

Bureau of Mines Information Circular/1985

Chromite Deposits Along the Border Ranges Fault, Southern Alaska

(In Two Parts)

2. Mineralogy and Results of Beneficiation Tests

By D. C. Dahlin, D. E. Kirby, and L. L. Brown

Information Circular 8991

Chromite Deposits Along the Border Ranges Fault, Southern Alaska

(In Two Parts)

2. Mineralogy and Results of Beneficiation Tests

By D. C. Dahlin, D. E. Kirby, and L. L. Brown

UNITED STATES DEPARTMENT OF THE INTERIOR William P. Clark, Secretary

BUREAU OF MINES Robert C. Horton, Director

Library of Congress Cataloging in Publication Data:

Foley, Jeffrey Y

Chromite deposits along the Border Ranges Fault, southern Alaska.

(Information circular / United States, Bureau of Mines; 8991)

Includes bibliographies.

Supt. of Docs. no.: I 28.27:8991.

Contents: 1. Field investigations and descriptions of chromite deposits / by Jeffrey Y. Foley and James C. Barker-2. Mineralogy and results of beneficiation tests. / by D. C. Dahlin, D. E. Kirby, and L. L. Brown.

1. Chromite-Alaska. 2. Faults (Geology)-Alaska. I. Barker, James C. II. Dahlin, D. C. (David Clifford), 1951- . III. Kirby, D. E. (Donald E.). IV. Brown, L. L. (Lawrence L.), 1928- . V. Title. VI. United States. Bureau of Mines. VII. Series: Information circular (United States. Bureau of Mines); 8991.

TN 295.U4 [TN490.C4] 622 s [533.4'643'097983] 84-600 155

CONTENTS

Abstract	1
Introduction	2
Acknowledgment	2
Mineralogy	3
Chromite samples	5
Tonsina area	5
Bernard Mountain	5
Sheep Hill	8
Dust Mountain	8
Palmer area	10
Wolverine Complex	10
Kenai Peninsula	10
Red Mountain	10
Windy River	10
Claim Point	11
Kodiak Island	11
Halibut Bay	11
Grant Lagoon	12
Miners Point	12
Beneficiation procedure	12
Rock samples	12
Placer samples	14
Results and discussion	15
Summary and conclusions	18
Appendix AMetallurgical balances	20
Appendix BSample key	37

ILLUSTRATIONS

1.	Map of southern Alaska showing ultramafic and mafic-ultramafic complexes	
	investigated	3
2.	SEM micrographs of sample DM1M from Dust Mountain	9
3.	SEM micrograph of sample DM3M from Dust Mountain	10
4.	Electron microprobe micrograph and element distribution maps of sample	
	HB4M from Halibut Bay	13
5.	General beneficiation procedure used to concentrate the chromite samples.	14

TABLES

1.	Head analyses of chromite samples from deposits along the Border Ranges Fault	4
2.	Estimated mineral composition of samples from deposits along the Border Ranges Fault	6
3.	High-purity concentrates of samples from deposits along the Border Ranges Fault	7
4.	Analyses of chromite concentrates from deposits along the Border Ranges Fault	16
5.	Precious metal analyses	18
A-1.	Gravity table concentration of sample BMIM from Bernard Mountain	20
A-2.	Gravity table concentration of sample BM2M from Bernard Mountain	20
A-3.	Gravity table concentration of sample BM3M from Bernard Mountain	21
A-4.	Gravity table concentration of sample BM4M from Bernard Mountain	21

TABLES--Continued

A-5.	Gravity table con	centration of	sample BM5M from Bernard Mountain	22
A-6.	Gravity table con	centration of	sample BM6M from Bernard Mountain	22
A-7.	Gravity table con	centration of	sample BM7M from Bernard Mountain	23
A-8.	Gravity table con	centration of	sample SH2M from Sheep Hill	23
A-9.	Gravity table con	centration of	sample SH3M from Sheep Hill	24
A-10.	Gravity table con	centration of	sample SH4M from Sheep Hill	24
A-11.	Gravity table con	centration of	sample DM1M from Dust Mountain	25
A-12.	Gravity table con	centration of	sample DM2M from Dust Mountain	25
A-13.	Gravity table con	centration of	sample WClM from the Wolverine Complex	26
A-14.	Gravity table con	centration of	composite RM1M from Red Mountain	26
A-15.	Gravity table con	centration of	sample RM2M from Red Mountain deposit 24.	27
A-16.	Gravity table con	centration of	sample RM3M from Red Mountain deposit 9	27
A-17.	Gravity table con	centration of	sample RM4M from Red Mountain deposit 9	28
A-18.	Gravity table con	centration of	composite RM5M from Red Mountain	28
A-19.	Gravity table con	centration of	composite RM6M from Red Mountain	29
A-20.	Concentration of	placer sample	WR1S from the Windy River	29
A-21.	Concentration of	placer sample	WR2S from the Windy River	30
A-22.	Concentration of	placer sample	WR3S from the Windy River	30
A-23.	Gravity table con	centration of	placer composite WR4S from the Windy	
	River	• • • • • • • • • • • • • •		31
A-24.	Gravity table con	centration of	sample CP1M from Claim Point deposit 10	31
A-25.	Gravity table con	centration of	sample CP2M from Claim Point deposit 15	32
A-26.	Gravity table con	centration of	sample HB1M from Halibut Bay	32
A-27.	Gravity table con	centration of	sample HB2M from Halibut Bay	32
A-28.	Gravity table con	centration of	sample HB3M from Halibut Bay	33
A-29.	Gravity table con	centration of	sample HB4M from Halibut Bay	33
A-30.	Gravity table con	centration of	sample HB6M from Halibut Bay	34
A-31.	Gravity table con	centration of	sample HB7M from Halibut Bay	34
A-32.	Gravity table con	centration of	sample HB8M from Halibut Bay	35
A-33.	Gravity table con	centration of	sample HB9M from Halibut Bay	35
A-34.	Gravity table con	centration of	sample GL1M from Grant Lagoon	36
A-35.	Gravity table con	centration of	sample MP1M from Miners Point	36

······································				
	UNIT OF MEASURE AB	BREVIATIONS US	ED IN THI	S REPORT
ft	foot		min	minute
in	inch		oz	ounce
1b	pound		pct	percent
μm	micrometer		wt pct	weight percent

Page

CHROMITE DEPOSITS ALONG THE BORDER RANGES FAULT, SOUTHERN ALASKA

(In Two Parts)

2. Mineralogy and Results of Beneficiation Tests

By D. C. Dahlin, ¹ D. E. Kirby, ¹ and L. L. Brown²

ABSTRACT

To identify and characterize potential domestic chromium resources, the Bureau of Mines investigated podiform chromite deposits along the Border Ranges Fault in southern Alaska. Part 1 of this two-part report describes an extensive field investigation and preliminary resource evaluation studies by the Bureau's Alaska Field Operations Center. This paper, part 2, describes the mineralogy of 38 samples that were collected from low-grade deposits in the Chugach Mountains, on the Kenai Peninsula, and on Kodiak Island, and presents the results of laboratory batch beneficiation tests designed to concentrate the chromite.

The samples are peridotites and chromitites that consist primarily of variable amounts of chromite, olivine, and serpentine. They were beneficiated by a sequence of grinding, sizing, and gravity concentration operations. Twenty-four high-chromium or marginal high-chromium chromite concentrates, six high-iron or marginal high-iron chromite concentrates, and five submarginal concentrates were produced with chromium recoveries that ranged from 37 to 95 pct. Three very low-grade samples were not beneficiated. These results indicate that several of the deposits may be significant chromium resources.

Potential precious metals association with the chromite was also investigated. Analysis of these samples indicates that the chromite deposits are not good platinum sources.

¹Metallurgist. ²Group supervisor and geologist. Albany Research Center, Bureau of Mines, Albany, OR.

The United States is dependent on foreign sources for chromium, a commodity that is essential to the Nation's metallurgical, chemical, and refractory industries. Metallurgical applications of chromium include stainless steels and many other ferrous and nonferrous alloys. Chemical applications include plating, pigment production, and leather tanning. Chromite refractories are used in hightemperature applications such as furnace and kiln linings and as a foundry molding material. Many studies have been done to reduce the chromium demand of these industries by substitution; although some satisfactory substitutes have been developed, substitutes have not been found for the bulk of chromium uses.

The United States has no domestic production or economic reserves of chromite, the only commercial ore of chromium, and must rely on imports or stockpiles to meet national needs. Although world reserves of chromite are adequate to meet forecasted world demand, sensitive political and economic situations and geography could jeopardize our supply of chromite.³ The larger, high-grade chromite deposits are located in the Eastern Hemisphere. The majority of recent chromite imports have been from the Republic of South Africa (48 pct of the total), the Soviet Union (17 pct), and the Philippines (13 pct).⁴

The Bureau of Mines is characterizing potential domestic chromite sources and devising processing techniques to make chromium from these sources available in the event of supply disruptions. The Bureau's Alaska Field Operations Center reported on reconnaissance investigations of three ultramafic complexes in central Alaska,⁵ and research was performed at the Albany (OR) Research Center, to identify the mineralogy and beneficiate chromite-bearing samples from 10 sites within the three ultramafic bodies.⁶ Subsequently, similar field investigations were undertaken on low-grade chromite deposits along the Border Ranges Fault in southern Alaska.⁷ Figure 1 shows the locations of the deposits. This paper, part 2 of the investigation. summarizes mineralogical and beneficiation studies on 38 samples collected within this study area.

ACKNOWLEDGMENT

The authors thank the Anaconda Minerals Co. for providing chromite samples from Red Mountain and the Windy River Valley

³Papp, J. F. Chromium. BuMines Mineral Commodity Profile, 1983, 21 pp.

⁴Papp, J. F. Chromium. Sec. in Bu-Mines Mineral Commodity Summaries 1984, pp. 32-33.

⁵Foley, J. Y., and M. M. McDermott. Podiform Chromite Occurrences in the Caribou Mountain and Lower Kanuti River Areas, Central Alaska. Part I: Reconnaissance Investigations. BuMines IC 8915, 1983, 27 pp. on Kenai Peninsula under Memorandum of Agreement 14-09-0070-937 with the Bureau of Mines.

⁶Dahlin, D. C., L. L. Brown, and J. J. Kinney. Podiform Chromite Occurrences in the Caribou Mountain and Lower Kanuti River Areas, Central Alaska. Part II: Beneficiation. BuMines IC 8916, 1983, 15_pp.

/Foley, J. Y., and J. C. Barker. Chromite Deposits Along the Border Ranges Fault, Southern Alaska (In Two Parts). 1. Report of Field Investigations and Descriptions of Chromite Deposits. Bu-Mines IC 8990, 1984, 57 pp.

FIGURE 1. - Map of southern Alaska showing ultramafic and mafic-ultramafic complexes investigated. Base from USGS 1:500,000-scale map of Alaska.

MINERALOGY

Bulk samples for mineralogical characterization and beneficiation studies were selected from chromite-bearing areas in mixed mafic-ultramafic ultramafic and rock complexes, which are the common rock types associated with chromite. These rocks contain less than 45 pct SiO2, are generally dark colored, and have a high specific gravity. The mineralogy of these rocks is normally uncomplicated; they are sometimes monomineralic, but they usually consist of variable amounts of olivine, ferromagnesian silicate minerals (pyroxene and amphibole), and serpentine. These ultrabasic rocks commonly host the oxide ore minerals, magnetite

contain minor chromite. They may and amounts of the sulfides of iron, copper, the platinumand nickel and traces of Ultrabasic rocks are virgroup metals. tually devoid of feldspar. Chlorite and mixed hydrated iron oxide minerals are usually present as alteration products. Common rock types encountered in the ulof mafic-ultramafic tramafic portions complexes include the following:

Dunite--almost pure olivine.

