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The U.S. Environmental Protection Agency through its Office of Research and Development partially

funded and collaborated in the research described here under Cooperative Agreement No. CR-823718 to the

University of Minnesota, Dr. Otto Strack, Principal Investigator. It has been subjected to the Agency’s peer

and administrative review and has been approved for publication as an EPA document. Mention of trade

names or commercial products does not constitute endorsement or recommendation for use.

All research projects making conclusions or recommendations based on environmentally related mea-

surements and funded by the Environmental Protection Agency are required to participate in the Agency

Quality Assurance Plan. This project did not involve physical measurements and, as such, did not require
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Abstract

Four topics were studied concerning the modeling of ground-water flow in coastal aquifers with analytic

elements: (1) practical experience was obtained by constructing a ground-water model of the shallow aquifers

below the Delmarva Peninsula USA using the commercial program MVAEM; (2) a significant increase in

performance was obtained by implementing the theory for variable density flow in a computer program that

ran on a supercomputer using vectorization; (3) a new representation for the density variation was developed

that can simulate the change from brackish to fresh water more accurately; and (4) it was shown that for a

specific example of a bell-shaped transition zone a Dupuit model gives accurate results unless the bell-shape

is too narrow compared to the thickness of the aquifer.
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Foreword

The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation’s land,

air and water resources. Under a mandate of national environmental laws, the Agency strives to formulate

and implement actions leading to a compatible balance between human activities and the ability of natural

systems to support and nurture life. To meet these mandates, EPA’s research program is providing data and

technical support for solving environmental problems today and building a science knowledge base necessary

to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce

environmental risks in the future.

The National Risk Management Research Laboratory is the Agency’s center for investigation of techno-

logical and management approaches for reducing risks from threats to human health and the environment.

The focus of the Laboratory’s research program is on methods for the prevention and control of pollution to

air, land, water, and subsurface resources; protection of water quality in public water systems; remediation

of contaminated sites and ground water; and prevention and control of indoor air pollution. The goal of

this research effort is to catalyze development and implementation of innovative, cost-effective environmen-

tal technologies; develop scientific and engineering information needed by EPA to support regulatory and

policy decisions, and provide technical support and information transfer to ensure effective implementation

of environmental regulations and strategies.

Salt water intrusion is a potential threat to drinking water supplies in the coastal areas of the USA

due to over-pumping. In addition to the pumping, groundwater flow in coastal aquifers is affected by

the difference in density between fresh and salt water. Computer models provide a tool for predicting

the movement of salt water under past, present, and future pumping conditions. However, the simulation of

three-dimensional variable density flow is computationally expensive. This project investigates innovations in

algorithm formulation and computing architecture for problem solving involving variable density groundwater

flow, with the aquifers beneath the Delmarva Peninsula, USA, providing context.

Clinton W. Hall, Director

Subsurface Protection and Remediation Division

National Risk Management Research Laboratory
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Introduction

Motivation

Salt water intrusion is a potential threat to drinking water supplies in the coastal areas of the USA. Cities

along the coast are increasing their pumping of groundwater to support a rising population. The increased

pumping may result in an increase of chlorides in the well water due to the upconing of brackish groundwater.

Even a small concentration of chlorides will give the water a salty taste; water tastes salty to most people

if the concentration of chlorides is 0.25 g/l or greater. Sea water, on the other hand, contains about 18

grams of chlorides per liter. The maximum guideline concentration set by the World Health Organization

is 0.25 grams of chlorides per liter. The potential upconing of brackish groundwater may be studied by the

simulation of groundwater flow with a numerical model.

Groundwater flow in coastal aquifers is affected by the difference in density between fresh and salt water.

The fresh water is separated from the salt water through a brackish transition zone, in which the salinity

(and thus the density) of the water varies from that of salt water to that of fresh water. If the transition zone

is relatively thin, the transition from fresh to salt water may be modeled as an abrupt one: the fresh water is

separated from the salt water by an interface. If this is not the case, the effect of the variation in density on

the flow in the transition zone must be taken into account. The modeling of the flow generated by variations

in density, the variable density flow, is the subject of this report. Specifically, it is investigated whether

groundwater flow in coastal aquifers can be modeled under the Dupuit approximation in combination with

analytic elements.

Background

Numerous numerical models are available to simulate variable density flow for both two–dimensional flow

in the vertical plane and three–dimensional flow. The flow field may be modeled with the finite–element

method or the finite–difference method while the solute transport equation may also be solved by the random

walk method or the method of characteristics. Two–dimensional models include SUTRA (Voss, 1984), and

MOCDENSE (Sanford and Konikow, 1985), the variable density version of MOC (Konikow and Bredehoeft,

1978). Three–dimensional models include HST3D (Kipp, 1986) and SWICHA (Lester, 1991). Maas and

Emke (1988) developed a procedure to simulate variable density flow with numerical models for single
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density flow. Olsthoorn (1996) presented a method to use MODFLOW (McDonald and Harbaugh, 1984) for

variable density flow. The three–dimensional version of MOC, called MOC3D (1996), has been modified to

include density driven flow by Oude Essink (1998).

The construction of numerical models of three–dimensional variable density flow is limited by the avail-

ability of density data and by the speed of digital computers (Oude Essink and Boekelman, 1996). The

Dupuit approximation may be adopted to reduce the computation time and for the usual reason of simplic-

ity (Strack, 1995). The resistance to flow in the vertical direction is neglected in Dupuit models, and vertical

flow is governed by continuity of flow only; this leads to a hydrostatic pressure distribution in the vertical

direction. The Dupuit approximation is reasonable for flow in aquifers of great horizontal extend, also re-

ferred to as aquifers with shallow flow or regional flow. It is possible to construct regional groundwater flow

models of coastal aquifers by adopting the Dupuit approximation. The Dupuit theory for variable density

flow may be combined with any method to model Dupuit flow in a single density model. In this report the

flow field is modeled with analytic elements (Strack, 1989; Haitjema, 1995). Analytic element models have

been constructed successfully to simulate the fresh water head in the coastal aquifers of The Netherlands

(e.g., Minnema and van der Meij, 1997). A model of a coastal aquifer beneath the Delmarva Peninsula is

described in this report.

The Dupuit theory for variable density flow

The Dupuit theory for variable density flow, as formulated by Strack (1995), assumes that the density distri-

bution in the aquifer is known at some time. In practice, the density is known only at a number of isolated

points. Strack (1995) proposes to represent the density distribution with a three–dimensional interpolator

function that interpolates between the points of known density; he suggests to use the multiquadric radial

basis interpolator (Hardy, 1971) for this purpose. It is noted that the multiquadric interpolator is a form of

Kriging; the interpolator is identical to Kriging with a linear variogram if the shape factor in the interpolator

is set equal to zero.

The density distribution (and thus the flow field) will change over time as the salt moves with the

groundwater flow. The flow is incompressible in Strack’s model and the flow field thus represents the flow

at a given time. The evolution of the density distribution in the aquifer may be simulated by numerical

integration through time. During each time step, the velocity field is fixed and the salt is moved with the

groundwater flow. At the end of a time step the velocity field corresponding to the new density distribution

is computed and the process is repeated. This procedure is also known as successive steady–state solutions;

transient solutions are obtained with successive steady–state solutions throughout this report. Second order

processes that affect the salinity distribution, such as diffusion, are neglected. It may be expected that such

a procedure gives reasonable results for relatively short times (on the order of 25 years, as is of interest for
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most engineering problems).

Strack’s theory has been implemented, prior to this study, in the proprietary computer program Multi–

layer Variable density Analytic Element Model (MVAEM). The computation time involved in the construc-

tion of large regional models of the fresh water head with MVAEM is significant. Multi–layer models that

include thousands of points where the salinity is specified take on the order of hours to compute a solution

on a high end PC (in 1996). A large portion of the computation time is used to compute the effect of

the variation in density on the flow. The computation times of the transient simulations involve a repeated

computation of the solution at different times plus a large number of evaluations of the velocity in the aquifer

and is of the order of days or more, as compared to the hours it takes to obtain one steady–state solution.

These computation times diminish the practicality of the modeling approach.

The use of a Dupuit model to simulate variable density flow raises a number of additional issues. Transient

simulations require an accurate representation of the velocity field (not just of heads) and the numerical

integration requires an analysis of stability and convergence. Furthermore, it must be investigated how

accurate a Dupuit model is to simulate the change of a salt distribution over time, especially in the case

of upconing of salt or brackish water. Dupuit models are generally used for regional (shallow) flow and

may become inaccurate when the shallow flow assumption is not appropriate, for example near a partially

penetrating well where the flow field changes rapidly over a distance of several times the aquifer thickness.

And finally, the assessment of the upconing of salt water below a pumping well needs analysis of the physical

stability of the transition zone itself.

Objective

The objective of this report is to investigate the performance of the Dupuit theory for variable density flow

combined with analytic elements to model groundwater flow in coastal aquifers. It is impossible to answer

all the questions raised in the foregoing in one project. This project concerns four areas of study:

1. The analytic element modeling of groundwater flow in the first confined aquifer beneath the Delmarva

Peninsula.

2. The reduction of computation time by the use of a supercomputer.

3. The accurate representation of the density distribution.

4. The implications of adopting the Dupuit approximation for variable density flow.
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Report structure

The report is structured as follows. In Chapter 1, a model is presented of the fresh water head in the first

confined aquifer on the Delmarva Peninsula using the program MVAEM. The salt distribution (and thus the

density distribution) was modeled separately prior to the groundwater flow simulations; use was made of a

three–dimensional visualization package.

The Dupuit theory for variable density flow is derived following the paper by Strack (1995) in Chapter 2.

The density distribution is represented by a three–dimensional multiquadric interpolator, as is done in the

program MVAEM, which was used for the modeling study. The second half of this chapter (starting with

the section “Head and potential”) is highly mathematical and intended for the reader who is interested in

implementing the theory in a computer program. Reading this section is not required for understanding the

subsequent chapters.

It is investigated in Chapter 3 whether the use of a supercomputer will reduce the impractically long

computation times to such a level that interactive modeling becomes possible. The Dupuit theory for variable

density flow was implemented in the analytic element code Variable Density Single Layer Wells Line–sinks

(VDSLWL), which is based on the public domain program SLWL (Strack, 1989). VDSLWL was written to

run on a vector machine, the CrayC916 at the Minnesota Supercomputer Institute. A brief description of

the density module is provided and some implementation issues are addressed.

The performance of the multiquadric interpolator to represent the density distribution is investigated

in Chapter 4. The multiquadric interpolator includes a shape factor that controls the smoothness of the

interpolator. In practice, this shape factor is often set close to zero to obtain a reasonable representation

of the density distribution. This leads to an acceptable approximation of the fresh water head, but the

resulting velocity field appears to be physically unrealistic. A new representation for the density distribution

is proposed to overcome this problem. This representation is better controlled but also less flexible. A

new exact solution for variable density flow in a vertical cross–section is presented and compared to the

Dupuit solution. The derivation of the expressions for the specific discharge vector corresponding to the

new representation of the density distribution is lengthy and is presented separately in Chapter 5. Finally,

results are summarized and conclusions drawn in Chapter 6.
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CHAPTER 1

An Analytic Element Model of the Upper Chesapeake Aquifer,
Delmarva Peninsula (USA)

Introduction

Salt water intrusion is a potential threat to drinking water supplies relying on groundwater in coastal aquifers

of the USA. The World Health Organization has set a guideline concentration of chlorides at 250 mg/l; water

tastes salty to most people when the concentration of chlorides is greater than this value. The city of Ocean

City, Maryland, on the mid Atlantic coastal plain, has experienced a rise in the chlorides in one of its wells

from 70 mg/l in 1975 to 215 mg/l in 1988. The well field is probably experiencing upconing of brackish

water from the underlying aquifer due to increased pumping (Achmad and Wilson, 1993). The increased

pumping is needed to supply water to the growing population in the region.

The analytic element method for modeling groundwater flow has been extended to represent the influence

of a variation in density of the water (due to a variation in salinity) on the groundwater flow (Strack, 1995).

In this chapter we explore the application of analytic element modeling within a coastal aquifer where fresh

and sea water meet. The shallow fresh water aquifer systems of the Delmarva (Delaware-Maryland-Virginia)

Peninsula are stratified and multi-layered with alternating sand and clay layers, and are wedge-shaped,

thickening to the east and subcropping or pinching-out in the west (Vroblesky and Fleck, 1991). The aquifers

are bounded below by bedrock; fresh water meets sea water in the lower aquifers, directly underneath the

Chesapeake Bay, and offshore beneath the Atlantic Ocean.

The upper Chesapeake aquifer is considered a single geohydrologic unit at the regional scale, and is

bounded below by the St. Mary’s confining unit, and above by the upper Chesapeake confining unit. The

upper Chesapeake aquifer subcrops into the surficial Columbia aquifer in the western part of Delmarva, and

then gently dips to the southeast at a slope of about 0.01 (15 m per 1600 m) (Vroblesky and Fleck, 1991)

(See Figures 1.1 and 1.2). The upper Chesapeake aquifer contains three major sand bodies of Miocene and

Pliocene age, which are, from lowermost to uppermost, the Manokin, Ocean City, and Pocomoke aquifers,

respectively.
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Figure 1.1: The subcrop of the upper Chesapeake aquifer (shaded area) beneath the Delmarva Peninsula

USA

Figure 1.2: Perspective view of the upper Chesapeake aquifer using GMS software (WES, 1997) (vertical

exaggeration 100x)

6



Approach

Groundwater flow in the upper Chesapeake aquifer was simulated using the Multi-layer Variable-density

Analytic Element Model (MVAEM Version 1.1 c©1995 Strack Consulting, North Oaks, MN). A description

of the mathematical basis of the point, line, and area elements used in MVAEM can be found in Strack

(1989), while the extension to include variable density flow is discussed in Chapter 2 of this report, and

in Strack (1995), Strack and Bakker (1995). MVAEM solves for the steady–state flow field, and uses the

Dupuit approximation; that is, resistance to vertical flow is assumed negligible. The range of applicability

of the Dupuit approximation for variable density flow is explored in Chapter 4.

MVAEM computes the influence of variable density flow, or density driven flow, using an estimate of the

continuous three-dimensional distribution of density in the aquifer system. The density must be specified at

a number of points in the aquifer (referred to as density points); MVAEM interpolates between these points

to obtain a continuous density distribution throughout the aquifer. These density points are inferred from

measurements of chloride concentration using an empirical relationship. For the upper Chesapeake aquifer

model, we used an empirical relationship between chloride concentrations and density (Van Dam, 1973).

Assuming the water temperature is 15 degrees Celsius, the density ρ may be written as

ρ = 1000 + 1.455[Cl]/1000 − 0.0065(11 + 0.4[Cl]/1000)2 (1.1)

where chloride concentration [Cl] is in mg/l and the resulting density in kg/m3.

It is essential to evaluate the interpolated density distribution and make sure it is a reasonable represen-

tation of what is believed to be the density distribution in the aquifer. If the interpolation of MVAEM does

not seem reasonable, additional points must be added where the density is specified to better control the

interpolator, for example below the ocean bottom.

The distribution of data points used in the model is shown in Figure 1.3. Many of the chloride data

points came from the QWDATA database of the USGS Water Resources Division in Baltimore, MD. Other

sources include Meisler (1989), Phelan (1987), Richardson (1992), and Woodruff (1969). Only fairly recent

observations (taken after 1940) were used assuming that the chloride (density) distribution did not change

significantly during this time period.

The continuous three-dimensional distribution of density was created using a multiquadric interpolator

in a procedure described in Chapter 2. It is noted that this interpolation technique is identical to Kriging

with a linear variogram. A series of chloride concentration values were added in order to obtain a more

realistic density distribution. Specifically, points were added in the upper Chesapeake aquifer beneath the

Chesapeake Bay and were given values similar to the lower surface waters, noting that resistance layers in

the Bay are partly absent. Data points below the upper Chesapeake aquifer were not used in the calculation,

because it is unlikely that the density distributions are related across the separating St. Mary’s confining
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Figure 1.3: Density points used by the interpolator

unit. Another series of points was added in the upper Chesapeake aquifer bounding the coastline of the

Atlantic Ocean based on the section model of Achmad and Wilson (1993). These points are shown as

“estimated” in Figure 1.3. A total number of 668 data points were used, 148 estimated, see Appendix A1.

A mesh of constant strength area elements was used to simulate the leakage between the surficial un-

confined aquifer and the upper Chesapeake aquifer. The leakages of the resistance elements are equal to

the difference between the given head above (in the surficial aquifer) and the head in the upper Chesapeake

aquifer, divided by the resistance of the upper Chesapeake confining layer. This condition is enforced at the

center of each element. The resistance values are based on estimates of the vertical hydraulic conductivity.

The resistance is equal to the thickness of the resistance layer divided by its vertical hydraulic conductivity,

and has the units of time. (The resistance is the inverse of the conductance, a parameter used in many other

models.) The layout of the elements and table of resistances and heads assigned can be found in Appendix

A2.

Inhomogeneity polygons were used to represent variable aquifer thickness, variable hydraulic conductivity,

and sloping base, as shown in Figure 1.4. Aquifer properties are constant within each polygon. These

polygons are composed of line doublet elements which create the appropriate jump in the discharge potential

and maintain continuity of flow. The base within each polygon is horizontal, and steps in the base were

limited to half the aquifer thickness. The spatial pattern of doublet elements is based on the transmissivity

distribution shown by Leahy and Martin (1993), and the estimations of the aquifer base on well logs reported

in Vroblesky and Fleck (1991). The two small doublet polygons represent the local increase in thickness and

transmissivity reported near Ocean City, Maryland.
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Figure 1.4: MVAEM doublet polygons representing heterogeneous upper Chesapeake aquifer (B, H, k are

aquifer base elevation above mean sea level (m), thickness (m) and hydraulic conductivity(m/day)

9



Figure 1.5: Locations of observations wells for fresh water heads

MVAEM was run for two scenarios: (1) variable density – fresh and salt water; and (2) single density –

all fresh water. The predictions of fresh water heads were compared to monitoring wells located in Sussex

County, Delaware, and Wicomico and Worchester Counties in Maryland (see Figure 1.5). The fresh water

head is defined as the elevation to which water rises in a standpipe if the standpipe is filled with fresh water

only. The selected observation wells are screened in the upper Chesapeake aquifer, and do not report an

influence of nearby pumping wells.

Results

The upper Chesapeake model representing variable density groundwater flow beneath the Delmarva Penin-

sula has not been extensively calibrated, and results are considered preliminary. Figure 1.6 shows a fence

diagram of the density distribution generated with the multiquadric interpolator; notice that the density

distribution is continuous in three–dimensions. The transition from fresh to sea water can be seen clearly

along the Delmarva shoreline and coastline in the contour map of Figure 1.7. A contour map of the MVAEM

fresh water heads (at elevation 50 m below sea level) is shown in Figure 1.8.

The model predicted fresh water heads were compared to observed water levels in nine wells screened in

the upper Chesapeake aquifer (See Figure 1.5). The observed water levels are based on a 5 year average over

the period 1987-1992 (James et al., 1992) and are based on the density of water at the well screen. It is noted

10



Figure 1.6: Fence diagram of three-dimensional density distribution (kg/m3) inferred from discrete measure-

ments of chloride concentrations and the multiquadric interpolator

Figure 1.7: Contours of water density at elevation z=-50 m
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Figure 1.8: Contours of MVAEM fresh water heads at elevation z=-50 m
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Table 1.1: Comparison of observed heads with simulated heads. Unit of heads is meters.

Variable density Single density

Well ID UTM-x UTM-y z (m msl) obs. head fw head difference fw head difference

Nf44-01 468900 4292706 -30 8.9 9.17 0.27 9.17 0.27

Ni52-11 487572 4290620 -40.8 1.8 2.71 0.91 2.69 0.90

Oh54-01 484053 4280763 -81 2.7 3.01 0.31 3.03 0.34

Oi24-06 490558 4285068 -70.0 1.8 0.032 -1.8 0.0083 -1.8

Pf24-03 468686 4275014 -37.5 13.4 13.8 0.42 13.8 0.43

Qh54-04 484210 4262639 -90.8 4.5 6.38 1.9 6.39 1.9

Rj22-05 495517 4257631 -120 1.0 0.61 -0.39 0.56 -0.43

WOAe23 474254 4254373 -71.6 8.5 12.7 4.3 12.7 4.3

WODe-36 474211 4233291 -89.9 5.2 3.51 -1.7 3.53 -1.7

that, due to the small number of observations, no analysis has been performed to determine whether these

values represent regional flow conditions. The difference between the MVAEM model predicted fresh water

head and the observed head, for both the variable density and single density (all fresh water) simulations,

are shown in Table 1.1.

