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The perftormance of several varrations on ordinary kriging and Inverse
distance estimators is evaluated. Mean squared errors (MSE) were
calculated for estimates made on multiple resamplings Trom Tfive
exhaustive data bases representing two distinctly different types of
estimation problem. Ordinary kriging, when performed with variogram
estimated from the sample data, was more robust than inverse-distance
methods to the type of estimation problem, and to the choice of
estimation parameters such as number of neighbors.
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INTRODUCTION

Spatial interpolation is important in many environmental studies.
The U.S. EPA Environmental Monitoring Systems Laboratory -Las Vegas has
been investigating the performance of various interpolators, especially
as they apply to sampling, estimation, and remediation of contaminated
soils and sediments. Previous studies by the authors have investigated
the effects of various estimation parameters on_ the quality of spatial
estimates. Englund (1990) showed that the variability was high among
estimates (obtained primarily by kriging) by 12 different statisticians
working with two common SetS of “data. Englund, et al., (1992)
investigated the effects of sample size, grid type, and sampling error on
estimation accuracy, by using 54 sample data sets drawn from a single
large exhaustive data base. The most important parameter proved to be
sample size, where the estimation accuracy improved with increasing
sample number.

Weber and Englund (1992) evaluated the relative accuracy of 15
different spatial estimators by using the same 54 sample data sets,
showing that inverse-distance and inverse-distance-squared interpolators
performed slightly better than ordinary and simple kriging. The authors
concluded that these results, while provocative, 1d not mean that
Inverse-distance methods are necessarily superior to kriging estimators

2Notice: Although the research described in this article has been funded in part by the United States
Environmental Protection Agency through Cooperative Agreement CR818526 to the Harry Reild Center for
Environmental Studies, University of Nevada-lLas Vegas, it has not been subjected to Agency review. Therefore
it does not necessarily reflect the views of the Agency. Mention of trade names or commercial products does not
constitute endor t or reco dation for use.

3University of Nevada Las Vegas, Harry Reed Center for Environmental Studies, 4505 S. Maryland Parkway,
Lae Vegas, Nevada 89154.

4U. S. Environmental Protection Agency, Environmental MHonitoring Systems Laboratory - Las Vegas, P.O.Box
93478, Las Vegas, Nevada 89193



in all cases; reasonable variations of that experiment could be imagined
wherein kriging would be expected to have a distinct advantage over the
particular Inverse-distance algorithms used. The nature of the data base
may have fortuitously favored inverse-distance. Both the kriging methods
and variogram modeling were relatively simplistic: changing either might
have significantly altered the results. inally, strong anisotropy and
glusterlng of samples, which favors kriging, were not present in the
ata.

In this paper, we begin to address these issues with a more
extensive comparison of several  inverse-distance and  kriging
interpolators. We evaluate their relative performance on five exhaustive
data bases that represent distinctly different types of physical
phenomena.

DATA BASE DESCRIPTIONS

The five data bases, like the Walker Lake data base used in the
earlier studies, were taken from digital elevation models obtained from
the National Cartographic Information Center. The goal was to select
several data bases representing surfaces that have different
characteristics. Three of the data bases use the original elevation
data, and two of them are transformations obtained by calculating the
variance of the original elevation data. All of the data bases contain
21,600 data on a common grid of 120 rows by 180 columns. Corresponding
20 by 30 arrays of block averages were generated from the arithmetic
means of 6 by 6 arrays of points in each of the data bases. Statistical

parameters are given below in table |I. Figures la-le show three-
dimensional perspective views of the five data bases, and Figures 2a-2e
show the corresponding histograms. The elevation data bases are

relatively unskewed, with fairly smooth, continuous surfaces. We believe
that they can fairly represent other phenomena sharing these
characteristics: geological structural surfaces: thickness of Irthologic
units, hydraulic head, surface water temperature, barometric pressure,
etc. The variance data bases are highly skewed, and present
discontinuous, noisy surfaces. These distributions are similar to those
of contaminants or trace elements in soils, sediments, and rocks; and to
phenomena such as porosity and hydraulic conductivity.

