

U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management

Draft

Prineville District Office PO. Box 550 Prineville, Oregon 97754 ONRC Action v. Bureau of Land Management Civil Case No. 96-00422-HAA Administrative Record 59

Brothers Grazing Management Program

Environmental Impact Statement

Ĵ,

United States Department

Interior

BUREAU OF LAND MANAGEMENT

Prineville District Office P.O. Box 550 Prineville, Oregon 97754

Enclosed for your review and comment is the Brothers Grazing Management Draft Environmental Impact Statement (EIS). The statement analyzes the-impacts which would result from the proposed livestock management program and four alternatives. The purpose of the statement is to disclose the probable environmental impacts for consideration along with economic and technical information in the decisionmaking process.

Comments concerning the adequacy of this statement will be considered in the preparation of the final environmental impact statement. The comment period will end June 30, 1982. Informal discussion sessions intended to assist you in reviewing and commenting on the draft EIS will be held at 7:00 p.m., May 251982, at St. Joseph's Parish Hall, 150 East First St., Prineville, Oregon and at 7:00 p.m., May 26, 1982, at the Bend Riverhouse Motor Inn, 3075 North Highway 97, Bend, Oregon.

Bureau of Land Management personnel will be available at both sessions to answer questions regarding the draft EIS analysis.

The draft EIS may be incorporated into the final EIS by reference only. The final EIS then would consist of public comments and responses and any needed changes of the draft. Therefore, please retain this Draft EIS for use with the final.

Comments received after the close of the comment period will be considered in the decision process, even though they may be too late to be specifically addressed in the final environmental impact statement. Your comments on the Draft EIS should be sent to:

Prineville District Manager Bureau of Land Management P.O. Box 550 Prineville, Oregon 97754

In using this analysis, readers should keep in mind that an EIS (draft or final) is not the decision document. Final decisions will be made after the close of the final EIS comment period. The two-step decision process (issuing a draft record of decision for comment, then the final) which has been used in the past will not be followed. We have concluded that the two-step decision process would unnecessarily prolong the decision. We believe that public comment on the draft and final Brothers **EISs** can provide adequate opportunity for the public to help us reach proper decisions.

Comments on both draft and final **EISs** will be used to reach a final decision. There will be no draft decision document issued for public comment. The final decision will be announced through release of a decision document to interested parties.

Gerald E. Magnuson,

District Manager

U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management

DRAFT

BROTHERS GRAZING MANAGEMENT PROGRAM

ENVIRONMENTAL IMPACT STATEMENT

Prepared By PRINEVILLE DISTRICT BUREAU OF LAND MANAGEMENT U.S. DEPARTMENT OF THE INTERIOR 1982

Mulim D. Jeaneel

State Director, Oregon State Office

BROTHERS GRAZING MANAGEMENT

Draft (x) Final () Environmental Impact Statement Department of the Interior, Bureau of Land Management

1. Type of Action: Administrative (x) Legislative ()

2. Abstract: This EIS describes and analyzes the environmental impacts of implementing a grazing management program for 1.1 million acres of public land in the Prineville District, Oregon. The Bureau of Land Management is responsible for managing rangeland for multiple use. Four alternatives, plus the proposed action are described and analyzed for environmental impacts. The proposed action, the result of Bureau multiple use planning using public input, is the preferred alternative. Other alternatives analyzed included: 1) Optimize livestock grazing; 2) Continue present management; 3) Optimize wildlife and watershed values; and 4) Eliminate grazing. Specific management components of the proposed action include forage allocation for livestock and wildlife, protection of all riparian areas, implementation of grazing systems and treatments, brush and juniper control, and seeding. Environmental impacts of the proposed action include wildlife habitat modification, increased allocation of forage, reduced soil erosion and stream sedimentation.

3. The draft statement is expected to be filed with EPA and made available to the public on May 1, 1982. The comment period will be 60 days following transmittal to EPA.

4. For further information contact:

Brian Cunninghame EIS Teamleader Bureau of Land Management Prineville District PO. Box 550 Prineville, Oregon 97754 Telephone: (503) 447-7003

SUMMARY

This draft Environmental Impact Statement (EIS) describes and analyzes the environmental, social, and economic impacts of implementing a livestock grazing management program in the Brothers area of central Oregon. The proposed action, developed through BLMs planning system using public input, is the preferred alternative. Four other alternatives also are described and analyzed.

The proposed action consists of forage allocation, implementation of grazing systems, and rangeland improvements on 177 grazing allotments covering 1,067,577 acres of public land. The objective of the proposed action is to maintain or improve ecological condition on all allotments. The proposal would occur in a 20 to 25 year period; up to 10 years for implementation and 10 to 15 additional years to achieve management objectives.

Existing forage production totals 89,104 AUMs. Under the proposed action, initial forage allocation would be 83,087 AUMs for livestock, 5,331 AUMs for wildlife, leaving 686 AUMs not allocated. The allocation to livestock constitutes an 11 percent increase from the 1981 active grazing preference of 74,769 AUMs.

Livestock grazing would be increased initially by 8,318 AUMs to reflect current forage production. Increases for individual allotments range from 6 AUMs to 1,095 AUMs. Implementation of grazing systems and rangeland improvements would result in future forage production of 177,357 AUMs. It is anticipated that this would be allocated to livestock (132,795 AUMs) and wildlife (7,427 AUMs). The remaining 37,135 AUMs of forage production would not be allocated.

Rest rotation grazing would be implemented on 400.942 acres, deferred rotation on 593,725 acres, rotation on 5,755 acres, short duration on 37.144 acres, winter grazing on 14,478 acres. Livestock grazing would be excluded on 2.003 acres. An additional 13,530 acres would remain in rest status.

Proposed rangeland improvements include 391 miles of fence, 13 springs, 7 wells, 467 miles of pipeline, 25 reservoirs, and 2 waterholes. Vegetation manipulation is proposed for 266,709 acres and would consist of brush control on 110,121 acres, jumper control on 97,733 acres, and preparation for seeding on 58,855 acres by spraying, cutting, burning, or plowing. In addition 80 wildlife guzzlers, 55 miles of stream rip-rap, 620 stream structures, 15 acres of stream debris removal, and 120 bird nesting sites would be constructed as interrelated rangeland improvement measures.

Four alternatives to the proposed action were analyzed and are summarized below.

Alternative 1. Optimize Livestock Grazing: In the long term, this alternative would provide 123,911 AUMs more than the existing situation from implementation of the following improvements: 124,550 acres of seeding, 289,500 acres brush control, 97,733 acres of juniper control, and 470 miles of pipeline. There would be no additional protective fencing in riparian areas. There would be 40 wildlife guzzlers, 14 miles of stream rip-rap, 155 stream structures, and 60 bird nesting sites constructed. The initial allocation of forage for livestock would be 9,004 AUMs greater than the existing allocation. The anticipated future available forage production of 214,015 AUMs would be allocated to livestock (201,777 AUMs) and wildlife (7,427) with 4,811 AUMs remaining nonallocated.

Changes in grazing systems would be similar to the proposed action.

Alternative 2. Continue Present Management: With this alternative, there would be no change from present management conditions. Forage production would be allocated at existing levels to livestock (74,769 AUMs) and wildlife (5,331 AUMs), with 9,004 AUMs remaining unallocated. Wildlife allocations are projected to increase to 7,427 AUMs and unallocated forage is projected to increase to 51 ,115 AUMs due to improving trend and productivity. No new range improvement projects or changes in grazing systems would be undertaken.

Alternative 3. Optimize Wildlife and Watershed

Values: Initial livestock forage allocations would be 26,256 AUMs fewer under this alternative than the proposed action. This alternative is projected to provide 75,964 fewer AUMs for livestock than the proposed action by eliminating livestock from allotments within deer and antelope winter ranges as well as sage grouse nesting areas. In addition, no livestock grazing would be allowed on any riparian area or on any area with critical or severe soil erosion hazards. Rangeland improvements would include 349 miles of fence, 3 springs, 10 reservoirs, 5 waterholes. 58,204 acres of brush control, and 68,028 acres of juniper control. There would be 100 wildlife guzzlers, 69 miles of stream rip-rap, 775 stream structures, 15 acres of debris removal, and 150 bird nesting sites constructed under this alternative.

Rest rotation grazing would be implemented on 219,127 acres, deferred rotation on 242,883 acres. rotation on 98,987 acres, deferred grazing on 29,881 acres, early spring grazing on 56,740 acres, spring-summer grazing on 60,426 acres, spring-summer-fall grazing on 7,885 acres, spring-fall grazing on 9,246 acres, and winter grazing on 17,299 acres. There would be 293,919 acres where livestock grazing would be excluded and 18,586 acres in rest status

Alternative 4. Eliminate Livestock Grazing: This alternative would eliminate all livestock grazing from public lands (except during trailing). No range improvements would be constructed.

The major environmental consequences analyzed in this document are summarized below.

SOIL

The rate of soil erosion over the long term would decrease under all alternatives. Alternatives 3 and 4 would show the greatest reduction. Short-term erosion rates would increase under the proposed action and alternative 1 due to temporary reductions in residual ground cover.