MVAEM predicts the water exchange between the unconfined surficial aquifer and the upper Chesapeake

aquifer. The leakage (m/d) for the area elements is shown in Figure 1.9. The mean value of the leakage is

8.79E-5 m/d (1.3 in/yr), while the maximum leakage entering the aquifer is 2.87E-3 m/d (41.2 in/yr) and

the maximum leakage leaving the aquifer is 3.89E-4 m/d (5.6 in/yr). Figure 1.9 shows most of the leakage

to the upper Chesapeake aquifer occurs in the uplands of Delmarva, while most of the exchange with the

surficial aquifer occurs along the shore. The USGS reports an average flux of 122 ft3/s through the Upper

Chesapeake aquifer layer (4690 mi2) of their model giving a leakage of 2.457E-5 m/d (0.35 in/yr) (Fleck and

Vroblesky, 1996).

Discussion

The definition of the continuous three-dimensional chloride concentration (density) distribution in the up-

per Chesapeake aquifer is problematic given the paucity of available data. Most of the observation wells

reporting a chloride concentration were of the fresh water beneath the Delmarva Peninsula. Only a handful

of observation wells were available with a “salty” chloride concentration, and only a couple of these wells

reported a chloride concentration that varied with depth. The resulting density contours are essentially
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Figure 1.9: Distribution of leakage into and out of the upper Chesapeake aquifer
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constant with depth, as shown in Figure 1.6. It is unlikely that this distribution is realistic, especially in

the few areas where the density decreases with depth. Also, given the sensitivity of velocity calculations

to the density variation, and given the rather questionable predicted density distribution based on so few

data points, no calculations of the velocity distribution in the aquifer are presented here. Therefore, no

predictions of the movement of the salt water transition zone are offered.

The MVAEM model did a reasonable job in predicting the fresh water heads in the aquifer, based on the

comparison to the observed heads in monitoring wells, and the contours of predicted heads. It should be

noted that MVAEM is a steady–state model, and the comparison was made to average heads. The heads are

known to vary up to 1 m over the seasons. Also, the modeled heads were constrained by the head specified

area elements, which were based on published water table contour maps. The solutions for fresh water heads

are also relatively insensitive to the density distribution, at least at the observation points, as evidenced in

Table 1.1. Further investigation of the reasonableness of the MVAEM fluxes is warranted.

Conclusions

The analytic element method was used to build a groundwater flow model of the upper Chesapeake aquifer

of the Delmarva Peninsula, USA. The application of the MVAEM code demonstrated the potential of the

analytic element method for representing variable density flow and to increase the understanding of the

transition zone between fresh and sea water. No definitive site specific conclusions are offered given the

uncertainties involved in this particular model application.

The analytic element method has the potential to simulate a reasonable representation of the fresh water

head distribution, given adequate investment in model calibration. However, analytic element models, as

with other numerical models, are only as good as the input data and adequacy of the conceptual model. In

addition, the appropriateness of using the analytic element method to represent the aquifer base elevation

in a piece-wise manner in order to approximate a smoothly sloping base elevation was not examined. More

investment is needed to better define the variation of density in space. Better definition of aquifer geometry

and properties is needed. More monitoring wells (as opposed to water supply wells) are needed to better

define the fresh water head distribution. Measurements of fluxes to tidal rivers and shorelines would be

useful. These observations would facilitate a complete water balance analysis.

Additional complexities of the aquifer system may be represented in the future with new developments of

the analytic element method. It is possible to build a multi-layer model and better represent the influences

of the surficial aquifer. For example, the major streams could be represented as curvilinear line elements,

while the minor streams may be lumped into an effective feeding resistance based upon their drainage density

(De Lange, 1996). Alternatively, leakage to the upper Chesapeake aquifer from the surficial aquifer could

be represented using advanced variable strength area elements (Strack and Janković, 2000). Also, future
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developments in the analytic element method include functions to represent a continuously sloping aquifer

base and a transient aquifer response.

Until these challenges are met, it is too early to assess fully the practical advantages, and disadvantages,

of the analytic element method in comparison to numerical techniques such as finite differences and finite

elements.
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CHAPTER 2

A Dupuit Formulation for Variable Density Flow

Introduction

The Dupuit theory for variable density flow was presented by Strack (1995). The theory is reproduced here,

in a slightly different form, for the case of confined flow in a piecewise horizontal aquifer. A Cartesian x1,

x2, z coordinate system is adopted with the z–axis pointing vertically upward.

The specific discharge vector field for variable density flow is rotational, even if the aquifer is homogeneous

and isotropic. Strack (1995) showed, however, that the discharge vector field (the specific discharge integrated

over the saturated thickness of the aquifer) is irrotational. Thus, a potential Φ may be defined such that

the discharge vector is minus the gradient of this potential. As such, the three–dimensional rotational flow

problem is reduced to a two–dimensional potential flow problem. Furthermore, Strack (1995) approximated

the pressure distribution in the vertical direction as hydrostatic (the Dupuit approximation) to obtain a

relation between the potential and the fresh water head. The fresh water head φ is defined as the elevation

to which water rises in a standpipe if the standpipe is filled with fresh water only (e.g., Lusczynski, 1961).

Basic Equations

Darcy’s law in terms of pressure is

qi = −κ

µ

∂p

∂xi
i = 1, 2

qz = −κ

µ

∂p

∂z
− κ

µ
ρg

(2.1)

where q1, q2, qz are the components of the specific discharge vector in the x1, x2, z directions, respectively,

κ is the intrinsic permeability, µ is the dynamic viscosity, p is the pressure, ρ is the density of water and g

is the acceleration due to gravity. The fresh water head, φ, is

φ =
p

ρfg
+ Z (2.2)
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where ρf is the density of fresh water and Z is the elevation above an arbitrary datum. Combination of

(2.1) and (2.2) gives

qi = −k
∂φ

∂xi

qz = −k
∂φ

∂z
− kν

(2.3)

where k is the hydraulic conductivity of fresh water

k =
κρfg

µ
(2.4)

and ν is the dimensionless density

ν =
ρ − ρf

ρf
(2.5)

The discharge vector is the total flow integrated over the saturated thickness of the aquifer and has

components

Qi =

zt∫
zb

qidz =

zt∫
zb

−k
∂φ

∂xi
dz (2.6)

where zb and zt are the bottom and top of the aquifer, respectively. Integration and differentiation may be

reversed if zb and zt are not a function of x1 and x2 (as for a confined aquifer with horizontal base and top)

Qi = − ∂

∂xi


k

zt∫
zb

φdz


 = − ∂Φ

∂xi
(2.7)

where the potential Φ is defined as

Φ = k

zt∫
zb

φdz (2.8)

Continuity of flow gives

∂Q1

∂x1
+

∂Q2

∂x2
= ∂iQi = −Nt + Nb (2.9)

where Nt is the water leaving the aquifer at the top and Nb is the water entering the aquifer at the bottom;

both Nt and Nb may be functions of x1 and x2. The partial derivative in the xi–direction is written as ∂i

and the Einstein summation convention is adopted for repeated indices; only the index i is used to indicate

the components of a vector and summation is implied for the horizontal directions only. Substitution of (2.7)

for Qi in (2.9) gives

∇2Φ = Nt − Nb (2.10)

where ∇2 is the Laplacian in the horizontal directions.
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The Dupuit approximation

The Dupuit approximation is adopted, which means that the resistance to flow in the vertical direction is

neglected and the pressure distribution is hydrostatic, so that ∂p/∂z = −ρg and thus

∂φ

∂z
= −ν (2.11)

Integration gives

φ = −
∫

νdz + F (x1, x2) (2.12)

where F (x1, x2) is an, as of yet, unknown function of x1 and x2. Substitution of (2.12) for φ in (2.8) and

division by k gives

Φ
k

=

zt∫
zb

φdz = −
zt∫

zb

∫
νdzdz +

zt∫
zb

F (x1, x2)dz (2.13)

Performing the latter integration leads to an expression for F

F (x1, x2) =
1
H

zt∫
zb

∫
νdzdz +

Φ
kH

(2.14)

Substitution of (2.14) for F into (2.12) gives an expression for the head as a function of the potential

φ =
Φ

kH
−

∫
νdz +

1
H

zt∫
zb

∫
νdzdz (2.15)

or vice versa

Φ = kHφ + kH

∫
νdz − k

zt∫
zb

∫
νdzdz (2.16)

Expressions (2.15) and (2.16) are identical to expressions (40) and (39), respectively, in Strack (1995).

The specific discharge vector

The horizontal components of the specific discharge vector are obtained from differentiation of (2.15)

qi = −k∂iφ =
Qi

H
+ k∂i

∫
νdz − k

H

zt∫
zb

∂i

∫
νdzdz i = 1, 2 (2.17)

where integration and differentiation are interchanged for the first integral in the last term. The vertical

component of flow may be obtained from continuity

∂iqi +
∂qz

∂z
= 0 (2.18)
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which gives

qz = −
z∫

zb

∂iqidz + Nb (2.19)

The divergence of qi may be obtained from (2.17) which gives for (2.19)

qz = −
z∫

zb


∂iQi

H
+ k∇2

∫
νdz − k

H
∂i

zt∫
zb

∂i

∫
νdzdz


 dz + Nb (2.20)

The first and last terms on the right–hand side of (2.20) may be combined, using (2.9)

−
z∫

zb

∂iQi

H
dz + Nb =

z − zb

H
Nt − z − zt

H
Nb (2.21)

For the case that Nt = Nb = 0 integration of (2.20) gives

qz = −k

z∫
zb

∇2

∫
νdzdz +

k

H

z∫
zb

∂i

zt∫
zb

∂i

∫
νdzdzdz (2.22)

This equation may be simplified by interchanging differentiation and integration and by rearranging terms

qz =
−k(zt − zb)

H

z∫
zb

∇2

∫
νdzdz +

k(z − zb)
H


 z∫

zb

∇2

∫
νdzdz +

zt∫
z

∇2

∫
νdzdz




=
k(z − zt)

H

z∫
zb

∇2

∫
νdzdz +

k(z − zb)
H

zt∫
z

∇2

∫
νdzdz

(2.23)

Combination of (2.20) through (2.23) gives the general expression for qz

qz =
z − zb

H
Nt − z − zt

H
Nb +

k(z − zt)
H

z∫
zb

∇2

∫
νdzdz +

k(z − zb)
H

zt∫
z

∇2

∫
νdzdz (2.24)

It may be verified from equation (2.24) that qz(z = zt) = Nt and qz(z = zb) = Nb, as asserted. The

expressions for the specific discharge vector, (2.17) and (2.24), are the same as equations (42) and (50) in

Strack (1995).

The three–dimensional multiquadric interpolator

The dimensionless density distribution ν, see (2.5), is represented by a multiquadric interpolator (Hardy,

1971), which is written as follows

ν =
M∑

m=1

m
α

m
r +

0
α (2.25)
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where

m
r (x1, x2, z) =

√
β2[(x1 − m

x1)2 + (x2 − m
x2)2] + (z − m

z )2 +
m

∆2 (2.26)

and β is the horizontal scale factor. The M + 1 constants
m
α (m = 0, . . . , M) are determined from M + 1

conditions. M conditions are obtained by requiring that ν equals a specified value
m
ν at M collocation points

(
m
x1,

m
x2,

m
z )

ν(
m
x1,

m
x2,

m
z ) =

m
ν m = 1, . . . , M (2.27)

and one condition by requiring that the sum of the
m
α (m = 1, . . . , M) equals zero

M∑
m=1

m
α = 0 (2.28)

The constants
m

∆ (m = 1, . . . , M) may be chosen arbitrarily, but do affect the shape of the interpolator

function. The smaller the value of ∆, the sharper the change of the interpolator function at a collocation

point. The multiquadric interpolator is a convenient interpolator for the density distribution, especially when

the constants
m

∆ are chosen small (preferably zero) relative to the size of the model domain (VanGerven and

Maas, 1994).

Head and Potential

Expressions for the head in terms of the potential and vice versa (equations (2.15) and (2.16)) may be

obtained by integration of the dimensionless density distribution (2.25). The variable
m

φ is introduced as

m

φ = −
∫

m
rdz +

1
H

zt∫
zb

∫
m
rdzdz (2.29)

where ∫
m
rdz = 1

2 [
m
r 2 − (z − m

z )2] ln(z − m
z +

m
r ) + 1

2 (z − m
z )

m
r (2.30)

and ∫ ∫
m
rdzdz = 1

2 (z − m
z )[

m
r 2 − (z − m

z )2] ln(z − m
z +

m
r ) + 1

3

m
r [(z − m

z )2 − m
r 2] (2.31)

These integrals may be checked by differentiation. After application of the limits of the double integral,
m

φ

becomes
m

φ = − 1
2 [

m
r 2 − (z − m

z )2] ln(z − m
z +

m
r ) + 1

2 (z − m
z )

m
r +

+
[

1
2 (zt − m

z )[r2
mt − (zt − m

z )2] ln(zt − m
z + rmt) + 1

2rmt(zt − m
z )2 − 1

3r3
mt

− 1
2 (zb − m

z )[r2
mb − (zb − m

z )2] ln(zb − m
z + rmb) − 1

2rmb(zb − m
z )2 + 1

3r3
mb

]
/H

(2.32)
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where

rmb =
√

β2[(x1 − m
x1)2 + (x2 − m

x2)2] + (zb − m
z )2 +

m

∆2 (2.33)

rmt =
√

β2[(x1 − m
x1)2 + (x2 − m

x2)2] + (zt − m
z )2 +

m

∆2 (2.34)

The expression for the head in terms of the potential becomes

φ =
Φ

kH
+

M∑
m=1

m
α

m

φ − 0
α

(
z − z2

t − z2
b

2H

)
(2.35)

and the expression for the potential in terms of the head is

Φ = kHφ − kH

M∑
m=1

m
α

m

φ + kH
0
α

(
z − z2

t − z2
b

2H

)
(2.36)

The specific discharge vector

The specific discharge vector depends on the first and second derivatives of the density distribution (see

equations (2.17) and (2.24)) which may be written as

∂ν

∂xi
=

M∑
m=0

m
α

∂
m
r

∂xi
i = 1, 2 (2.37)

∇2ν =
∂2ν

∂x2
1

+
∂2ν

∂x2
2

=
M∑

m=0

m
α

(
∂2m

r

∂x2
1

+
∂2m

r

∂x2
2

)
(2.38)

Differentiation of
m
r (2.26) is straightforward and gives:

∂
m
r

∂xi
= β2 xi − m

xi
m
r

(2.39)

∂2m
r

∂x2
1

+
∂2m

r

∂2x2
=

β2

m
r

− β4(x1 − m
x1)2

m
r 3

+
β2

m
r

− β4(x2 − m
x2)2

m
r 3

=
2β2

m
r

− β4 (x1 − m
x1)2 + (x2 − m

x2)2
m
r 3

(2.40)

Expressions for the components of the specific discharge vector may be obtained from equations (2.17)

through (2.24) by working out the integrals. The following two integrals are used (these can again be verified

by differentiation)

∫
∂

m
r

∂x1
dz =

∫
β2 x1 − m

x1
m
r

dz = β2(x1 − m
x1) ln(z − m

z +
m
r ) (2.41)

∫ ∫
∂

m
r

∂x1
dzdz =

∫
β2(x1 − m

x1) ln(z − m
z +

m
r )dz = β2(x1 − m

x1)[(z − m
z ) ln(z − m

z +
m
r ) − m

r ] (2.42)
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The contribution of multiquadric point m, with unit strength, to qi will be called
m
q i and is obtained by

combination of (2.1), (2.23), and (2.24)

m
q i = kβ2

∫
∂

m
r

∂xi
dz − kβ2

H

zt∫
zb

∫
∂

m
r

∂xi
dzdz =

= kβ2(xi − m
xi)

[
ln(z − m

z +
m
r ) − zt − m

z

H
ln(zt − m

z + rmt) +
rmt

H
+

zb − m
z

H
ln(zb − m

z + rmb) − rmb

H

]

(2.43)

Using that

zt − m
z

H
=

zb − m
z

H
+ 1 (2.44)

and rearranging terms gives

m
q i =

kβ2(xi − m
xi)

H

[
H ln

z − m
z +

m
r

zt − m
z + rmt

+ (zb − m
z ) ln

zb − m
z + rmb

zt − m
z + rmt

+ rmt − rmb

]
(2.45)

An expression for the vertical component of the specific discharge vector may be obtained if the double

integral of the Laplacian of the density distribution is carried out. The following integrals are used
∫ ∫

∂2m
r

∂x2
1

dzdz = β2[(z − m
z ) ln(z − m

z +
m
r ) − m

r ] − β4(x1 − m
x1)2

z − m
z +

m
r

(2.46)

∫ ∫
∂2m

r

∂x2
2

dzdz = β2[(z − m
z ) ln(z − m

z +
m
r ) − m

r ] − β4(x2 − m
x2)2

z − m
z +

m
r

(2.47)

so that ∫ ∫
∇2m

rdzdz = 2β2[(z − m
z ) ln(z − m

z +
m
r ) − m

r ] − β4[(x1 − m
x1)2 + (x2 − m

x2)2]

z − m
z +

m
r

(2.48)

which may be simplified, after some algebra, to∫ ∫
∇2m

rdzdz = 2β2[(z − m
z ) ln(z − m

z +
m
r ] + β2

[
z − m

z − m
r +

∆2

z − m
z +

m
r

]
(2.49)

The vertical component of the specific discharge vector may be obtained by substitution of (2.49) for the

double integrals in (2.24) and gives, after a considerable amount of algebra,

m
q z = 3

[
zt − z

H
(rmt − rmb) +

m
r − rmt

]

− 2(z − m
z ) ln

z − m
z +

m
r

zt − m
z + rmt

+
2(zb − m

z )(zt − z)
H

ln
zb − m

z + rmb

zt − m
z + rmt

+
∆2

H

[
z − zb

zt − m
z + rmt

− z − zt

zb − m
z + rmb

− H

z − m
z +

m
r

]
(2.50)
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It is noted that the specific form of (2.50) is chosen so that the logarithms are the same in the expressions

for
m
q i and

m
q z; this will facilitate computations.

The three components of the discharge vector may now be obtained as follows

qi =
Qi

H
+

M∑
m=1

m
α

m
q i i = 1, 2

qz =
z − zb

H
Nt − z − zt

H
Nb +

M∑
m=1

m
α

m
q z

(2.51)

where
m
q i and

m
q z are given by (2.45) and (2.50), respectively.

Rotation

As stated before, the specific discharge field is rotational. It will be shown that, although continuity of flow

is met exactly when making the Dupuit approximation (see (2.18)), the curl of the specific discharge vector

is represented approximately. Darcy’s law may be rewritten as

qi = −∂iχ i = 1, 2

qz = −∂χ

∂z
− kν

(2.52)

where

χ = kφ (2.53)

The curl ~R of the specific discharge vector may be written as

~R = (∂2qz − ∂zq2, ∂zq1 − ∂1qz, ∂1q2 − ∂2q1) (2.54)

where ∂z stands for partial differentiation in the z–direction. Differentiation of (2.52) and substitution of

the result in (2.54) gives

~R = (−k∂2ν, k∂1ν, 0) (2.55)

where it is used that χ is single valued (∂1∂2χ = ∂2∂1χ).

The curl of the specific discharge vector obtained with the Dupuit approximation may be computed by

differentiation of (2.17) and (2.24). Differentiation gives

∂zq1 = k∂1ν ∂zq2 = k∂2ν ∂2q1 = ∂1q2 (2.56)

so that the curl of the specific discharge obtained with the Dupuit approximation becomes

~R = (−k∂2ν + ∂2qz, k∂1ν + ∂1qz, 0) (2.57)

Equation (2.57) is only equal to (2.55) for the case that ∂2qz = ∂1qz = 0; this is the case if ∇2ν = 0. For

almost all other cases, the curl is represented approximately.
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Implementation

The Dupuit formulation for variable density flow may be implemented in any groundwater code for Dupuit

flow of a single density fluid. Prior to this study, this theory has been implemented, in a slightly different

manner, in the commercial program Multi Layer Analytic Element Model (MLAEM; Strack, 1992) and

is called MVAEM (where the V stands for Variable density). The flow field in MLAEM and MVAEM is

modeled with analytic elements (Strack, 1989; Haitjema 1995). The implementation of the theory in the

analytic element code Single Layer Wells Line–sinks (SLWL; Strack, 1989) is discussed in the next chapter.
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CHAPTER 3

Implementation on the Supercomputer

Introduction

The analytic element code Single Layer Wells Line–sinks, SLWL (Strack, 1989), is modified to run on a

CrayC916. The Dupuit theory for variable density flow is implemented and the resulting program is called

Variable Density SLWL (VDSLWL); VDSLWL is an experimental code.