Peridotite--a variable mixture of olivine with some pyroxene. Pyroxenite--pyroxene, usually of one variety.

Serpentinite--a mixture of serpentinegroup minerals.

To collect samples with a chromite content sufficient for metallurgical

testing, each bulk sample was intentionally high-graded from surface exposures or was collected as a channel sample from high-grade portions of the deposit. Head analyses of the samples are shown in table 1. The Cr_2O_3 content ranged from 0.6 to 47.5 pct.

TABLE 1. - Head analyses of chromite samples from deposits along the Border Ranges Fault, percent

Location	Sample	Cr ₂ 03	Fe	A1203	MgO	Si02
Tonsina area:	1	† <u>-</u>	<u>+</u> .	+		
Bernard Mountain	BM1M	39.9	12.4	10.0	22.2	10.0
	BM2M	41.4	11.5	13.0	19.9	7.3
	BM3M	24.8	12.0	7.0	28.6	18.9
	BM4M	25.9	10.1	10.3	28.5	16.8
	BM5M	45.7	13.6	9.3	17.3	6.6
	BM6M	34.2	12.5	8.6	23.7	14.0
	BM7M	27.9	8.5	4.7	30.2	19.9
Sheep Hill	SH1M	.6	12.3	.8	43.4	35.3
	SH2M	22.9	11.5	4.9	29.6	19.0
	SH3M	36.1	23.3	17.7	11.4	2.0
	SH4M	27.0	13.4	7.2	26.1	18.2
Dust Mountain	DM1M	17.7	25.2	17.2	18.3	10.8
	DM2M	1.5	7.9	.7	45.1	35.7
Polmon anost	DM3M	.8	6.3	.3	45.9	36.6
Volucrino Complex	10114	10 6				
Konsi Poninculat	WCIM	19.6	4.5	6.3	33.2	24.0
Pod Mountain	DV1V1					
Red Mountain	RMIM.	8.3	6.2	1.5	47.9	34.4
	RM2M	29.1	9.4	5.9	29.7	19.6
	RM3M DM/M	39.6	9./	/.0	26.2	13.4
	RM4M	21.9		4.0	37.0	25.5
	RM5M'	4.6	0.1	.8	50.3	36.2
Windy River			0.3	1.6	46./	33.8
windy River		2.1	7.2	1.3	42.6	39.9
		4.5	/.6	3.1	34.6	40.7
	$WR3S^{-}$		6./	3.8	30.0	45.2
Claim Daint	WR45',-	1.8	6.9	2.7	34.0	43.9
		21.6	/.4	3.6	38.6	26.2
Kodiak Island:	CPZM	31.0	10.1	6.0	30.2	18.4
Halibut Bay	HB1M	22.4	14.9	5.5	31.8	20.4
	HB2M	16.7	14.5	7.1	31.9	20.4
	нвзм	47.5	11.2	8.4	19.1	7.4
	НВ4М	7.7	12.1	5.0	33 1	20 6
	НВ5М	.6	10.9	5.5	17.8	46 9
	НВ6М	21.2	7.8	3.7	33.6	23.2
	НВ7М	23.2	10.5	5.1	34.2	23.2
	HB8M	38.6	11.8	11.7	24•2 24 4	0.8
	нв9м	42.1	10-5	8.7	27•4 24 8	9.0
Grant Lagoon	GLIM	7.7	5.7	.6	41.3	31 2
Miners Point	MPIM	5.1	6.9	1.5	40.6	30.3
Fillers Follit		5.1	6.9	1.5	40.6	30.3

¹Composite sample provided by the Anaconda Minerals Co. ²Placer sample.

4

The samples are identified by location and by sample number in the same manner as they are in part 1. Appendix B correlates the sample numbers used in this report with sample numbers assigned in the field.

Representative specimens were selected from each sample for petrographic examination and mineralogical characterization. Detailed mineralogical and liberation studies were done on samples split from sized fractions prepared for beneficiation studies and on beneficiation products.

Binocular and petrographic microscopy, magnetic separation techniques, polished surface studies, and, as needed, scanning electron microscopy and electron microprobe examinations were used to determine the mineral composition of the samples. Table 2 shows the estimated mineralogical compositions based on weight. The numbers are calculated composites from

In the following descriptions, samples of similar mineralogy and character from an area have been grouped together.

TONSINA AREA

Bernard Mountain

BM1M, BM3M, and BM4M consist of mixtures of chromite and olivine that vary from massive, fractured chromite to al-Generally, the chromost pure olivine. mite occurs as fine to coarse euhedral grains abundantly to sparsely disseminated or banded in a massive and varia-Minor (less bly altered olivine matrix. than about 5 pct) amounts of serpentine occur on slickensides and fracture surfaces, along with trace (less than about pct) amounts of the pink to .purple 1 kaemmererite. Minor chromian chlorite, ferromagnesian silicate minerals and chlorite are also present, and one specimen contained some of the bright green chromian garnet, uvarovite. The olivine ranges from being relatively fresh to

determinations made on size fractions from each sample.

High-purity chromite concentrates were prepared from gravity table concentrates by carefully controlled magnetic sep-Each sample was separated at aration. spaced field settings on a closelv isodynamic magnetic model laboratory and the fraction that best separator, represented the chromite in the sample, as determined by optical examination, was Results are given in table 3. analvzed. All are magnesian-aluminian or aluminianmagnesian chromites, depending on whether the MgO or Al_2O_3 analysis is greater. Several of the samples have nearly equal Ten are, in ad-MgO and Al₂O₃ analyses. high-iron vadition, mineralogically rieties of chromite because the Cr:Fe ratios are less than 1.9:1, the Cr:Fe ratio of theoretical chromite (FeCr₂0₄). Some of the high iron analyses may be and admixed attributed to intergrown magnetite.

CHROMITE SAMPLES

being completely altered to serpentine and chlorite. Weathered surfaces are variably iron stained and exhibit a buckskin color which is typical of dunite. Most of the chromite is liberated at about 65 mesh. Considerable liberation occurs at coarser sizes, but some chromite remains locked with gangue at finer sizes because of the wide variation in chromite crystal sizes in the rock.

BM2M consists of massive crystalline to euhedral crystalline, closely disseminated chromite in an altered olivine matrix. A minor amount of kaemmererite is present. Liberation of the chromite is complete at 65 mesh, and most would be liberated at about 35 mesh.

BM5M consists of highly fractured, massive chromite with randomly distributed, iron-stained serpentine. A few lenses of altered olivine are present that contain minor amounts of small euhedral chromite crystals.

Location	Sample	Chro-	01i-	Serpen-	Magnet-	Chlo-	Fe-Mg	Su1-
		mite	vine	tine	ics1	rite	silicates	fides
Tonsina area:					†	†		
Bernard Mountain.	BM1M	66	29	2	1	3	ND	ND
	BM2M	80	17	ND	ND	3	Tr	ND
	BM3M	47	52	ND	1	Tr	ND	Tr
	BM4M	53	40	2	Tr	4	Tr	ND
	BM5M	75	3	21	1	Tr	Tr	ND
	BM6M	59	16	21	4	ND	Tr	Tr
	BM7M	41	2	55	Tr	Tr	2	ND
Sheep Hill	SH1M	Tr	9 0	Tr	9	ND	1	Tr
	SH2M	33	23	42	1	Tr	ND	Tr
	SH3M	94	4	Tr	1	1	Tr	ND
	SH4M	52	24	17	Tr	Tr	6	ND
Dust Mountain	DM1M	12	24	1	60	2	2	ND
	DM2M	6	86	2	3	Tr	2	ND
	DM3M	2	2	93	1	ND	2	ND
Palmer area:					_		-	ПD
Wolverine Complex	WC1M	36	40	20	Tr	3	ND	Тr
Kenai Peninsula:						_		**
Red Mountain	RM1M ²	18	83	Tr	ND	ND	ND	ND
	RM2M	51	39	10	Tr	ND	Tr	Tr
	RM3M	62	20	18	Tr	ND	Tr	Tr
	RM4M	37	53	10	Tr	ND	Tr	Tr
	RM5M ²	8	71	20	1	ND	Tr	Tr
	RM6M ²	13	79	8	Tr	ND	Tr	Tr
Windy River	WR1S ³	6	77	Tr	1	ND	14	ND
	WR2S ³	3	40	34	2	ND	21	ND
	WR3S ³	3	27	47	2	ND	22	Tr
	WR4S ² ,3,4	6	44	35	6	ND	6	ND
Claim Point	CP 1M	42	57	ND	1	ND		Tr
	CP2M	59	35	5	Tr	ND	ND	11 Tr
Kodiak Island:				-		III D	ILD	I L
Halibut Bay	HB1M	30	66	ND	3	ND	ND	ፐዮ
	HB2M	44	53	1	2	ND	ND	ND
	нвзм	69	ND	31	Tr	Tr	ND	ND
	HB4M	3	28	24	44	Tr	2	ND
	нв5м ⁵	NA	NA	NA	NA	NA	NA	NΔ
	HB6M	42	10	47	1	Tr	ND	ND
	нв7м	40	60	ND	Tr	ND	ND	ND
	HB8M	72	27	ND	ND	ND	1	ND
	нв9м	81	19	ND	ND	ND		ND
Grant Lagoon	GLIM	7	2	86	5	ND	ND	Tr
Miners Point	MP1M	3	1	90	6	ND	Tr	ND

TABLE 2. - Estimated mineral composition of samples from deposits along the Border Ranges Fault, percent

NA Not analyzed. ND Not detected. Tr Trace.

¹Minerals removable with a hand magnet.

 2 Composite sample provided by the Anaconda Minerals Co.

³Placer sample.

⁴Also contains 3 pct quartz and feldspar. ⁵Sample not analyzed for mineral composition.

NOTE.---Totals may not add to 100 pct owing to independent rounding.

Location	Sample		Anal	ysis, p	Cr:Fe		
		Cr ₂ 0 ₃	Fe	A1203	MgO	Si0 ₂	ratio
Tonsina area:							
Bernard Mountain	BM1M	55.4	12.8	13.1	15.9	0.8	3.0
	BM2M	52.0	13.5	15.2	15.5	1.0	2.6
	вмзм	49.4	17.6	13.5	12.9	1.1	1.9
	BM4M	48.5	14.6	17.6	14.7	•6	2.3
	BM5M	55.5	15.5	11.5	14.2	1.1	2.5
	BM6M	53.8	16.2	11.7	13.3	•5	2.3
	BM7M	58.5	14.1	9.2	14.5	.6	2.8
Sheep Hill	SH2M	55.1	17.1	11.0	13.0	.5	2.2
•	SH3M	39.2	26.4	18.4	10.7	•0	1.0
	SH4M	51.0	20.3	12.6	11.7	.9	1.7
Dust Mountain	DM1M	39.9	24.0	14.9	11.8	2.8	1.1
Palmer area:							
Wolverine Complex	WC1M	47.5	20.9	11.5	12.6	2.0	1.6
Kenai Peninsula:			1				
Red Mountain	RM1M	55.0	16.3	8.5	14.9	.9	2.3
	RM2M	55.4	14.7	10.3	13.6	.8	2.6
	RM3M	58.8	13.0	9.5	15.1	.5	3.1
	RM4M	58.9	14.8	8.8	14.3	.8	2.7
	RM5M	56.1	14.4	9.2	14.0	.9	2.7
	RM6M	56.0	15.7	8.2	14.8	.7	2.7
Windy River	WR1S	53.5	21.5	10.9	10.0	•5	1.7
	WR2S	53.5	20.6	10.5	10.1	•4	1.8
	WR3S	52.6	20.0	10.8	10.0	.6	1.8
	WR4S	51.9	19.7	10.3	11.1	.6	1.8
Claim Point	CP1M	58.2	14.6	8.1	12.4	.8	2.7
	CP2M	55.1	14.8	9.9	14.1	1.0	2.5
Kodiak Island:							
Halibut Bay	HB1M	50.6	16.1	10.3	15.1	1.4	2.1
	HB2M	40.0	21.0	15.4	13.4	1.7	1.3
	НВЗМ	55.5	13.6	9.3	16.9	3.1	2.8
	HB4M	34.6	22.1	19.7	12.7	3.7	1.1
	HB6M	53.5	14.0	8.8	15.9	2.6	2.6
	НВ7М	53.5	17.3	11.7	12.8	1.1	2.1
	HB8M	51.6	13.9	14.4	15.7	1.0	2.5
	нв9м	56.1	12.7	11.0	16.4		3.0
Grant Lagoon	GLIM	62.0	14.3	4.3	13.8	2.5	3.0
Miners Point	MP1M	47.5	16.4	12.6	14.2	4.1	2.0

TABLE 3. - High-purity concentrates of samples from deposits along the Border Ranges Fault

NOTE.--High-purity concentrates were not prepared from the low-grade samples SH1M (Sheep Hill), DM2M and DM3M (Dust Mountain), and HB5M (Halibut Bay).