WATER

Under all alternatives, there would not be a measurable effect on mean annual water yield. Water quality would improve under the proposed action, and alternatives 3 and 4. Water quality and channel stability would not change significantly under alternatives 1 and 2.

VEGETATION

The grazing systems and rangeland improvements under the proposed action and all alternatives would change ecological condition upward, and hence, increase available forage production. Through fencing and/or exclusion of livestock, riparian vegetation would show a significant upward change in ecological condition under alternatives 3 and 4; there would be some upward change under the proposed action. Upward change in ecological condition of riparian vegetation under alternatives 1 and 2 would be limited to areas presently fenced from livestock, except for changes resulting from improved grazing systems under alternative 1. Plant diversity would increase under the proposed action and alternatives 3 and 4, but would decrease under alternatives 1 and 2. Residual ground cover would increase under the proposed action, and alternatives 3 and 4. No change would occur with alternative 2. With alternative 1, residual ground cover would be slightly decreased.

The standard procedures and design elements of rangeland improvements would prevent impacts to plants of special concern during construction or implementation of these improvements.

WILDLIFE

Habitat diversity would have the largest increase in alternative 3 (17 percent). Alternative 4 and the proposed action would increase diversity 12 percent and 8 percent, respectively. Alternatives 1 and 2 would each decrease diversity 1 percent.

All alternatives would show some improvement and some decline in condition on crucial deer and antelope winter ranges. Alternative 3 has the largest improvement while alternatives 2 and 4 have the smallest improvement. The largest decline in crucial deer winter ranges would occur under alternatives 2 and 4. Alternatives 1 and 2 would result in the most acres declining in condition on antelope crucial winter range. Rangeland improvement projects under alternative 1 would have the largest negative impact on crucial winter ranges due to the reduction of juniper and sagebrush needed for forage and cover.

Wildlife habitat condition in all stream riparian areas would improve in alternatives 3 and 4. The proposed action and alternatives 2 and 1 would improve habitat by 55 percent, 33 percent, and 21 percent, respectively. All reservoir riparian areas would also improve under alternatives 3 and 4. The proposed action, and alternatives 1 and 2 would improve habitat by 7 percent.

Fisheries habitat would improve on all streams with alternatives 3 and 4. The proposed action would improve 50 miles of fish habitat, while 16 miles would improve under alternative 1. Alternative 2 would improve fish habitat on 25 miles and decrease fish habitat on an additional 20 miles of stream.

RECREATION

Implementation of the proposed action or any of the alternatives would not affect long-term visitor use levels more than \pm 3 percent. Implementation of alternative 2 would have no effect on recreational activities. The proposed action and alternative 4 would result in visitor use increases in most activities. Alternative 3 would create increases in recreation use in all activities, while alternative 1 would result in decreases in all activities.

CULTURAL RESOURCES

Implementation of the proposed action and alternatives 1, 2 and 3 would have the potential for impacting unidentified cultural sites and the integrity of some known sites. Alternative 4 would have no impact.

VISUAL RESOURCES

Range improvements under the proposed action and alternatives 1 and 3 would create visual contrasts in the short term that would diminish over the long term. Under alternatives 2 and 4, visual quality would not change significantly from present condition.

SPECIAL MANAGEMENT AREAS

The Horse Ridge Research Natural Area would not be affected by the proposed action or any of the alternatives. There are no existing or proposed Areas of Critical Environmental Concern (ACEC) in the EIS area.

SOCIOECONOMICS

Increases in forage availability for BLM permittees would occur under the proposed action (11 percent) and alternative 1 (23 percent). A decrease in available forage for BLM permittees would result under alternatives 3 and 4. Under alternative 3 this would amount to a net loss of 2 percent. While forage losses under alternative 4 would be 100 percent of BLM-produced forage, there would be a decrease of 11 percent of overall forage needs for operators.

Ranch values would be increased by \$3.4 million under the proposed action and by \$6.5 million under alternative 1. Alternative 2 would have no impact on economic values.

Alternatives 3 and 4 would reduce ranch values overall by **\$.9** million and **\$2.9** million, respectively.

The increase in local personal income and employment would be the greatest under alternative 1 and the proposed action.

Decreases would occur under alternatives 3 and 4. Alternative 2 would have no impact on social conditions or economic values. The major environmental consequences analyzed in this document are summarized below.

SOIL

The rate of soil erosion over the long term would decrease under all alternatives. Alternatives 3 and 4 would show the greatest reduction. Short-term erosion rates would increase under the proposed action and alternative 1 due to temporary reductions in residual ground cover.

WATER

Under all alternatives, there would not be a measurable effect on mean annual water yield. Water quality would improve under the proposed action, and alternatives 3 and 4. Water quality and channel stability would not change significantly under alternatives 1 and 2.

VEGETATION

The grazing systems and rangeland improvements under the proposed action and all alternatives would change ecological condition upward, and hence, increase available forage production. Through fencing and/or exclusion of livestock, riparian vegetation would show a significant upward change in ecological condition under alternatives 3 and 4; there would be some upward change under the proposed action. Upward change in ecological condition of riparian vegetation under alternatives 1 and 2 would be limited to areas presently fenced from livestock, except for changes resulting from improved grazing systems under alternative 1. Plant diversity would increase under the proposed action and alternatives 3 and 4, but would decrease under alternatives 1 and 2. Residual ground cover would increase under the proposed action, and alternatives 3 and 4. No change would occur with alternative 2. With alternative 1, residual ground cover would be slightly decreased.

The standard procedures and design elements of rangeland improvements would prevent impacts to plants of special concern during construction or implementation of these improvements.

WILDLIFE

Habitat diversity would have the largest increase in alternative 3 (17 percent). Alternative 4 and the proposed action would increase diversity 12 percent and 8 percent, respectively. Alternatives 1 and 2 would each decrease diversity 1 percent.

All alternatives would show some improvement and some decline in condition on crucial deer and antelope winter ranges. Alternative 3 has the largest improvement while alternatives 2 and 4 have the smallest improvement. The largest decline in crucial deer winter ranges would occur under alternatives 2 and 4. Alternatives 1 and 2 would result in the most acres declining in condition on antelope crucial winter range. Rangeland improvement projects under alternative 1 would have the largest negative impact on crucial winter ranges due to the reduction of juniper and sagebrush needed for forage and cover.

Wildlife habitat condition in all stream riparian areas would improve in alternatives 3 and 4. The proposed action and alternatives 2 and 1 would improve habitat by 55 percent, 33 percent, and 21 percent, respectively. All reservoir riparian areas would also improve under alternatives 3 and 4. The proposed action, and alternatives 1 and 2 would improve habitat by 7 percent.

Fisheries habitat would improve on all streams with alternatives 3 and 4. The proposed action would improve 50 miles of fish habitat, while 16 miles would improve under alternative 1. Alternative 2 would improve fish habitat on 25 miles and decrease fish habitat on an additional 20 miles of stream.

RECREATION

Implementation of the proposed action or any of the alternatives would not affect long-term visitor use levels more than \pm 3 percent. Implementation of alternative 2 would have no effect on recreational activities. The proposed action and alternative 4 would result in visitor use increases in most activities. Alternative 3 would create increases in recreation use in all activities, while alternative 1 would result in decreases in all activities.

CULTURAL RESOURCES

Implementation of the proposed action and alternatives 1, 2 and 3 would have the potential for impacting unidentified cultural sites and the integrity of some known sites. Alternative 4 would have no impact.

VISUAL RESOURCES

Range improvements under the proposed action and alternatives 1 and 3 would create visual contrasts in the short term that would diminish over the long term. Under alternatives 2 and 4, visual quality would not change significantly from present condition.

SPECIAL MANAGEMENT AREAS

The Horse Ridge Research Natural Area would not be affected by the proposed action or any of the alternatives. There are no existing or proposed Areas of Critical Environmental Concern (ACEC) in the EIS area.

BROTHERS GRAZING MANAGEMENT EIS Table of Contents

CHAPTER 1 PURPOSE AND NEED

Purpose of and Need for Action		,		2
Setting				4
Management Guidance and Coc	ordination		. •	4
The Decision				4

CHAPTER 2 PROPOSED ACTION AND ALTERNATIVES

Description of the Proposed Action and Alternatives	10
Proposed Action	10
Alternative 1. Optimize Livestock Grazing	10
Alternative 2. Continue Present Management	11
Alternative 3. Optimize Wildlife Habitat and Watershed Values	11
Alternative 4. Eliminate Livestock Grazing	12
Features of Proposed Action and Alternatives	14
Available Forage Allocation	14
Grazing Systems	14
Rangeland Improvements	18
Standard Procedures and Design Elements	18
Monitoring and Management Adjustments	21
Summary of Environmental Consequences by Alternative (Table)	22

CHAPTER 3 AFFECTED ENVIRONMENT

Climate
Soils 2
Water 2
Vegetation 2
Venetation Types 2
Ecological Condition and Trend
Plant Diversity 2
Available Forege Dreduction
Available Forage Production
Residual Ground Cover
Plants of Special Concern
Air Quality
Wildlife
Upland Habitat Diversity. 4
Riparian Habitat 4
Fisheries
Deer, Antelope, and Elk
Other Wildlife 4
Endancered or Threatened Species
Pocration 4
Paleontology
Wilderness 4
Special Management Areas 4
Socioeconomic Conditions · · · · · · · · · · · · · · · · · · ·

