 16, no. 5, pp. 332.

38. Silberman, D.L. Madden, and P.A. Mitchell. The Origin of Granite and Gold Deposits in Prince William Sound, Alaska. U.S. Geol. Surv. closed-file report 85-02, 1985, 8 pp.

39. Smith, P.S. Past Placer Gold Production from Alaska. U.S. Geol. Surv. Bull. 857-B, 1933, 104 pp.

40. _____. Fineness of Gold from Alaskan Placers. U.S. Geol. Surv. Bull. 910C, 1941, pp. 147-267.

41. Smith, T.E., M.D. Albanese, and G.L. Kline. Geologic Map of the Healy A-2 Quadrangle. Alaska Division of Geologic and Geophysical Surveys Prof. Report 95, 1988, 1 sheet, 1:63,360.

42. Sporleder, L.E. Gold Probe: New Bio-Assay Technique Provides Results in the Field. in Engineering and Mining Journal, July, 1989, pp. 32-33.

43. Streckelsen, A.L., and R.W. Le Maitre. A Chemical Approximation to the Modal QAPF Classification of the Igneous Rocks. Neues Jahrbuch fur Mineralogie Abhandlungen, v. 134, 1979, pp.1-14.

44. Stuwe, K. Structural evolution of the Port Wells Gold Mining District, Prince William Sound, South Central Alaska: Implications for the Origin of the Gold Lodes. Mineralium Deposita, 21, 1986, pp. 288-295.

45. Tempelman-Kluit, D.J. The Yukon Crystalline Terrane: Enigma in the Canadian Cordillera. Geol. Soc. Amer. Bull., v. 87, 1976, pp. 1343.

46. Thornton, C.P. and O.F. Tuttle. Chemistry of Igneous Rocks I. Differentiation Index. Amer. Journ. of Science, vol. 258, 1960, pp. 664-684.

47. Turner, D.L., T.E. Smith, and R.B. Forbes. Geochronology of Offset along the Denali Fault System in Alaska (abstract). Ch. in Abstracts with Programs, 1974, 70th Annual Meeting, Cordilleran Section: Geol. Soc. Amer. v. 6, 1974, pp. 268-269.

48. Yoder, H.S. Contemporaneous Basaltic and Rhyolitic Magmas. American Mineralogist, vol. 58, 1973, pp. 153-171.

49. Yoder, H.S. and C.E. Tilley. Origin of Basaltic Magmas: an Experimental Study of Natural and Synthetic Rock Systems. Journ. Petrology, vol. 3, part 3, 1962, pp. 342-532.

50. Wones, D.R. The Fractional Resorption of Complex Minerals and the Formation of Strongly Femic Alkaline Rocks. Ch. in The Evolution of Igneous Rocks, Fiftieth Anniversary Perspectives, ed. by H.S. Yoder. Princeton University Press, Princeton, New Jersey, 1979, pp. 413-422.