Most of the chromite is liberated at 28 mesh, the coarsest size evaluated, but the chromite that is disseminated in the olivine lenses is not liberated until about 100 mesh.

BM6M consists of massive chromite with conchoidal fractures and little or no gangue, grading into discrete grains of subhedral chromite in white- to rustcolored olivine. Much of the olivine has altered to pale green serpentine with trace amounts of chlorite and ferromagnesian silicate minerals. Trace amounts of sulfide minerals were noted in the magnetic separation fractions, but no sulfides were observed in hand samples. Most of the chromite is liberated at 35 mesh.

BM7M consists of closely to loosely disseminated, small to relatively large, euhedral chromite crystals in a matrix of olivine, altered olivine, and serpentine, and some banding of the chromite is evident. Minor amounts of ferromagnesian silicate minerals (bronzite-enstatite) Liberation of the chromite are present. is essentially complete at about 48 mesh. Both locking and liberation were noted at finer and coarser sizes, however, because of the wide variation in crystal size of the chromite.

Sheep Hill

SHIM consists of dark- to light-gray massive olivine that contains scattered grains of magnetite. The dark color is apparently due to finely disseminated magnetite. A minor amount of serpentine fills fractures and shows on slickenside surfaces, and external weathered surfaces show the typical buckskin bleaching. Since chromite only occurs in trace amounts, no concentration or liberation data were obtained.

SH2M consists of euhedral chromite grains closely to sparsely disseminated in a matrix of serpentine. Residual olivine is conspicuously present. Banding of both chromite and serpentine-olivine is evident, and serpentine lines fractures and slickensides. Some relatively large, dark-gray clots and lenses of fine-grained, altered olivine contain minor amounts of fine-grained pyrrhotite. The dark-gray portion of the rock gives the impression that the sample contains more chromite than is actually present. Exposed surfaces have been bleached to a buckskin color. Most of the chromite is liberated at minus 65 mesh.

SH3M consists of massive, highly fractured chromite that grades to coarse euhedral chromite crystals abundantly disseminated in olivine. Minor amounts of serpentine occur along slickensides and fractures, and small amounts of chlorite and enstatite are also present. Liberation of chromite in this sample is essentially complete at 28 mesh, the coarsest size examined.

SH4M consists of abundant euhedral grains of chromite closely disseminated in a matrix of olivine with a minor amount of serpentine. Clots of chromite and bands of olivine that are relatively free of chromite are present, as are traces of chlorite and chrysotile. Enstatite is sparsely disseminated as relatively large single crystals and aggregates of single crystals. Slickensides and fracture surfaces are coated with serpentine, and weathered surfaces are stained with iron oxide minerals. Most of the chromite is liberated at 65 mesh.

Dust Mountain

DM1M consists of massive olivine, massive magnetite, and massive chromite, with the latter being least abundant. The olivine contains sparse to abundant disseminations of very fine-grained to coarse euhedral magnetite and chromite crystals. Chromite is disseminated in the magnetite, and small to large clots of olivine are also randomly scattered in the massive magnetite. Minor amounts of diopside and enstatite occur scattered throughout the sample, and serpentine occurs on slickensides and along fractures. The bulk of the chromite appears to be liberated at 28 mesh.

The amount of chromite locked with magnetite was not determined, but the analysis of a minus 65-mesh magnetic concentrate showed that it contained 22.9 pct Cr₂0₃. Scanning electron microscope (SEM) examination revealed that the chromite in this sample is best described as magnesian-chromian hercynite with a composition of about 25 pct Cr_2O_3 , 35 pct FeO, 28 pct Al_2O_3 , and 10 pct MgO. As may be seen in the two electron micrographs in figure 2, the hercynite (dark gray) contains a relatively large amount of an exsolved phase (light gray) within and along the grain boundaries that is a chromian magnetite with a composition of 75 pct Fe₃ 0_4 , 18 pct Cr₂ 0_3 , 3 pct Al₂ 0_3 , The chromian magnetite and 1.5 pct MgO. also contains about 2.5 pct TiO2, probably the saturation limit of Ti above which exsolution of an ilmenite phase occurs; no ilmenite was observed. The reason for the low (1.1:1) Cr:Fe ratio in this material becomes obvious from these observations.

DM2M consists of massive olivine with small euhedral randomly disseminated crystals of magnetite and chromite that, in a few areas, have concentrated into bands. Minor amounts of ferromagnesian silicate minerals are present. Serpentine occurs along fractures, and exposed surfaces show the buckskin color. Because of the small size of the chromite grains, the majority of the chromite remains locked with gangue at 200 mesh.

DM3M consists of dark green, finegrained, massive antigorite that contains distributed euhedral few randomly а magnetite and chromite and grains of minor amounts of olivine and ferromag-Total chromite plus nesian silicates. magnetite equals about 1 pct of the rock with approximately equal portions of the minerals. External surfaces two are weathered to the buckskin color. Liberation of the chromite is not complete at 100 mesh. Due to the low-grade nature of the sample, no chromite concentrates were produced.

Figure 3 is an SEM micrograph of a surface field that has fine-grained metallic

FIGURE 2. - SEM micrographs of sample DM1M from Dust Mountain showing chromian magnetite (light gray) exsolved from chromian hercynite (dark gray) within and along grain boundaries.

particles (small, light particles), initially thought to be a platinum mineral, and a chromite grain ($400-\mu m$ particle) with magnetite veinlets and overgrowths. SEM analysis showed that the particles are a metallic alloy mineral of Ni and Fe

FIGURE 3. - SEM micrograph of sample DM3M from Dust Mountain showing a randomly scattered Ni-Fe alloy mineral (small light particles) and a chromite grain (400- μ m particle) with magnetite veinlets and overgrowths. The dark gray and black matrix is serpentine.

with a Ni:Fe ratio of 3:1. The mineral occurs in very small amounts that are randomly distributed throughout the rock. Analysis of the chromite grain, in percent, is 54.2 Cr_20_3 , 20.8 Fe, 6.0 MgO, and 9.1 Al_20_3 , with a Cr:Fe ratio of 1.8:1.

PALMER AREA

Wolverine Complex

WC1M consists primarily of alternately banded chromite and olivine, with associated serpentine and small amounts of kaemmererite. Trace amounts of sulfide minerals were noted in fractions from magnetic separation, but no sulfides were observed in hand samples. The majority of the chromite is liberated at 65 mesh.

KENAI PENINSULA

Red Mountain

RM1M, RM5M, and RM6M consist of subhedral chromite grains disseminated in a

dark gray to yellow olivine. The gray color is partly due to minute inclusions of chromite and magnetite. Gray serpentine slickensides are present along fractures in sample RM1M. Stringers of chromite and serpentine are present. Sample RM5M contains more serpentine than the other samples. This sample also contains traces of chlorite and a bright green, ferromagnesian silicate mineral. Some of the chromite grains in sample RM6M have reddish brown alteration rims. Most of the chromite is liberated at 48 mesh, except in sample RM5M, where the liberation size is 65 mesh. These three composite samples were provided by the Anaconda Minerals Co.

RM2M consists of discrete chromite bands separated by chromite-free bands of white to pale yellow olivine. A minor amount of serpentine is also present. Liberation of the chromite is essentially complete at 65 mesh.

RM3M and RM4M consist of medium-sized, discrete grains of subhedral chromite disseminated in white to pale yellow olivine. Some of the chromite is loosely organized into bands and stringers. Trace amounts of a green chromian muscovite surround some of the chromite The few fractures present are grains. filled with brown, soft, iron oxide minerals, and slickensides show serpentine alteration. The chromite is liberated at 48 mesh in both samples.

Windy River

WR1S, WR2S, and WR3S are low-grade placer samples of screened minus 1/2-in material that consist essentially of pebbles of dunite that contain sparsely disseminated chromite. A few pebbles are massive chromite, peridotite, or pyroxenite. Iron oxide minerals occur as coatings on the smaller grains of the samples and as a partial cement in samples WR1S and WR2S. Most of the chromite is locked in the pebbles. Only 60 pct of the chromite present in a minus 28-mesh chromite concentrate was liberated from gangue. WR4S is a composite of cuttings from 13 drill holes that represent a lens of better grade gravel and was provided by the Anaconda Minerals Co. Screening gave the following size distribution:

Fraction	wt pct
Plus 1/4 in	30
1/4 in by 28 mesh	52
Minus 28 mesh	18

The plus 28-mesh material consists of fragments of basic igneous rocks. About half of the fragments are dunite with very sparsely disseminated chromite. The remainder consists primarily of pebbles of serpentinite, peridotite, pyroxenite, chert, and miscellaneous rock types. The minus 28-mesh material consists of olivine and serpentine with some chromite and magnetic particles. A considerable portion of the chromite remains locked at 65 mesh.

Claim Point

<u>CPIM</u> consists of medium to small, subhedral to anhedral grains of chromite somewhat organized in bands in white to yellowish olivine. Minor amounts of serpentine and iron oxide minerals are present along the few fractures that are present. Most of the chromite is liberated at 100 mesh, but some locking is evident at finer sizes.

<u>CP2M</u> consists of a massive, nonbanded mixture of chromite and white to green olivine with a few random stringers of serpentine. Some chlorite and iron oxide staining occurs on fracture surfaces. Most of the chromite is liberated at 65 mesh.

KODIAK ISLAND

Halibut Bay

HBIM consists of massive olivine with small, disseminated euhedral crystals of chromite and very minor amounts of associated ferromagnesian silicate minerals. Most of the chromite was liberated at 65 mesh. HB2M consists of banded segregations of massive to disseminated chromite alternating with bands of barren olivine. Minor amounts of serpentine occur along fractures and as very small veins. Most of the chromite is liberated at 65 mesh.

HB3M consists of massive, highly fractured chromite and closely disseminated euhedral chromite crystals in a matrix of altered serpentine. The serpentine is massive, contains some slickensides, and varies from fresh looking to iron stained and altered. Most of the chromite is liberated at 100 mesh, but some remains locked with serpentine in finer sizes.

HB4M cosists of fine- to mediumgrained, closely to loosely disseminated euhedral chromite-magnetite in a matrix of altered olivine and serpentine. Some massive chromite-magnetite is present and forms bands in the altered olivine. Medium to relatively large porphyroblastic grains of ferromagnesian silicates are scattered through the rock. A minor amount of chlorite occurs with serpentine on slickenside surfaces. Most of the chromite-magnetite is liberated at 65 mesh, but these two minerals are intimately associated and are not completely liberated even at 200 mesh.

The best chromite concentrate obtained from this sample had the analysis, in percent, shown below in the first column. A mixture of chromite and magnetite that was responsive to a hand magnet was also analyzed, and the results are shown in the second column.