Implementation

The flow field consists of a potential flow part plus a part due to the variation in density. This may be seen,

for example, from the equations for the horizontal components of the specific discharge vector (2.51):

qi =
Qi

H
+

M∑
m=1

m
α

m
q i i = 1, 2 (3.1)

where
m
α is the strength of multiquadric point m and

m
q i (m = 1, . . . , M) depend on the density distribution

and aquifer parameters only (see 2.45). It is noted here that this does not mean that the flow field written in

the form (3.1) is the sum of single density flow plus variable density flow. The discharge vector Qi depends

on the boundary conditions, which in turn depend on the density distribution.

The flow field is modeled with analytic elements. The analytic elements used here are wells, constant

strength line–sinks, and constant strength, circular ponds. Each element may be written as the product of

a strength parameter (for example, the discharge of a well) and an influence function that depends on the

geometry only. The influence functions for the analytic elements used in this study may be found in Strack

(1989). The strength of element n is called
n
s and the influence function

n

Λ(x1, x2) so that the potential due

to N elements is

Φ(x1, x2) =
N∑

n=1

n
s

n

Λ(x1, x2) (3.2)

The derivative of
n

Λ in the xi direction is written as
n

λi so that the discharge vector may be written as

Qi = −∂iΦ = −
N∑

n=1

n
s

n

λi (3.3)
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and the specific discharge vector becomes

qi = − 1
H

N∑
n=1

n
s

n

λi +
M∑

m=1

m
α

m
q i i = 1, 2 (3.4)

Hence, the specific discharge vector consists of two large sums. These sums are represented by do–loops in

FORTRAN subroutines. The contribution of the analytic elements is divided into three parts, one each for

wells, line–sinks and ponds. The listing of the code may be found in Strack (1989). The computation of

heads may also be written as the sum of a potential flow part plus a density part (see 2.35), both existing

of large sums.

The program SLWL was modified to run on the vector machine CRAY C916 at the Minnesota Supercom-

puter Institute. The C916 is a vector machine with 9 processors. Each processor is capable of 960 Mflops

(106 floating point operations per second) at peak performance. The program SLWL was transported to

the C916 and modified to run under cf77, the Cray FORTRAN compiler, and using vectorization. As the

do–loops for the analytic elements and the density all have the same format (a parameter times an influence

function), the design for each module is the same. The design of the line–sink module will be discussed here.

The code of SLWL was transferred to the C916 and was run with only minor changes (to comply with Cray

FORTRAN). The performance of the code was evaluated by running a test case of 80 head specified line–sinks.

The calculation part of the test case consisted of the computation of 3 grids of 80*80, which corresponds

to 3*80*80*80=153600 evaluations of the line–sink function. The initial performance test showed that the

code ran at 24.84 Mflops. A performance trace showed that 94.76% of the time was spent in two functions:

COMLS (78.63%) and CFLSU (16.14%). The solution of a 81 by 81 matrix used 0.07% of the time.

CFLSU consists of a do–loop that sums up the contribution to the complex potential of all head specified

line–sinks. COMLS is the complex potential due to a line–sink of unit strength (the function
n

Λ for a line–sink).

The code of CFLSU and COMLS is (see Strack, 1989)

COMPLEX FUNCTION CFLSU(CZ)

IMPLICIT COMPLEX (C), LOGICAL (L)

INCLUDE ’SLLS.CMN’

CFLSU=(.0,.0)

DO 100 ILSF=1,NLSF

IAD=ILSPTF(ILSF)

CFLSU=CFLSU+RLSDIS(IAD)*COMLS(CZ,CLSZS(IAD),CLSZE(IAD))

100 CONTINUE

RETURN

END
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COMPLEX FUNCTION COMLS(CZ,CZS,CZE)

IMPLICIT COMPLEX (C), LOGICAL (L)

DATA RPI /3.1415926/

CBZ=(2.0*CZ-(CZS+CZE))/(CZE-CZS)

COM1=(.0,.0)

COM2=(.0,.0)

IF(CABS(CBZ+1.).GT..0001) COM1=(CBZ+1.)*CLOG(CBZ+1.)

IF(CABS(CBZ-1.).GT..0001) COM2=(CBZ-1.)*CLOG(CBZ-1.)

COMLS=COM1-COM2+2.*CLOG(.5*(CZE-CZS))-2.

COMLS=.25/RPI*CABS(CZE-CZS)*COMLS

RETURN

END

The vectorization on the C916 is automatic, provided that the code is in a vectorizable form. Only inner

do–loops can be vectorized and the do–loop cannot contain calls to other subroutines or external functions.

In addition, a recurrence relation, like the line

CFLSU=CFLSU+RLSDIS(IAD)*COMLS(CZ,CLSZS(IAD),CLSZE(IAD))

in CFLSU, is not guaranteed to be vectorized correctly.

The do–loop in CFLSU is not vectorizable because it has a call to an external function COMLS. Furthermore,

problems are anticipated because of the presence of a recurrence relation in the do–loop. The do–loop will

be vectorizable if the function COMLS is brought inline with the function CFLSU.

The program fpp (FORTRAN pre processor) on the C916 may be used to bring COMLS inline with CFLSU.

This results in a do–loop that is indeed vectorizable, but does not modify the recurrence relation at the end

of the do–loop. As such, the code does not give correct results.

The code was rewritten to bring COMLS inline with CFLSU, instead of using fpp. The recurrence relation

at the end of the do–loop was moved to a separate do–loop. Compiler directives were added to obstruct cf77

from vectorizing the latter do–loop. The modified code is

COMPLEX FUNCTION CFLSU(CZ)

IMPLICIT COMPLEX (C), LOGICAL (L)

INCLUDE ’SLLS.CMN’

DIMENSION CSCR(100)

DATA RPI /3.1415926/
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Table 3.1: Bench mark results

Machine Wallclock (seconds) CPU time (seconds)

486PC,50MHz 130 –

C916 w/o vectorization 30.25 22.22

C916 w/ vectorization 2.65 2.49

CFLSU=(.0,.0)

DO 100 ILSF=1,NLSF

IAD=ILSPTF(ILSF)

CZS=CLSZS(IAD)

CZE=CLSZE(IAD)

CBZ=(2.0*CZ-(CZS+CZE))/(CZE-CZS)

COM1=(.0,.0)

COM2=(.0,.0)

IF(CABS(CBZ+1.).GT..0001) COM1=(CBZ+1.)*CLOG(CBZ+1.)

IF(CABS(CBZ-1.).GT..0001) COM2=(CBZ-1.)*CLOG(CBZ-1.)

COM=COM1-COM2+2.*CLOG(.5*(CZE-CZS))-2.

COM=.25/RPI*CABS(CZE-CZS)*COM

CSCR(ILSF)=RLSDIS(IAD)*COM

100 CONTINUE

CDIR$ NOVECTOR

DO I=1,NLSF

CFLSU=CFLSU+CSCR(I)

ENDDO

CDIR$ VECTOR

RETURN

END

The vectorized code ran at 293.95 Mflops. A performance of over 300 Mflops may be obtained by replacing

the second do–loop in CFLSU by a library call that sums up the CSCR array. Results of a benchmark for the

outlined problem are shown in Table 3.1.

It may be concluded from Table 3.1 that vectorization gives a significant increase in performance. To

enable vectorization, the code has to be rewritten to create do–loops that do not call any external functions
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or subroutines and do not include recurrence relations. This influences the modular structure of the program.

The use of fpp to inline code has to be used with caution, because fpp does not consider the presence of

recurrence relations.

Performance

The change of the salinity distribution over time may be approximated using consecutive steady–state ap-

proximations. Given the initial density distribution, points where the density is specified (referred to as

density points here) are moved with the flow over a certain time interval. The velocity field is fixed over the

time interval. As a first order approximation, the density at a point that moves with the flow is assumed

not to change; processes such as diffusion and dispersion are not taken into account. At the end of the time

interval, the new locations of the density points may be used to compute a new density distribution and thus

a new velocity field. This process is repeated until the desired time is reached.

The computational effort of transient simulations may be separated into two parts: (1) the computation

of the density distribution and (2) the advection of points during a time interval with a suitable particle

tracking technique. The computation of the density distribution consists of solving the system of linear

equations presented by equations (2.27) and (2.28). Such a system may be solved using a standard routine

and is not used as a bench mark.

The advection of the density points requires the repeated evaluation of the three components of the

specific discharge vector given by (2.51). The parts of equations (2.51) that represent the influence of the

variation in density consist of simple sums, which are easily vectorizable. Computations have been performed

on a PC with an Intel Pentium Pro 200 MHz processor and a Cray C916 with 9 processors and a clockspeed

of 238 MHz. The computer program is written in FORTRAN77, using the Lahey F77L-EM/32 compiler on

the PC and the CrayCFT77 compiler on the C916.

A benchmark is performed for a hypothetical problem where the flow is caused by density differences

only (hence Q1 = Q2 = Nb = Nt = 0). The components of the specific discharge vector were computed

ten times at each density point (representing a procedure that needs 10 evaluations of the velocity over

a time interval). The results are presented in Table 3.2. Column 1 is the number of points where the

density is specified, column 2 the computation time (in seconds) on the PC, Column 3 the computation

time on the CrayC916 without vectorization, and column 4 the computation time on the CrayC916 with

vectorization and autotasking, using 1 processor. The computational speed on the PC and the CrayC916

without vectorization are similar while the computation time on the CrayC916 with vectorization is an order

of magnitude smaller. The CrayC916 with vectorization runs at a speed of 363 Mflops for the case of 1600

density points.

It is of interest to note that the computation time to solve the system of equations is comparable to
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Table 3.2: Comparison of performance with time in seconds

Number of PC CrayC916 CrayC916

points w/o vectorization w/ vectorization

200 2.31 2.39 0.39

400 9.01 9.22 1.20

600 20.38 20.48 2.37

800 35.87 35.95 3.95

1000 55.97 5.88

1200 80.63 8.32

1400 109.74 11.08

1600 143.52 14.43

3200 54.92

the computation time of the evaluation of the discharge vector as discussed above. The system was solved

using LDU–decomposition. This procedure is known to be inefficient and hard to vectorize. It may have an

advantage, however, if the procedure to simulate the change of the density is modified as follows. Instead of

following a density point with the flow, it is determined what density will arrive at the density point. Thus

the location of the density point is fixed, but the density will change. If the location remains the same,

so will the system of equations (2.27) and (2.28) that has to be solved; this system depends only on the

location of the points. Hence, the matrix equation has to be inverted only once and the LDU–decomposition

stored. Back substitution using the LDU–decomposition consists of the two matrix multiplications and the

computation time involved is insignificant.

The evaluation of the specific discharge vector at the M density points is an M2 process (M evaluations at

M locations). Hence, a graph of the number of points versus the computation time should be a straight line

on log–log paper; this graph is presented in Figure 3.1 for the PC and the CrayC916 with vectorization. The

slopes of the lines represent the real powers of the process. The computations on the PC are approximately

an M1.99 process and on the CrayC916 an M1.74 process.

The benchmark shows that vectorization results in an order of magnitude increase in speed. Use of a

vector machine makes it possible to solve problems with thousands of density points, as needed in regional

modeling, in a timely manner. Much larger systems of equations can be handled on the Cray than on the

PC.
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Figure 3.1: Comparison of computation times; PC (triangles), CrayC916 (squares).

Instructions for use of the density module in VDSLWL

VDSLWL has a command line interface. Commands can be typed in or read from an input file. If VDSLWL

is run on the supercomputer, instructions are read from the file IN.SL, output is written to the file OUT.SL

(unless specified differently) and messages are written to the file MES.SL. The input of aquifer parameters

and analytic elements is described in Strack (1989). The only change that has been made is that when a

head is specified, either for a head specified well, a head specified line–sink or the reference point, both the

head and an elevation have to be specified. A horizontal grid of the density distribution may be obtained

with the command <GRID>(N)<NU>(Z) where Z is the elevation in the aquifer where the grid is computed.

The check module includes three new commands: <DENSITY>, <SDIS>(x,y,z), <NU>(x,y,z). These

commands will return input density information, specific discharge at a point and dimensionless density at a

point. The same convention is adopted for the density module. The command <DENS> accesses the density

module. The following commands are available in the density module

(x,y,z,nu,delta)..<BETA>(b)..<SOLVE>..<CONTROL>

<COIN>(tol)..<QUIT>

The first command specifies the data at a point. Specify the dimensionless density (ν) not the density

(ρ). A separate ∆ may be specified for each point. The factor β is the horizontal scale factor. All density

data should be entered consecutively. After all density data is entered solve the system of equations by

typing <SOLVE>. The command <CONTROL> provides data to check whether the solution is correct. The
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command <COIN> finds all the points within a specified tolerance from each other. And finally, <QUIT>

returns command to the main menu. An example data file with the following three data points

x y z ν ∆

1000 1000 -20 0.02 1

1000 2000 -30 0.01 1

2000 2000 -10 0.005 1

would look as follows

DENS

BETA .01

1000 1000 -20 0.02 1

1000 2000 -30 0.01 1

2000 2000 -10 0.005 1

SOLVE

CONTROL

QUIT

The CONTROL statement returns the following information

I,ALPHA,NUCOMPUTED,NUGIVEN 1 -6.52104E-04 2.00000E-02 2.00000E-02

I,ALPHA,NUCOMPUTED,NUGIVEN 2 2.57503E-04 1.00000E-02 1.00000E-02

I,ALPHA,NUCOMPUTED,NUGIVEN 3 3.94602E-04 5.00000E-03 5.00000E-03

NU0,SUM OF ALPHA-S 1.01553E-02 0.00000E+00

Some notes on modification of the code

Details of the analytic element part of the code are given in Strack (1989). The listing of the density module

of VDSLWL is presented in Appendix B. Two issues are of interest for VDSLWL.

1) In the top part of the file SLMN.FOR, the input and output are directed to either a file (for use on the

supercomputer) or the console (for use on a PC).

2) The maximum number of density points is specified in the common block vardens.cmn and in the routine

ludcmp (in the file ludcmp.for).
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CHAPTER 4

The Dupuit Approximation for Variable Density Flow

in Coastal Aquifers

Introduction

The implications of the Dupuit approximation for variable density flow in coastal aquifers are investigated.

The density distribution in the aquifer is represented by a number of surfaces of constant density. The ele-

vations of the surfaces are approximated with multiquadric interpolators; the density varies linearly between

them. A new exact solution is derived for two–dimensional flow in the vertical plane, and is compared to the

Dupuit solution. The problem used for comparison consists of a bell-shaped transition zone between fresh

and salt water (as may be expected from upconing under a pumping well).

The density distribution changes with time because the salt moves with the groundwater. The change

of the density distribution is simulated by computing the change of the surfaces of constant density through

time. A transient simulation is presented for a hypothetical problem.

Representation of the density distribution

In practice, the density distribution as a function of x1, x2, and z is unknown. Rather, the density is known

at a number of isolated points in the aquifer. The integrals in the expressions for the head, potential, and

specific discharge vector, derived in Chapter 2, may be carried out when a functional form is chosen to

represent the density distribution. In light of the expressions for the specific discharge vector, (2.17) and

(2.24), the function that represents the density distribution needs to have continuous first derivatives and

Laplacian in the two horizontal directions to ensure a continuous flow field.

Strack (1995) proposed to represent the density distribution using a three–dimensional radial basis inter-

polator function; such functions have an infinite number of continuous derivatives (except for some special

cases). This approach has been implemented in the commercial software package MVAEM, and for this

project in the program VDSLWL, and has been used successfully to simulate the distribution of fresh water

heads in parts of The Netherlands (e.g., Van Gerven and Maas, 1994; Minnema and van der Meij, 1997).

Radial basis functions, such as the multiquadric interpolator (Hardy, 1971), are nicely behaved functions
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Figure 4.1: Overshoot and fluctuation of the interpolator function

that are suitable for the representation of continuously varying functions. However, radial basis functions,

as well as most other interpolation functions, are not suitable for the representation of a function that has

discontinuities in its derivatives; for example, a function that varies in one part of a domain and is constant

in another part. Consider, for example, a one–dimensional function that varies linearly for x < 0 and is

constant for x > 0 (the solid line in figure 4.1). When this function is approximated by a multiquadric

interpolator a problem arises near x = 0, because the interpolator cannot make a sharp bend (the derivative

of the interpolator is continuous). As a result, the interpolator will fluctuate around the function that it

represents over a considerable distance from the sharp bend (the dashed line in Figure 4.1). Such a behavior

is undesirable if the interpolator is to be used for the representation of the density distribution. Another

problem with the three–dimensional interpolator function is the shape factor ∆. In practice, this shape

factor is often set close to zero to obtain a reasonable representation of the density distribution (Van Gerven

and Maas, 1994). This results in a reasonable variation of the fresh water head, but the resulting velocity

field appears to be physically unrealistic. (It turns out that for ∆ approaching zero, the Laplacian of the

interpolator function (∇2ν) tends to infinity, as will be explained later in this chapter.)

As an alternative functional representation, it is proposed to divide the aquifer up in a number, say N +1,

of regions (see Figure 4.2). The nth region is bounded below by surface n of constant density ν = νn and

on top by surface n + 1 with density ν = νn+1. The density in region n varies linearly from νn to νn+1 in

the vertical direction. If the elevation of surface n is represented by the function ζn(x1, x2), then the density

may be written as

ν(x1, x2, z) =




νN z ≥ ζN (x1, x2)

νn +
z − ζn

ζn+1 − ζn
(νn+1 − νn) ζn(x1, x2) ≤ z ≤ ζn+1(x1, x2)

ν1 z ≤ ζ1(x1, x2)

(4.1)
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Figure 4.2: Surfaces of constant density

The elevation of surface n, ζn(x1, x2), may be represented by a two–dimensional interpolation function.

In practice, salinities are measured in nested observation wells, such that the density is known at a number

of elevations at one location. These measurements may be used to estimate the elevations of surfaces of

constant density; the interpolation function is fitted through these elevations.

The advantage of representation (4.1) is that the change from constant density (in the salt and fresh

water zones) to varying density (in the transition zone) is represented accurately. Also, it is convenient to

have explicit expressions for the elevations of surfaces of constant density while doing transient simulations,

as will become apparent in the final part of this chapter. A third advantage is that the integrations in the

expressions of the head, potential, and specific discharge vector may be carried out independent of the choice

of the functions ζn, since they do not depend on z.

The new representation is, however, more restrictive, since the density is approximated as piecewise linear

in the vertical direction. This restriction may be overcome somewhat by approximating the vertical variation

by a second or third order polynomial, but that has not been explored. In addition, representation (4.1) will

have to be modified if surface n intersects the base (or top) of the aquifer. Such a modification is possible,

but falls outside the scope of this chapter.

The integrations and differentiations for the specific discharge vector are carried out in chapter 5. It is

noted that as a result of the choice of this particular representation, the vertical variation of qx is quadratic

in the transition zone and is constant in the fresh and salt water zones; the vertical variation of qz is linear in

the constant density areas and is a third order polynomial in the transition zone (where the vertical variation

of ν is linear).
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Comparison with exact solution

Strack and Bakker (1995) showed that solutions obtained with the Dupuit approximation for variable density

flow compare well with exact solutions for problems where the density varies in the x1 direction only. In this

section, a comparison is made to problems where the density varies in x1 and z directions. Flow is considered

in the vertical x, z plane (the index 1 is dropped from x1 for notational convenience in this section). The

problem used for comparison is a transition zone that has a bell–shape, representing, for example, the

upconing under a well. It will be shown that the Dupuit approximation overestimates the specific discharge

vector and becomes inaccurate when the horizontal size of the bell–shape becomes small.

Consider the following hypothetical situation of an aquifer in which the density varies linearly from salt

(ν1 = νs) at z = ζ1 to fresh (ν2 = 0) at z = ζ2. The thickness of the transition zone is constant and equal

to h so that the density in the transition zone may be written as

ν = νs − z − ζ1

h
νs ζ1 < z < ζ2 (4.2)

The elevation of the top and bottom of the transition zone are

ζ1 = Ae−(x/σ)2 − 1
2h ζ2 = ζ1 + h (4.3)

where A and σ are chosen as: σ = 2h, A = 0.2h and νs = 0.025.