CHAPTER 4 ENVIRONMENTAL CONSEQUENCES

									 	 	 	 	 	 	52	;
	• •								 	 	 	 	 	 	. 53	5
 									 	 	 	 	 	 	. 53	\$
 									 	 	 	 	 	 	. 54	ŀ
						• •			 	 	 	 	 	 	. 55	j
									 	 	 	 	 	 	. 55)
									 	 	 	 	 	 	. 55	í
 					•••				 	 	 	 	 	 	. 57	ſ
															vii	
 	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						52 53 53 54 55 55 55 55 57 vii

	Available Production	
	Residual Ground Cover	1 1
Δ	ir Quality	é
Ŵ	Vildlife	(
	Upland Habitat Diversity	¢
	Riparian Habitat	t c
	Fisheries	ç
	Other Wildlife	È
R	Recreation	Ē
V	/isual	6
C	Cultural	6
P	?aleontology	6
V\ Q	VIIderness	6 7
A	volution of the Proposed Action Which Cannot Be Avoided	7
R	Relationship Between Short-Term Use and Long-Term Productivity	7
Ir	rreversible and Irretrievable Commitment of Resources	7
		_
List of Ag	gencies, Organizations and Persons to Whom Copies of The Statement are Sent	7€
		-
	eparers	1.
Appendic	ces	75
A. Sum	mary and Results of EIS Scoping	81
B. Avai	ilable Forage Allocation and Production	82
C. Exis	ting and Proposed Grazing Systems by Allotment	84
D. Prop	posed Action, Rangeland Improvements by Allotment	SC
E. Alter	rnative 1, Rangeland Improvements by Allotment	92
F. Alter	native 3, Rangeland Improvements by Allotment	94 97
H Soil	Interpretations and Characteristics for Soil Map 5	98
I Water	rshedConditions	10
J. Wate	er Quality Measurements	10.
K. Strea	am Channel Stability and Fish Habitat and Estimated Trend	10 .
L. Ecol	ogical Condition by Allotment	109
M. Wild	dlife Habitat Interrelationships	112
N.SHPC		117
O.Spec	xies List	126
O Estir	mates of Gross Sales Personal Income and Employment	129
R. Effec	t of Changes in Forage Availability on Ranch Value	13C
GLOSSA	RY	133
DEEEDEN	NCESCITED	107
REFEREI		137
TABLES		
1	Land Status	3
2	Relationship of the Proposed Action and Alternatives to LCDC Goals	4
3	Available Forage Production and Allocations (AUMs), Proposed Action and Alternatives	12
4	Summary of Acres by Grazing Systems, Proposed Action and Alternatives	13
5	Kangeland Improvements, Proposed Action and Alternatives	14 16
ს 7	Summary Long-Term Environmental Consequences, Puposed Action and Altornatives	22
י 8	Venetation Types	30
9	Present Ecological Condition	32
10	Plants of Special Concern	39
11	Wildlife Habitat and Species Use	40
12	Wildlife Habitat and Populations	41
13	Summary of 1981 Recreation Use on Public Lands	43
14	Rivers Identified in the Nationwide Rivers Inventory	44

15	Wilderness Study Areas	47
16	Operator Dependency on BLM-Produced Forage by Month	48
17	Sales and Return Above Cash Costs for Average Ranch Operation	49
18	Acres of Potential Soil Disturbance	53
19	Long-Term Trend, Acres Contibuting to Surface Runoff	54
20	Channel Stability, Estimated Condition and Trend, BLM Stream Miles	54
21	Acres of Vegetation Types Resulting from Rangeland Improvements	55
22	Long-Term Vegetation Impacts	58
23	Acres of Long-Term Change, Residual Ground Cover	60
24	Acres of Habitat and Numbers of Wildlife Species Affected By Changes in Habitat Caused by	
	RangelandImprovements	62
25	BLM Stream Miles of Fish Habitat, Estimated Condition and Trend	63
26	Expected Trend, Acres of Crucial Deer Winter Range	65
27	Expected Trend, Acres of Crucial Antelope Winter Range	65
28	Acres of Crucial Deer and Antelope Winter Range Affected by Rangeland Improvements	65
29	Long-Term Impacts to Recreation Activities	66
30	Estimated Long-Term Changes in Visitor Days per Year	66
31	Potential Short-Term Visual Impact of Proposed Rangeland Improvements	67
32	Summary of Potential Impacts on Cultural Resources	68
33	Proposed Rangeland Improvements within WSAs	69
34	Number of Operators Affected by Change in Public Forage Allocation	70
35	Effect on Ranch Collateral and Sale Values	72
36	Effect on Return Above Cash Costs	72
37	Effect of Changes in Public Forage on Local Personal Income and Employment	73
38	Effect of Construction on Personal Income and Employment	73
39	Effect of Long-Term Changes in Recreation Activity on Personal Income and Employment	73
40	Summary of Effects on Personal Income and Employment	74

FIGURES

1 Grazing Systems	15
2 Vegetation Types in Relation to Elevation	30
3 Relationship of Forage to Total Vegetation Production	38
4RiparianVegetation	41

MAPS

L	Location	
2	Land Status	

3	Allotment Boundaries and Livestock Exclusion Areas
4	Detential Denseland Treatment Areas

- 4 Potential Rangeland Treatment Areas
 5 General Soils
 6 Vegetation Types
 7 Riparian, Wetland Areas, and Wildlife Habitat
 8 Visual Resource Management Classes

CHAPTER 1

PURPOSE OF AND NEED FOR ACTION

The Brothers Grazing Management Draft Environmental Impact Statement analyzes the environmental, social, and economic impacts of implementing a livestock grazing program on public land administered by the Bureau of Land in the Prineville District in central Oregon. In this document the area is referred to as the Brothers Environmental Impact Statement or EIS area (Map 1)

The Bureau of Land hlanagement is responsible for multiple use management of public lands The BLMs and direction is the Taylor Grazing Act of 1934 as amended, Federal Land Policy Act of 1976, and the Public Rangelands Improvement Ac: of 1978, Lands, minerals, and timber resources on BLMadministered lands also are part of BLMs responsibility However they are not affected by the implementation of a livestock grazing program and are not considered in

The purpose of the proposed action is to implement planning decisions needed for management, protection, and enhancement of the rangeland resource The proposed action is a grazing managemen! program consisting of vegetation allocation, implementation of grazing systems and rangeland Improvement projects

SETTING

The Brothers EIS area of central Oregon is high desert characterized by juniper and sagebrush. intermittent and perennial streams, and two major river systems. Population in the area is mainly concentrated in and near Bend. Redmond, and Prineville.

Total acreage in the EIS area is about 2.3 million acres, including 1.07 million acres of public land under BLM management (Table 1 and Map 2)

Table 1 Land Status

Land Status		Acres
BLM		1,067,577 1
Other Federal		5,940
State		54,604
County		15,000
Private		1,194,000
TOTAL	•	2,337,121

BLM-administered: Crook County - 511.978 D e s c h u t e s , C o u n t v - 4 6 5 . 2 1 0 Harney County - 1,080 Lake County - 89,309

The EIS area includes 177 allotments Involving 121 ranch operations (Map 3). Operations vary considerably in Size and dependency on public land. In general, operations in the southern and eastern parts of the EIS area rely heavily on BLM grazing allotments. In contrast, there are many small or part-time operations in the Bend and Redmond areas 'where suburban growth has fragmented many ranches into smaller units and grazing on associated public land is no longer practical.

South of U.S. Highway 20. BLM-administered land is in nearly continuous blocks, while north of the Highway, it is Interspersed with state, private, and other Federal land (Map 2). The primary ownership pattern is of scattered tracts of BLM-administered land intermingled with other ownerships.

Public land in this area has been grazed by domestic livestock since the late 1800's. Prior to the Taylor Grazing Act of 1934, use of the public land was unregulated Heavy use by cattle, sheep, and in some cases. horses. depleted the rangeiand resource

Grazing use on virtually all allotments within the Brothers EIS area was adjusted in the late 1950's and early 1960's based on detatied range surveys Through this process called "adjudication, total number of AUMs allocated in the EIS area was reduced. As a result of this decrease. Improved grazing management, fencing, water facilities, and vegetation treatments, the overall ecological condition and trend of the rangeland Improved

MANAGEMENT GUIDANCE AND COORDINATION

MANAGEMENT GUIDANCE

The BLM planning system is a decision-making process which begins with Issue identification and resource Inventories. These resource inventories are documented in a Unit Resource Analysis (URA) With additional social and economic data. and public input. land use decisions are developed in a Management Framework Plan (MFP) for a planning area.

A proposed MFP for the Brothers Grazing EIS area has been developed. The MFP and URA are available for review in the Prineville District Office.

Meetings to obtain public comment on the development of the proposed MFP and the scope of this EIS were held September 21. 22. 23, 1981, in Portland. Prineville and Bend, respectively (Appendix A). Results of those meetings were presented to the Prineville District Advisory Council on September 24, 1981. Comments obtained from the public and the Council at that time are reflected in both the proposed action and the overall scope of this EIS.

The proposed action in this EIS is the preferred alternative.