		Chromite-
	Chromite	Magnetite
Cr ₂ 0 ₃	34.6	32.5
Fe	22.1	24.8
Mg0	12.7	12.1
Al ₂ 0 ₃	19.7	19.0
Si0 ₂	3.7	3.6
Cr:Fe ratio	1.1:1	.9:1

Based on these analyses and on electron microprobe examination, most, if not all, of the chromite grains in this sample have magnetite overgrown on their surfaces. The thickness of the overgrowth

varies considerably from grain to grain, but the total amount of magnetite is not The iron and chromium content of large. the chromite is relatively uniform within grains and from grain to grain. Chromite composition is about 45 pct Cr_2O_3 , 15 pct Fe. 15 pct $A1_20_3$, and 13 pct MgO. Electron micrographs and element distribution maps in figure 4 show typical grains in a minus 65-mesh gravity concentrate that was responsive to a hand magnet. The central grain has a core of chromite with a magnetite overgrowth and olivine gangue attached. Liberation is not complete. Olivine and other silicate minerals also contain intergrown fine-grained magnetite. Similar mineralogy is found in the Miners Point sample (MP1M), discussed later.

<u>HB5M</u> is a pyroxenite with very little chromite and was not examined in detail.

<u>HB6M</u> is brecciated and consists of angular fragments of banded and disseminated massive to euhedral chromite in serpentine with a minor amount of olivine. The rock has been broken and disrupted by fault movement and then recemented. The chromite and serpentine are both highly fractured and granulated. Most of the chromite is liberated at 100 mesh.

<u>HB7M</u> consists of small to medium euhedral chromite crystals closely to loosely disseminated in massive fresh olivine. Chromite bands of variable thickness alternate with narrow bands of pure olivine. Most of the chromite is liberated from gangue at 65 mesh.

HB8M consists of fine to coarse euhedral grains of chromite abundantly disseminated in colorless to gray olivine. Some chromite-barren olivine occurs in bands. A minor amount of iron oxide stain is present on weathered surfaces. Although most of the chromite is liberated at minus 65 mesh, some locking persists through 150 mesh.

HB9M consists of small to medium euhedral crystals of chromite closely disseminated in an olivine matrix. A few clots and occasional bands of olivine occur. Most of the chromite is liberated at 65 mesh.

Grant Lagoon

<u>GLIM</u> consists of fresh and altered serpentine that contains randomly disseminated clots and crystals of chromite and magnetite. Weathered surfaces are very pitted and iron stained. Liberation of the chromite is fairly complete at 65 mesh, but some remains locked at 100 mesh. The amount of chromite locked with magnetite was not determined.

Miners Point

<u>MP1M</u> consists of dark greenish-gray serpentine that contains very sparsely disseminated euhedral chromite-magnetite crystals and random small to large irregular agglomerations of closely disseminated euhedral chromite-magnetite. The magnetite and chromite are optically indeterminable from each other. Minor olivine and ferromagnesian silicate minerals also are present. Most of the chromite is liberated at 100 mesh, although some of the sparsely disseminated chromite is still locked at 150 mesh.

BENEFICIATION PROCEDURE

ROCK SAMPLES

The beneficiation procedure that was used to produce a composite chromite

concentrate was basically the same for each of the rock samples and is shown in figure 5. The procedure was modified to suit individual samples.

Specimen

Chromium

Magnesium

Iron

Silicon

Aluminum

FIGURE 4. - Electron microprobe micrograph and element distribution maps of sample HB4M from Halibut Bay showing magnetite overgrowth on chromite grains. Similar mineralogy is noted in sample MP1M from Miners Point. Grids are 33 μ m square.

FIGURE 5. - General beneficiation procedure used to concentrate the chromite samples.

The hard-rock samples, as received, consisted of angular rock fragments from 1 to 12 in in the largest dimension. Each sample was crushed in a series of crushers to pass 1/4 in, and a head sample and samples for beneficiation tests were prepared.

The minus 1/4-in material was screened on 28 and 65 mesh. The plus 28-mesh fraction was ground dry in a 13- by 25-in rodmill followed by a 7- by 9-in rodmill to pass 28 mesh and sized on 65 mesh. Grinding was done in stages to minimize production of fines. Generally, the plus 28-mesh fraction from a 20-1b split was ground in the large mill in two stages of 5 and 3 min, and then, if needed, in one to four stages in the small mill to reduce it to minus 28 mesh.

The 28- by 65-mesh fraction was tabled on a sand deck of a 2- by 4-ft laboratory shaking table to produce a clean concentrate and tailings. The tailings were dried and then stage-ground to minus 65 mesh to improve liberation; the ground

product was then combined with the minus 65-mesh material from the initial grinding and tabled on a slime deck. A highgrade concentrate, middlings, coarse tailings (those that settled and banded on the table), and slime tailings (those that washed off the deck before they had chance to settle) were collected. а In several cases, the sample was relatively high grade so that the amount of middlings and coarse tailings was small, or else substantial amounts of chromite were intermixed with the coarse tailings in overlapping bands on the table. When these conditions prevented sharp separation, the middlings and coarse tailings were collected as one product. A scavenger table operation was done on the rougher table middlings (or the middlings and coarse tailings combined product) to produce a scavenger concentrate and tailings to improve Cr203 recovery. The composite chromite concentrates reported in the tables in appendix A are a mathematical combination of the 28- by 65-mesh concentrate and minus 65-mesh rougher and scavenger concentrates.

One sample (DM2M) was very low grade $(1.5 \text{ pct } \text{Cr}_2\text{O}_3)$. The entire sample was ground to minus 65 mesh, and a rougher and cleaner step were done rather than the rougher-scavenger sequence shown in figure 5. Three other samples (SH1M, DM3M, and HB5M) were not treated to produce concentrates because of their low chromite content (0.6 to 0.8 pct Cr_2O_3).

PLACER SAMPLES

Four chromite placer samples were received from locations in the Windy River Valley at Red Mountain on the Kenai Peninsula. The river valley drains the Red Mountain ultramafic complex. Three the samples consisted of screened, of minus 1/2-in, unconcentrated river gravel. The fourth sample was a composite of cuttings from 13 drill holes in a fencedrill program across the thickest gravel portion of the valley, as determined by a seismic survey.

Each of the three surface samples was The minus 28-mesh screened on 28 mesh. fraction was tabled to produce a concen-The concentrate was trate and tailings. scrubbed in a 10-pct-HCl solution to remove iron oxide surface stain, dried, and then treated electrodynamically and magnetically to produce a final chromite The plus 28-mesh fraction concentrate. was ground to minus 28 mesh and tabled separately in a rougher and a cleaner operation to produce a final concentrate. The composite chromite concentrates reported for these samples in the tables in appendix A are a mathematical combination of the plus 28-mesh cleaner table concentrate and the minus 28-mesh nonmagnetic electrodynamic cleaner concentrate and middlings.

The drill-hole composite sample was screened on 1/4 in and 28 mesh. The plus 1/4-in fraction and the 1/4-in by 28-mesh fraction were ground separately to minus 28 mesh, and each of the three size fractions was tabled in rougher and cleaner To improve Cr₂O₃ recovery, the steps. combined minus 28-mesh cleaner tailings from the three fractions were ground to minus 65 mesh and tabled in a scavenger For this sample, the composite step. chromite concentrate was a mathematical combination of the cleaner table concentrates from the three size fractions and the scavenger concentrate.

RESULTS AND DISCUSSION

The calculated composite chromite concentrates that were produced from deposits along the Border Ranges Fault may be categorized in one of the following groups:

1. High-chromium (metallurgical-grade) chromite that contains a minimum of 46 pct Cr_2O_3 with a Cr:Fe ratio greater than 2.0:1.

2. High-iron (chemical-grade) chromite that contains 40 to 46 pct Cr_2O_3 with a Cr:Fe ratio of 1.5:1 to 2.0:1.

3. Marginal chromite that meets either the grade or the Cr:Fe ratio requirement for one of the classifications above and very nearly meets the other.

4. Submarginal chromite that fails to meet the above classifications.

None of the samples in this study could be classifed as high-aluminum (refractory-grade) or marginal high-aluminum chromite. High-aluminum chromite contains more than 20 pct Al₂O₃ and more than 60 pct Al₂O₃ plus Cr₂O₃. One concentrate (DMIM) from Dust Mountain contained 21.8 pct Al₂O₃, but the Al₂O₃ plus Cr₂O₃ content was only 46.8 pct.

Table 4 summarizes the results of beneficiation on the 38 samples from deposits along the Border Ranges Fault using the procedure in figure 5, and classifies the concentrates according to the above categories. Chromite concentrate grades ranged from 25.0 to 57.8 pct Cr_2O_3 , and Cr:Fe ratios ranged from 0.6:1 to Cr_2O_3 recoveries ranged from 37 3.1:1. to 95 pct. Complete metallurgical balances may be found in tables A-1 through A-35 in appendix A. Three samples (SH1M, DM3M, and HB5M) were very low grade and were not beneficiated.

Sam- Chromite		T	Anal	ysis,	Cr_2O_3	Cr:Fe			
Location	ple	concentrate	Cr203	Fe	A1203	MgO	Si02	recoverv.	ratio
		classification ¹			2.5	- 0 -	2	pct	10010
Tonsina area:				<u> </u>			<u> </u>	F	
Bernard Mountain.	BM1M	High Cr	50.6	13.5	12.1	15.8	2.8	85.1	2.6
	BM2M	High Cr	49.9	13.7	15.2	15.6	2.0	91.0	2.5
	ВМЗМ	Marg. high Cr	49.1	17.6	12.8	14.7	1.9	77.6	1.9
	BM4M	Marg. high Cr	45.9	14.9	17.4	14.6	1.9	82.1	2.1
	BM5M	High Cr	54.5	14.9	11.0	14.7	2.5	94.4	2.5
	BM6M	High Cr	53.8	16.6	11.7	13.7	1.8	87.3	2.2
	BM7M	High Cr	56.8	14.1	9.7	16.0	1.8	84.1	2.8
Sheep Hill	SH2M	Marg. high Cr	51.6	18.4	10.6	12.4	1.8	73.8	1.9
	SH3M	Submarg	37.2	23.8	18.1	10.9	1.0	95.2	1.1
	SH4M	Marg. high Cr	49.9	19.2	11.6	12.7	1.8	81.1	1.8
Dust Mountain	DM1M	Submarg	25.0	30.3	21.8	11.2	2.3	77.8	.6
	DM2M	Submarg	35.3	22.7	14.7	13.9	4.8	37.3	1.1
Palmer area:		_							
Wolverine Complex	WC1M	High Fe	47.9	20.3	10.4	12.4	2.5	68.0	1.6
Kenai Peninsula:		_							
Red Mountain	RM1M	High Cr	54.5	16.0	10.2	13.9	1.7	67.4	2.3
	RM2M	High Cr	54.9	14.5	7.4	15.9	2.2	79.7	2.6
	RM3M	High Cr	56.8	12.9	8.2	16.7	2.6	88.1	3.0
	RM4M	High Cr	56.8	14.0	7.4	15.3	2.0	86.7	2.8
	RM5M	High Cr	52.5	16.0	9.9	15.9	3.5	47.2	2.2
	RM6M	High Cr	55.5	15.6	10.1	14.1	1.7	77.3	2.4
Windy River	WR1S	High Fe	46.8	20.1	9.5	13.1	4.0	60.0	1.6
	WR2S	High Fe	49.3	19.4	8.7	12.5	3.1	45.5	1.7
	WR3S	Marg. high Fe	38.8	17.3	8.7	17.5	11.6	43.0	1.5
	WR4S	Marg. high Fe	43.0	22.4	9.5	13.0	4.2	64.1	1.3
Claim Point	CP 1M	High Cr	57.8	14.1	8.6	14.8	1.1	63.7	2.8
	CP 2M	High Cr	54.2	14.5	9.0	15.9	2.6	64.0	2.6
Kodiak Island:	Í								
Halibut Bay	HB1M	High Cr	50.3	16.9	12.8	15.9	2.3	70.1	2.0
	HB2M	Submarg	37.1	21.2	15.9	13.9	3.7	73.4	1.2
	нвзм	High Cr	51.9	11.4	9.2	15.4	4.8	93.9	3.1
	HB4M	Submarg	29.8	25.0	16.5	12.2	5.8	67.9	.8
	HB6M	High Cr	47.1	14.6	16.0	15.3	2.4	59.2	2.2
	HB7M	High Cr	50.4	16.7	12.1	12.5	2.0	83.9	2.1
	HB8M	High Cr	46.8	13.2	14.8	16.4	2.8	86.7	2.4
	нв9м	High Cr	54.8	12.3	11.6	17.2	2.4	86.4	3.0
Grant Lagoon	GL1M	High Cr	53.4	15.9	4.0	14.5	4.9	78.3	2.3
Miners Point	MP1M	High Fe	41.5	19.1	10.9	13.7	4.6	80.1	1.5

TABLE 4. - Analyses of chromite concentrates from deposits along the Border Ranges Fault

¹High Cr--high chromium; Marg. high Cr--marginal high chromium; High Fe--high iron; Marg. high Fe--marginal high iron; Submarg.--submarginal.