An exact solution is derived for the case that the aquifer is infinitely thick. It will be shown that the flow

caused by the density variation only has a limited extent in the vertical direction if the resistance to flow in

the vertical direction is not neglected. The continuity equation may be written, with the aid of Darcy’s law,

as

∂qx

∂x
+

∂qz

∂z
= −∂2χ

∂x2
− ∂2χ

∂z2
− k

∂ν

∂z
= 0 (4.4)

or

∂2χ

∂x2
+

∂2χ

∂z2
= −k

∂ν

∂z
(4.5)

where χ = kφ (equation (2.53)). The term −k∂ν/∂z, and thus the Laplacian of χ, equals zero in the fresh

and salt water zones and kνs/h in the transition zone.

The function χ is modeled with analytic elements (Strack, 1989). The transition zone is represented by

an area–sink of constant extraction rate kνs/h; the boundary of the transition zone is approximated with

a polygon. The transition zone is infinitely long. Far away, where the transition zone becomes horizontal,

the area–sink is approximated by long line–sinks of strength kνs. When z approaches positive infinity, ∂χ
∂z

approaches 1
2kνs (half the “water” extracted by the area–sink comes from the top, the other half from the

bottom of the aquifer); for z approaching negative infinity, ∂χ
∂z approaches − 1

2kνs. The desired behavior at
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Figure 4.3: Exact solution for variable density flow in an infinite aquifer with the boundary of the transition

zone consisting of straight segments

infinity is that qz equals zero. In terms of derivatives of χ this becomes, with equation (2.52) for qz, and

using that ν = 0 in the fresh water zone and ν = νs in the salt water zone

lim
z→+∞

∂χ

∂z
= 0 lim

z→−∞
∂χ

∂z
= −kνs (4.6)

A term χ = − 1
2kνsz (of which the Laplacian is zero) is added to the solution to obtain the correct behavior

at infinity. The flow field for the exact solution may now be obtained with Darcy’s law (2.52). Note that

the specific discharge vector is not just the gradient of χ, but that an extra term −kν must be added to qz.

The flow field and transition zone are shown in Figure 4.3.

An exact solution for an aquifer of finite thickness H may be obtained as follows. (The solution is exact

in the sense that the vertical resistance to flow is not neglected; the boundary condition along the base of

the aquifer will be met approximately.) The area–sink and the two line–sinks that represent the area–sink

far away are imaged through the line z = H/2; this will create an impermeable upper boundary. The

impermeable base is approximated by a long line–sink with a polynomial strength; this line–sink is also

imaged through z = H/2. The coefficients of the polynomial are computed such that ∂χ/∂z = −kνs along

the base, using the procedure proposed by Janković and Barnes (1997). For this solution the extra term

χ = − 1
2kνsz is not needed.

The flow field obtained with the Dupuit approximation for an aquifer of finite thickness H may be

obtained using the expressions presented in the next chapter with (4.2) for the density distribution. The
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Figure 4.4: Flow field for Dupuit solution (σ = H/2, h = H/4)

functions ζ1 and ζ2 are given by (4.3) and the derivatives and Laplacians are

∂ζ1

∂x
=

∂ζ2

∂x
= −2A

x

σ2
e−(x/σ)2

∂2ζ1

∂x2
=

∂2ζ2

∂x2
=

(
4x2

σ4
− 2

σ2

)
Ae−(x/σ)2

(4.7)

Solutions are obtained for two cases. Case 1 is characterized by the following values: σ = H, h = H/2; case

2 is characterized by: σ = H/2, h = H/4. The flow field for case 2 is shown in Figure 4.4.

The value of qx at z = −h/2 is plotted versus x for the exact (solid line) and the Dupuit solution (dashed

line) for case 2 (see Figure 4.5). The vertical component of flow is plotted versus z at x = 0 (Figure 4.6). The

solid lines represent the exact solution and the dashed lines the Dupuit solution. The thin lines correspond

to case 1, and the thick lines to case 2. The dotted line is the exact solution for an infinite aquifer. It is

concluded from Figures 4.5 and 4.6 that a solution obtained with the Dupuit approximation overestimates

the specific discharge vector. Such a behavior has also been observed for Dupuit interface flow (see, e.g.,

Bear, 1972).

The value of σ is a measure of the horizontal size of the upconing; the horizontal size of the upconing

is approximately 4σ and the transition zone is essentially horizontal at |x| > 2σ (see equation (4.3)). The

Dupuit solution becomes inaccurate when the horizontal size of the bell shape is smaller than twice the

thickness of the aquifer, as may be seen from Figure 4.6. Further research is needed to draw general

conclusions about the range of applicability of the Dupuit approximation.
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Figure 4.5: Comparison of qx versus x for exact (solid) and Dupuit (dashed) solutions

Figure 4.6: Comparison of qz versus z for exact and Dupuit solutions; (thick lines), H = 4h (thin lines);

exact (solid lines) approximate (dashed lines) exact solution for semi–infinite aquifer (dotted line)

40



Choice of the shape factor ∆

A procedure is outlined to simulate the change of the salinity distribution over time due to advection of

the salt with the groundwater. If one is interested in relatively small times (on the order of 25 years, as

is the case for most engineering purposes) it might be reasonable to neglect other processes that affect the

salinity distribution, such as diffusion and microscopic dispersion. The flow in the aquifer is approximated

as incompressible.

The elevation of surface n is represented by a multiquadric interpolator function (Hardy, 1971), which

may be written as

ζn(x1, x2) =
M∑

m=1

m
αn

√
(x1 − m

x1)2 + (x2 − m
x2)2 + ∆2 +

0
αn (4.8)

The constant ∆ controls the smoothness of the interpolator. The M + 1 constants
m
αn (m = 0, . . . , M) are

determined from M + 1 conditions. M conditions are that ζn equals a specified value
m

ζ n at M collocation

points (
m
x1,

m
x2), and one condition is that the sum of the

m
αn (m = 1, . . . , M) equals zero.

To obtain accurate expressions for the specific discharge vector, the multiquadric interpolator must not

only represent the elevations of the surfaces of constant density accurately, but also the first and second

derivatives of the elevations of the surfaces. This puts a constraint on the choice of the smoothness parameter

∆. Consider, for example, flow in the vertical plane where the multiquadric function is a function of one

variable (x). If ∆ is chosen equal to zero, the multiquadric function reduces to a piecewise linear interpolator.

The derivative of a piecewise linear interpolator is discontinuous and the second derivative becomes infinite

at the collocation points and is zero between them. If ∆ is reduced, the derivatives approach the behavior

of the derivatives of a piecewise linear interpolator.

It was found that an accurate representation may be obtained if ∆ is chosen equal to the distance

between the (regularly spaced) collocation points. (In practice, ∆ may be chosen equal to the average

distance between collocation points, for example.) Figure 4.7 shows the function ζ1 (solid line) of equation

(4.3) and two multiquadric representations. The collocation points are spaced a distance σ/2 apart and ∆

is chosen equal to σ/2 (dashed line) and σ/20 (dotted line), respectively. The first and second derivatives

of the function and the two multiquadric representations are also shown in Figure 4.7. The case for which

∆ is equal to the distance between the collocation points is almost indistinguishable from the function it

represents; the interpolator with smaller ∆ gives poor results for the derivatives. A similar behavior is

observed if the multiquadric interpolator is a function of two or three variables. It is noted that a collocation

point is located at the maximum of the function; in practice the location of the maximum is not known and

the representation of the density distribution is less accurate.
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Transient simulations

Expressions for the movement of the surfaces of constant density through time are obtained by applying

continuity of flow in every region separately. The salt water region is bounded below by the aquifer base and

on top by surface 1. The salt water zone is called region 0 and the discharge vector in the salt water zone is

represented by
0

Qi, so that continuity of flow in the salt region gives

∂i

0

Qi = −θ
∂ζ1

∂t
+ Nb (4.9)

where θ is the effective porosity. A superscript is added to the specific discharge vector; a superscript n

indicates evaluation at z = ζn. The horizontal components of the specific discharge vector do not vary with

z in the salt water region, so that

0

Qi =
1
qi(ζ1 − zb) (4.10)

Substitution of (4.10) for
0

Qi in (4.9) and differentiation gives

θ
∂ζ1

∂t
= −1

qi∂iζ1 − ∂i
1
qi(ζ1 − zb) + Nb (4.11)

The sum of the latter two terms equals qz(z = ζ1) =
1
qz, as may be seen from (2.19), and (4.11) may be

written as

θ
∂ζ1

∂t
= −1

qi∂iζ1 +
1
qz (4.12)

A similar equation may be derived for the movement of surface 2. Continuity of flow in region 1 states

∂i

1

Qi = θ
∂ζ1

∂t
− θ

∂ζ2

∂t
(4.13)

and the divergence of the discharge vector may be written as

∂i

1

Qi = ∂i

ζ2∫
ζ1

qidz =

ζ2∫
ζ1

∂iqidz +
2
qi∂iζ2 − 1

qi∂iζ1 (4.14)

where use is made of Leibniz’s rule. Substitution of (4.14) for ∂i

1

Qi in (4.13) and using that

ζ2∫
ζ1

∂iqidz = −2
qz +

1
qz (4.15)

gives, after rearrangement of terms

θ
∂ζ2

∂t
= −2

qi∂iζ2 +
2
qz (4.16)
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Figure 4.7: Behavior of the multiquadric interpolator
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In general, the differential equation for the movement of surface n may be written as

θ
∂ζn

∂t
= −n

qi∂iζn +
n
qz (4.17)

or as

Dζn

Dt
=

n
qz

θ
(4.18)

where D
Dt is the material time derivative for the two horizontal directions. Equations (4.16) and (4.17) are

equivalent to the equations for a moving interface as obtained by, e.g., Bear (1972) and De Josselin de Jong

(1981).

The movement of a surface of constant density through time may be approximated by numerical integra-

tion of either (4.17) or (4.18), where the specific discharge vector is taken constant during a time step. At

the end of the time step, a new specific discharge field is computed, based on the new density distribution.

The accuracy may be improved by using a predictor–corrector procedure and/or smaller time steps.

For general cases, (4.18) is probably preferred, especially in the presence of leakage or in the neighborhood

of inhomogeneities in the aquifer properties. It may also be beneficial to choose the collocation points for

the multiquadric interpolator on a regular grid. Equation (4.18) should then be integrated by determining

what elevation will arrive at a grid point during a time step, instead of where the elevation of a grid point

moves to.

As an example, the change through time of the density distribution of a hypothetical problem is computed.

Consider an aquifer of hydraulic conductivity k = 1m/d and thickness H = 40m. The aquifer is divided into

3 regions. The density in the salt and fresh regions are ν1 = 0.025 and ν2 = 0, respectively. The density in

the transition zone at t = 0 is

ν = ν1 − z − ζ1

ζ2 − ζ1
ν1 ζ1 < z < ζ2 (4.19)

where

ζ1 = −Ae−(x+2σ)2/σ2 − 1
2h ζ2 = Ae−(x−2σ)2/σ2

+ 1
2h (4.20)

where h = H/4, σ = H/2, A = H/8. The top and bottom of the transition zone are represented by

multiquadric interpolators. The collocation points are spaced a distance σ/2 apart; ∆ is chosen equal to this

distance. The flow field and position of the transition zone at t = 0 is shown in Figure 4.8a. The change

of the transition zone through time is computed through numerical integration of equation (4.17) where

θ = 0.3; the time step is 20d. The flow field and position of the transition zone at t = 500d and t = 4000d

are shown in Figures 4.8b and 4.8c, respectively.
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Figure 4.8: Results of transient simulation
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Conclusions

The implications of the Dupuit approximation for variable density flow in coastal aquifers were investigated.

The density distribution was represented by a number of surfaces of constant density; the elevations of the

surfaces were approximated with multiquadric interpolators and the density varies linearly between them.

It was shown that the smoothness parameter ∆ in the multiquadric interpolator must be of the order of

the average distance between control points to obtain reasonable results for the gradient and Laplacian

of the density distribution; this is required to obtain accurate specific discharges (and thus velocities). A

new exact solution was derived for two–dimensional, variable density flow in the vertical plane. The exact

solution was compared to the Dupuit solution. The problem chosen for comparison consisted of a bell shaped

transition zone. The comparison showed that the Dupuit approximation overestimates the specific discharge

vector and that the flow field becomes inaccurate when horizontal size of the upconing is smaller than two

times the aquifer thickness for the specific case investigated. Additional research is needed to draw general

conclusions on the range of application of the Dupuit approximation for variable density flow. The new

density distribution was highly useful for the comparison of Dupuit solutions to exact solutions. Equations

were derived for the movement of surfaces of constant density through time. The equations were used for a

simple transient simulation.
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CHAPTER 5

The Specific Discharge Vector

for a Vertically Piecewise–Linear Density Distribution

Introduction

Expressions are derived for the specific discharge vector resulting from the new density distribution intro-

duced in the previous chapter. First, expressions are derived for the simple case of a transition zone consisting

of two constant density planes (N = 2). General expressions for arbitrary N are derived in the second part.

The expressions for the specific discharge vector are reproduced here from Chapter 2 for completeness

qi = −k∂iφ =
Qi

H
+ k∂i

∫
νdz − k

H

zt∫
zb

∂i

∫
νdzdz i = 1, 2 (5.1)

qz =
z − zb

H
Nt − z − zt

H
Nb +

k(z − zt)
H

z∫
zb

∇2

∫
νdzdz +

k(z − zb)
H

zt∫
z

∇2

∫
νdzdz (5.2)

A simple transition zone

The integrations in the expressions for the specific discharge vector may be carried out when a functional

form is chosen for the dimensionless density distribution. As an example, the density is taken to vary linearly

from ν1 to ν2 between ζ1(x, y) and ζ2(x, y). For z < ζ1 the density is equal to ν1 and for z > ζ2 the density

is ν2. In functional form this becomes

ν(x, y, z) =




ν2 z > ζ2(x, y)

ν1 +
z − ζ1

ζ2 − ζ1
(ν2 − ν1) ζ1(x, y) < z < ζ2(x, y)

ν1 z < ζ1(x, y)

(5.3)
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The integrations in (5.1) may be carried out without knowing the functions ζ1(x, y) and ζ2(x, y), because

they are independent of z.

∫
νdz =




ν2(z − ζ2) + ν1(ζ2 − zb) + 1
2 (ν2 − ν1)(ζ2 − ζ1) z > ζ2

ν1(z − ζ1) +
(z − ζ1)2(ν2 − ν1)

2(ζ2 − ζ1)
+ ν1(ζ1 − zb) ζ1 < z < ζ2

ν1(z − zb) z < ζ1

(5.4)

It may be verified from (5.4) that the function
∫

νdz is continuous. Differentiation of (5.4) gives

∂i

∫
νdz =




1
2 (ν1 − ν2) (∂iζ1 + ∂iζ2) z > ζ2

1
2 (ν1 − ν2)

2(z − ζ1)∂iζ1(ζ2 − ζ1) + (z − ζ1)2(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

ζ1 < z < ζ2

0 z < ζ1

(5.5)

where it is assumed that zb is constant. Expression (5.5) may be integrated from zb to zt

zt∫
zb

∂i

∫
νdzdz =

(ν1 − ν2)
2(ζ2 − ζ1)2

[
(z − ζ1)2∂iζ1(ζ2 − ζ1) + 1

3 (z − ζ1)3(∂iζ2 − ∂iζ1)
]ζ2

ζ1

+ 1
2 (ν1 − ν2)(∂iζ1 + ∂iζ2)(zt − ζ2)

= 1
2 (ν1 − ν2)[13 (ζ2 − ζ1)(2∂iζ1 + ∂iζ2) + (zt − ζ2)(∂iζ1 + ∂iζ2)]

(5.6)

The horizontal components of the discharge vector become, with (5.1), (5.5), and (5.6)

qi =
Qi

H
− k

2H
(ν1 − ν2)[13 (ζ2 − ζ1)(2∂iζ1 + ∂iζ2) + (zt − ζ2)(∂iζ1 + ∂iζ2)]

+
k

2
(ν1 − ν2)




∂iζ1 + ∂iζ2 z > ζ2

2(z − ζ1)∂iζ1(ζ2 − ζ1) + (z − ζ1)2(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

ζ1 < z < ζ2

0 z < ζ1

(5.7)

The vertical component of flow is obtained from (5.2) which may be written as

qz = −k

z∫
zb

∇2

∫
νdzdz +

k

H

z∫
zb

zt∫
zb

∇2

∫
νdzdzdz (5.8)

The derivation of ∇2
∫

νdz, which requires differentiation of (5.5), is messy for the region ζ1 < z < ζ2. The

vector fi(x, y, z) is introduced for convenience as

∂i

∫
νdz = 1

2 (ν1 − ν2)fi ζ1 < z < ζ2 (5.9)

where fi is

fi =
2(z − ζ1)∂iζ1

ζ2 − ζ1
+

(z − ζ1)2(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

= gi + hi (5.10)
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where gi is the first fraction in (5.10) and hi is the second fraction. Differentiation of gi gives

∂igi =
[−2∂iζ1∂iζ1 + 2(z − ζ1)∇2ζ1](ζ2 − ζ1) − 2(z − ζ1)∂iζ1(∂iζ2 − ∂iζ1)

(ζ2 − ζ1)2

=
−2∂iζ1∂iζ1

ζ2 − ζ1
+

2∇2ζ1(ζ2 − ζ1) − 2∂iζ1(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

(z − ζ1)
(5.11)

And differentiation of hi

∂ihi =
{
[−2(z − ζ1)∂iζ1(∂iζ2 − ∂iζ1) + (z − ζ1)2(∇2ζ2 −∇2ζ1)](ζ2 − ζ1)2

−2(z − ζ1)2(∂iζ2 − ∂iζ1)(ζ2 − ζ1)(∂iζ2 − ∂iζ1)
}

/(ζ2 − ζ1)4

=
(ζ2 − ζ1)(∇2ζ2 −∇2ζ1) − 2(∂iζ2 − ∂iζ1)2

(ζ2 − ζ1)3
(z − ζ1)2 − 2∂iζ1(∂iζ2 − ∂iζ1)

(ζ2 − ζ1)2
(z − ζ1)

(5.12)

Combination of (5.11) and (5.12) gives

∂ifi =
−2∂iζ1∂iζ1

(ζ2 − ζ1)
+

2∇2ζ1(ζ2 − ζ1) − 4∂iζ1(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

(z − ζ1)

+
(ζ2 − ζ1)(∇2ζ2 −∇2ζ1) − 2(∂iζ2 − ∂iζ1)2

(ζ2 − ζ1)3
(z − ζ1)2

(5.13)

This gives for ∇2
∫

νdz

∇2

∫
νdz = 1

2 (ν1 − ν2)




∇2ζ1 + ∇2ζ2 z > ζ2

∂ifi ζ1 < z < ζ2

0 z < ζ1

(5.14)

Integration of (5.14) gives for ζ1 < z < ζ2

z∫
ζ1

∂ifidz =
−2∂iζ1∂iζ1

(ζ2 − ζ1)
(z − ζ1) +

∇2ζ1(ζ2 − ζ1) − 2∂iζ1(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

(z − ζ1)2

+
(ζ2 − ζ1)(∇2ζ2 −∇2ζ1) − 2(∂iζ2 − ∂iζ1)2

3(ζ2 − ζ1)3
(z − ζ1)3

(5.15)

so that

ζ2∫
ζ1

∂ifidz = − 2∂iζ1∂iζ1 + ∇2ζ1(ζ2 − ζ1) − 2∂iζ1(∂iζ2 − ∂iζ1)

+ 1
3 (ζ2 − ζ1)(∇2ζ2 −∇2ζ1) − 2

3 (∂iζ2 − ∂iζ1)2

= − 2
3 (∂iζ2∂iζ2 + ∂iζ1∂iζ2 + ∂iζ1∂iζ1) + ∇2ζ1(ζ2 − ζ1) + 1

3 (ζ2 − ζ1)(∇2ζ2 −∇2ζ1)

(5.16)

and
z∫

ζ2

(∇2ζ1 + ∇2ζ2)dz = (∇2ζ1 + ∇2ζ2)(z − ζ2) (5.17)
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Combining the previous three equations gives

z∫
zb

∇2

∫
νdzdz = 1

2 (ν1 − ν2)