COORDINATION

The Brothers Grazrng EIS area shares, in part common boundaries with the Deschutes and Ochoco National Forests (Map 2). Coordination between the BLM District Manager and respective Forest Supervisors is routrne. Specific project and program coordination takes place as needed at all management levels

In addition, the Service initiates development of coordinated resource plans when requested by ranchers who utilize land managed by more than one government agency Participation by the rancher and agency representative in identifying management needs often results in conflict resolution and helps ensure that mutual goals are met.

The Intergovernmental Relations Division of the Executive Department of Oregon acts as a clearinghouse for various State agencies. State agency review of the BLM planning process is coordinated through that clearinghouse Planning is also coordinated with the county commissioners and county planning departments.

Under a memorandum of understanding, the BLM and Oregon Department of Environmental Quality (DEQ) agreed to provide the necessary coordination to meet the implementation requirements of the

Clean Water Act (PL 92-500, as amended). The Fish and Wildlife Coordination Act of 1958 requires wildlife conservation be given equal consideration and be coordinated with other features of water developments.

Under Oregon State Law (ORS 197), all counties. and cities in Oregon are required to develop and adopt comprehensive plans and land use controls consistent with statewide planning goals and quidelines developed by the Land Conservation and Development Commission (LCDC), Crook and Ceschutes Counties have adopted comprehensive plans which have been acknowledged by LCDC. Comprehensive plans for Harney and Lake Counties have been submitted to LCDC The relationship Detween the proposed action and alternatives and LCCC goals is shown in Table 2. Counties will be asked to determine the consistency of grazing management alternatives with county comprehensive plans County responses will be published in the final EIS.

After completion of the EIS. allotment management plans (AMPs) will be prepared in careful and and

coordination" with the affected rancher, other interested parties, other landowners and the grazing advisory board in accordance with BLM policy and Federal grazing regulations (43 CFR 31001

THE DECISION

After release of the final EIS the District Manager will review public comments on **Doth** draft and final EISs and prepare a Record of Decision The decision may be to select one of the EIS alternatives or the proposed action. or to select features from several alternatives that fall within the range of actions analyzed in the EIS. Significant conflicts. alternatives. environmental preferences, social, economic (including benefit cost analyses), and technical considerations and the Bureau's statutory mission will be addressed in the Record of Decision The decision is expected by the summer of 1983.

Table 2 Relationship of the Proposed Action and Alternatives to LCDC Goals

LCDC Statewide Goal Number and Description ¹

- 1. To insure citizen involvement in all phases of the planning process.
- 2. To establish a land use process and policy framework as a basis for all decisions and actions.
- 5. To conserve open space and protect natural and scenic resources.
- 6. To maintain and improve the quality of the air, water and land resources.
- 8. To satisfy the recreational needs of the citizens of the State and visitors.
- 9. To diversify and improve the economy of the State.

13 To conserve energy.

Goals 3 4 7 10 11 12 and 14 are not applicable action or alternatives

Discussion

BLM's land use planning provides for public involvement at various stages. Public input was specifically requested in developing the proposed grazing management program and alternatives described in this EIS. Public input will continue to be utilized in the environmental process and final decision.

The proposed action and all alternatives have been developed in accord with the land use planning process authorized by the Federal Land Policy and Management Act of 1976 which provides a policy framework for all decisions and actions.

BLM's land use planning system considered natural and scenic resources in development of proposed action and alternatives. The proposed action and alternatives 1 and 3 would alter some scenic values as a result of fences and rangeland improvements. Alternatives 2 and 4 would not significantly affect scneic values.

Water quality would be maintained or improved under the proposed action and all alternatives. Proposed burning for brush control in the proposed action and alternatives 1 and 3 would temporarily affect air quality on a local basis.

Under the proposed action and all alternatives, recreation opportunities would be provided, Short and long term economic losses would occur under alternatives 3 and 4 due to reductions in livestock use. Economic gains would occur in the long term due to increased forage production, resulting in improved local economy under the proposed action and alternative 1. Economic gains from increases in recreation use would occur under the proposed action and alternatives 3 and 4. Losses would result under alternative 1.

Conservation and efficient use of energy sources are objectives in all BLM activities. Because rangeland improvement construction is energy intensive, alternative 1 utilizes the most energy.

Chapter 2 Proposed Action and Alternatives

U.S. DEPARTMENT OF THE INTERIOR BUREAU OF PRINEVILLE DISTRICT

BROTHERS GRAZING MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT

1982

ALLOTMENT LEGEND

----- Allotment Boundary

R 24 E R. 25 E. ទូន GRANT 5 T 16 S. 26 Powell & 543 Cr Cr 587 T. 17 S 52 J ST. 18 S. CROOK CO HARNEY CO 365 T.195. T 20 S T. 21 S. R. 25 E. T. 22 S.

Allotment Nun
Deschutes Resource Area
5001 Witaker
5002 Broaddus & Carder
5004 Lamb
5006 Emmrich 5007 Harsch
5010 Harrington
5018 Wierleske
5024 Couch
5029 Claypool 5030 Keystone
5031 Mayfield-Harris
5032 Barrett 5050 Grav Butte
5051 Sherwood Canyon
5052 Smith Rocks
5064 Williams
5065 Lower Bridge
5067 Fisher
5068 Stevens-Freemont
5070 LaFoilette Butte
5071 Odin Falls
5073 Cline Butte
5074 Fryrear Butte
5078 Sold Springs
5079 Whiskey Still
5080 Maston 5081 Paulus
5086
5088 Burns-Montgomery 5089 Knoche
5090 Zemlicka
5092 Red Cloud 5093 Cronin
5094 Brown
5096 Foster 5097 Russell
5107 Cain Fields
5108 Zell Pond 5109 Hobostein-Tatti
5110 Bruckert
5111 Cook 5112 Driveway
5113 Hacker-Hassing
5114 Weigand 5115 Allen
5116 Redmond Airport
5117 Pipeline 5118 Crenshaw
5119 Black Rock
5120 Hutton 5121 Oertie
5122 Howard
5124 Smead
Central Oregon Resource Area
1 Alaska Pacific 3 Hamoton
4 Miners Flat
6 Post 7 River
9 Cold Springs
12 Windmill 13 Sheep Mtn. Community
14 Sheep Mtn. Individual
16 Indian Creek 17 Bonnieview
18 Juniper Springs
19 IDex Butte 20 Lower 12 Mile Table
21 Middle Fork 12 Mile Creek
22 Laughin 23 Angeli
24 Upper Buck Creek
25 BUCK Creek Flat 26 Humphrey
27 Upper Pocket Community
29 Jimmy McCuen
33 Congleton
JH LOWER FOCKET COmmunity

mbers and Names 5125 Mayheld Pond 5127 Powell Butte 5130 Pilot Butte 5131 McClellan 5133 Long Hollow 5134 Stearns 5135 Dry Creek 5136 Davis 5137 Prineville Dam 6139 Distanci 5137 Prineville Dam 5138 Pilateau 5139 Dunham 5140 Sait Creek-Aikaii 5141 Sanford Creek 5142 Carey 5145 Eagle Rock-Bailey 5145 Eagle Rock-Bailey 5145 Bole Rock-Bailey 5146 Beoletto 5176 McCabe 5177 Reynolds 5178 Grizzly Mountain 5179 Lytle Creek 5178 Grizzly Mountain 5179 Lytle Creek 5180 Golden Horseshoe 5183 Rail Hollow 5183 Rail Hollow 5198 Laier-Gove 5201 Alfalfa Market Road 5204 Sinciair 5206 Arnold Canal 5207 Michaels 5208 Barlow Cave 5209 5209 5210 5211 Pine Mountain S211 Pine Mountain S212 Millican S213 Rambo S214 Williamson Creek S215 Coats S216 Grieve S229 Klootchman S231 West Butte S232 Nye S233 Scott S234 Haughton S235 Molfritt S236 5236 5236 5237 Brothers 5238 ZX 5239 5240 Febrenbacher S241 Rickman-McCormack S242 S243 Bright S243 Bright S244 Imperial 5245 5245 Hatfield 5247 5248 Pothook 5249 Ranch 5250 Coffelt Ranch 5251 96 Ranch 5252 Meisner 5254 Barbwire 37 Foster 38 Cave 39 Paulina 41 Layton 42 Owens Water Community 43 Barney Buck Creek

- 44 G I

- 44 GT 45 East Maury 47 Lister 48 Durgin 49 McCullough

- 49 McCullough 49 McCullough 50 Rabbit Valley 51 Paulina Creek 52 Miller 53 North Fork 54 Beaver Creek 56 Dagis Lake 58 Coyote Springs 59 Dry Lake 60 Flat Tog Huite 62 Bennet Field 64 Camp Creek Community 66 Builler 70 Clover Creek
- 70 Clover Creek
- 71 Coffee Butte
- 75 Weigand 76 West Pine Creek

MAP 3 **ALLOTMENT BOUNDARIES and** LIVESTOCK EXCLUSION AREAS

35 Bulger Creek 36 Delore

CHAPTER 2

PROPOSED ACTION AND ALTERNATIVES

DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES

The proposed action and four alternatives would affect 177 grazing allotments on 1.07 million acres of public land.