NOTE.--Samples SH1M (Sheep Hill), DM3M (Dust Mountain), and HB5M (Halibut Bay) were very low grade and were not beneficiated.

Twenty of the samples were beneficiated to produce high-chromium chromite concentrates. The concentrate from sample CP1M from Claim Point had the highest grade, $57.8 \text{ pct } \text{Cr}_2\text{O}_3$, and 17 of the 20 concentrates had grades in excess of 50 pct Cr_2O_3 . The concentrate from sample HB3M from Halibut Bay had the best Cr:Fe ratio, 3.1:1, and 10 other concentrates had ratios of 2.5:1 or better.

Two samples from Bernard Mountain and two from Sheep Hill were beneficiated to produce marginal high-chromium chromite concentrates. Three of the four concentrates had grades in excess of 46 pct Cr_2O_3 , but their Cr:Fe ratios were only 1.8:1 and 1.9:1. The fourth sample had a Cr:Fe ratio of 2.1:1, but the grade was only 45.9 pct Cr_2O_3 .

Six samples were beneficiated to produce high-iron or marginal high-iron chromite concentrates. Four of the samples were from the Windy River placer deposits. The six concentrates ranged in grade from 38.8 to 49.3 pct Cr_2O_3 , and the Cr:Fe ratios ranged from 1.3:1 to 1.7:1.

Five of the concentrates were classified as submarginal chromites because of low grade and low Cr:Fe ratio. Results of the beneficiation tests indicate that none of these concentrates can be substantially improved by gravity separation.

The mineralogy of the 38 samples indicates that they contain various amounts of magnetics removable with a hand magnet. A magnetic separation step could have been used to improve the Cr:Fe ratio of those gravity concentrates that contained significant amounts of magnetic material. However, the improved grade and Cr:Fe ratio would have been at the expense of chromite recovery.

The coarse rougher and scavenger tailings from several samples contained recoverable chromite. Some of the chromite was lost because of locking at minus 65 Further grinding could have libermesh. ated the locked chromite and improved re-In some cases, however, covery. techniques other than gravity concentration, such as high-intensity magnetic separation or electrodynamic separation, could have been used to improve recovery of liberated chromite from the coarse tailings.

slime tailings from these samples The represented a loss of 2 to 19 pct of the Although this chromite chromite. was lost during tabling, some of it could have been recovered by gravity separation techniques better for suited fineparticle recovery. Chromite loss in the slime tailings was less than 10 pct in all but four of the samples, so methods for recovering the fine chromite were not investigated in this study.

The head samples and the rougher table concentrates from each test were analyzed for precious metals content. Most of the samples contained no detectable platinum, palladium, or gold. Table 5 shows the precious metals analyses of those head samples or gravity concentrates that contained detectable precious metals. Sample DM1M from Dust Mountain contained as much as 0.03 oz/ton Pt and 0.03 oz/ton Pd in the head sample. The gravity concentrate from that sample also contained 0.03 oz/ton Pt and 0.03 oz/ton Pd.

Location	Samp1e	H	lead sampl	e	Gravity concentrate			
		Pt	Pd	Au	Pt	Pd	Au	
Tonsina area:								
Bernard Mountain	BM2M	<0.0006	<0.0006	<0.0004	<0.004	0.033	0.002	
	BM4M	<.0006	<.0006	<.0004	<.004	<.004	.002	
	BM7M	<.0006	<.0006	<.0004	<.004	<.004	.080	
Sheep Hill	SH2M	•008	<.0006	<.001	.010	<.004	.002	
	SH3M	.004	•002	<.0004	.004	.001	<.001	
	SH4M	•008	<.0004	<.0004	<.004	<.004	<.0008	
Dust Mountain	DM1M	.035	.032	<.0004	.032	.033	<.001	
	DM2M	<.0006	<.0006	<.0004	•005	.006	.002	
	DM3M	<.0006	<.0006	.002	(1)	(1)	(1)	
Palmer area:								
Wolverine Complex	WC1M	.01	<.01	<.002	.004	<.002	<.0008	
Kenai Peninsula:							с к	
Red Mountain	RM4M	<.01	<.01	<.002	<.002	<.002	.0009	
Windy River	WR4S	.001	<.001	<.0004	.002	<.001	<.0004	
Claim Point	CP 2M	<.01	<.01	<.002	.034	•072	.002	
Kodiak Island:								
Halibut Bay	HB1M	<.0006	<.0006	.001	<.004	<.004	<.0008	
Grant Lagoon	GL1M	<.004	<.004	<.0008	<.002	<.002	.005	
Miners Point	MP 1M	<.004	<.004	<.0008	<.002	<.002	.001	

TABLE 5. - Precious metal analyses, ounce per ton

'Very low-grade sample; not beneficiated.

NOTE.--Samples not listed in this table had precious metals analyses below detectable limits in both the head sample and the gravity concentrate.

SUMMARY AND CONCLUSIONS

Thirty-eight samples of chromitebearing materials were collected from deposits along the Border Ranges Fault in southern Alaska. These samples were characterized mineralogically and beneficiated by gravity separation to produce chromite concentrates.

The samples were high-graded from chromite-bearing areas in ultramafic and mafic-ultramafic rock complexes. They are peridotites and chromitites that consist primarily of massive to disseminated chromite in a matrix of olivine and serpentine. Minor constituents include magnetic minerals removable with a hand magnet, chlorite, ferromagnesian silicates, and sulfides.

A beneficiation procedure that included grinding, sizing, and gravity separation was designed to treat the samples. Twenty-four samples were beneficiated to produce high-chromium (metallurgicalgrade) or marginal high-chromium chromite concentrates. Six samples were beneficiated to produce high-iron (chemicalgrade) or marginal high-iron chromite concentrates. Five samples were classified as submarginal chromites, and three samples were not beneficiated because they were too low in grade. Chromium recoveries from those samples that were treated ranged from 37 to 95 pct.

The potential for platinum association with the chromite was investigated. No platinum-group minerals were observed in the mineralogical examinations. Sixteen samples contained detectable concentrations of platinum or palladium in the head sample or gravity concentrate. One head sample and two gravity concentrates contained 0.03 oz/ton Pt; the others had no more than 0.01 oz/ton.

This investigation was an evaluation of the chromite and platinum resource potential of the Border Ranges Fault in south-Although all of the rock ern Alaska. samples were high-graded from surface exposures, the information from field measurements (discussed in part 1) and from mineralogy and beneficiation studies indicates that these deposits may be significant chromium resources. Based on an compilation from resource identified part 1 of 2.5 million tons Cr_2O_3 ,⁸ the deposits contain enough chromite to meet

⁸Work cited in footnote 7.

U.S. demand for 4 years, based on 1981 consumption.9

The precious metal analyses of the 38 chromite samples studied do not indicate that these materials represent good platinum resources. However, the platinum content of the samples from Sheep Hill, Dust Mountain, the Wolverine Complex, and Claim Point may indicate potential target areas for future platinum-group metal exploration.

⁹Work cited in footnote 3.

APPENDIX A.--METALLURGICAL BALANCES

TABLE A-1. - Gravity table concentration of sample BM1M from Bernard Mountain

Product	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	S102	bution, pct	ratio
28- by 65-mesh concentrate* ² Minus 65-mesh:	10.9	50.4	12.7	12.5	15.8	2.7	13.7	2.7
Rougher concentrate* ² Rougher middlings and coarse	45.3	51.2	13.8	12.1	15.5	2.4	57.6	2.5
<pre>tailings Scavenger concentrate* Scavenger tailings Rougher slime tailings</pre>	32.1 11.5 20.6 11.7	25.5 48.2 12.9 28.5	13.2	11.7	17.1	4.5	20.4 13.8 6.6 8.3	2.5
Calculated composite concentrate ¹	100 . 0 67 . 7	40.2 50.6	13.5	12.1	15.8	2.8	100.0 85.1	2.6

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

 2 Precious metals analysis, oz/ton: Pt <0.0006; Pd <0.0006; Au <0.0004; Ag <0.02.

NOTE.--Blank entry means data not available.

TABLE A-2. - Gravity table concentration of sample BM2M from Bernard Mountain

Product						· · · · · · · · · · · · · · · · · · ·		
FIOduct	WC		Anal	lysis,	pct		Cr distri-	Cr:Fe
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ² Minus 65-mesh:	31.0	49.2	13.3	15.4	15.5	2.0	36.3	2.5
Rougher concentrate* ³ Rougher middlings and coarse	37.6	50.5	14.1	15.0	15.6	1.8	45.1	2.4
<pre>tailings Scavenger concentrate* Scavenger tailings Rougher slime tailings</pre>	23.0 8.1 14.9 8.4	26.0 49.6 13.2 21.6	13.1	15.3	15.6	2.6	14.3 9.6 4.7 4.3	2.6
Calculated composite concentrate ¹	76.7	42.0 49.9	13.7	15.2	15.6	2.0	100.0 91.0	2.5

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.004; Pd 0.015; Au 0.003; Ag 0.01.

³Precious metals analysis, oz/ton: Pt <0.004; Pd 0.051; Au 0.002; Ag 0.01.

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	SiO ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	4.6	48.8	17.6	12.8	14.8	2.2	8.8	1.9
Minus 65-mesh:								
Rougher concentrate* ³	33.4	49.2	17.6	12.8	14.7	1.8	64.3	1.9
Rougher middlings	16.0	23.9					15.0	
Scavenger concentrate*	2.4	47.7	17.3	12.0	15.2	3.1	4.5	1.9
Scavenger tailings	13.6	19.7					10.5	
Rougher coarse tailings	30.6	4.2					5.0	
Rougher slime tailings	15.4	11.4	í.				6.9	
Composite or total	100.0	25.5					100.0	
Calculated composite								
concentrate ¹	40.4	49.1	17.6	12.8	14.7	1.9	77.6	1.9

TABLE A-3. - Gravity table concentration of sample BM3M from Bernard Mountain

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag <0.01. ³Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au 0.0009; Ag <0.01.

NOTE.--Blank entry means data not available.