∇2ζ1(z − ζ1) + ∇2ζ2(z − ζ2) + 1
3 (ζ2 − ζ1)(∇2ζ2 −∇2ζ1)+

− 2
3 (∂iζ2∂iζ2 + ∂iζ1∂iζ2 + ∂iζ1∂iζ1) z > ζ2

−2∂iζ1∂iζ1

(ζ2 − ζ1)
(z − ζ1) +

∇2ζ1(ζ2 − ζ1) − 2∂iζ1(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

(z − ζ1)2+

+
(ζ2 − ζ1)(∇2ζ2 −∇2ζ1) − 2(∂iζ2 − ∂iζ1)2

3(ζ2 − ζ1)3
(z − ζ1)3 ζ1 < z < ζ2

0 z < ζ1

(5.18)

Differentiation of (5.6) gives

zt∫
zb

∇2

∫
νdzdz = 1

2 (ν1 − ν2)
[
1
3 (∂iζ2 − ∂iζ1)(2∂iζ1 + ∂iζ2) + 1

3 (ζ2 − ζ1)(2∇2ζ1 + ∇2ζ2)−

∂iζ2(∂iζ1 + ∂iζ2) + (zt − ζ2)(∇2ζ1 + ∇2ζ2)]
]

= 1
2 (ν1 − ν2)

[− 2
3 (∂iζ2∂iζ2 + ∂iζ1∂iζ2 + ∂iζ1∂iζ1)+

1
3 (ζ2 − ζ1)(2∇2ζ1 + ∇2ζ2) + (zt − ζ2)(∇2ζ1 + ∇2ζ2)

]
(5.19)

and consecutive integration

z∫
zb

zt∫
zb

∇2

∫
νdzdzdz = 1

2 (ν1 − ν2)(z − zb)
[− 2

3 (∂iζ2∂iζ2 + ∂iζ1∂iζ2 + ∂iζ1∂iζ1)+

1
3 (ζ2 − ζ1)(2∇2ζ1 + ∇2ζ2) + (zt − ζ2)(∇2ζ1 + ∇2ζ2)

] (5.20)

The vertical component of the discharge vector may now be computed with (5.8), (5.18) (with (5.15), (5.16),

and (5.17)) and (5.20) which gives

qz =
z − zb

H
Nt − z − zt

H
Nb + 1

2

k

H
(ν1 − ν2)(z − zb)

∗ [− 2
3 (∂iζ2∂iζ2 + ∂iζ1∂iζ2 + ∂iζ1∂iζ1) + 1

3 (ζ2 − ζ1)(2∇2ζ1 + ∇2ζ2) + (zt − ζ2)(∇2ζ1 + ∇2ζ2)
]

− 1
2k(ν1 − ν2)




∇2ζ1(z − ζ1) + ∇2ζ2(z − ζ2) + 1
3 (ζ2 − ζ1)(∇2ζ2 −∇2ζ1)+

− 2
3 (∂iζ2∂iζ2 + ∂iζ1∂iζ2 + ∂iζ1∂iζ1) z ≥ ζ2

−2∂iζ1∂iζ1

(ζ2 − ζ1)
(z − ζ1) +

∇2ζ1(ζ2 − ζ1) − 2∂iζ1(∂iζ2 − ∂iζ1)
(ζ2 − ζ1)2

(z − ζ1)2+

+
(ζ2 − ζ1)(∇2ζ2 −∇2ζ1) − 2(∂iζ2 − ∂iζ1)2

3(ζ2 − ζ1)3
(z − ζ1)3 ζ1 ≤ z ≤ ζ2

0 z ≤ ζ1

(5.21)
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A general transition zone

Consider a transition zone that varies linearly from ν = ν1 at z = ζ1 to ν = ν2 at z = ζ2, then varies linearly

from ν = ν2 at z = ζ2 to ν = ν3 at z = ζ3 and so on until the fresh water at z = ζN . Hence the density

varies linearly in the vertical direction over N − 1 sections, or written as an equation:

ν(x, y, z) =




νN z > ζN (x, y)

νn +
z − ζn

ζn+1 − ζn
(νn+1 − νn) ζn(x, y) < z < ζn+1(x, y)

ν1 z < ζ1(x, y)

(5.22)

The integrations in (5.1) are carried out in what follows. Since the expressions become lengthy, they are not

combined into one expression.

∫
νdz =




νN (z − ζN ) + ν1(ζ1 − zb) +
∑N−1

m=1
1
2 (νm + νm+1)(ζm+1 − ζm) z > ζN

νn(z − ζn) +
(z − ζn)2(νn+1 − νn)

2(ζn+1 − ζn)
+ ν1(ζ1 − zb) +

∑n−1
m=1

1
2 (νm + νm+1) (ζm+1 − ζm)

ζn < z < ζn+1

ν1(z − zb) z < ζ1

(5.23)

∂i

∫
νdz =




ν1∂iζ1 − νN∂iζN +
∑N−1

m=1
1
2 (νm + νm+1)(∂iζm+1 − ∂iζm) z > ζN

ν1∂iζ1 − νn∂iζn +
∑n−1

m=1
1
2 (νm + νm+1)(∂iζm+1 − ∂iζm)+

+ 1
2 (νn − νn+1)

2(z − ζn)∂iζn(ζn+1 − ζn) + (z − ζn)2(∂iζn+1 − ∂iζn)
(ζn+1 − ζn)2

ζn < z < ζn+1

0 z < ζ1

(5.24)

zt∫
zb

∂i

∫
νdz =ν1∂iζ1(zt − ζ1) −

N−1∑
m=1

νm∂iζm(ζm+1 − ζm) − νN∂iζN (zt − ζN )

+
N−1∑
m=1

1
2 (νm + νm+1)(∂iζm+1 − ∂iζm)(zt − ζm+1)

+
N−1∑
m=1

1
6 (νm − νm+1)(2∂iζm + ∂iζm+1)(ζm+1 − ζm)

(5.25)

The expressions for qz include the integral ∇2
∫

νdz. The derivation of ∇2
∫

νdz, which requires differen-

tiation of (5.24), is messy for the region ζn < z < ζn+1. The vector
n

f i(x, y, z) is introduced for convenience
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as

∂i

∫
νdz = 1

2 (νn − νn+1)
n

f i ζn < z < ζn+1 (5.26)

where
n

f i is

n

f i =
2(z − ζn)∂iζn

ζn+1 − ζn
+

(z − ζn)2(∂iζn+1 − ∂iζn)
(ζn+1 − ζn)2

=
n
gi +

n

hi (5.27)

where
n
gi is the first fraction in (5.27) and

n

hi is the second fraction. Differentiation of
n
gi gives

∂i
n
gi =

[−2∂iζn∂iζn + 2(z − ζn)∇2ζn](ζn+1 − ζn) − 2(z − ζn)∂iζn(∂iζn+1 − ∂iζn)
(ζn+1 − ζn)2

=
−2∂iζn∂iζn

ζn+1 − ζn
+

2∇2ζn(ζn+1 − ζn) − 2∂iζn(∂iζn+1 − ∂iζn)
(ζn+1 − ζn)2

(z − ζn)
(5.28)

And differentiation of
n

hi

∂i

n

hi =
{
[−2(z − ζn)∂iζn(∂iζn+1 − ∂iζn) + (z − ζn)2(∇2ζn+1 −∇2ζn)](ζn+1 − ζn)2

−2(z − ζn)2(∂iζn+1 − ∂iζn)(ζn+1 − ζn)(∂iζn+1 − ∂iζn)
}

/(ζn+1 − ζn)4

=
(ζn+1 − ζn)(∇2ζn+1 −∇2ζn) − 2(∂iζn+1 − ∂iζn)2

(ζn+1 − ζn)3
(z − ζn)2 − 2∂iζn(∂iζn+1 − ∂iζn)

(ζn+1 − ζn)2
(z − ζn)

(5.29)

Combination of (5.28) and (5.4) gives

∂i

n

f i =
−2∂iζn∂iζn

(ζn+1 − ζn)
+

2∇2ζn(ζn+1 − ζn) − 4∂iζn(∂iζn+1 − ∂iζn)
(ζn+1 − ζn)2

(z − ζn)

+
(ζn+1 − ζn)(∇2ζn+1 −∇2ζn) − 2(∂iζn+1 − ∂iζn)2

(ζn+1 − ζn)3
(z − ζn)2

(5.30)

This gives for ∇2
∫

νdz

∇2

∫
νdz =




ν1∇2ζ1 − νN∇2ζN +
∑N−1

m=1
1
2 (νm + νm+1)(∇2ζm+1 −∇2ζm) z > ζN

ν1∇2ζ1 − νn∇2ζn +
∑n−1

m=1
1
2 (νm + νm+1)(∇2ζm+1 −∇2ζm) + 1

2 (νn −νn+1)∂i

n

f i

ζn < z < ζn+1

0 z < ζn

(5.31)

Integration of (5.30) gives

z∫
ζn

∂i

n

f idz =
−2∂iζn∂iζn

(ζn+1 − ζn)
(z − ζn) +

∇2ζn(ζn+1 − ζn) − 2∂iζn(∂iζn+1 − ∂iζn)
(ζn+1 − ζn)2

(z − ζn)2

+
(ζn+1 − ζn)(∇2ζn+1 −∇2ζn) − 2(∂iζn+1 − ∂iζn)2

3(ζn+1 − ζn)3
(z − ζn)3

(5.32)
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so that

ζm+1∫
ζm

∂i

m

f idz = − 2∂iζm∂iζm + ∇2ζm(ζm+1 − ζm) − 2∂iζm(∂iζm+1 − ∂iζm)

+ 1
3 (ζm+1 − ζm)(∇2ζm+1 −∇2ζm) − 2

3 (∂iζm+1 − ∂iζm)2

= − 2
3 (∂iζm+1∂iζm+1 + ∂iζm∂iζm+1 + ∂iζm∂iζm)

+ 1
3 (ζm+1 − ζm)(2∇2ζm + ∇2ζm+1)

(5.33)

Combining equations (5.26) through (5.33) gives

z∫
zb

∇2

∫
νdzdz =




ν1∇2ζ1(z − ζ1) −
∑N−1

m=1 νm∇2ζm(ζm+1 − ζm) − νN∇2ζN (z − ζN )+

+
∑N−1

m=1
1
2 (νm + νm+1)(∇2ζm+1 −∇2ζm)(z − ζm+1)

+
∑N−1

m=1
1
2 (νm − νm+1)

∫ ζm+1

ζm
∂i

m

f idz z > ζN

ν1∇2ζ1(z − ζ1) −
∑n−1

m=1 νm∇2ζm(ζm+1 − ζm) − νn∇2ζn(z − ζn)+

+
∑n−1

m=1
1
2 (νm + νm+1)(∇2ζm+1 −∇2ζm)(z − ζm+1)

+
∑n−1

m=1
1
2 (νm − νm+1)

∫ ζm+1

ζm
∂i

m

f idz + 1
2 (νn − νn+1)

∫ z

ζn
∂i

n

f idz ζn < z < ζn+1

0 z < ζ1

(5.34)

All integrals are now computed and the specific discharge vector may be computed. The expressions have

been implemented in a FORTRAN program, which has been used in Chapter 4 to assess the implications of

the Dupuit approximation.
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CHAPTER 6

Results and Conclusions

The objective of this report is to investigate the performance of the Dupuit theory for variable density

flow combined with analytic elements to model groundwater flow in coastal aquifers. Four areas of study

were identified in the introduction. The conclusions pertaining to these four areas of study are summarized

in this chapter.

Study area 1.

The analytic element modeling of groundwater flow in the first confined aquifer beneath the

Delmarva Peninsula.

An analytic element model was presented for groundwater flow in the shallow aquifers beneath the

Delmarva peninsula, in Chapter 1. The modeling of the Delmarva peninsula is greatly hampered by the

unavailability of measurements of the salinity of the groundwater, especially near the shore. Only six

measurements were found of brackish or salt water. All other measurements indicated fresh water. The six

measurements were insufficient to construct a three–dimensional picture of the salinity distribution below

the Delmarva peninsula. To overcome this problem, publications of salinity in the Chesapeake Bay and the

Atlantic Ocean were used to construct a conceptual model of the salinity distribution below the peninsula.

This distribution results in a horizontal variation from fresh water on the peninsula to salt water in the

bay and ocean. The variation in the vertical direction is assumed to be negligible. This is known to be

unrealistic, but there are not enough data to propose otherwise.

The resulting model of the fresh water head was compared to nine measurements of the head on the eastern

part of the peninsula (the counties of Sussex, DE, Wicomico, MD, and Worchester, MD). The comparison

showed that the simulation of fresh water heads in that area is reasonable, but general conclusions for the

entire model cannot be drawn. Additional data (head, discharge and chloride measurements) are necessary

to calibrate the model and to improve the conceptual model of the density distribution.

The modeling study demonstrated the many challenges in building groundwater models of flow systems

in coastal aquifers. The biggest constraints in the Chesapeake Bay area are the availability of density data
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and water table measurements. To assess the full capabilities of the approach, it should be applied to an

area where more data are available, perhaps an area outside the United States.

Study area 2

The reduction of computation time by the use of a supercomputer.

The second area of study was addressed in Chapter 3. The Dupuit approximation for variable density flow

was implemented in an analytic element model. The resulting program was written to run on the CrayC916, a

vector machine. The Dupuit formulation for variable density flow, as well as the analytic element formulation

for groundwater flow, are suited ideally for implementation on supercomputers. Both formulations result in

large sums of complicated functions that are easily vectorizable. The performance of the vectorized code

was an order of magnitude better than the unvectorized code. The vecorized code performed at a speed of

over 300 billion floating point operations per second (300 Mflops), which is a significant improvement over

the non–vectorized code. It is noted that high performance computing seems to move away from vector

machines to massively parallel machines. This will have no adverse effect on the implementation of analytic

element codes on supercomputers. The large sums of complicated functions can just as easy be modified to

run on massively parallel machines as on vector machines. An analytic element code written specifically for

use of a massively parallel machine is presented by Haitjema et al. (1997).

Study area 3

The accurate representation of the density distribution.

In Chapters 1, 2 and 3, the density distribution was represented by the three-dimensional multiquadric

interpolator function. It was noted that the shape factor ∆ of the interpolator was chosen close to zero.

The main reason for this choice was to improve control of the interpolator, especially at the transition from

brackish water of variable density to fresh or salt water of constant density. It was shown in Chapter 4 that

this will result in reasonable simulations of the density (and thus the fresh water head, as was the objective

of the modeling study in Chapter 1), but that the resulting velocity vector was unrealistic near the points

where the density is specified. This makes it difficult to simulate the change of the salinity distribution

through time; during such a simulation the salt moves with the groundwater and the velocities have to be

accurate.

A new function to represent the density was introduced to solve this problem. The representation

consists of a number of surfaces of constant density; the elevations of the surfaces are approximated with the

multiquadric interpolator and the density varies linearly between them. It was shown that the smoothness
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parameter ∆ in the multiquadric interpolator must be of the order of the average distance between control

points to obtain reasonable results for the velocity field. It is noted that this was not practical for the original

three–dimensional interpolator.

Study area 4

The implications of adopting the Dupuit approximation for variable density flow.

The new density distribution was used to compare a Dupuit solution with an exact solution, a solution in

which the vertical resistance to flow is not neglected. The problem chosen for comparison consisted of a bell

shaped transition zone. The comparison showed that the Dupuit approximation overestimates the specific

discharge vector and that the flow field becomes inaccurate when the width of the bell–shaped transition

zone is less than two times the thickness of the aquifer.

The new density distribution represents the transition from variable density zones (brackish water) to

constant density zones (fresh or salt water) accurately. The new distribution does introduce complications

that remain to be solved, however, such as the intersection of the transition zone with the base or top of the

aquifer. The new density distribution is highly useful for the comparison between Dupuit solutions and exact

solutions, because it is relatively easy to obtain exact solutions for flow in the vertical plane corresponding to

the new density distribution. A comparison between exact and Dupuit solutions may be used to determine

the full range of applicability of the Dupuit approximation for variable density flow.
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Appendix A1