There are 11,700 unallotted acres where no grazing occurs. No forage allocation, grazing systems (other than rest), or rangeland improvements are proposed for those unallotted acres. Further environmental analysis and documentation would be required prior to authorizing grazing on these lands.

In addition to the proposed action, which is designed to maintain or improve ecological condition on all allotments, alternatives analyzed are:

- Alternative 1. Optimize livestock grazing (optimize livestock);
- Alternative 2. Continue present management (no action);
- Alternative 3. Optimize wildlife habitat and watershed values (optimize wildlife and watershed); and
- Alternative 4. Eliminate livestock grazing (eliminate grazing).

For convenience, further reference to these alternatives will be by alternative number and abbreviation. Alternatives were developed as a result of public involvement and scoping (Appendix A).

These alternatives differ in vegetation allocation, type of grazing system, and the kind or amount of rangeland improvements proposed. (Tables 3, 4. and 5 summarize the proposed action and alternatives.)

Projections of future long-term ecological condition, and hence, available forage production, were made based on the expected response of the vegetation to grazing management and rangeland improvements.

Habitat for threatened or endangered animal species and plant species of special concern would receive priority consideration in all cases where resource conflicts would occur.

The alternatives are described in both the short and long term. The implementation of grazing systems or rangeland Improvements is assumed to take place in the short term (during the next ten years). All responses to the rangeland program are assumed to take place in the long term, ten to fifteen years after implementation of an action.

PROPOSED ACTION

A rangeland management program is proposed which would maintain or improve ecological condition on all grazing allotments in the area. Wildlife habitat would be managed to provide an ecological condition of mid-seral to the lower end of late-seral (see glossary). This would be accomplished by the amount of forage allocated for livestock grazing, the grazing management system utilized, and the rangeland treatments or improvements that would be implemented (Tables 3, 4, and 5).

Riparian areas would be protected and managed to provide full vegetative potential, where multiple use benefits warrant fence construction and maintenance. On those areas where fencing is not feasible, livestock use would be managed to achieve 60 percent of vegetative potential (see glossary).

Initial forage allocation for livestock grazing would be increased by 11 percent from current levels to 83,087 AUMs. This increase reflects allocation of existing forage. Long-term livestock forage projections would be 132,795 AUMs. (Appendix B lists forage production and allocation by allotment.)

Short-term allocations of available forage for deer, elk, and antelope would be 5,331 AUMs, increasing to 7,427 AUMs over the long term. Long-term forage allocations would meet the management objective numbers of the Oregon Department of Fish and Wildlife (ODFW) for deer, elk, and antelope.

Grazing systems which encourage upward change in ecological condition would be applied to more than 99 percent of the EIS area, with the remainder managed under a system which would maintain existing conditions. Of the total EIS area 2,003 acres would be excluded from livestock grazing, 132 acres more than the existing situation. (Appendix C lists proposed grazing systems by allotment.)

Proposed rangeland improvements are expected to Increase available forage for livestock. (Appendix D lists proposed improvements by allotment.) An increase of 78 percent from current allocations is expected by the year 2000, providing rangeland improvements and recommended grazing management systems are implemented, and ecological conditions improve as predicted.

ALTERNATIVE 1. OPTIMIZE LIVESTOCK GRAZING

The objective of this alternative is increased forage production and allocation for livestock use **as** a result of an intensive rangeland management program. (Tables 3, 4, and 5 summarize forage allocation, grazing systems, and rangeland improvements.) Habitat for deer, elk, and antelope would not receive special consideration. However, forage needs for deer, elk, and antelope in the long term, as recommended by ODFW, would be met. Riparian areas would be managed to achieve or maintain a good or excellent channel stability rating.

Initial available forage allocation for livestock would be increased by 12 percent from current levels to 83,773 AUMs. The projected long-term livestock forage allocation would be 201,777 AUMs. (Appendix B lists forage production and allocation by allotment.)

Grazing systems differ only slightly from the proposed action in that no new areas of livestock exclusion are proposed. (Grazing systems by allotment are listed in Appendix C.)

This alternative differs from the proposed action by allowing 68,982 AUMs more for livestock initially and 201,777 AUMs more in the long-term.

Proposed rangeland improvements are listed by allotment in Appendix E.

ALTERNATIVE 2. CONTINUE PRESENT MANAGEMENT

This alternative would maintain the current rangeland management program at 1981 levels (Tables 3, 4, and 5). Allocation of 74,769 AUMs for livestock use would continue. AUMs allocated for wildlife use would increase to 7,427 in the long term, which would meet ODFW wildlife management objective numbers. Existing grazing systems would be continued. (Appendix C lists grazing systems by allotment.)

Approximately 67 percent of the EIS area would be managed under systems which would encourage

upward change of ecological condition, 13 percent would encourage a downward change, and 20 percent would maintain existing ecological condition. No new areas are proposed for livestock exclusion. Six hundred and eighty-eight acres of riparian vegetation would continue to be grazed by livestock.

No new riparian exclusion areas are proposed. No new reservoirs, fences, pipelines, or other developments would be constructed. No vegetation manipulation would occur. Existing developments would be maintained at current levels and replaced on an as-needed basis.

This alternative differs from the proposed action by allowing 8,318 AUMs less forage for livestock in the short term and 58,026 AUM's less in the long term. Existing management, including grazing in riparian areas, would be continued.

ALTERNATIVE 3. OPTIMIZE WILDLIFE HABITAT AND WATERSHED VALUES

The objectives of this alternative are to emphasize wildlife habitat and the soil and vegetative resources of the watersheds.

Livestock use would be eliminated from allotments within deer and antelope winter ranges as well as sage grouse nesting areas. In addition, livestock grazing would not be allowed on any riparian area or in those portions of mapping units 1, 7, and 9 which are highly susceptible to erosion. This livestock exclusion would be accomplished through additional fencing or complete elimination of livestock from a pasture or allotment. (Appendix B lists allocations for alternative 3.)

Initial allocation of forage for livestock grazing would be 56,831 AUMs (Table 3, 4, and 5). To achieve this, livestock grazing would be eliminated on early-seral (see glossary) condition rangeland. The future livestock forage allocation would remain at 56.831 AUMs (Appendix B). Long-term allocation of 7,427 AUMs for big game species would meet ODFW management objective numbers. The remaining forage would be nonallocated.

Existing grazing systems would continue on all land not exc!uded from livestock grazing, encouraging an upward change in ecological condition on 77 percent of the EIS area, a downward change on 7 percent, and maintenance of existing conditions on 16 percent. In addition, 291,916 acres would be excluded from livestock grazing as compared to the proposed action.

Proposed grazing systems are listed by allotment in Appendix C. Proposed rangeland improvements are listed by allotment in Appendix F.

This alternative differs from the proposed action by allowing 26,256 AUMs less to livestock in the short term and 75,964 AUMs less over the long term. In addition it would protect all riparian habitats to achieve 100 percent of their vegetative potential,

ALTERNATIVE 4. ELIMINATE LIVESTOCK GRAZING

No livestock would be permitted to graze on public lands with this alternative (Tables 3, 4, and 5). Livestock owners would be responsible for preventing livestock use on BLM-administered lands.

All forage would be available for wildlife, watershed, riparian, or other uses. No rangeland improvements that solely benefit livestock would be constructed or maintained.

This alternative differs from the proposed action by reducing the allocation of forage to livestock by 83,087 AUMs in the short term and 132,795 AUMs in the long term. In addition it would allow no livestock grazing in BLM-managed riparian habitat.

A state of the sta

Table 3 Available For	age Production	and Allocatio	ons (AUMs), Prope	osed Action an	d Alternatives
		Alt. 1	Alt. 21	Ait. 3 (Optimize	Ait. 4
Allocation	Action	Livestock)	(No Action)	Wildlife & Watershed)	 (Eliminate) Livestock)
Initial of the second	artista Artista				
Livestock allocation	83,087	83,773	74,769	56,831	0
Wildlife allocation ²	5,331	5,331	5,331	5,331	5,331
Nonallocated 3	<u>686</u>	<u> </u>	<u>9,004</u>	26,942	83,773
TOTAL	89,104	89,104	. 89,104	89,104	89,104
Projected	a and a start of the start of the start and a start of the st				
Livestock allocation	132,795	201,777	74.769	56 831	
Wildlife allocation ²	7,427	7,427	7,427	7.427 -	7 427
Nonallocated ³	<u>37,135</u>	4,811	<u>51,115</u>	75,021	135.779
TOTAL	177,357	214,015	133,311	139.279	143 206
'Existing conditions.					
² Allocation for deer, elk, and antel	Ope	The real of the other			
³ Nonallocated is available forage r	not specifically allocated	lo wildlife or livestoc			Level at 1
and the second sec	S. S. S. S. S. S. S. Cart	and a Litel prestant of the	-CENEAR DE L'ANGE	Sam Station In the	Very sent to the