TABLE A-4. - Gravity table concentration of sample BM4M from Bernard Mountain

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si0 ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	10.4	45.4	14.9	17.6	14.5	1.8	17.9	2.1
Minus 65-mesh:								
Rougher concentrate* ²	28.8	47.2	15.1	17.6	13.9	1.2	51.4	2.1
Rougher middlings and coarse								
tailings	44.2	14.1					23.6	
Scavenger concentrate*	8.1	41.8	14.2	16.3	17.0	4.8	12.8	2.0
Scavenger tailings	36.1	7.9					10.8	
Rougher slime tailings	16.6	11.3					7.1	
Composite or total	100.0	26.4					100.0	
Calculated composite								
concentrate ¹	47.3	45.9	14.9	17.4	14.6	1.9	82.1	2.1

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au 0.002; Ag 0.01.

Product ¹	wt		Anal	ysis,	pct		Cr distri-	Cr:Fe
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	43.1	54.5	14.7	11.1	15.1	2.8	48.4	2.5
Minus 65-mesh:								
Rougher concentrate* ²	38.3	55.1	15.1	11.0	14.1	1.8	43.5	2.5
Rougher middlings and coarse								
tailings	12.7	17.2					4.5	
Scavenger concentrate*	2.6	46.9	13.7	9.6	18.0	7.4	2.5	2.3
Scavenger tailings	10.1	9.5					2.0	
Rougher slime tailings	5.9	30.0					3.6	
Composite or total	100.0	48.5					100.0	
Calculated composite								
concentrate ¹	84.0	54.5	14.9	11.0	14.7	2.5	94.4	2.5

TABLE A-5. - Gravity table concentration of sample BM5M from Bernard Mountain

²Precious metals analysis, oz/ton: Pt <0.001; Pd <0.001; Au <0.0008; Ag <0.04.

NOTE.--Blank entry means data not available.

TABLE A-6. - Gravity table concentration of sample BM6M from Bernard Mountain

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	17.1	53.1	17.0	11.8	13.6	1.7	25.0	2.1
Minus 65-mesh:								
Rougher concentrate* ²	36.6	54.7	16.6	11.7	13.5	1.6	55.3	2.3
Rougher middlings and coarse					[
tailings	36.2	15.2					15.1	
Scavenger concentrate*	5.1	49.7	15.8	11.3	15.5	3.2	7.0	2.2
Scavenger tailings	31.1	9.5					8.1	
Rougher slime tailings	10.1	16.5					4.6	
Composite or total	100.0	36.3					100.0	
Calculated composite								:
concentrate ¹	58.8	53.8	16.6	11.7	13.7	1.8	87.3	2.2
Producto with actorials have	1			1 1			· · · · · · · · · · · · · · · · · · ·	

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

 2 Precious metals analysis, oz/ton: Pt <0.001; Pd <0.001; Au <0.0008; Ag 0.01.

Product ¹	wt		Ana	lysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	10.0	57.4	14.4	9.8	14.8	1.4	20.4	2.7
Minus 65-mesh:								
Rougher concentrate* ³	28.2	56.9	14.1	9.8	16.1	1.7	57.2	2.8
Rougher middlings	14.3	25.9						
Scavenger concentrate*	3.4	53.6	13.4	8.7	19.2	4.2	6.5	2.7
Scavenger tailings	10.9	17.2					6.7	
Rougher coarse tailings	32.1	3.0					3.4	
Rougher slime tailings	15.4	10.6					5.8	
Composite or total	100.0	28.1					100.0	
Calculated composite								
concentrate ¹	41.6	56.8	14.1	9.7	16.0	1.8	84.1	2.8

TABLE A-7. - Gravity table concentration of sample BM7M from Bernard Mountain

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au 0.001; Ag <0.01. ³Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au 0.160; Ag 0.05.

NOTE.--Blank entry means data not available.

TABLE A-8. - Gravity table concentration of sample SH2M from Sheep Hill

Product ¹	wt		Ana	lysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	8.2	51.1	18.2	10.6	12.8	1.9	16.7	1.9
Minus 65-mesh:								
Rougher concentrate* ³	24.3	52.4	18.6	10.7	11.9	1.4	50.7	1.9
Rougher middlings and coarse								
tailings	53.3	12.7					27.1	
Scavenger concentrate*	3.4	46.9	17.3	9.7	15.0	4.6	6.4	1.9
Scavenger tailings	49.9	10.4					20.7	
Rougher slime tailings	14.2	9.7					5.5	
Composite or total	100.0	25.1					100.0	
Calculated composite								
concentrate ¹	35.9	51.6	18.4	10.6	12.4	1.8	73.8	1.9
	. 1			11	14	the met	the sele	.1

'Products with asterisks have been mathematically combined to give the calculated composite concentrate.

 2 Precious metals analysis, oz/ton: Pt 0.010; Pd 0.005; Au 0.003; Ag 0.01. 3 Precious metals analysis, oz/ton: Pt 0.011; Pd <0.004; Au 0.002; Ag 0.01.

Product ¹	wt		Ana1	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si0 ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	42.9	37.3	23.8	18.4	10.8	0.9	44.1	1.1
Minus 65-mesh:							_	
Rougher concentrate* ³	44.5	37.3	23.8	17.9	10.9	1.0	45.6	1.1
Rougher middlings and coarse								
tailings	7.6	30.0					6.3	
Scavenger concentrate*	5.6	35.8	23.3	17.7	11.7	2.4	5.5	1.1
Scavenger tailings	2.0	13.7				-	•8	
Rougher slime tailings	5.0	28.9					4.0	
Composite or total	100.0	36.3					100.0	
Calculated composite								
concentrate ¹	93.0	37.2	23.8	18.1	10.9	1.0	95.2	1.1

TABLE A-9. - Gravity table concentration of sample SH3M from Sheep Hill

 2 Precious metals analysis, oz/ton: Pt 0.003; Pd 0.001; Au <0.0004; Ag <0.02. ³Precious metals analysis, oz/ton: Pt 0.005; Pd 0.001; Au 0.001; Ag <0.02.

NOTE.---Blank entry means data not available.

TABLE A-10. - Gravity table concentration of sample SH4M from Sheep Hill

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	Mg0	Si0 ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	6.4	49.6	19.1	12.0	13.4	2.4	11.3	1.8
Minus 65-mesh:								
Rougher concentrate* ²	35.1	50.1	19.3	11.6	12.5	1.6	62.8	1.8
Rougher middlings	14.2	31.1					15.8	
Scavenger concentrate*	4.0	48.9	18.9	11.3	13.2	2.4	7.0	1.8
Scavenger tailings	10.2	24.1					8.8	
Rougher coarse tailings	31.8	3.5					4.0	
Rougher slime tailings	12.5	13.8					6.1	
Composite or total	100.0	28.0					100.0	
Calculated composite								
concentrate ¹	45.5	49.9	19.2	11.6	12.7	1.8	81.1	1.8

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag <0.01.

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	Mg0	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	9.1	23.6	30.1	20.1	9.7	1.4	12.2	0.5
Minus 65-mesh:								
Rougher concentrate* ³	41.5	24.4	30.1	20.4	10.0	1.7	57.5	•6
Rougher middlings and coarse								
tailings	36.4	10.5			а.			
Scavenger concentrate*	7.4	22.5	29.6	20.7	11.1	3.0	9.4	•5
Scavenger middlings	29.0	7.5					12.3	
Rougher slime tailings	13.0	11.7					8.6	
Composite or total	100.0	17.6					100.0	
Calculated composite								
concentrate ¹	58.0	24.0	30.0	20.4	10.1	1.8	79.1	•5

TABLE A-11. - Gravity table concentration of sample DM1M from Dust Mountain

²Precious metals analysis, oz/ton: Pt 0.031; Pd 0.032; Au <0.0008; Ag 0.01. ³Precious metals analysis, oz/ton: Pt 0.046; Pd 0.041; Au 0.001; Ag 0.01.

NOTE.--Blank entry means data not available.

TABLE A-12. - Gravity table concentration of sample DM2M from Dust Mountain

Product	wt		Anal	ysis, j	pct		Cr distri-	Cr:Fe
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	SiO ₂	bution, pct	ratio
Minus 65-mesh:								
Rougher concentrate	10.6	8.5					59.3	
Cleaner concentrate ¹	1.6	35.3	22.7	14.7	13.9	4.8	37.3	1.1
Cleaner tailings ²	9.0	3.7					22.0	
Rougher coarse tailings	65.5	•2					21.7	
Rougher slime tailings	23.9	1.2					19.0	
Composite or total	100.0	1.5					100.0	
¹ Precious metals analysis, oz/t	on: Pt	0.00	6; Pd	0.00	6; A	u 0.0	02; Ag <0.0	2.
² Precious metals analysis, oz/t	on: Pt	<0.00	06; Pd	<0.00	06; A	u <0.0	0004; Ag <0.0	2.

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	SiO ₂	bution, pct	ratio
28- by 65-mesh concentrate*2	3.2	46.2	20.0	10.9	13.4	3.3	7.2	1.6
Minus 65-mesh:	ĺ							
Rougher concentrate* ³	22.7	48.7	20.5	10.4	11.8	2.0	54.2	1.6
Rougher middlings	19.9	20.0					19.4	
Scavenger concentrate*	3.1	43.7	19.6	9.6	15.6	4.9	6.6	1.5
Scavenger tailings	16.8	15.6					12.8	
Rougher coarse tailings	39.0	4.4					8.4	
Rougher slime tailings	15.2	14.5					10.8	
Composite or total	100.0	20.4					100.0	
Calculated composite								
concentrate ¹	29.0	47.9	20.3	10.4	12.4	2.5	68.0	1.6

TABLE A-13. - Gravity table concentration of sample WClM from the Wolverine Complex

²Precious metals analysis, oz/ton: Pt 0.008; Pd <0.003; Au <0.0008; Ag 0.02. ³Precious metals analysis, oz/ton: Pt <0.001; Pd <0.001; Au <0.0008; Ag 0.01.

NOTE.---Blank entry means data not available.

TABLE A-14. - Gravity table concentration of composite RMIM from Red Mountain

Product ¹	wt		Ana1	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si0 ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	1.6	51.9	17.3	9.4	15.0	3.2	9.7	2.1
Minus 65-mesh:								
Concentrate* ²	9.0	55.0	15.8	10.4	13.7	1.4	57.7	2.4
Middlings	4.3	25.4					12.7	
Coarse tailings	76.5	1.8					16.0	
Slime tailings	8.6	3.9					3.9	
Composite or total	100.0	8.6					100.0	
Calculated composite								
concentrate ¹	10.6	54.5	16.0	10.2	13.9	1.7	67.4	2.3
	-			نده مد وه زوه الم کارها				

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analyses for Pt, Pd, Au, and Ag were not done to these products.

TABLE A-15. - Gravity table concentration of sample RM2M from Red Mountain deposit 24

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	8.7	54.1	14.3	7.3	16.5	3.0	15.7	2.6
Minus 65-mesh:								
Rougher concentrate* ³	33.0	55.4	14.6	7.5	15.6	1.8	60.8	2.6
Rougher middlings	13.1	28.4					12.4	
Scavenger concentrate*	1.9	51.0	13.6	6.6	18.9	4.8	3.2	2.6
Scavenger tailings	11.2	24.6					9.2	
Rougher coarse tailings	31.9	6.4					6.8	
Rougher slime tailings	13.3	9.6					4.3	
Composite or total	100.0	30.0					100.0	
Calculated composite								
concentrate ¹	43.6	54.9	14.5	7.4	15.9	2.2	79.7	2.6

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au 0.0013; Ag <0.01. ³Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag <0.01.

NOTE.--Blank entry means data not available.

TABLE A-16. - Gravity table concentration of sample RM3M from Red Mountain deposit 9

Product	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	Mg O	SiO ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	15.3	57.4	13.1	8.5	16.1	1.8	22.1	3.0
Minus 65-mesh:								
Rougher concentrate* ²	41.0	56.6	12.8	8.2	16.8	2.9	58.2	3.0
Rougher middlings and coarse								
tailings	33.7	19.0					16.1	
Scavenger concentrate*	5.5	56.3	12.7	7.8	17.5	2.4	7.8	3.0
Scavenger tailings	28.2	11.7					8.3	
Rougher slime tailings	10.0	14.4					3.6	
Composite or total	100.0	39.8					100.0	
Calculated composite								
concentrate ¹	61.8	56.8	12.9	8.2	16.7	2.6	88.1	3.0

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.001; Ag <0.01.