x (m) y (m) z (m) ρ (kg/m3) x (m) y (m) z (m) ρ (kg/m3)
424108 4204046 -347.5 999.3 435778 4173864 -6.7 999.2
425613 4205912 -299.9 999.4 437272 4173853 -4.6 999.2
425613 4205912 -295.4 999.4 449394 4201970 -7.9 999.2
425613 4205912 -151.5 999.4 455317 4196295 -10.4 999.3
425613 4205912 -341.7 999.4 446405 4200109 -7.6 999.2
410711 4206061 -1.1 999.3 458315 4200040 -4.6 999.2
425613 4205912 -106.7 1001.2 459804 4200032 -11.3 999.2
431596 4209651 -13.4 999.3 411298 4121447 -36.0 999.2
428688 4217197 -173.7 999.2 412806 4119552 -30.2 999.2
428688 4217197 -342.9 999.2 411303 4119567 -29.6 999.2
430174 4217184 -8.7 999.3 412806 4119552 -31.4 999.3
381120 4217752 -2.1 999.3 411462 4134606 -40.2 999.2
442072 4218971 -9.1 999.3 415888 4127040 -34.1 999.2
433191 4222799 -15.2 999.2 412864 4125191 -41.2 999.2
439144 4224633 -62.5 999.3 415964 4134560 -38.7 999.2
439158 4226513 -16.0 999.2 417576 4145824 -35.1 999.3
437674 4226524 -12.2 999.2 419020 4140170 -34.8 999.2
439158 4226513 -32.3 999.3 420555 4143915 -36.6 999.2
442139 4228371 -7.2 999.2 419166 4155209 -29.9 999.2
439172 4228393 -9.8 999.2 429597 4149474 -45.1 999.3
436205 4228416 -18.3 999.2 420484 4136396 -47.6 999.2
436205 4228416 -19.2 999.2 428115 4151366 -32.0 999.2
378318 4229077 -4.7 999.2 426700 4160779 -41.5 999.2
440656 4228382 -14.9 999.2 428115 4151366 -37.5 999.3
353163 4233256 -19.8 999.2 422266 4166460 -28.0 999.3
474791 4231964 -4.6 999.2 432745 4168248 -31.4 999.2
474791 4231964 -13.7 999.2 440205 4166311 -44.8 999.2
482209 4233824 -7.0 999.2 434285 4173876 -43.3 999.2
470356 4235739 -11.7 999.2 435764 4171984 -41.8 999.2
479254 4237592 -17.5 999.2 435808 4177624 -36.0 999.2
344373 4239063 -1.5 999.2 440286 4177590 -35.1 999.2
335481 4239239 -2.3 999.3 440191 4164431 -36.6 999.2
488145 4237574 -14.3 999.2 446245 4175669 -43.3 999.2
488145 4237574 -27.1 999.2 452316 4192552 -41.2 999.2
480740 4239468 -4.6 999.2 446282 4181309 -36.6 999.2
480740 4239468 -12.3 999.2 449394 4201970 -36.3 999.2
489629 4239452 -14.6 999.2 452393 4205712 -33.8 999.2
482222 4239465 -12.6 999.2 459804 4200032 -37.8 999.2
371109 4242354 -2.9 999.3 411298 4121447 -60.4 999.2
445196 4241511 -8.4 999.2 420484 4136396 -60.4 999.2
467414 4241391 -4.9 999.2 409815 4123343 -57.3 999.5
480745 4241348 -16.5 999.3 409815 4123343 -48.2 999.6
482226 4241345 -16.3 999.2 411318 4123327 -54.3 999.5
482226 4241345 -26.4 999.2 409815 4123343 -63.7 999.5
491113 4241330 -17.5 999.2 412747 4113912 -58.8 999.2
492594 4241329 -22.9 999.2 412806 4119552 -50.3 999.2
492594 4241329 -12.2 999.2 415888 4127040 -64.6 999.2
480749 4243228 -32.6 999.2 417390 4127025 -54.9 999.2
480749 4243228 -32.8 999.2 417390 4127025 -55.8 999.2
449651 4243362 -22.6 999.2 417390 4127025 -55.2 999.2
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x y z ρ x y z ρ
491115 4243210 -22.9 999.2 417390 4127025 -54.6 999.2
491115 4243210 -25.9 999.2 412864 4125191 -61.0 999.2
344482 4244704 -4.0 999.2 419166 4155209 -61.9 1001.2
491115 4243210 -36.7 999.2 429597 4149474 -65.2 999.7
448170 4243372 -23.2 999.2 423588 4147647 -63.4 999.2
449651 4243362 -14.0 999.2 420484 4136396 -59.1 999.2
332633 4244941 -6.1 999.2 428115 4151366 -54.9 999.3
486676 4245097 -28.0 999.2 423709 4160806 -45.7 999.2
449663 4245243 -7.6 999.2 426634 4153259 -59.1 999.3
449663 4245243 -8.5 999.2 425137 4153273 -49.4 999.2
449663 4245243 -25.6 999.2 426734 4164539 -56.4 999.2
449663 4245243 -13.1 999.2 426784 4170179 -54.6 999.2
449663 4245243 -10.7 999.2 432837 4179528 -39.6 999.3
448182 4245252 -10.7 999.2 440286 4177590 -56.4 999.2
449663 4245243 -9.3 999.2 440218 4168191 -64.0 999.2
448182 4245252 -9.9 999.2 434210 4164476 -56.1 999.2
448182 4245252 -14.0 999.2 441845 4186979 -46.3 999.2
448182 4245252 -8.7 999.2 443324 4185089 -56.1 999.2
445221 4245271 -11.7 999.2 435969 4198304 -33.5 999.2
451155 4247114 -22.1 999.2 435969 4198304 -33.5 999.3
494079 4246968 -82.6 999.3 446245 4175669 -64.6 999.2
445234 4247152 -19.2 999.2 452316 4192552 -61.3 999.2
443767 4249042 -12.2 999.2 447810 4186939 -58.8 999.2
349030 4250260 -1.2 999.2 449394 4201970 -50.9 999.3
458565 4248952 -1.8 999.2 450837 4194441 -60.4 999.2
473363 4248890 -1.8 999.3 455338 4200055 -47.2 999.2
463005 4248931 -28.3 999.2 459804 4200032 -72.2 999.5
451166 4248994 -25.9 999.2 459804 4200032 -63.7 999.3
486682 4248857 -24.4 999.2 459804 4200032 -71.0 999.4
458575 4250832 -1.8 999.2 459804 4200032 -77.4 999.4
449698 4250883 -20.1 999.2 458315 4200040 -67.4 999.3
443780 4250922 -18.3 999.2 411298 4121447 -75.6 999.7
448219 4250892 -45.7 999.2 412806 4119552 -77.4 999.3
448219 4250892 -57.9 999.2 415888 4127040 -86.0 999.4
448219 4250892 -38.7 999.2 412864 4125191 -83.8 999.2
448219 4250892 -36.6 999.2 412864 4125191 -96.0 1000.1
448219 4250892 -24.4 999.2 417576 4145824 -66.5 999.6
448219 4250892 -2.0 999.2 422054 4143901 -79.9 999.2
489644 4250733 -12.3 999.2 419166 4155209 -81.7 1007.8
457096 4250840 -2.4 999.2 341188 4150692 -91.4 1002.1
489646 4252613 -10.7 999.2 428115 4151366 -86.3 1001.9
488167 4252615 -27.7 999.2 431204 4162621 -68.6 999.2
439356 4252835 -10.4 999.3 432715 4164488 -67.7 999.2
451189 4252754 -6.1 999.2 432730 4166368 -74.7 999.2
451189 4252754 -21.0 999.2 422266 4166460 -51.2 999.6
480772 4252629 -17.5 999.2 432745 4168248 -72.2 999.2
319490 4254631 -5.8 999.2 440205 4166311 -78.9 999.2
485209 4252620 -21.3 999.2 440205 4166311 -74.1 999.3
341741 4256043 -4.6 999.2 440205 4166311 -76.8 999.3
495564 4254487 -1.2 999.3 435808 4177624 -84.4 1000.3
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486691 4254497 -33.2 999.2 435808 4177624 -65.8 999.2
448243 4254653 -6.9 999.2 440286 4177590 -82.3 999.7
495564 4254487 -11.0 999.3 435969 4198304 -57.9 999.8
483737 4256383 -16.8 999.2 443259 4175689 -86.0 999.2
319575 4258392 -5.2 999.2 452316 4192552 -91.4 999.2
325514 4258260 -2.9 999.2 447846 4192579 -69.8 999.2
324052 4260174 -4.0 999.3 449394 4201970 -69.8 1001.2
344772 4259746 -2.0 999.3 446405 4200109 -101.8 1002.1
309269 4260511 -5.3 999.2 446405 4200109 -68.3 1000.3
334463 4261834 -6.1 999.2 461901 4306639 -52.4 999.2
427591 4260453 -15.7 999.2 461901 4306639 -57.3 999.2
427591 4260453 -4.4 1002.1 463727 4307713 -198.7 1000.0
426130 4262347 -4.1 999.2 463727 4307713 -233.0 1000.0
430595 4266068 -19.8 999.2 461901 4306639 -57.3 999.2
325718 4267663 -3.7 999.2 448528 4294466 0.0 999.2
361163 4266970 -7.9 999.2 472855 4292711 -4.3 999.2
361163 4266970 -7.0 999.2 486014 4293091 -9.5 1008.0
361163 4266970 -9.4 999.6 487792 4291790 -8.8 999.3
361163 4266970 -8.2 999.5 487792 4291790 -0.6 1000.7
587112 4394561 -31.4 1021.6 487979 4290942 -6.9 999.2
587112 4394561 -73.5 1021.6 487792 4291790 -8.8 1000.1
587112 4394561 -93.3 1010.3 487792 4291790 -9.0 999.5
587112 4394561 -93.0 1000.4 486665 4289088 4.0 999.3
587112 4394561 -102.7 1001.7 486665 4289088 -18.0 999.2
587112 4394561 -140.2 1001.4 486665 4289088 -36.0 999.2
621912 4364874 -46.9 1019.9 486665 4289088 -14.0 999.2
621912 4364874 -64.3 1016.9 487297 4290811 -9.1 999.2
621912 4364874 -73.2 1014.3 487320 4290250 -15.2 999.2
621912 4364874 -82.9 1004.8 487320 4290250 -15.2 999.2
624253 4302710 -64.9 1022.7 487320 4290250 -19.8 999.2
624253 4302710 -74.1 1024.3 487320 4290250 -17.4 999.2
624253 4302710 -83.2 1014.8 447699 4287420 -19.7 999.2
624253 4302710 -92.7 1008.0 466391 4283041 -22.6 999.2
624253 4302710 -102.1 1006.4 488562 4286213 -23.0 999.2
624253 4302710 -102.1 1004.4 488562 4286213 -24.1 999.2
624253 4302710 -130.8 1004.5 489844 4285214 0.8 999.2
624253 4302710 -140.2 1004.1 487987 4285866 -9.9 999.2
624253 4302710 -140.2 1003.6 492643 4285876 -16.8 999.2
624253 4302710 -149.7 1003.9 492100 4285465 -20.7 999.2
624253 4302710 -159.1 1004.1 492643 4285876 -16.8 999.2
624253 4302710 -168.9 1004.5 492100 4285465 -19.5 999.3
624253 4302710 -187.8 1005.9 492396 4284776 -8.5 999.2
624253 4302710 -197.2 1006.1 492990 4285238 -16.8 999.3
624253 4302710 -216.1 1007.1 493300 4284625 -3.8 999.3
624253 4302710 -235.0 1009.4 492863 4283933 -33.2 999.2
624253 4302710 -253.6 1007.8 492863 4283933 -10.7 999.2
624253 4302710 -282.2 1011.8 492863 4283933 -4.1 1002.4
624253 4302710 -310.3 1009.2 493794 4279961 -5.7 1007.6
624253 4302710 -329.5 1014.4 493794 4279961 -13.3 1002.6
624253 4302710 -338.9 1018.9 493794 4279961 -17.9 1000.5
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x y z ρ x y z ρ
665369 4325474 -84.1 1023.5 493794 4279961 -2.7 1001.3
665369 4325474 -102.1 1021.0 493794 4279961 -2.7 1008.2
665369 4325474 -121.0 1018.6 446152 4276339 -16.9 999.2
665369 4325474 -159.1 1020.6 445164 4277572 -19.5 999.3
665369 4325474 -178.3 1033.0 445935 4277613 -18.3 999.2
665369 4325474 -235.3 1018.4 447103 4276882 -19.8 999.2
665369 4325474 -253.6 1017.8 446572 4277674 -12.2 999.2
665369 4325474 -291.7 1017.5 445440 4275266 -19.8 999.2
665369 4325474 -310.6 1017.9 445440 4275266 -16.5 999.2
665369 4325474 -329.5 1017.8 446266 4270594 -23.6 999.2
665369 4325474 -348.7 1018.7 474096 4271638 -18.4 999.2
665369 4325474 -377.0 1024.0 493342 4277288 -8.8 1009.0
690651 4315899 -305.1 1023.5 493342 4277288 -2.7 1000.1
690651 4315899 -308.8 1024.0 493342 4277288 -4.2 1000.5
690651 4315899 -313.3 1024.6 493342 4277288 -5.0 1003.4
690651 4315899 -326.8 1024.2 493342 4277288 -8.8 1009.0
690651 4315899 -364.5 1037.5 493342 4277288 -10.3 1008.9
690651 4315899 -383.4 1037.5 493342 4277288 -11.8 1006.3
690651 4315899 -431.0 1024.3 493342 4277288 -14.1 1000.2
690651 4315899 -457.8 1021.3 493833 4277324 -4.2 999.5
690651 4315899 -498.0 1024.0 493833 4277324 -2.7 1006.2
690651 4315899 -526.7 1024.0 493833 4277324 -3.4 1002.7
690651 4315899 -555.0 1024.3 493833 4277324 -4.2 1001.9
508463 4266409 -29.9 1019.7 493833 4277324 -5.0 1002.9
508463 4266409 -39.0 1031.5 493833 4277324 -8.0 1007.1
508463 4266409 -48.2 1011.2 493833 4277324 -9.5 1010.3
508463 4266409 -57.3 1005.5 494351 4273698 -3.4 1022.9
508463 4266409 -78.9 999.5 494351 4273698 -5.7 1017.6
508463 4266409 -92.7 1001.3 494351 4273698 -6.5 1021.9
508463 4266409 -102.1 999.5 494351 4273698 -8.8 1018.6
508463 4266409 -111.6 1000.4 494351 4273698 -11.8 1019.4
532263 4127653 -93.9 1026.8 450877 4266554 -1.7 999.2
532263 4127653 -111.0 1021.0 478216 4265970 5.5 999.3
532263 4127653 -129.8 1017.6 478216 4265970 5.5 999.3
532263 4127653 -139.3 1017.5 478907 4262483 -5.8 999.2
532263 4127653 -148.7 1018.4 492257 4258722 -17.8 999.2
532263 4127653 -158.2 1019.7 493613 4269682 -19.8 999.3
532263 4127653 -177.4 1020.1 449497 4257141 -21.3 999.2
532263 4127653 -196.6 1020.5 480455 4255757 -17.7 999.2
532263 4127653 -215.5 1021.9 480455 4255757 -65.7 999.3
532263 4127653 -233.5 1022.7 420080 4109399 -25.0 1020.0
532263 4127653 -252.7 1023.8 421216 4102296 -25.0 1020.0
532263 4127653 -271.6 1024.0 406017 4098318 -25.0 1020.0
532263 4127653 -300.5 1023.4 429953 4123746 -25.0 1020.0
532263 4127653 -310.3 1024.6 437055 4138449 -25.0 1020.0
532263 4127653 -319.7 1036.2 447781 4158265 -25.0 1020.0
449343 4318613 -137.2 999.2 454386 4171476 -25.0 1020.0
462482 4307222 -146.3 999.3 461489 4185682 -25.0 1020.0
462482 4307222 -195.1 1000.0 468094 4196905 -25.0 1020.0
462482 4307222 -237.7 1000.0 479672 4208128 -25.0 1020.0
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x y z ρ x y z ρ
445513 4298316 -103.6 999.2 492883 4219704 -25.0 1020.0
445513 4298316 -170.7 999.4 498494 4229291 -25.0 1020.0
445513 4298316 -213.4 999.6 505597 4243496 -25.0 1020.0
492063 4285982 -75.6 999.3 507585 4256066 -25.0 1020.0
493692 4266053 -106.7 999.3 507585 4280355 -25.0 1020.0
484073 4264973 -91.4 999.3 506094 4291578 -25.0 1020.0
495022 4258646 -88.4 999.2 506094 4302946 -25.0 1020.0
495022 4258646 -137.2 999.9 441110 4117217 -25.0 1025.0
424959 4209049 -91.4 999.2 449436 4132847 -25.0 1025.0
424959 4209049 -152.4 999.7 460465 4149499 -25.0 1025.0
424959 4209049 -91.4 999.3 468280 4163596 -25.0 1025.0
485824 4229800 -42.7 999.3 474561 4177692 -25.0 1025.0
482322 4221801 -48.8 999.3 481353 4189743 -25.0 1025.0
494761 4253464 -128.0 999.5 493258 4202304 -25.0 1025.0
494761 4253464 -140.2 999.6 503629 4212819 -25.0 1025.0
516177 4317494 -106.7 999.3 512978 4225892 -25.0 1025.0
452647 4203684 -70.1 999.3 520793 4241010 -25.0 1025.0
457483 4199978 -61.0 999.3 523860 4255617 -25.0 1025.0
447299 4192577 -67.1 999.2 523860 4270736 -25.0 1025.0
450352 4192929 -54.9 999.2 523860 4281620 -25.0 1025.0
440191 4175551 -73.2 999.3 522327 4292504 -25.0 1025.0
427199 4165917 -54.9 999.2 519770 4305945 -25.0 1025.0
433276 4166160 -73.2 999.2 432784 4108747 -25.0 1025.0
426371 4155489 -73.2 1000.2 420080 4109399 -50.0 1020.0
423192 4148222 -61.0 999.3 421216 4102296 -50.0 1020.0
413230 4137301 -39.6 999.2 406017 4098318 -50.0 1020.0
413131 4116059 -57.9 999.2 429953 4123746 -50.0 1020.0
381495 4101481 -42.7 1000.5 437055 4138449 -50.0 1020.0
386349 4132317 -45.7 999.3 447781 4158265 -50.0 1020.0
383287 4146958 -30.5 999.3 454386 4171476 -50.0 1020.0
474432 4233178 -89.9 999.2 461489 4185682 -50.0 1020.0
488153 4232525 -91.1 999.2 468094 4196905 -50.0 1020.0
474407 4254373 -71.6 999.2 479672 4208128 -50.0 1020.0
485926 4249917 -90.2 999.2 492883 4219704 -50.0 1020.0
490649 4248877 -125.0 999.2 498494 4229291 -50.0 1020.0
492203 4241833 -117.0 999.2 505597 4243496 -50.0 1020.0
492203 4241833 -124.7 999.2 507585 4256066 -50.0 1020.0
492203 4241833 -134.9 999.2 507585 4280355 -50.0 1020.0
492963 4243841 -121.9 999.2 506094 4291578 -50.0 1020.0
493622 4246664 -119.8 999.3 506094 4302946 -50.0 1020.0
493622 4246664 -125.9 999.2 441110 4117217 -50.0 1025.0
493622 4246664 -132.0 999.2 449436 4132847 -50.0 1025.0
493622 4246664 -141.4 999.2 460465 4149499 -50.0 1025.0
493622 4246664 -150.1 999.2 468280 4163596 -50.0 1025.0
494771 4251403 -103.9 999.2 474561 4177692 -50.0 1025.0
495139 4254651 -105.8 999.2 481353 4189743 -50.0 1025.0
495139 4254651 -119.8 999.2 493258 4202304 -50.0 1025.0
495139 4254651 -120.4 999.3 503629 4212819 -50.0 1025.0
495139 4254651 -114.3 999.2 512978 4225892 -50.0 1025.0
495546 4254637 -125.6 999.2 520793 4241010 -50.0 1025.0
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x y z ρ x y z ρ
495546 4254637 -141.1 999.2 523860 4255617 -50.0 1025.0
493571 4256188 -106.7 999.3 523860 4270736 -50.0 1025.0
495582 4257574 -136.4 999.8 523860 4281620 -50.0 1025.0
494158 4263600 -105.9 999.3 522327 4292504 -50.0 1025.0
494158 4263600 -104.4 999.2 519770 4305945 -50.0 1025.0
494158 4263600 -114.0 999.2 432784 4108747 -50.0 1025.0
494158 4263600 -107.1 999.2 420080 4109399 -100.0 1020.0
494158 4263600 -105.6 999.2 421216 4102296 -100.0 1020.0
494360 4264920 -110.5 999.2 406017 4098318 -100.0 1020.0
494962 4265185 -107.9 999.2 429953 4123746 -100.0 1020.0
494962 4265185 -110.3 999.2 437055 4138449 -100.0 1020.0
484226 4262435 -90.8 999.3 447781 4158265 -100.0 1020.0
474380 4271053 -63.4 999.2 454386 4171476 -100.0 1020.0
474380 4271053 -61.3 999.2 461489 4185682 -100.0 1020.0
483958 4280699 -81.4 999.2 468094 4196905 -100.0 1020.0
491043 4284865 -65.2 999.2 479672 4208128 -100.0 1020.0
489843 4241777 -65.5 999.2 492883 4219704 -100.0 1020.0
492246 4241853 -78.8 999.3 498494 4229291 -100.0 1020.0
492246 4241853 -81.2 999.2 505597 4243496 -100.0 1020.0
492246 4241853 -68.1 999.2 507585 4256066 -100.0 1020.0
489952 4243705 -69.5 999.2 507585 4280355 -100.0 1020.0
492978 4243920 -78.3 999.2 506094 4291578 -100.0 1020.0
492978 4243920 -70.3 999.2 506094 4302946 -100.0 1020.0
492978 4243920 -69.7 999.2 441110 4117217 -100.0 1025.0
493678 4246382 0.0 999.2 449436 4132847 -100.0 1025.0
493678 4246382 0.0 999.2 460465 4149499 -100.0 1025.0
493761 4246617 -81.1 999.2 468280 4163596 -100.0 1025.0
493761 4246617 -80.8 999.2 474561 4177692 -100.0 1025.0
493761 4246617 -80.9 999.6 481353 4189743 -100.0 1025.0
493761 4246617 -86.6 999.2 493258 4202304 -100.0 1025.0
493761 4246617 -68.4 999.2 503629 4212819 -100.0 1025.0
490663 4248925 -78.6 999.3 512978 4225892 -100.0 1025.0
495633 4257666 -87.6 999.2 520793 4241010 -100.0 1025.0
494202 4263601 -86.3 999.2 523860 4255617 -100.0 1025.0
494340 4265003 -67.1 999.2 523860 4270736 -100.0 1025.0
494989 4265170 -58.4 999.2 523860 4281620 -100.0 1025.0
494725 4265417 0.0 999.2 522327 4292504 -100.0 1025.0
484163 4262483 -61.7 999.2 519770 4305945 -100.0 1025.0
479438 4262824 -50.8 999.2 432784 4108747 -100.0 1025.0
474489 4254337 -50.3 999.2 405022 4105633 -25.0 1023.0
493639 4246598 -57.2 999.3 397422 4203579 -25.0 1018.0
485941 4249891 -51.5 999.2 397422 4223395 -25.0 1017.0
474385 4254362 -22.3 999.2 398914 4124099 -25.0 1022.0
493540 4256130 -51.8 999.2 398914 4144413 -25.0 1021.0
495589 4257595 -54.1 999.3 398914 4163094 -25.0 1020.0
495589 4257595 -61.0 999.2 398914 4182769 -25.0 1019.0
494151 4263613 -60.7 999.2 414611 4096541 -25.0 1025.0
484139 4262404 -36.0 999.2 412622 4171333 -25.0 1020.0
479328 4262832 -25.9 999.2 406656 4154144 -25.0 1021.0
494596 4268212 0.0 999.2 403531 4134825 -25.0 1021.0
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493526 4270344 -61.0 999.2 406017 4116641 -25.0 1022.0
493835 4273600 -61.0 999.2 422708 4187669 -25.0 1019.0
483888 4280701 -50.6 999.2 418233 4196265 -25.0 1018.0
486730 4289419 -19.7 999.2 417736 4212955 -25.0 1017.0
486730 4289419 -28.7 999.2 409639 4223681 -25.0 1017.0
486730 4289419 -34.8 999.2 412622 4104427 -25.0 1024.0
486730 4289419 -41.6 999.2 405022 4105633 -50.0 1023.0
486730 4289419 -33.2 999.2 397422 4203579 -50.0 1018.0
486730 4289419 -28.7 999.2 397422 4223395 -50.0 1017.0
487544 4290685 -40.8 999.2 398914 4124099 -50.0 1022.0
488017 4291125 -39.9 999.2 398914 4144413 -50.0 1021.0
493785 4246695 -23.9 999.3 398914 4163094 -50.0 1020.0
485998 4249923 -17.2 999.2 398914 4182769 -50.0 1019.0
495676 4257637 -32.8 1012.4 414611 4096541 -50.0 1025.0
484264 4262431 -23.8 999.2 412622 4171333 -50.0 1020.0
491081 4284799 -23.5 999.2 406656 4154144 -50.0 1021.0
488728 4285570 -22.0 999.2 403531 4134825 -50.0 1021.0
487637 4290618 -18.0 999.2 406017 4116641 -50.0 1022.0
488016 4291137 0.0 999.2 422708 4187669 -50.0 1019.0
488016 4291137 0.0 999.2 418233 4196265 -50.0 1018.0
474398 4271104 0.0 999.2 417736 4212955 -50.0 1017.0
411298 4121447 -9.1 999.3 409639 4223681 -50.0 1017.0
414233 4112017 -19.5 999.3 412622 4104427 -50.0 1024.0
414214 4110137 -15.2 999.2 405022 4105633 -100.0 1023.0
414214 4110137 -15.9 999.2 397422 4203579 -100.0 1018.0
414214 4110137 -16.8 999.3 397422 4223395 -100.0 1017.0
414233 4112017 -11.0 999.3 398914 4124099 -100.0 1022.0
415888 4127040 -1.8 999.3 398914 4144413 -100.0 1021.0
412864 4125191 -16.8 999.2 398914 4163094 -100.0 1020.0
417576 4145824 -6.1 999.2 398914 4182769 -100.0 1019.0
419166 4155209 -4.6 999.2 414611 4096541 -100.0 1025.0
428115 4151366 -5.2 999.2 412622 4171333 -100.0 1020.0
426651 4155139 -7.0 999.3 406656 4154144 -100.0 1021.0
422266 4166460 -10.7 999.7 403531 4134825 -100.0 1021.0
432745 4168248 -1.5 999.2 406017 4116641 -100.0 1022.0
440259 4173830 -0.9 999.2 422708 4187669 -100.0 1019.0
435808 4177624 -4.6 999.2 418233 4196265 -100.0 1018.0
440286 4177590 1.5 999.2 417736 4212955 -100.0 1017.0
412622 4104427 -100.0 1024.0 409639 4223681 -100.0 1017.0
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Appendix A2