	na series en la companya de la comp La companya de la comp				
		Alt. 1 - 🦳	Alt. 2	Alt. 3	Alt 4
	Proposed	(Optimize	(NO ACTION)	Wildlife &	(Eliminate
Grazing System	Action	Livestock)	artista Artista - Statista - Artista - Artista	Watershed)	Livestock
	. · · ·				
OTAL ACRES					
rest rotation	400,942	- 401,019	291,089	219,127	
deferred rotation	593,725	593,778	341,698	242,883	0
rotation	5,/00 0	5,/55	121,104	98,987	Sector Sector
early (spring)	Ŏ	0	85,191	56 740	- ie iš - 0
spring/summer	0	Ō	116,393	60,426	**********O
spring/summer/fall	0	0	12,907	7,885	0
spring/fall	0	0	9,511	9,246	······································
snort duration	37,144	37,144	204 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17:000	
exclusion	2 003	1 871	1 871	293 919	S
rest	13,530	13,532	18,586	18,586	0
fenced Federal range	0	0.	16,539	di 12,598 🔆	
Total ¹	1,067,577	1,067,577	1,067,577	× 1,067,577 4	
ARITAT				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
rest rotation	-66	145	92 1	0.2	.
deferred rotation	119	175			
rotation	0	0,		√	
deterred	, 0	0	53	01	0
spring/summer	- 0	U. 0.	26	2012 - 2013 2014 - 2014 - 2014 2014 - 2014 - 2014	
spring/summer/fall	ŏ		9	0	S
spring/fall	0	0.	0 - 1		0
short duration	41	41	0		· · · · · · · · · · · · · · · · · · ·
winter	0	. 0	0	0,,,,	
exclusion	169	32	32 - e	40/344	40/
fenced Federal range	12	14	(*************************************		
i i i i i i i i i i i i i i i i i i i					1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -
ESERVOIR RIPARIAN			And Andrews		
	000	(OOO	2.4.7% (A.).		
deferred rotation	283	283 N 30	202	0	
rotation	Ŭ 0	0	0	0	
deferred	ŏ	0	. 0	· · · · · · · · · · · · · · · · · · ·	
early (spring)	0	0	0	· · · · 0	۰
spring/summer	0	0,	1	. 0	- · · · · · · · · · · · · · · · · · · ·
spring/summer/fail	0	0	0	с. С	
short duration .	0	0	0	•0	
winter	Õ	, Ŏ	Ŏ	Ů.	A. 438 44 20
exclusion	23	23	23	336	
rest	0	0	0	0**	Contraction of the second
tenced Federal range	0	0	0	0	
Fotal includes rinarian areas					COT AND
i ciai moroog ripanan aloas.	والمتحرب والمتراب والمراجع	ياً. س المحصولة الأ ²² ات الأستار	م مېندغانه ولغان عالکې ورو تغار درو قرو د	and the second	Lin Harris

Table 5 Rangeland Improvements, Proposed Action and Alternatives

	¥	Alt.	1	Alt	. 2	Alt. 3	Alt. 4
Rangeland Improvements	Proposed Action	(Optimize Livestock)		(No Action)		(Optimize Wildlife & Watershed)	(Eliminate Livestock)
(~)			•	* ·			
fences (miles) springs (#) wells (#)	391 13 7	۲. مور مربع	315 13 ·		.O 0	349 3 0	0 0 0
pipelines (miles) guzzlers (#) reservoirs (#) waterholes (#) stream r i p - r a p	467 80' 2 5 2 55		47; 40 2 5 2		0 0 0 0	0 100 10 5	0
(miles)' stream structures (#) ¹	620		155		0	775	0
debris removal (acres) ¹	1	5	1	5	0	15	0
big#mesting site	120		60		0	150	0
spraying w/seeding(ac) burning w/seeding (ac) plowing w/seeding (ac) brush control by	3,200 42,330 8,625	ç	6,250 93,050 17,650		0 0 0	0 0 0	0 0 0
spraying (acres) brush control by	57,635	14	43,400		0	0	0
burning (acres) brush control by	47,486	13	35,100		0	58,204	0
chaining (acres) juniper control (ac) juniper control with	5,000 97,733	15 15	11,100 53,012		0 0	68.0280	0 0
seeding (acres)	4,700		7,600		0	0	0

~

' Interrelated rangeland improvement measures. listed here for impact assessment.

FEATURES OF THE PROPOSED ACTION AND ALTERNATIVES

AVAILABLE FORAGE ALLOCATION

Each alternative has a different allocation of available forage to wildlife, livestock, and nonconsumptive uses.

See Chapter 3. Vegetation and Figure 3 for a discussion of available forage production and Appendix G for available forage computation methodology

For the purpose of this analysis, initial allocations under the proposed action and all alternatives are based on range surveys completed in the 1960's. These surveys were updated using information based on actual livestock use and information gained for condition, trend, and utilization studies conducted in recent years. Additional production information gathered through a BLM Soil Vegetation Inventory Method (SVIM) survey, conducted between 1978 and 1979, will be incorporated into allotment management plans (AMPs) as data becomes available.

Proposed forage allocations assume different levels of average utilization for each grazing system (Table 6).

GRAZING SYSTEMS

والصيرة المرتب أترك أطمان

Grazing systems are implemented to alleviate specific resource problems and to achieve management objectives identified in the Management Framework Plan. Figure 1 diagrammatically portrays the

Figure 1 Examples of Typical Grazing Systems

SPRING GRAZING Graze early during the growing period

Every Year 🔫

3/16

SPRING/SUMMER GRAZING Graze during the critical

part of the growing period

Every -Year

4/16 10/31

ROTATION GRAZING

Year in Graze during the collical of the gowing neriod se Year 2. Graze early during the growing period.

46 1. 7/45

DEFERRED GRAZING

Graze after seedrip

Every Year

37/15

WINTER GRAZING

Graze, during dormanc Every 🗧 Year

- M. . . .

SPRING FALL BRAZING

Graze Barly during growing pariod and again in late late

Ever

e ilizati - Milikale.

SPRING/SUMMER/FILL មិនសារ សាយពាទូ រួយមានប្រទេ and the second state of the second state of the

Yery 62 ta

DEFERRED ROTATION. -Tinteles Paisture <u>System</u> Veat L. Graze early during the growing period (ear 2: Graze later during the growing period year 3: Graze after seedring

Massed OV FICH

Inderstation of the

- Yearste True qui incello

- Researching

1111

Table 6 Summary for Proposed Grazing Systems

Grazing System	General Comments of Systems	Avemge Utilization (percent)
Rest rotation	Provides total annual rest for each pasture on a regular basis and promotes plant vigor, seed production, seedling establishment, root production and litter accumulation. Woody riparian vegetation is not improved with this system.	60
Deferred rotation	Provides total growing period rest for each pasture on a regular basis and promotes plant vigor, seed production, seedling establishment and root production. Woody riparian vegetation is not improved with this system.	55
Rotation	Provides rest for a portion of the growing period for each pasture and promotes plant vigor. Seed and/or root production are not necessarily enhanced. This system benefits riparian vegetation by allowing regrowth each year and by minimizing livestock use of woody plants.	50
Deferred 	Provides total growing period rest for each pasture every year and promotes seed and root production as well as seedling establishment. This system is detrimental to riparian vegetation because of increased use on woody plants.	55
Early	Provides rest during much of the growing period since use occurs before May 15, depending on the location, and thereby promotes seed and root production in most years. Riparian vegetation benefits since regrowth always occurs and use on woody plants is kept to a minimum.	40
Spring/summer	Does not provide rest during the growing period for plant vigor or reproduction. Use occurs from early spring into July or August and results in heavy use of woody riparian species.	40
Spring/summer/fall	Similar to spring/summer except grazing extends into plant dormancy. Rest is never provided and hence the plants do not replace food reserves in roots; seed may or may not be produced. Concentration of livestock in riparian areas results in heavy use of woody riparian species.	40
Spring/fall	Rest is not usually provided since grazing occurs in the spring and again in the fall, after seed ripe. Some rest is allowed depending on when livestock are removed in the spring, but this system does not enhance plant vigor, seed or root production, or litter accumulation. The system is detrimental to riparian vegetation due to heavy use of woody riparian species in the fall.	40

Table 6 Summary for Proposed Grazing Systems (continued)

Grazing System	General Comments of Systems	(percent)
Winter	Provides total growing period rest every year since grazing occurs only between complete plan? dormancy and the beginning of spring growth. Promotes plant vigor, seed and root production, and seedling establishment. Dormant woody riparian species would be utilized to some degree, and therefore live twig growth would be removed. However, winter use would benefit riparian vegetation since use of riparian areas is low due to an abundance of livestock water elsewhere. The colder drainages also discourage livestock use of riparian zones.	60
Short duration	Provides substantial rest during the growing period since grazing is allowed during any one 2-3 week period except between May 16 and June 30, depending on the location. Promotes plant vigor, seed and root production, and litter accumulation, depending on the exact time of use. Riparian vegetation benefits since regrowth always occurs and use on woody plants is kept to a minimum.	50
Exclusion, rest	Provides total annual rest since no grazing is authorized. Promotes plant vigor, seed production, replenishment of root reserves, and litter accumulation. Benefits riparian vegetation.	0.
	Exclusion refers to areas where livestock use is excluded to protect resource values. Rest occurs because lack of water, or other factors which prohibit livestock use. All unallotted acreage in the EIS area is considered to be in rest.	
Fenced Federal range	Grazing use is not monitored on these smaller, somewhat isolated parcels of public land which are used in conjunction with private lands. Utilization is not measured.	

systems proposed. Table 6 shows each system. components of each system. and average total forage utilization levels that would be allowed.