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	11.3	55.0	14.2	6.8	15.8	2.9	27.6	2.6
Minus 65-mesh:								
Rougher concentrate* ³	21.5	57.7	13.9	7.7	14.8	1.4	55.0	2.8
Rougher middlings	12.5	16.0					8.9	
Scavenger concentrate*	1.6	57.9	14.4	6.7	17.5	4.2	4.1	2.8
Scavenger tailings	10.9	9.9					4.8	
Rougher coarse tailings	44.9	2.9					5.8	
Rougher slime tailings	9.8	6.2					2.7	
Composite or total	100.0	22.5					100.0	
Calculated composite								
concentrate ¹	34.4	56.8	14.0	7.4	15.3	2.0	86.7	2.8

TABLE A-17. - Gravity table concentration of sample RM4M from Red Mountain deposit 9

 2 Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au 0.001; Ag <0.01. 3 Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au 0.0008; Ag <0.01.

NOTE.--Blank entry means data not available.

TABLE A-18. - Gravity table concentration of composite RM5M from Red Mountain

Product 1		<u> </u>	A	*	*			
rioduct	WL		Anal	ysis,	Cr distri-	Cr:Fe		
	pct	Cr_2O_3	Fe	$A1_{2}0_{3}$	MgO	Si0 ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	0.5	47.2	15.5	9.0	19.4	7.1	4.9	2.1
Minus 65-mesh:								
Concentrate* ²	3.8	53.2	16.1	10.0	15.4	3.0	42.3	2.3
Middlings	7.9	20.4					33.7	
Coarse tailings	77.3	.9					14.5	
Slime tailings	10.5	2.1					4.6	
Composite or total	100.0	4.8					100.0	
Calculated composite								
concentrate ¹	4.3	52.5	16.0	9.9	15.9	3.5	47.2	2.2

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analyses for Pt, Pd, Au, and Ag were not done to these products.

Product ¹	wt		Ana	lysis,	Cr distri-	Cr:Fe		
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si0 ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	2.3	54.2	16.1	9.7	14.7	2.5	13.1	2.3
Minus 65-mesh:								
Concentrate* ²	11.0	55.8	15.5	10.2	14.0	1.5	64.2	2.5
Middlings	5.0	20.4					10.7	
Coarse tailings	69.1	1.2					8.7	
Slime tailings	12.6	2.5					3.3	
Composite or total	100.0	9.5					100.0	
Calculated composite								
concentrate ¹	13.3	55.5	15.6	10.1	14.1	1.7	77.3	2.4

TABLE A-19. - Gravity table concentration of composite RM6M from Red Mountain

²Precious metals analyses for Pt, Pd, Au, and Ag were not done to these products.

NOTE.--Blank entry means data not available.

TABLE A-20. - Concentration of placer sample WRIS from the Windy River

	wt		Analy	ysis,	pct		Cr distri-	Cr:Fe
Product ¹	pct	Cr_2O_3	Fe	A1203	Mg0	SiO ₂	bution,	ratio
							pct	
Plus 28-mesh fraction ground to								
minus 28 mesh	71.6	1.4					33.4	
Cleaner table concentrate*	• 6	45.9	21.8	9.4	14.0	3.5	9.5	1.4
Cleaner table tailings	25.8	1.9					16.9	
Rougher table coarse tailings	37.6	•4					5.2	
Rougher table slime tailings	7.6	•7					1.8	
Minus 28-mesh fraction	28.4	6.8					66.6	
Table concentrate	7.8	23.1					62.3	
Nonmagnetic electrodynamic								
cleaner concentrate*	1.1	49.8	21.3	10.5	10.3	1.1	19.0	1.6
Nonmagnetic electrodynamic								
cleaner middlings*	2.0	45.5	18.9	8.9	14.3	5.7	31.5	1.6
Magnetic reject	•4	34.8	30.3				4.8	
Electrodynamic cleaner tailings	1.0	9.8					3.4	
Electrodynamic rougher tailings	3.3	3.2					3.6	
Table tailings	20.6	.6					4.3	
Composite or total	100.0	2.9					100.0	
Calculated composite								
concentrate ¹	3.7	46.8	20.1	9.5	13.1	4.0	60.0	1.6

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

NOTE.--Blank entry means data not available. Concentrates were not analyzed for Pt, Pd, Au, and Ag because analyses from preliminary tests were below detection limits.

	wt	1	Anal	vsis.	nct		Cr distri-	CriFe
Product ¹	pet	Cro0z	Fe	A1 -07	Mg()	Silo	bution	ratio
	pee	01203		m 203	1460	5102	Ducton,	lacio
Plus 28-mesh fraction ground to minus		<u> </u>					per	
28 mesh	76.1	3.3					53.3	
Cleaner table concentrate*	1.2	49.7	19.1	8.2	14.8	3.0	12.5	1.8
Cleaner table tailings	25.0	6.0		0.2	1		31.5	1.0
Rougher table coarse tailings	40.6	.8					6.8	
Rougher table slime tailings	9.3	1.3					2.5	
Minus 28-mesh fraction	23.9	9.3					46.7	
Table concentrate	7.3	29.0					44.3	
Nonmagnetic electrodynamic cleaner								
concentrate*	1.4	51.2	21.1	8.9	9.1	.9	15.0	1.7
Nonmagnetic electrodynamic cleaner							1000	
middlings*	1.8	47.6	18.3	8.9	13.7	4.9	18.0	1.8
Magnetic reject	.9	37.3	29.0				7.0	
Electrodynamic cleaner tailings	.6	11.2					1.4	
Electrodynamic rougher tailings	2.6	5.3					2.9	
Table tailings	16.6	.7					2.4	
Composite or total	100.0	4.8					100.0	
Calculated composite concentrate ¹ .	4.4	49.3	19.4	8.7	12.5	3.1	45.5	1.7

TABLE A-21. - Concentration of placer sample WR2S from the Windy River

NOTE.--Blank entry means data not available. Concentrates were not analyzed for Pt, Pd, Au, and Ag because analyses from preliminary tests were below detection limits.

	wt		Anal	ysis,	pct		Cr distri-	Cr:Fe
Product '	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution,	ratio
							pct	
Plus 28-mesh fraction ground to minus								
28 mesh	54.5	0.9					20.9	
Cleaner table concentrate*	.2	42.8	23.7	8.4	13.8	3.5	3.5	1.2
Cleaner table tailings	10.7	2.7					11.8	
Rougher table coarse tailings	36.7	.3					4.5	
Rougher table slime tailings	6.9	•4					1.1	
Minus 28-mesh fraction	45.5	4.2					79.0	
Table concentrate	11.9	15.1					73.5	
Nonmagnetic electrodynamic cleaner							, , , , ,	
concentrate*	.3	49.0	21.1	10.7	10.8	1.9	6.0	1.6
Nonmagnetic electrodynamic cleaner					10.0			1.0
middlings*	2.2	37.0	16.2	8.5	18.8	13.6	33 5	16
Magnetic reject	1.4	33.5	27.5	0.5	10.0	10.0	19.2	1.0
Electrodynamic cleaner tailings	1.3	2.2					1 2	
Electrodynamic rougher tailings	6.7	5.0					1.27	
Table tailings	33.6	5.0					13./	
Composition or total	100 0	2 /					<u> </u>	
Calculated composite concentrate	100.0	2.4	17 0	0 7			100.0	
	2./	30.8	1/.3	8./	1/.5	11.6	43.0	1.5

TABLE A-22. - Concentration of placer sample WR3S from the Windy River

Products with asterisks have been mathematically combined to give the calculated composite concentrate.

NOTE.--Blank entry means data not available. Concentrates were not analyzed for Pt, Pd, Au, and Ag because analyses from preliminary tests were below detection limits.

TABLE A-23. - Gravity table concentration of placer composite WR4S from the Windy River

Product ¹	wt		Analy	ysis,	pct		Cr dist	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution,	pct	ratio
Plus 1/4-in fraction ground to	<u></u>								
minus 28 mesh	30.4	0.9					17.5		
Cleaner concentrate*	•1	44.3	21.5	8.2	15.0	4.3	4.9		1.4
Cleaner tailings	5.3	2.4					7.0		
Rougher coarse tailings	22.0	•4					4.9		
Rougher slime tailings	3.0	•4]		.7		
1/4-in by 28-mesh fraction ground									
to minus 28 mesh	52.2	1.3					36.6		
Cleaner concentrate*	.3	44.6	21.7	8.2	13.9	4.0	7.4		1.4
Cleaner tailings	10.0	3.2					17.7		
Rougher coarse tailings	36.5	.5					10.0		
Rougher slime tailings	5.4	•5					1.5		
Minus 28-mesh fraction	17.4	4.8					45.9		
Cleaner concentrate* ²	.8	46.9	23.4	9.7	11.1	2.0	20.7		1.4
Cleaner tailings ²	5.3	7.6					22.1		
Rougher tailings	11.3	.5					3.1		
Combined cleaner tailings ground					İ.				
to minus 65 mesh	20.6	4.1					46.8		
Scavenger concentrate*	1.4	40.3	22.1	9.8	13.7	5.5	31.1		1.2
Scavenger coarse tailings	17.3	1.4					13.4		
Scavenger slime tailings	1.9	2.2					2.3		
Composite or total	100.0	1.8	[100.0		
Calculated composite									
concentrate ¹	2.7	43.0	22.4	9.5	13.0	4.2	64.1		1.3

²Precious metals analysis, oz/ton: Pt 0.002; Pd <0.001; Au <0.0004; Ag <0.02.

NOTE.--Blank entry means data not available.

TABLE A-24. - Gravity table concentration of sample CPIM from Claim Point deposit 10

Product 1	wt		Cr distri-	Crike				
Troduct	pct	Cr ₂ 03	Fe	$A1_{2}0_{3}$	MgO	S102	bution, pct	ratio
Minus 65-mesh:								
Rougher concentrate* ²	23.6	57.8	14.1	8.6	14.8	1.1	63.7	2.8
Rougher middlings	63.4	10.0					29.5	
Scavenger concentrate*	4.4	56.8	13.5	8.7	16.5	2.2	11.7	2.9
Scavenger tailings	59.0	6.5	4.5	.9	54.5	37.0	17.0	
Rougher slime tailings	13.0	11.2					6.8	
Composite or total	100.0	21.4	1				100.0	
Calculated composite								
concentrate ¹	28.0	57.6	14.0	8.6	15.1	1.3	75.4	2.8

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.01; Pd <0.01; Au <0.002; Ag <0.1.

Product ¹	wt		Anal	ysis, p	<u> </u>	Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	Mg0	SiO ₂	bution, pct	ratio
Minus 65-mesh:								
Rougher concentrate* ²	23.6	54.9	14.6	9.2	15.4	2.3	41.3	2.6
Rougher middlings	64.3	24.4					50.0	
Scavenger concentrate*.	13.5	52.9	14.4	8.7	16.7	3.2	22.7	2.6
Scavenger middlings	47.4	16.9					25.5	
Scavenger tailings	3.4	16.4					1.8	
Rougher slime tailings	12.1	22.5					8.7	
Composite or total	100.0	31.4					100.0	
Calculated composite								
concentrate ¹	37.1	54.2	14.5	9.0	15.9	2.6	64.0	2.6

TABLE A-25. - Gravity table concentration of sample CP2M from Claim Point deposit 15

²Precious metals analysis, oz/ton: Pt 0.034; Pd 0.072; Au 0.002; Ag 0.08.