This appendix contains information on the area element mesh used in the MVAEM model in Chapter 1.
The area mesh is shown in figure A.1, and the values used in the mesh are presented in the following pages.
Resistances are given in days and heads in meters.
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Figure A.1. MVAEM area element mesh
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No. utm-x1 y1 x2 y2 x3 y3 x4 y4 resist. head
1 433220 4286003 435173 4286006 440764 4297782 439241 4297942 10 8
2 440764 4297782 447465 4312086 446067 4312409 439241 4297942 10 12
3 435173 4286006 429761 4274915 428131 4275111 433220 4286003 10 3
4 428131 4275111 432568 4266489 435344 4268341 429761 4274915 10 2
5 432568 4266489 435973 4265048 441553 4269590 440610 4271652 10 1
6 441553 4269590 451967 4279639 450018 4280091 440610 4271652 10 2
7 441553 4269590 446537 4268735 447365 4270023 443040 4271006 10 2
8 450018 4280091 451967 4279639 450598 4290322 449382 4290209 10 5
9 449382 4290209 450598 4290322 450582 4298617 448931 4296935 10 12
10 446537 4268735 447365 4270023 452230 4268919 451862 4267999 10 3
11 432568 4266489 435973 4265048 428815 4256138 427133 4256644 10 1
12 422342 4247730 425210 4246293 428815 4256138 427133 4256644 10 0
13 425210 4246293 422342 4247730 415363 4234389 420660 4233973 10 0
14 415363 4234389 414223 4244657 409693 4244589 406859 4234854 10 0
15 427676 4235401 427671 4229854 418346 4227663 420660 4233973 10 0
16 406859 4234854 420660 4233973 416411 4222745 406365 4232987 10 0
17 414223 4244657 409693 4244589 411914 4253217 415552 4252008 10 1
18 415552 4252008 411914 4253217 424043 4266090 425354 4264322 10 2
19 416411 4222745 432937 4224553 431594 4213072 423494 4207347 10 0
20 423494 4207347 400658 4212037 406365 4232987 416411 4222745 10 0
21 385735 4293428 385735 4276099 398956 4272169 398197 4282902 10 0
22 398197 4282902 398956 4272169 410677 4268704 409796 4273103 10 0
23 409746 4273196 410677 4268704 416636 4273992 412222 4277673 10 0
24 412222 4277673 416636 4273992 416579 4282082 415025 4282082 10 0
25 415025 4282082 416579 4282082 413997 4288474 410936 4285544 10 0
26 408882 4287449 410936 4285544 413997 4288474 413021 4291294 10 0
27 413021 4291294 413997 4288474 423383 4297662 421593 4299495 10 0
28 419907 4297912 421593 4299495 419360 4313699 416874 4313389 10 1.5
29 423383 4297662 424966 4296877 428132 4305133 426031 4305443 10 1
30 426031 4305443 428132 4305133 431988 4315315 429571 4315556 10 2
31 390463 4298992 402007 4293151 404276 4308027 394374 4308027 10 0
32 394374 4308027 392592 4327831 400711 4330306 404226 4308073 10 0
33 421554 4263514 424029 4265990 423597 4270681 421061 4271751 10 3
34 493426 4282994 487736 4277542 490122 4270814 495219 4271111 1.00E4 0
35 488474 4275356 490122 4270814 483730 4269772 482081 4272564 1.00E3 0
36 482081 4272564 482843 4271238 477098 4270741 476238 4271706 1.00E2 0
37 490325 4256887 494895 4256450 494158 4246224 486188 4245921 1.00E4 0
38 482720 4251518 487595 4249699 488372 4251707 483847 4253880 1.00E3 0
39 420876 4201229 439812 4205689 442706 4199795 432516 4197233 1.00E2 0
40 432516 4197233 442706 4199795 444106 4197909 438696 4192215 1.00E4 1
41 420876 4201229 439812 4205689 431594 4213072 423494 4207347 10 1
42 480984 4287644 488291 4291960 472855 4307687 470175 4300987 40 2
43 464099 4323201 467777 4326581 469842 4323878 465791 4320773 10 2.5
44 465791 4320773 464099 4323201 456030 4316628 457771 4314661 10 3
45 465952 4324945 464191 4323184 448142 4338509 449350 4340753 10 2
46 448841 4345494 465310 4345494 465310 4342844 449833 4342514 10 3
47 449833 4342514 449350 4340753 465952 4324945 465310 4342844 10 3
48 463972 4266612 470712 4273000 480634 4260083 473403 4255105 10 12
49 447465 4312086 457771 4314661 460740 4311384 455090 4303334 10 15
50 442584 4330811 448142 4338509 464191 4323184 456030 4316628 10 10
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PolyID utm-x1 y1 x2 y2 x3 y3 x4 y4 resist. head
51 431988 4315315 446067 4312409 436075 4291403 424966 4296877 10 15
52 423383 4297662 436075 4291403 430143 4279426 413997 4288474 10 10
53 413997 4288474 416579 4282082 428131 4275111 430143 4279426 10 8
54 416636 4273992 432568 4266489 428131 4275111 416579 4282082 10 6
55 423597 4270681 424055 4266131 428567 4259506 432568 4266489 10 3
56 428647 4259425 425364 4264259 415535 4252033 422342 4247730 10 2
57 415363 4234389 414223 4244657 415504 4251845 422342 4247730 10 1
58 441255 4288711 437244 4290234 447465 4312086 455090 4303334 10 15
59 448931 4296935 450018 4280091 440610 4271652 441255 4288711 10 12
60 441255 4288711 440610 4271652 435409 4268344 430805 4273642 10 12
61 430805 4273642 429761 4274915 437244 4290234 441255 4288711 10 9
62 450598 4290322 450582 4298617 455090 4303334 456743 4290675 10 13
63 456743 4290675 450598 4290322 451967 4279639 457437 4285020 10 10
64 435414 4240535 434239 4244910 445262 4247235 446919 4245303 10 3
65 446919 4245303 445262 4247235 447181 4254113 449258 4254205 10 5
66 447181 4254113 447549 4255888 457240 4256467 456043 4254600 20 12
67 434239 4244910 427676 4235401 427662 4229685 435414 4240535 10 1
68 420660 4233973 427676 4235401 434239 4244910 428815 4256138 10 1.5
69 428815 4256138 435973 4265048 440383 4259112 434239 4244910 10 3
70 434239 4244910 440220 4258949 447549 4255888 445262 4247235 10 9
71 440383 4258997 446537 4268735 441553 4269590 435973 4265048 10 10
72 446537 4268735 440336 4258949 447549 4255888 451862 4267999 10 11
73 452230 4268919 447549 4255888 457240 4256467 463972 4266612 20 11
74 463972 4266612 456043 4254600 470389 4244091 473403 4255105 20 15
75 483498 4284490 488474 4275356 482081 4272564 477427 4279538 100 3
76 477427 4279538 482081 4272564 472174 4271117 470712 4273000 80 3
77 480634 4260083 472174 4271117 476238 4271706 485238 4261525 80 10
78 483115 4270806 480569 4266813 481431 4265829 483730 4269772 90 3
79 482843 4271238 483115 4270806 480569 4266813 477098 4270741 90 5
80 483730 4269772 488212 4262439 485238 4261525 481431 4265829 100 4
81 483730 4269772 490122 4270814 492347 4263908 488212 4262439 1.00E3 2
82 492347 4263908 490122 4270814 495219 4271111 495541 4265045 1.00E4 1
83 495541 4265045 494895 4256450 490325 4256887 488212 4262439 1.00E4 1
84 488212 4262439 483847 4253880 488372 4251707 490325 4256887 5.00E3 3
85 488212 4262439 482720 4251518 473403 4255105 480634 4260083 1.00E2 10
86 494158 4246224 485965 4231759 480777 4234875 486188 4245921 1.00E4 2
87 486188 4245921 487595 4249699 480269 4252477 478045 4243868 5.00E3 5
88 478045 4243868 470810 4245395 473403 4255105 480269 4252477 1.00E3 10
89 478045 4243868 476553 4240827 480777 4234875 486188 4245921 1.00E4 6
90 431988 4315315 442584 4330811 456030 4316628 446067 4312409 10 10
91 446067 4312409 447465 4312086 457771 4314661 456030 4316628 10 5
92 429571 4315556 437303 4333126 442584 4330811 431988 4315315 10 10
93 439236 4338338 448651 4345402 449833 4342514 448142 4338509 10 3
94 400659 4330364 410405 4338000 411811 4335824 401764 4325542 10 0
95 419360 4313699 429571 4315556 423383 4297662 421593 4299495 10 3
96 411914 4253217 410677 4268704 416636 4273992 416392 4257966 10 0
97 416636 4273992 421061 4271751 421542 4263299 416300 4258057 10 1
98 438696 4192215 441421 4189956 431054 4172799 428517 4174922 1.00E4 1
99 428517 4174922 431054 4172799 422250 4157769 419220 4158598 2.00E4 1
100 411090 4140378 413876 4139660 422250 4157769 419220 4158598 2.00E4 1
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PolyID utm-x1 y1 x2 y2 x3 y3 x4 y4 resist. head
101 411090 4140378 413876 4139660 413278 4121933 409620 4121694 2.00E4 1
102 409620 4121694 413278 4121933 415757 4115128 413158 4108616 2.00E4 1
103 413278 4121933 415757 4115128 427825 4141935 424201 4142110 2.00E4 1
104 424201 4142110 427825 4141935 437702 4157548 432877 4158598 2.00E4 1
105 432877 4158598 437702 4157548 445042 4170312 440853 4171804 2.00E4 1
106 440853 4171804 445042 4170312 452474 4186880 449279 4188040 2.00E4 1
107 452474 4186880 456167 4184679 448522 4168489 445042 4170312 2.00E4 0
108 445042 4170312 448522 4168489 440806 4155449 437869 4157771 2.00E4 0
109 437869 4157771 440806 4155449 431124 4141336 427825 4141935 2.00E4 0
110 427825 4141935 431124 4141336 421124 4113505 415757 4115128 2.00E4 0
111 415757 4115128 421124 4113505 416714 4106787 413278 4108616 2.00E4 0
112 413278 4121933 413876 4139660 415979 4144037 424257 4142110 2.00E4 7
113 424257 4142110 415979 4144037 422250 4157769 432877 4158598 2.00E4 7
114 432877 4158598 422250 4157769 431054 4172799 440853 4171804 2.00E4 7
115 440853 4171804 431054 4172799 441421 4189956 449279 4188040 1.00E4 10
116 449889 4218087 452380 4218954 451269 4227621 449919 4227346 150 3
117 449919 4227346 451269 4227621 449919 4231399 448483 4231160 100 5
118 448483 4231160 449919 4231399 449373 4237968 447818 4238221 80 8
119 445390 4216573 452380 4218954 453457 4217245 446364 4214735 1.00E3 1.5
120 446364 4214735 445390 4216573 439596 4212270 443081 4211482 1.00E3 1
121 443081 4211482 439596 4212270 439812 4205689 442706 4199795 1.00E3 0
122 452380 4218954 461588 4225893 462907 4225179 453457 4217245 1.00E3 2
123 432937 4224553 439064 4225314 439812 4205689 431594 4213072 80 1
124 429864 4224174 427775 4229826 435414 4240535 439064 4225314 50 2
125 416411 4222745 418346 4227663 427773 4229893 429864 4224174 50 1
126 439064 4225314 444910 4225673 445390 4216573 439596 4212270 80 4
127 444910 4225673 449919 4227346 449889 4218087 445390 4216573 60 10
128 443822 4230736 441225 4243079 446919 4245303 448483 4231160 30 10
129 448483 4231160 443822 4230736 444910 4225673 449919 4227346 60 10
130 444910 4225673 441225 4243079 435414 4240535 439064 4225314 40 4
131 446919 4245303 452823 4242397 456043 4254600 449258 4254205 80 4
132 446919 4245303 452823 4242397 450679 4237662 447818 4238221 80 10
133 449919 4231399 449373 4237968 450679 4237662 455165 4232682 100 12
134 470810 4245395 478045 4243868 476553 4240827 470389 4244091 1.00E3 5
135 451269 4227621 449919 4231399 455165 4232682 457631 4230131 100 10
136 457631 4230131 461588 4225893 452380 4218954 451269 4227621 200 7
137 450679 4237662 452823 4242397 462487 4237137 457631 4230131 100 10
138 457631 4230131 462487 4237137 467122 4232488 461588 4225893 200 0
139 461588 4225893 462907 4225179 468269 4231882 467122 4232488 1.00E3 3
140 467122 4232488 468269 4231882 470389 4244091 468864 4245130 1.00E3 4
141 462487 4237137 464573 4248351 468864 4245130 467122 4232488 500 10
142 462487 4237137 464573 4248351 456043 4254600 452823 4242397 200 15
143 470389 4244091 476510 4240852 472596 4229050 468269 4231882 1.00E4 5
144 472596 4229050 476510 4240852 480777 4234875 476553 4225958 1.00E4 3
145 462907 4225179 468269 4231882 472596 4229050 469785 4225093 1.00E4 5
146 472596 4229050 476553 4225958 470130 4217071 465545 4219017 1.00E4 3
147 470130 4217071 465545 4219017 461415 4208465 464941 4206973 1.00E4 3
148 464941 4206973 461415 4208465 456312 4198367 459924 4197567 1.00E4 3
149 459924 4197567 456312 4198367 449279 4188040 452474 4186880 1.00E4 3
150 438696 4192215 444106 4197909 445600 4195834 441421 4189956 1.00E4 3
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PolyID utm-x1 y1 x2 y2 x3 y3 x4 y4 resist. head
151 441421 4189956 448492 4199888 456312 4198367 449279 4188040 1.00E4 7
152 448492 4199888 454623 4209957 461415 4208465 456312 4198367 1.00E4 7
153 454623 4209957 453457 4217245 465545 4219017 461415 4208465 1.00E4 5
154 453457 4217245 462907 4225179 469785 4225093 465545 4219017 1.00E4 3
155 443081 4211482 454623 4209957 453457 4217245 446364 4214735 1.00E4 5
156 443081 4211482 454623 4209957 445600 4195834 442706 4199795 1.00E4 3
157 480777 4234875 485965 4231759 481787 4224492 476553 4225958 2.00E4 0
158 476553 4225958 481787 4224492 473829 4215579 470130 4217071 2.00E4 0
159 470130 4217071 473829 4215579 468441 4205394 464941 4206973 2.00E4 0
160 464941 4206973 468441 4205394 462629 4196653 459924 4197567 2.00E4 0
161 459924 4197567 462629 4196653 456167 4184679 452474 4186880 2.00E4 0
162 488143 4291984 491815 4294130 481067 4306013 477747 4302691 20 0
163 477747 4302691 472855 4307687 474924 4312862 481067 4306013 20 0
164 467990 4322463 474924 4312862 477342 4314349 469842 4323878 10 0
165 406859 4234854 394994 4247458 402835 4250013 409693 4244589 10 1
166 409693 4244589 402835 4250013 401852 4256813 411914 4253217 10 2
167 411914 4253217 401852 4256813 398956 4272169 410677 4268704 10 2
168 400418 4265167 383757 4262334 389766 4246083 402835 4250013 10 1
169 387155 4268619 399588 4268659 398956 4272169 388507 4275160 10 1
170 387228 4268619 383830 4262334 400418 4265167 399588 4268659 10 0
171 402007 4293151 390371 4298879 385438 4293432 398197 4282902 10 1
172 402007 4293151 415025 4282082 409739 4273112 398197 4282902 10 3
173 402007 4293151 408882 4287449 419907 4297912 404294 4308050 10 4
174 404294 4308050 419907 4297912 412625 4335168 401663 4325484 10 4
175 412625 4335168 439236 4338338 429571 4315556 416874 4313389 10 4
176 437303 4333126 439236 4338338 448142 4338509 442584 4330811 10 6
177 400658 4212037 393307 4193969 413418 4185822 423494 4207347 5.00E3 0
178 420876 4201229 432516 4197233 425522 4177353 413418 4185822 10 0
179 405851 4231213 383622 4238669 377151 4219258 400658 4212037 1.00E2 0
180 400658 4212037 393307 4193969 371584 4203157 377001 4218731 1.00E3 0
181 375045 4241675 394994 4247458 406859 4234854 405851 4231213 10 0
182 425522 4177353 428538 4174889 438696 4192215 432516 4197233 1.00E4 0
183 425522 4177353 428420 4174877 419220 4158598 416317 4159357 2.00E4 0
184 416317 4159357 419220 4158598 411090 4140378 407999 4140773 2.00E4 0
185 407999 4140773 411090 4140378 409620 4121694 405363 4121334 2.00E4 0
186 405363 4121334 406509 4107141 413158 4108616 409620 4121694 2.00E4 0
187 406509 4107141 413158 4108616 420133 4104958 419107 4102497 2.00E4 0
188 416714 4106787 420133 4104958 423039 4112155 421124 4113505 2.00E4 0
189 421124 4113505 431124 4141336 434714 4140019 423039 4112155 2.00E4 0
190 431124 4141336 434714 4140019 442841 4153533 440806 4155449 2.00E4 0
191 440806 4155449 442841 4153533 450889 4167283 448522 4168489 2.00E4 0
192 448522 4168489 450889 4167283 459333 4183566 456167 4184679 2.00E4 0
193 462629 4196653 465437 4195349 470108 4204359 468441 4205394 2.00E4 0
194 468441 4205394 470108 4204359 481787 4224492 473829 4215579 2.00E4 0
195 450889 4167283 457000 4164100 476293 4199583 470108 4204359 2.00E4 0
196 485965 4231759 493280 4233811 500364 4247658 494158 4246224 2.00E4 0
197 493280 4233811 485965 4231759 470108 4204359 476293 4199583 2.00E4 0
198 494158 4246224 500364 4247658 502308 4268832 495693 4267759 2.00E4 0
199 491815 4294130 498442 4296478 480663 4316491 474924 4312862 5.00E1 0
200 450889 4167283 457000 4164100 440525 4137775 434714 4140019 5.00E4 0
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201 434714 4140019 440525 4137775 429710 4098933 419107 4102497 5.00E4 0
202 429710 4098933 447060 4090786 457704 4129326 440525 4137775 1.00E5 0
203 440525 4137775 457704 4129326 465468 4157473 457000 4164100 1.00E5 0
204 457000 4164100 465468 4157473 491976 4200649 479510 4206078 1.00E5 0
205 479510 4206078 491976 4200649 506082 4232252 494989 4236965 1.00E5 0
206 494989 4236965 506082 4232252 512928 4247443 500364 4247658 5.00E4 0
207 500364 4247658 512928 4247443 512928 4269879 502308 4268832 5.00E4 0
208 502308 4268832 512928 4269879 519738 4306994 498442 4296478 1.00E5 0
209 519738 4306994 558322 4313030 536933 4261353 512928 4269879 1.00E5 0
210 512928 4269879 536933 4261353 529455 4242059 512928 4247443 2.00E5 0
211 512928 4247443 529455 4242059 506398 4195296 491975 4200754 2.00E5 0
212 491975 4200754 506398 4195296 491528 4147773 465468 4157473 2.00E5 0
213 465468 4157473 491528 4147773 474431 4084078 447060 4090786 2.00E5 0
214 474431 4084078 523720 4085044 529495 4141445 491528 4147773 5.00E5 0
215 491528 4147773 529495 4141445 546581 4187639 506398 4195296 5.00E5 0
216 506398 4195296 546581 4187639 567906 4232252 529455 4242059 5.00E5 0
217 529455 4242059 558322 4313030 618599 4301341 567906 4232252 5.00E5 0
218 567906 4232252 618599 4301341 659471 4287246 612425 4221629 1.00E6 0
219 612425 4221629 567906 4232252 546581 4187639 589800 4172334 1.00E6 0
220 589800 4172334 546581 4187639 529495 4141445 573296 4131674 1.00E6 0
221 573296 4131674 529495 4141445 523720 4085044 557010 4083364 1.00E6 0
222 467777 4326581 469955 4328638 480663 4316491 477342 4314349 5.00E1 0
223 465310 4342844 469380 4342566 469955 4328638 465952 4324945 5.00E1 0
224 469380 4342566 474613 4342649 474613 4332216 469955 4328638 5.00E1 0
225 469955 4328638 474613 4332216 489638 4316792 485914 4310536 5.00E1 0
226 485914 4310536 489638 4316792 506680 4301080 498442 4296478 5.00E3 0
227 489638 4316792 494830 4333521 474613 4342649 474613 4332216 1.00E5 0
228 489638 4316792 506680 4301080 528231 4314682 494830 4333521 1.00E6 10
229 393307 4193969 388705 4167413 404122 4164744 413418 4185822 1.00E4 0
230 413418 4185822 404122 4164744 416317 4159357 425522 4177353 2.00E4 0
231 416317 4159357 408114 4140901 397587 4143113 404122 4164744 2.00E4 0
232 404122 4164744 397587 4143113 383458 4145046 388705 4167413 1.00E4 0
233 383458 4145046 379270 4119457 395009 4119457 397587 4143113 1.00E4 0
234 397587 4143113 408010 4141058 405363 4121334 395009 4119457 2.00E4 0
235 395009 4119457 379270 4119457 379224 4099276 395757 4099111 1.00E4 0
236 395757 4099111 395009 4119457 405363 4121334 406509 4107141 2.00E4 0
237 406509 4107141 395757 4099111 412878 4089071 419107 4102497 5.00E4 0
238 419107 4102497 412878 4088811 423784 4072586 429710 4098933 5.00E4 0
239 429710 4098933 423784 4072586 439432 4064416 447060 4090786 1.00E5 0
240 439432 4064416 447060 4090786 474431 4084078 467044 4054705 1.00E5 0
241 474431 4084078 523720 4085044 523720 4043626 467044 4054705 5.00E5 0
242 460740 4311384 458976 4308865 463741 4299428 467098 4304398 10 8
243 467098 4304398 463741 4299428 466853 4293872 471457 4299376 10 9
244 471457 4299376 466853 4293872 471637 4287288 476781 4292792 10 6
245 476781 4292792 483498 4284490 477907 4279908 471637 4287288 10 9
246 455090 4303334 458976 4308865 463741 4299428 456743 4290675 10 15
247 456743 4290675 457437 4285020 466853 4293872 463741 4299428 10 16
248 466853 4293872 457437 4285020 460398 4276664 471637 4287288 10 17
249 471637 4287288 477907 4279908 463972 4266612 460398 4276664 10 15
250 460398 4276664 452230 4268919 443040 4271006 457437 4285020 10 15
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PolyID utm-x1 y1 x2 y2 x3 y3 x4 y4 resist. head
251 452230 4268919 460398 4276664 463972 4266612 457183 4268048 10 16
252 457771 4314661 460740 4311384 468742 4321427 467974 4322469 10 4
253 480984 4287644 483498 4284490 492440 4290407 491815 4294130 5.00E2 3
254 492440 4290407 483498 4284490 487736 4277542 493426 4282994 1.00E3 0
255 491815 4294130 492440 4290407 498625 4295111 498442 4296478 1.00E3 0
256 498625 4295111 500282 4283393 493426 4282994 492440 4290407 1.00E4 0
257 493426 4282994 500282 4283393 502308 4268832 495693 4267759 2.00E4 0
258 460740 4311384 468742 4321427 474924 4312862 470175 4300987 10 2
259 456101 4184726 459354 4183642 465437 4195349 462629 4196653 2.00E4 0
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Appendix B