Utilization reflects the amount of available forage used or consumed by livestock. It is expressed as a percentage of the total forage available and is measured by the average use of the entire pasture or representative area (see glossary) If topography or other factors result in heavy utilization in part of the pasture while other parts receive lighter use, representative areas are monitored. When average utilization reaches maximum acceptable limits, livestock would be removed. Determination of the utilization level depends on ecological condition, period of use, use patterns, grazing system, and current climatic situation, and is made by BLM range conservationists and area managers.

I Islilia a Ala an

17

RANGELAND IMPROVEMENTS

Rangeland improvements are used to support or aid implementation of grazing systems and achieve multiple use objectives. Watering facilities are proposed to improve distribution of livestock. Fences are proposed to control or exclude livestock and provide better distribution. Table 5 lists proposed rangeland improvements along with interrelated wildlife improvements. (Appendices D, E, and F list proposed rangeland improvements by alternative by allotment.) Areas proposed for rangeland improvements are displayed on Map 4.

Burning, mechanical, or chemical treatment of vegetation is proposed to change the ecological condition class of early-, mid-, and late-seral vegetation if they are not expected to change under intensive management alone.

Standard Procedures and Design Elements for Range improvements

Standard Procedures

All projects will be designed in accordance with BLM specifications (BLM Manual Sections 1737 and 7400) and incorporated into specific AMPs.

Site-specific environmental analysis and documentation prior to implementation of rangeland improvements is required. Proposed rangeland improvements may be modified or abandoned if this assessment indicates significant adverse environmental Impacts cannot be mitigated or avoided.

Visual resource contrast ratings will be completed as part of this site-specific assessment. If appropriate, mitigating measures will be developed on a case-bycase basis (BLM Manual Section 8400).

The BLM will consult with the State Historic Preservation Officer and the Advisory Council on Historic Preservation in accordance with the Programmatic Memorandum of Agreement (PMOA) by and between the Bureau, the Council, and the National Conference of State Historic Preservation Officers, dated January 14, 1980 which sets forth a procedure for developing appropriate mitigative measures. This PMOA identifies procedures for compliance with Section 106 of the National Historic Preservation Act (1966) and Executive Order 11593.

Before beginning rangeland improvements, BLM will complete a survey for threatened, endangered, or sensitive plants and animals. If a project will adversely affect a listed species or its critical habitat and adverse impacts cannot be avoided, the project will be modified, relocated, or abandoned. The U.S. Fish and Wildlife Service will be consulted (50 CFR 402; Endangered Species Act of 1973, as amended). In addition, a raptor inventory will be conducted to identify active nests.

A wilderness inventory, required by the Federal Land Policy and Management Act,has been completed in the EIS area. All rangeland management activities in wilderness study areas will be consistent with the Interim Management Policy and Guidelines for Lands Under Wilderness Review unless and until the area is removed from this category. Impacts will be assessed before implementing management activities to insure they meet guidelines. individuals and organizations who have indicated an interest in WSAs will be notified before construction of rangeland improvements.

Design Elements

Proposed fences will be constructed in accordance with BLM Manual Section 1737. Gates or cattle guards will be built where needed.

AUMs of forage required to satisfy ODFW recommended management objective numbers for big game will be allocated in all allotments. If the analysis of SVIM data reveals that the proposed allocations for big game exceed the anticipated production on any allotment then the amount of livestock will be reduced.

Brush control, seeding, and juniper control projects will be designed using irregular patterns and untreated patches to provide edge effect and cover for wildlife. Crucial wildlife habitat will be excluded from these projects unless the treatment would enhance wildlife habitat,

For areas designated for chemical treatment, 2.4-D (low volatile formulation) with a water carrier at a rate of two pounds active ingredient per acre would be applied. All applications of 2,4-D would be in accordance with state regulations and BLM Manual Section 9200.

The existing road and trail system will provide access to most project sites. Roads will be constructed to minimum standards, following environmental assessment and documentation.

Broadcast or drill seeding will usually follow brush or juniper control. The majority of the area will be seeded with crested wheatgrass; other grass or forb species will be included where appropriate. All seeding will be in accordance with the current BLM Oregon rangeland seeding policy.

All State of Oregon well water drilling regulations will be foilowed. Ramps, rocks, or float boards will be provided in all water troughs for small birds and mammals to gain access to water or provide a means of escape.

MONITORING AND MANAGEMENT ADJUSTMENTS

An integral part of this rangeland management plan is a system of monitoring and evaluation to see if objectives are being met. Monitoring the grazing management program will determine accuracy of livestock vegetation allocation and the effectiveness of the grazing system, vegetative treatments, and other rangeland improvements.

Typical monitoring activities include regular visits with the ranch operator and other interested parties to observe the management program and to make needed changes. These visits involve checking average vegetation utilization levels of each pasture, or representative area, collecting actual use information, and annually conducting other studies specified in the AMP

Studies of wildlife use, degree of forage utilization, and rangeland ecological condition and trend will be designed in accordance with BLM Manual 4420 and will be used to modify AMPs as appropriate.

Riparian studies will be established to determine changes in habitat condition and fish and wildlife populations. Such monitoring will comply with Executive Orders 11514 and 11990 and BLM Manual Sections 6602 and 6700. Wildlife habitat will be monitored by using utilization transects, photopoints, and sightings to determine effectiveness of vegetation manipulation design and grazing systems.

Grazing management will be revised if monitoring studies determine objectives are not being achieved. Revisions may include reductions in the amount of livestock use, or changes in the period of use, or a combination. Where objectives are being met and a monitoring study supports an increase in livestock grazing use, additional use will first be granted on a temporary basis. A permanent increase would be granted when an evaluation of forage production confirms the continued availability of additional livestock forage. Any change in use would be implemented in accordance with Federal grazing regulations.

Water quality monitoring will be initiated in accordance with Executive Orders 11991 and 12088, BLM Manual Section 7200, and Sections 208 and 313 of the Clean Water Act (P.L. 95217, as amended).

Each operator will be issued term permits which specify allotment, period of use, and numbers and kind of livestock. Grazing allotments will be supervised in accordance with BLM policy. If unauthorized use occurs, action will be taken by BLM in accordance with regulations in 43 CFR 4150.

Table 7 Summary, Long-Term Environmental Consequences, Proposed Action and Alternatives

			Alt. 1			Alt. 4
Resource	Existing Situation	Proposed Action	(Optimize Livestock)			(Eliminate Livestock)
Vegetation						
Upland Vegetation						
Ecological Condition						
(acres)						
Climax (excellent)	24,010	41,007	83,639	12,922	14.023	15,037
Late-seral (good)	234,657	603.976	574,635	421,442	467.504	554,439
Mid-seral (fair)	565,928	260,615	221,667	378,369	467,669	345.258
Other	57 483	40,041	5.003	197,301	60,898 57 492	95,360
Riparian Vegetation Streams	57,405	110,330	102.033	57.405	57,405	57,463
Ecological Condition						
(acres)						
Climax (excellent)	20	148	91	93	321	321
Late-seral (good)	97	134	56	56	86	86
Mid-serai (fair)	204	118	175	145	0	0
Early-seral (poor)	86	7	85	113	0	0
Riparian Vegetation,						
Reservoirs						
Ecological Condition						
(acres)	44				40	10
Climax (excellent)	11	11	11	11	40	40
Mid corol (fair)	12	12	12	12	296	296
Farly soral (poor)	20	29	29	29	0	0
Endangered or Threatened	205	204	204	204	0	0
Species						
Sensitive Species		NC	NC'	NC	NC ¹	NC'
Available Forage Production A	UMs					
Livestock allocation		132.795	201,777	74,769	56,831	0
Wildlife allocation	-	7.427	7,427	7,427	7.427	7,427
Nonailocated		37.135	4,811	51,115	75.021	135,779
TOTAL AVAILABLE						
FORAGE PRODUCTION	89.104	177.357	214,015	133,311	139,279	143,206
Listend Listent Discusion						
Changes in Habitat						
Diversity (percept)		10	1	1	+17	+12
Fish (miles)		10	-1	-1	+17	12
Excellent	0	27	11	10	69	69
Good	18	38	20	20	25	25
Fair	40	29	45	39	2	2
Poor	38	2	20	27	0	0
Wildlife habitat						
Deer		+M '	+L	+L	+M	+L
Antelope		+M	+L	+L	+L	+L
Elk		+M	+L	+L	+M	+M
Upland Birds		+M	-M	NC	+H	+M
Waterrowi		+L	-Н	NC	+H	+M
Animals		NC	NC	NC	NC	NC
Animais		NC	NC	NC	NC	NC
Soils						
Erosion Rate		+M	+M	NC	+M	+L
Water						
		+L	NC	NC	+H	++4
Channel stability		+L +I	+L NC	NC	+n ⊥⊔	+M
Charlier stability		· L	NC	NC	+T I	TΠ

and the second second

					17. v 19. r	5 	
Resource	Existing Situation	Propo sed Action	Ait. 1 (Optimize Livestock)	Alt. 2 (No Action)	Alt. 3 (Optimize Wildlife and Watershed)	Ait. 4 (Eliminate Livestock)	
Cultural		-L	-м	-L		L +L	
Recreation Recreation activities Visitor use (visitor days) Recreation opportunities	235,000	+2,900 +L	-7,500 -∟	0 NC	+9,400 +M:	+5,600 NC	
visual Visual contrast		-L	-M	NC	-L	NC	
Wilderness Wilderness Characteristics		-L	-H	NC	+L	+M 🤫	
Socioecomonic Values ² Operators losing more than 10% of annual forage needs Average change in forage as percent of annual need Livestock forage (\$000) Recreation (\$000) Employment (jobs)	\$11,300 \$ 2,291 1 890	1 +11 +\$1,508 +\$ 24 +219	+23 +\$3,074 -\$ 50 +434	0 0 0	10 -2 -\$207 +\$ 72 -21	-63 -11 -\$1,307 +\$ 12 - 1 8 6	

'NC = No Change + = Beneficial - = Adverse L = Low M = Medium H = High

² Socioeconomic effects are shown as changes from the existing situation (actual grazing use).