NOTE.--Blank entry means data not available.

TABLE A-26. - Gravity table concentration of sample HBIM from Halibut Bay

Product ¹	wt		Anal	Cr distri-	Cr:Fe			
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
Minus 65 mesh:								
Cleaner concentrate ¹	33.3	50.3	16.9	12.8	15.9	2.3	70.1	2.0
Rougher middlings and								
cleaner tailings	43.2	9.5					17.2	
Rougher slime tailings	23.5	12.9					12.7	
Composite or total	100.0	23.9					100.0	

¹Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag 0.02.

NOTE.---Blank entry means data not available.

TABLE A-27. - Gravity table concentration of sample HB2M from Halibut Bay

Product ¹	wt		Anal	veie r			Cr dietri-	CriFo
1104400	pct	Cr203	Fe	Al 202	MgO	Silo	bution. pct	ratio
		2 5					, poo	
28- by 65-mesh concentrate* ²	1.8	36.5	20.6	15.8	14.5	4.3	3.9	1.2
Minus 65-mesh:								
Rougher concentrate* ²	23.2	38.5	21.7	16.6	12.4	2.3	52.4	1.2
Rougher middlings and								
coarse tailings	58.1	9.6					32.7	
Scavenger concentrate*	8.7	33.6	19.8	14.0	17.6	7.2	17.1	1.2
Scavenger tailings	49.4	5.4					15.6	
Rougher slime tailings	16.9	11.1					11.0	
Composite or total	100.0	17.1					100.0	
Calculated composite								
concentrate ¹	33.7	37.1	21.2	15.9	13.9	3.7	73.4	1.2

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag 0.02.

Product ¹	wt		Anal	ysis, p	oct		Cr distri-	Cr:Fe
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	29.6	50.0	11.4	8.5	15.7	5.5	30.7	3.0
Minus 65-mesh:								
Rougher concentrate* ³ ,	54.5	53.8	11.6	9.7	14.9	3.8	61.0	3.2
Rougher middlings and								
coarse tailings	7.4	21.8					3.3	
Scavenger concentrate*	3.0	36.0	8.6	6.3	21.4	16.8	2.2	2.9
Scavenger tailings	4.4	12.2			1		1.1	
Rougher slime tailings	8.5	28.6					5.0	
Composite or total	100.0	48.2					100.0	
Calculated composite						1		
concentrate	87.1	51.9	11.4	9.2	15.4	4.8	93.9	3.1

TABLE A-28. - Gravity table concentration of sample HB3M from Halibut Bay

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag 0.01. ³Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag <0.01.

NOTE.--Blank entry means data not available.

TABLE A-29. - Gravity table concentration of sample HB4M from Halibut Bay

Product ¹	wt		Anal	ysis, p		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	SiO ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	1.8	30.8	24.2	17.0	11.0	4.4	6.8	0.9
Minus 65-mesh:								
Rougher concentrate* ²	14.4	30.5	25.6	16.9	11.7	5.1	54.1	.8
Rougher middlings	9.1	12.5					13.9	
Scavenger concentrate*	2.3	24.8	21.6	13.3	16.6	11.4	7.0	.8
Scavenger tailings	6.8	8.3					6.9	
Rougher coarse tailings	59.8	2.3					16.9	
Rougher slime tailings	14.9	4.5					8.3	
Composite or total	100.0	8.1					100.0	
Calculated composite								
concentrate ¹	18.5	29.8	25.0	16.5	12.2	5.8	67.9	.8

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag 0.01.

Product ¹	wt		Anal	ysis, p		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by $65-$ mesh concentrate* ²	3.3	45.4	14.9	17.6	14.5	1.8	6.8	2.1
Minus 65-mesh:								
Rougher concentrate* ³	18.8	47.2	15.1	17.6	13.9	1.2	40.1	2.1
Rougher middlings	35.3	25.6					40.9	
Scavenger concentrate*	5.7	47.7	12.9	9.8	20.5	6.9	12.3	2.5
Scavenger tailings	29.6	21.3					28.6	
Rougher coarse tailings	26.2	4.3					5.1	
Rougher slime tailings	16.4	9.5					7.1	
Composite or total	100.0	22.1					100.0	
Calculated composite								
concentrate ¹	27.8	47.1	14.6	16.0	15.3	2.4	59.2	2.2

TABLE A-30. - Gravity table concentration of sample HB6M from Halibut Bay

'Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag <0.01. ³Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au 0.0009; Ag 0.02.

NOTE .-- Blank entry means data not available.

TABLE A-31. - Gravity table concentration of sample HB7M from Halibut Bay

Product ¹	wt		Anal	ysis, p	oct		Cr distri-	Cr:Fe
	pct	Cr_2O_3	Fe	A1203	MgO	Si0 ₂	bution, pct	ratio
28- by $65-$ mesh concentrate* ²	5.5	46.5	16.6	10.8	13.2	2.9	10.9	1.9
Minus 65-mesh:								
Rougher concentrate* ²	27.7	51.4	16.9	12.6	12.1	1.5	60.9	2.1
Rougher middlings	11.7	30.6					15.3	
Scavenger concentrate*	5.8	49.0	16.1	10.9	13.9	3.3	12.1	2.1
Scavenger tailings	5.9	12.5					3.2	
Rougher coarse tailings	48.4	4.5					9.3	
Rougher slime tailings	6.7	12.6					3.6	
Composite or total	100.0	23.4					100.0	
Calculated composite								
concentrate ¹	39.0	50.4	16.7	12.1	12.5	2.0	83.9	2.1

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag <0.01.

Product ¹	wt		Anal	ysis, p		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	$A1_{2}0_{3}$	MgO	S102	bution, pct	ratio
28- by 65-mesh concentrate* ²	11.8	46.2	13.1	14.4	17.3	3.4	14.6	2.4
Minus 65-mesh:								
Rougher concentrate* ³	45.0	47.4	13.4	15.2	15.9	2.2	57.0	2.4
Rougher middlings and								
coarse tailings	31.7	24.4					20.8	
Scavenger concentrate*	12.5	45.0	12.7	13.7	17.6	4.5	15.1	2.4
Scavenger tailings	19.2	11.0					5.7	
Rougher slime tailings	11.5	24.6					7.6	
Composite or total	100.0	37.3	1				100.0	
Calculated composite								
concentrate ¹	69.3	46.8	13.2	14.8	16.4	2.8	86.7	2.4

TABLE A-32. - Gravity table concentration of sample HB8M from Halibut Bay

²Precious metals analysis, oz/ton: Pt <0.0006; Pd <0.0006; Au <0.0004; Ag <0.02. ³Precious metals analysis, oz/ton: Pt 0.001; Pd <0.0006; Au <0.0004; Ag <0.02.

NOTE.--Blank entry means data not available.

TABLE A-33. - Gravity table concentration of sample HB9M from Halibut Bay

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	SiO ₂	bution, pct	ratio
28- by 65-mesh concentrate* ²	4.6	54.5	12.4	11.5	17.6	2.7	5.8	3.0
Minus 65-mesh:								
Rougher concentrate* ³	50.3	54.9	12.5	11.6	17.0	2.4	63.4	3.0
Rougher middlings and coarse								
tailings	35.0	30.1					24.2	
Scavenger concentrate*	13.7	54.6	11.6	11.4	17.7	2.2	17.2	3.2
Scavenger tailings	21.3	14.3					7.0	
Rougher slime tailings	10.1	28.6					6.6	
Composite or total	100.0	43.5					100.0	
Calculated composite								
concentrate ¹	68.6	54.8	12.3	11.6	17.2	2.4	86.4	3.0

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag 0.01. ³Precious metals analysis, oz/ton: Pt <0.004; Pd <0.004; Au <0.0008; Ag <0.01.

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr ₂ 0 ₃	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	1.8	55.8	15.0	3.9	14.0	4.4	13.4	2.5
Minus 65-mesh:								
Rougher concentrate* ³	7.9	54.5	16.1	4.1	13.9	4.2	57.3	2.3
Rougher middlings	6.4	12.6					10.8	
Scavenger concentrate*	1.3	43.7	15.8	3.3	18.9	9.7	7.6	1.9
Scavenger tailings	5.1	4.7					3.2	
Rougher coarse tailings	67.2	1.1					9.8	
Rougher slime tailings	16.7	3.9					8.7	
Composite or total	100.0	7.5					100.0	
Calculated composite								
concentrate ¹	11.0	53.4	15.9	4.0	14.5	4.9	78.3	2.3

TABLE A-34. - Gravity table concentration of sample GLIM from Grant Lagoon

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au 0.011; Ag 0.01. ³Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag <0.01.

NOTE.--Blank entry means data not available.

TABLE A-35. - Gravity table concentration of sample MPIM from Miners Point

Product ¹	wt		Anal	ysis,		Cr distri-	Cr:Fe	
	pct	Cr_2O_3	Fe	A1203	MgO	Si02	bution, pct	ratio
28- by 65-mesh concentrate* ²	2.6	41.1	18.2	10.9	14.4	4.8	19.8	1.5
Minus 65-mesh:								
Rougher concentrate* ³	6.2	43.6	19.7	11.4	12.6	3.3	50.2	1.5
Rougher middlings	8.7	9.8					15.8	
Scavenger concentrate*	1.6	34.1	18.0	9.1	17.0	9.6	10.1	1.3
Scavenger tailings	7.1	4.3					5.7	
Rougher coarse tailings	66.6	•7					8.6	
Rougher slime tailings	15.9	1.9					5.6	
Composite or total	100.0	5.4					100.0	
Calculated composite								
concentrate ¹	10.4	41.5	19.1	10.9	13.7	4.6	80.1	1.5

¹Products with asterisks have been mathematically combined to give the calculated composite concentrate.

²Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au <0.0004; Ag 0.01. ³Precious metals analysis, oz/ton: Pt <0.002; Pd <0.002; Au 0.0023; Ag <0.01.

Location	Sample ¹	Field No.	Location	Sample ¹	Field No.
Tonsina area:			Kenai PeninsulaCon.		
Bernard Mountain	BMIM	CM20488	Windy River	WR1S ³	CM17676
bernard nounderneet	BM2M	CM20495	-	WR2S ³	CM17677
	BM3M	CM20496		WR3S ³	CM17678
	BM4M	CM20497		WR4S ³	(2)
	BM5M	CM20499			
	BM6M	CM18678	Claim Point	CP 1M	СМ17679
	BM7M	CM20500		CP2M	СМ17680
Sheep Hill	SH1M	CM20471	Kodiak Island:		
	SH2M	CM20472	Halibut Bay	HB1M	CM18635
	SH3M	CM20466		HB2M	CM18636
	SH4M	CM20467		нвзм	CM19649
				HB4M	CM20268
Dust Mountain	DM1M	CM20443		HB5M	CM17953
	DM2M	CM20445		HB6M	CM11168
	DM3M	CM20446		HB7M	CM19277
				HB8M	CM18623
Palmer area:				нв9м	CM18624
Wolverine Complex.	WC1M	CM19322			
			Grant Lagoon	GLIM	CM20261
Kenai Peninsula:					
Red Mountain	RM1M	(2)	Miners Point	MP 1M	CM19461
	RM2M	CM17675			
	RM3M	CM17670A			
	RM4M	CM17670B			
	RM5M	(2)			
	RM6M	(2)]	

APPENDIX B.--SAMPLE KEY

¹Prefix key: BM--Bernard Mountain; SH--Sheep Hill; DM--Dust Mountain; WC--Wolverine Complex; RM--Red Mountain; WR--Windy River; CP--Claim Point; HB--Halibut Bay; GL--Grant Lagoon; MP--Miners Point. Suffix key: M--Metallurgical test sample; S--screened alluvium sample. ²Composite sample provided by Anaconda Minerals Co.

³Placer sample.