1. Bend Elevation and Variance-of-Elevation: The original data base
contained 240 rows by 360 columns of elevation data. Two final data
bases (120 by 180) were obtained by calculating the mean or variance of
each 2 by 2 array of the original data. The most prominent features of
the elevation base (Fig. la) are the mountains on the east side. The
terrain slopes down toward the west side where canyons are found. The
most prominent features of the variance base (Fig. Ib) are produced by
the valleys on the west side and the mountains on the east side.

2. Black Butte Elevation and Variance-of-Elevation: Elevation and
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variance data base were calculated as for Bend. The elevation base (Fig.
Ic) includes Black Butte in the far northeast corner and_ several
prominent mountains in the southwest corner. The area surrounding Black
Butte i1s very flat, as opposed to the landscape around the mountains in
the Bend elevation area. The prominent Teatures in the original
iﬁevation model produce corresponding prominent variance features (Fig.

3. Steamboat Falls Elevation: An original data base of 180 columns by
120 rows was used as the final data base. The mutual confluence of two
creeks with the North Umpgqua river produces an interesting surface
divided into four sections (Fig. le).

o Table 1
Statistics for Data Bases and Block Averages

Data Base Statistics

Data Base Bend Bend Butte Butte Steam
Data Type Elevation Variance Elevation Variance Elevation
Mean 1,682 142 1,347 48 704
St. Dev. 411 255 253 112 209
Skewness .16 424 .28 543 45
Kurtosis 2.89 35.97 2.22 46.19 2.67

oV 24 1.80 18 2.34 .30

Block Average Statistics

Data Base Bend Bend Butte Butte Steanm
Data Type Elevation Variance Elevation Variance Elevation
llean 1,682 142 1,347 18 705

Std. Dev 408 158 252 8 204

SAMPLE SETS
Sixty sample sets were drawn by random sampling from each data base,

including 20 sets each of 25, 100, and 400 samples. The total number of
sample sets was 300. Figure 3 shows typical sample configurations.

ESTIMATORS
For each of the 300 sample sets, a 20 by 30 grid of block estimates
was produced by each estimator. In all cases, blocks were numerically
approximated by a discrete 2x2 array of point estimates. Estimators
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included four variations on ordinarg kriging, four variations on inverse-
distance, and one spline, as described below. For two of the estimators,

Inverse-distance squared and ordinary kriging with traditional variogram
estimation, the estimates were Trerun with different numbers of
neighboring samples included.

Geo—-EAS - Ordinary Kri%ing: Ordinary kriging was performed bz using
Geo-EAS software (Englund and Sparks, 1991). The ordinary kriging
equations have been described elsewhere (e.g. , Journel and Huijbregts,

1978; lIsaaks and Srivastava 1989). A circular, single sector search was
used, with a large enough search radius to ensure the maximum desired
number of neighboring sample locations. The four variations on ordinary
kriging differ only 1n the choice of variogram model used. [In one case,
a “black box” approach was used - a zero-nugget linear model was
assigned regardless of the experimental variogram. The other three
ordinary kriging estimators used variogram models fitted to three
alternate estimators of the experimental variogram, namely, the
traditional variogram, the general, or lag-wise, relative variogram
(David, 1977), and Cressie’s (19853 robust variogram. These are
described in detail below. In these three cases, isotropic double-nested
exponential models were fitted by minimizing the squared residual
function (SR) given by

N
SR = Y [F (A ~vx () 120, (F))
=1

where the functions F,(H,), y,(H;), and w,(H;) are given below.

The three experimental variograms y,(H,) are defined as

N(h)
i 1 .,
(h) = ——— z, a2, P (Traditional)
Y SN (B) 121 [ t;+h tl]
YGRLE) = Y (1) > (General relative)
m. g m+E)

The maximum distance over which the experimental variogram were computed
and fitted was determined by finding, In each case, the greatest distance
needed to include the selected number of nearest neighbors. This distance

4



4

Ng
1 Nz, -
ﬁ; Z Ztl-+h Zti|
= h ‘28

(0 .457+0 . 497/Np)
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was divided into n equal-length lag intervals. The numbers of pairs in
eaocl:hI lag were used to weight the least squares. The three variogram
models are: .