The FORTRAN code of the variable density module is included in this appendix. The variable density
module consists of two files: vardens.cmn, which contains the common block of data used in the variable
density module, and vardens.for, which contains the functions and subroutines for the computation of variable
density flow. Input of density data makes use of the package Match, developed and written by P.A. Cundall,
which is explained in detail in Strack (1989). The cdir$ commands are vectorization directives for the
CrayC916.

Vardens.cmn

c NVDMX: Maximum number of density points
c NVDPTS: Number of density points
c DVDNU0: Additive constant nu0
c DVDBE: Scale factor beta
c DVDBSQ: Scale factor beta squared
c DVDX: Array with x-values of data points
c DVDY: Array with y-values of data points
c DVDZ: Array with z-values of data points
c DVDAL: Array with alpha values
c DVDDEL: Array with delta values
c DVDDELSQ: Array with delta square values
c DVDNUG: Array with given nu-values
c DVDLU: Matrix stored after LU decomposition
c INDX: Integer array used for LU decompostion
c DUM1,2,3: Dummy arrays for summation

PARAMETER (NVDMX=200)
PARAMETER (DZERO=0.D0,DONE=1.D0,DTWO=2.D0,DTHREE=3.D0)
PARAMETER (D1D6=1.D0/6.D0,DHALF=0.5D0,D1D3=1.D0/3.D0)
COMMON /CBVD/ NVDPTS,DVDNU0,DVDBE,DVDBSQ,
.DVDX(NVDMX),DVDY(NVDMX),DVDZ(NVDMX),
.DVDAL(NVDMX+1),DVDDEL(NVDMX),DVDDELSQ(NVDMX),DVDNUG(NVDMX),
.DVDLU(NVDMX+1,NVDMX+1),INDX(NVDMX+1),
.DUM(NVDMX),DUM1(NVDMX),DUM2(NVDMX),DUM3(NVDMX)

Vardens.for

BLOCK DATA BDVD
IMPLICIT REAL*8 (D)
INCLUDE ’vardens.cmn’
DATA NVDPTS,DVDBE /0,1/
END

SUBROUTINE VDINPUT
IMPLICIT REAL*8 (D)
IMPLICIT CHARACTER*1 (A), LOGICAL (L)
SAVE
CHARACTER*32 AFILE
INCLUDE ’vardens.cmn’
INCLUDE ’MATCH.CMN’
DIMENSION AWORD(30)
DATA AWORD /’B’,’E’,’T’,’A’,’ ’,’S’,’O’,’L’,’V’,’ ’,
. ’C’,’O’,’N’,’T’,’ ’,’C’,’O’,’I’,’N’,’ ’,
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. ’T’,’E’,’S’,’T’,’ ’,’Q’,’U’,’I’,’T’,’!’/
LERROR=.FALSE.
LMISS=.FALSE.

10 IF(LMISS.OR.LERROR) WRITE(9,9001)
LERROR=.FALSE.
LMISS=.FALSE.
WRITE(9,9005)
READ(8,9000) ALINE
CALL TIDY
IF(LMISS.OR.LERROR.OR.ILPNT(2).EQ.0) GOTO 10
IF (ILPNT(4).EQ.0) THEN

CALL MATCH(AWORD,1,JUMP)
IF (LERROR) GOTO 10
GOTO (100,200,300,400,500,600),JUMP

100 DVDBE=DVAR(2)
DVDBSQ=DVDBE**2
GOTO 10

200 CALL VDSOLVE
GOTO 10

300 CALL VDCONTROL
GOTO 10

400 DCOIN=DVAR(2)
CALL VDCOIN(DCOIN)
GOTO 10

500 GOTO 10
600 RETURN

ENDIF
NVDPTS=NVDPTS+1
DVDX(NVDPTS)=DVAR(1)
DVDY(NVDPTS)=DVAR(2)
DVDZ(NVDPTS)=DVAR(3)
DVDNUG(NVDPTS)=DVAR(4)
DVDDEL(NVDPTS)=DVAR(5)
DVDDELSQ(NVDPTS)=DVDDEL(NVDPTS)**2
IF(LMISS.OR.LERROR) NVDPTS=NVDPTS-1
GOTO 10

9000 FORMAT(80A1)
9001 FORMAT(’ ERROR: ILLEGAL COMMAND OR MISSING PARAMETERS’)
9005 FORMAT

.(’ (x,y,z,nu,delta)..<BETA>(b)..<SOLVE>..<CONTROL>..’

. ’<COIN>(tol)..<QUIT>’,/)
RETURN
END

SUBROUTINE VDCOIN(DCOIN)
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
DTOL=DCOIN*DCOIN
DO I=1,NVDPTS-1

DO J=I+1,NVDPTS
DIST=(DVDX(I)-DVDX(J))**2+

. (DVDY(I)-DVDY(J))**2+

. (DVDZ(I)-DVDZ(J))**2
IF (DIST.LT.DTOL) WRITE(7,9000)I,J,DSQRT(DIST)

ENDDO
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ENDDO
9000 FORMAT(’ POINTS ’,I4,’ AND ’,I4,’ ARE A DISTANCE ’,

. 1E13.5,’ FROM EACH OTHER’)
RETURN
END

SUBROUTINE VDCHECK
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
WRITE(7,9000)DVDBE
WRITE(7,9001)
DO I=1,NVDPTS

WRITE(7,9002)I,DVDX(I),DVDY(I),DVDZ(I),DVDNUG(I),DVDDEL(I)
ENDDO

9000 FORMAT(’ BETA: ’,1P,E13.5)
9001 FORMAT(

.’ I X Y Z NU DELTA’)
9002 FORMAT(I5,1P,5E13.5)

RETURN
END

REAL*8 FUNCTION DFVDNUM(DX,DY,DZ,M)
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
DNUM=DVDBSQ*((DX-DVDX(M))**2+(DY-DVDY(M))**2)+
. (DZ-DVDZ(M))**2+DVDDELSQ(M)
DFVDNUM=DSQRT(DNUM)
RETURN
END

REAL*8 FUNCTION DFVDNU(DX,DY,DZ)
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
DO M=1,NVDPTS

DNUM=DSQRT( DVDBSQ*((DX-DVDX(M))**2+(DY-DVDY(M))**2)+
. (DZ-DVDZ(M))**2+DVDDELSQ(M) )

DUM(M)=DVDAL(M)*DNUM
ENDDO
DVDNU=0.D0

CDIR$ NOVECTOR
DO M=1,NVDPTS

DVDNU=DVDNU+DUM(M)
ENDDO

CDIR$ VECTOR
DFVDNU=DVDNU+DVDNU0
RETURN
END

SUBROUTINE VDCONTROL
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
DALTOT=DZERO
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DO I=1,NVDPTS
DALTOT=DALTOT+DVDAL(I)
DNU=DFVDNU(DVDX(I),DVDY(I),DVDZ(I))
WRITE(7,9000)I,DVDAL(I),DNU,DVDNUG(I)

ENDDO
WRITE(7,9001)DVDNU0,DALTOT

9000 FORMAT(’ I,ALPHA,NUCOMPUTED,NUGIVEN ’,I4,1P,3E13.5)
9001 FORMAT(’ NU0,SUM OF ALPHA-S ’,1P,2E13.5)

RETURN
END

REAL FUNCTION RFNUGRID(CZ)
IMPLICIT COMPLEX (C), REAL*8 (D)
SAVE
DX=REAL(CZ)
DY=AIMAG(CZ)
DZ=DFELEV()
RFNUGRID=DFVDNU(DX,DY,DZ)
RETURN
END

SUBROUTINE VDSOLVE
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’

NEQ=NVDPTS+1
DO I=1,NVDPTS

DO J=1,NVDPTS
DVDLU(I,J)=DFVDNUM(DVDX(I),DVDY(I),DVDZ(I),J)

ENDDO
DVDLU(I,NEQ)=DONE

ENDDO
DO J=1,NVDPTS

DVDLU(NEQ,J)=DONE
ENDDO
DVDLU(NEQ,NEQ)=DZERO

CALL LUDCMP(DVDLU,NEQ,NVDMX+1,INDX,DUM)

DO I=1,NVDPTS
DVDAL(I)=DVDNUG(I)

ENDDO
DVDAL(NEQ)=DZERO
CALL LUBKSB(DVDLU,NEQ,NVDMX+1,INDX,DVDAL)
DVDNU0=DVDAL(NEQ)
RETURN
END

SUBROUTINE VDSPECDIS2(DX,DY,DZ,DQX,DQY,DQZ)
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
DK=DFAQK()
DH=DFAQH()
DZB=DFAQZB()
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DZT=DFAQZT()
DTOL=1.d-8
DO M=1,NVDPTS

DXMSQ=DVDBSQ*(DX-DVDX(M))**2
DYMSQ=DVDBSQ*(DY-DVDY(M))**2
DZM=DVDZ(M)
DZMSQ=(DZ-DZM)**2
DZTMSQ=(DZT-DZM)**2
DZBMSQ=(DZB-DZM)**2
DELSQM=DVDDELSQ(M)
DRM=DSQRT(DXMSQ+DYMSQ+DZMSQ+DELSQM)
DRMT=DSQRT(DXMSQ+DYMSQ+DZTMSQ+DELSQM)
DRMB=DSQRT(DXMSQ+DYMSQ+DZBMSQ+DELSQM)
DTESTSQ=DXMSQ+DYMSQ+DELSQM
IF (DTESTSQ.LT.DTOL*DZMSQ .AND. DZ.LT.DZM) THEN
DP1=0.5D0*DTESTSQ/(DZM-DZ)

ELSE
DP1=DZ-DZM+DRM

ENDIF
IF (DTESTSQ.LT.DTOL*DZBMSQ .AND. DZB.LT.DZM) THEN
DP2=0.5D0*DTESTSQ/(DZM-DZB)

ELSE
DP2=DZB-DZM+DRMB

ENDIF
IF (DTESTSQ.LT.DTOL*DZTMSQ .AND. DZT.LT.DZM) THEN
DP3=0.5D0*DTESTSQ/(DZM-DZT)

ELSE
DP3=DZT-DZM+DRMT

endif
DLOG1=DLOG(dp1/dp3)
DLOG2=DLOG(dp2/dp3)
DDIS=DLOG1+((DZB-DZM)*DLOG2+(DRMT-DRMB))/DH
DUM1(M)=DVDAL(M)*(DX-DVDX(M))*DDIS
DUM2(M)=DVDAL(M)*(DY-DVDY(M))*DDIS

DPART1=DTHREE*( (DZT-DZ)/DH*(DRMT-DRMB)+DRM-DRMT )
DPART2=-DTWO*(DZ-DZM)*DLOG1+DTWO*(DZB-DZM)*(DZT-DZ)/DH*DLOG2
DPART3=DELSQM/DH*( -DH/dp1+(DZ-DZB)/dp3-(DZ-DZT)/dp2 )
DUM3(M)=DVDAL(M)*(DPART1+DPART2+DPART3)

ENDDO
DQX=0.D0
DQY=0.D0
DQZ=0.D0

CDIR$ NOVECTOR
DO M=1,NVDPTS

DQX=DQX+DUM1(M)
DQY=DQY+DUM2(M)
DQZ=DQZ+DUM3(M)

ENDDO
CDIR$ VECTOR

DQX=DK*DVDBSQ*DQX
DQY=DK*DVDBSQ*DQY
DQZ=DK*DVDBSQ*DQZ
RETURN
END
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REAL*8 FUNCTION DFPOT2HEAD(DPOT,DX,DY,DZ)
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
WRITE(*,*)’DPOT,DX,DY,DZ ’,DPOT,DX,DY,DZ
DK=DFAQK()
DH=DFAQH()
DZB=DFAQZB()
DZT=DFAQZT()
DTOL=1.d-8
DO M=1,NVDPTS

DXMSQ=DVDBSQ*(DX-DVDX(M))**2
DYMSQ=DVDBSQ*(DY-DVDY(M))**2
DZM=DVDZ(M)
DZMZM=DZ-DZM
DZMSQ=(DZ-DZM)**2
DZTMSQ=(DZT-DZM)**2
DZBMSQ=(DZB-DZM)**2
DELSQM=DVDDELSQ(M)
DRMSQ=(DXMSQ+DYMSQ+DZMSQ+DELSQM)
DRMTSQ=(DXMSQ+DYMSQ+DZTMSQ+DELSQM)
DRMBSQ=(DXMSQ+DYMSQ+DZBMSQ+DELSQM)
DRM=DSQRT(DRMSQ)
DRMT=DSQRT(DRMTSQ)
DRMB=DSQRT(DRMBSQ)
DPART1=DHALF*(DRMSQ-DZMSQ)*DLOG(DZMZM+DRM)+DHALF*DZMZM*DRM
DPART2=DHALF*(DZT-DZM)*(DRMTSQ-DZTMSQ)*DLOG(DZT-DZM+DRMT)+

. dhalf*DRMT*DZTMSQ-d1d3*DRMTSQ*DRMT
DPART3=DHALF*(DZB-DZM)*(DRMBSQ-DZBMSQ)*DLOG(DZB-DZM+DRMB)+

. dhalf*DRMB*DZBMSQ-d1d3*DRMBSQ*DRMB
DUM1(M)=-DPART1+(DPART2-DPART3)/DH

ENDDO
DHEAD=DPOT/(DK*DH)-DVDNU0*(DZ-(DZT**2-DZB**2)/(2.D0*DH))

CDIR$ NOVECTOR
DO M=1,NVDPTS

DHEAD=DHEAD+DVDAL(M)*DUM1(M)
ENDDO

CDIR$ VECTOR
DFPOT2HEAD=DHEAD
RETURN
END

REAL*8 FUNCTION DFHEAD2POT(DHEAD,DX,DY,DZ)
IMPLICIT REAL*8 (D)
SAVE
INCLUDE ’vardens.cmn’
DK=DFAQK()
DH=DFAQH()
DZB=DFAQZB()
DZT=DFAQZT()
DTOL=1.d-8
DO M=1,NVDPTS

DXMSQ=DVDBSQ*(DX-DVDX(M))**2
DYMSQ=DVDBSQ*(DY-DVDY(M))**2
DZM=DVDZ(M)
DZMZM=DZ-DZM
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DZMSQ=(DZ-DZM)**2
DZTMSQ=(DZT-DZM)**2
DZBMSQ=(DZB-DZM)**2
DELSQM=DVDDELSQ(M)
DRMSQ=(DXMSQ+DYMSQ+DZMSQ+DELSQM)
DRMTSQ=(DXMSQ+DYMSQ+DZTMSQ+DELSQM)
DRMBSQ=(DXMSQ+DYMSQ+DZBMSQ+DELSQM)
DRM=DSQRT(DRMSQ)
DRMT=DSQRT(DRMTSQ)
DRMB=DSQRT(DRMBSQ)
DPART1=DHALF*(DRMSQ-DZMSQ)*DLOG(DZMZM+DRM)+DHALF*DZMZM*DRM
DPART2=DHALF*(DZT-DZM)*(DRMTSQ-DZTMSQ)*DLOG(DZT-DZM+DRMT)+

. dhalf*DRMT*DZTMSQ-d1d3*DRMTSQ*DRMT
DPART3=DHALF*(DZB-DZM)*(DRMBSQ-DZBMSQ)*DLOG(DZB-DZM+DRMB)+

. dhalf*DRMB*DZBMSQ-d1d3*DRMBSQ*DRMB
DUM1(M)=-DPART1+(DPART2-DPART3)/DH

ENDDO
DPOT=DHEAD*DK*DH+DK*DH*DVDNU0*(DZ-(DZT**2-DZB**2)/(2.D0*DH))

CDIR$ NOVECTOR
DO M=1,NVDPTS

DPOT=DPOT-DK*DH*DVDAL(M)*DUM1(M)
ENDDO

CDIR$ VECTOR
DFHEAD2POT=DPOT
RETURN
END
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