- X _——A —
Gexponentiall = Nugget + Sill - (l-e 172RYy 4 Sill,s [1-e Y'732R]
_X sl
. 3Ry 4+ o LrA - 3R
Ggauss = Nugget + Sill,- [1-e 17 5ill,-[1- e 2]
Gspherical = Nugget + Silly: (2% - X 3] + Sill,- [ 3% _ 2X 31
SN Ga) 28 %%
where R is the “practical " range (Journel and Huijbregts, 1978) .
CcPS/PC®> - Inverse-distance Squared: This estimator, from the cps/pc

software package, is defined as:

Z, = )'; Wi AX;)

1=

where 2, represents the estimated value, w, are weights, z(x,) are sample
values at locations xi, and the summation is over the n samples included

in the estimate. The weights for inverse-distance squared (w™) are
defined as
r-r;\
wIDS — I

where r, IS the‘'distance between estimate and the i* sample location, and
r., is the search radius. Note that these weighting equations are not
“simple” inverse-distance schemes because sampie weights are forced to
equal zero at the search radius. i

An octant search with a maximum of 16 points was used.

5CPS/PC15a commercial SO ftware product Of Radian Corporation, Austin, Texas.
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Surfer® - Inverse-distance, Inverse-distance Squared, and Inverse-
distance Cubed: This estimator used the Surfer Version 4 software
package. It is defined as:

n

Z, =Y wZx;)

i=1

where Z, represents the estimated value, w, are weights, Z(x;) are sample
values at locations x,, and the summation is over the n samples included
in the estimate. The weights for inverse-distance are defined as

1 b
P _ (ri

B

i=1 i

where r, is the distance between estimate and the i*" sample location, and
p is the inverse-distance exponent. A single sector search with a large
search radius was used.

BIHASH - Spline: Spline estimates were performed by using a program
developed by Foley (1987). This multi-stage method has many options
controlled an integer array of six elements that enable it to yield
several different functions that either interpolate or approximate the
given scattered data. As applied in this study, the first stage
generated %ridded estimates on a default uniform grid by using a
polynomial least-squares approximation of degree two on eight neighboring
sample values. For the variance sample sets, these estimates were
constrained by the minimum and maximum sample values used. This was not
done for elevation data. The second stage computes a piecewise bicubic
Hermite interpolant with partial derivatives calculated from first stage
grid. This i1nterpolant does not necessarily pass through the sample
values. The third stage adds a correction term to force the estimate to
honor the data. Foley does not recommend this option for rapidly varying
data; therefore, i1t was used elevation data, but not for variance data.

Mean Square Error: Evaluation was performed by calculating the mean
square error (MSE) of the block estimates with respect to the true block
values. MSE is defined here as

where Z°=t'"** and Z*" are the estimates and true block values for the
blocks, and i1 and j represent the blocks and sample data sets,

[
surfer is a commercial software product of Golden Software, Inc., Golden, Colorado.
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respectively. The quantity used here is the average MSE taken over the
20 sample data sets of one size from one data base. Each estimator thus
receives 15 average MSE scores.

To aid in comparing relative performance, each of these average MSE
scores was also normalized to a Z-score, [MSE,(k)-MSE.(K)]1/SDs(k)) where
MSE, and SD, are the "grand" means and standard deviations, defined as

g Neml®
MSE g, (k) = ————— MSE, (k)
™ Nest(k) i=1
1 Noge (k)
- - - . 2
SDgy (k) N 12; (MSEq, (k) -MSE, (k))

where MSE,(k) is the ith estimator of the kth group. The grand means and
standard deviations for the 15 groups (Table 2) were computed from a
larger group of 34 estimators, only 12 of which are presented in this
paper. The Z-score representation allows a quick comparison of results
because an entry below zero is better than the average estimator
performance for a particular sample size and data base.

Table 2
Grand Means and Grand Standard Deviations

Samples/ BEA BUA STA BEV BUV

data set pean  sd  mean sd mean sd wean sd mean sd
25 33,644 3,716 15,260 1,652 31,104 2,645 35,959 6,520 7,164 596
100 13,531 3,127 6,264 1,108 10,705 2,575 26,145 2,463 5,341 310
100 3,947 1,371 1,635 708 2,837 1,072 17,394 1,876 2,56 159

RESULTS

The results for all estimators are shown together as raw MSE scores
in Figures 4a-4e, and as Z-scores in Figure 5a-5e. The designation
numbers refer to estimators and corresponding parameters listed in Tables
3 and 4. Each graph shows the results for all estimators at 25, 100, and
400 samples for one data base. Figure 6a-6e shows z-scores for inverse-
distance vs. kriging for different numbers of neighbors.



Table 3
Group I: Inverse-distance Estimators

Inv. Dist. Search Pattern

Program Exponent Sectors Samples/Sector

Surfer 2 1 04

Surfer 2 1 12

Surfer 2 1 20

Surfer 1 1 16

Surfer 2 1 16

Surfer 3 1 16

CPs/pC 2 8 02

Exponent is the power of the inverse-distance

Table 4
Group II: Kriging & Spline
Variogram Search Pattern
Estimator Experimental  Model Fitting Sectors Samples/Sector
Spline None None None N/A N/A
Kriging None Linear None 1 16
Kriging Traditional Exponential NP 1 20
Kriging Traditional Exponential NP 1 12
Kriging Traditional Exponential NP 1 4
Kriging Gen. Rel. Exponential NP 1 16
Kriging Cressie Robust Exponential 14 1 16
DISCUSSION

Inverse-distance estimators are very sensitive to the type of data
base, to the number of neighbors used In the estimate, and to the power
of distance used in weighting. For the elevation data bases, estimation

uality generally increases as the number of neighbors decreases and as
the power of distance increases. For variance data bases, the opposite
occurs. . . there are dramatic increases iIn quality with Increasing numbers
of neighbors and decreasing powers of distance. The modified weighting
scheme in the CPS/PC algorithm appears to have an effect roughly
equivalent to a slight increase in the power.

By contrast, ordinary kriging using fitted variogram models is
relatively robust to the type of data base and the method of estimating
the experimental variogram. The kriging estimates consistently improve
with increasing number of neighbors, regardless of data type. Four
nearest neighbors appear to be generally i1nadequate for kriging,
especially for the variance data bases; however, the results appear to
stabilize with 12 or more neighbors. The results from ordinary kriging
with the linear variogram model illustrate that it is not robust to _an
arbitrary choice of variogram model. This choice of linear model with
zero nugget worked very well for elevation data bases, but extremely
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poorly for variance.

The relative performance of the estimators, with the exception of
the spline, does not appear to be greatly affected by sample density.

From these results, it is apparent that the superior performance of
inverse-distance over kriging reported earlier (Weber and Englund, 1992)
was mostly due to a fortuitous (or judicious) selection of options with
respect to the data base being used.

With experience, good judgement, and knowledge of the type of
phenomenon being estimated, 1t iIs possible to obtain good estimates with
inverse-distance methods. With the same experience, judgement and
knowledge, however, it is also possible to select a good ordinary kriging
approach with lower sensitivity to errors in judgement.

Although ordinary kriging is relatively robust, there are
nevertheless significant differences in Performance among the approaches
used here. For example, the traditional variogram appears superior for
elevation data bases, while the general relative variogram is better for
the variance cases. Cressie’s robust variogram does in fact perform
robustly, but not more so than the traditional variogram. The
geostatistician is still faced with the problem of selecting the best
tool for the job at hand. It is worth asking whether, in the absence of
a priori knowledge, 1t is possible to use some characteristic of the
sample data set itself to assist in this choice. _ In the examples
p{eseggpd here, skewness and kurtosis might provide an effective
classifier.

The different approaches to variogram estimation presented here only
begin to address the problem of variography.  We have compared
alternative variogram estimators, models, and fitting techniques in
considerable detail (Englund and Weber, in preparation) .

Finally, we would like to emphasize that while MSE provides a simple
and useful basis for comparison, minimization of MSE is not necessarily
always what is needed. e have shown (Weber and Englundh 1992) that the
relative ranking of estimator with respect to decision quality as
measured by a loss function can be quite different from the ranking with
respect to MSE.
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