ţ чĘл.

, ,.....

£ -'n • • • • ł

٠š

23

!

i

Chapter 3 Affected Environment

ENVIRONMENTAL IMPACT STATEMENT

CHAPTER 3 AFFECTED ENVIRONMENT

Generally, this chapter addresses the environment as it existed in 1978 within the Brothers EIS area (exceptions have been noted). Since grazing use has been ongoing within the area, the environment described is seldom pristine but exhibits effects of human use.

Chapter 3 provides a basis on which impacts of the proposed action and alternatives may be assessed. Emphasis has been placed on those areas most likely to be impacted by the proposed action or alternatives. Data and analysis are consistent with the importance of the impact, with material summarized, consolidated or referenced. Chapter 3 contains a description of those resources that would be affected by the proposed action or alternatives described in Chapter 2. Impacts on these resources are discussed in Chapter 4.

In preparation of this chapter, the primary data sources were BLM planning documents developed by the Prineville District. Unit Resource Analyses and proposed Management Framework Plan are available for review at the Prineville District Office. Additional references have been cited by author and date of publication. A full listing is located in References Cited section.

CLIMATE

The Brothers EIS grazing area has a semiarid continental climate with long, cool, moist winters and springs, and short, warm, dry summers. The area annually receives 9 to 14 inches of precipitation. Generally, there are two periods of maximum precipitation: snow in November through February and rain in April through June.

Soil temperatures become warm enough to stimulate plant growth about March 1 at Prineville and April 1 at Brothers. Lack of available soil moisture generally ends the growing season, usually by mid-July.

This area has large variations in both daily and seasonal temperatures. The Redmond area mean annual temperature is 47.2" F and at Brothers it is 43.2° F. Generally the frost-free period for the area is between 50 and 90 days.

SOILS

Soils data is available in the General Soil Map, Deschutes County (USDA, 1973) Prineville Soil Survey (USDA. 1966). and the unpublished order III BLM soil survey. This data includes soil series descriptions, mapping unit descriptions, interpretations, and detailed soil maps which are on file at the Prineville District Office.

The complex and diverse soil patterns have been divided info four main groups comprising nine mapping units (Map 5). A summary interpretative table is in Appendix H.

Group 1 consists of two mapping units comprising about 15 percent of the EIS area: Willowdale-Swaler-Borow association (5 percent), and Ratto-Blayden-Embal association (10 percent). They are on nearly level to gently sloping topography: elevation ranges from 2,500 to 4,800 feet. The alluvial soils of mapping unit 1 are susceptible to erosion when found along stream channels. The alluvial and lacustrine soils of mapping unit 1 are moderately susceptible to wind erosion.

Group 2 consists of two mapping units comprising about 17 percent of the EIS area: Canest-Madeline-Choptie association (4 percent) and Westbutte-Menbo-Madeline association (13 percent). These soils occur on nearly level to steep tablelands, lava benches, terraces, and volcanic domes. Elevation ranges from 3,400 to 6,500 feet. These upland stony soils are moderately susceptible to water erosion.

Group 3 consists of two mapping units comprising about 34 percent of the EIS area: Statz-Houstake-Deschutes association (20 percent) and Dester-Stookey-Gardone association (14 percent). These soils occur on nearly level to gently rolling basalt plains, plateaus, terraces. and basins. Elevation ranges from 2,500 to 5,000 feet. The dense sagebrush-covered soils of mapping unit 5 are moderately susceptible to wind erosion. Water erosion and runoff from units 5 and juniper-covered unit 4 is slight.

Group 4 consists of three mapping units comprising about 34 percent of the EIS area: Varco-Anawalt-Bieber association (15 percent); Simas-Madeline-Day association (8 percent); and Stukel-Lorella-Redcliff association (11 percent). They occur on rolling to steep uplands, escarpments, canyons, buttes, basalt plateaus, and volcanic domes. Elevation ranges from 2,700 to 6,500 feet. The sensitive soils of mapping units 7 and 9 are highly susceptible to erosion. Unit 6 is moderately susceptible to erosion.

WATER

The water resources of the EIS area lie almost entirely within three major subbasins or watersheds of the Deschutes River Basin: the Middle Deschutes Lower Crooked. and Upper Crooked Rivers. An area south of Brothers and Hampton consisting of small, scattered basins and intermittent lakebeds. Is in the Goose and Summer Lakes Basin (Oregon State Water Resources Board, 1961).

WATER QUANTITY

perennial streams in the predominantly rangeland watersheds have headwaters in the higher-elevation, forested areas of the Deschutes and Ochoco National Forests. This results in surface runoff coming in two phases: lower elevations contribute primarily during November through February and higher elevations contribute during spring snowmelt. Because of lower elevations and climatic conditions on public rangelands, major flood events usually occur when winter rains fall on existing snow pack and frozen soils (Silvernale, Simonson, and Harward, 1976).

The water yield from public rangelands is limited. Mean annual yields from the EIS area range from 0 to 7.4 inches per acre. Extensive areas do not contribute to mean annual surface water yield or stream flow due to excessively drained soils and porous underlying basalt (Appendix I).

The extent of ground water resources in the Middle Deschutes, Lower Crooked, and Upper Crooked River subbasins and Goose and Summer Lakes is unknown. Well logs and known water tables indicate there is general movement of ground water from the Hampton, Brothers, and Millican areas northwest towards Redmond and the confluence of the Crooked and Deschutes Rivers (State Water Resources Board, 1961). Ground water depths vary considerably, but generally the average depth of the regional water table is 200 to 600 feet below the surface. Perched water tables, as well as major differences in water-bearing geologic rock stratum, and subsurface flows in alluvial soils cause maior interruptions in ground water flow and quality (State Water Resources Board, 1961; CH₂M Hill, 1970).

In the Lower Crooked River subbasin, near Prineville, there is heavy utilization of ground water. The Upper Crooked River subbasin has minor ground water utilization, limited to tapping alluvial deposits along major drainages (State Water Resources Board, 1961).

WATER QUALITY

Generally, water quality meets standards established by the Oregon Department of Environmental Quality (ODEQ, 1980) and is sufficient for consumptive use by terrestrial wildlife and livestock (Appendix J). Untreated surface water is not considered suitable for human consumption in the EIS area, due to a high potential of pathogenic organisms from wildlife, livestock, or human use.

Specific water quality problems are high water temperatures, sediment deposition, and lack of sufficient late summer flows (Appendix K). A contributing factor is lack of sufficient riparian vegetation to shade the stream and stabilize the stream channels. These problems influence fishery habitat.

Flows entering Prineville Reservoir from Upper Crooked River, Camp Creek, Bear Creek, Eagle Creek, Lost Creek, Klootchman Creek, Cow Creek and Newsome Creek contain a high amount of suspended clays (Silvernale, Simonson, and Harward, 1976). These sediments come from both private and public lands and contribute to lower water quality for downstream users. Contributing factors are lack of sufficient upland protective cover on highly erosive soils and poor stream channel stability.

VEGETATION

In this section six attributes of vegetation are discussed as related to the existing situation: vegetation types, ecological condition and trend, plant diversity, available forage production, residual ground cover, and plants of special concern.

VEGETATION TYPES

The existing plant communities in the Brothers EIS area have been classified into 17 vegetation types based on a soil and vegetation inventory conducted in 1978 and 1979. Figure 2 displays the relationship of vegetation types to elevation. Because of similarities in response to management actions, these 17 types were further grouped into 7 major groupings (Table 8 and Map 6).

ECOLOGICAL CONDITION AND TREND

Ecological condition, based upon the relationship between existing plant composition on a given site compared to the composition of that site in a pristine state, is shown in Table 9. Appendix L shows ecological condition by allotment.

SVIM was used to determine ecological condition (BLM Manual 4400). Under this classification system, existing vegetation is defined as climax, late-seral, mid-seral, or early-seral condition (see glossary). These classes relate directly to excellent, good, fair, and poor condition, respectively.

Riparian vegetation, due to its importance to other resources, was intensively inventoried (Map 7). Riparian ecological condition is shown in Table 9, for both streams and reservoirs. All vegetation not riparian is considered to be upland vegetation.

For the purpose of this analysis, ecological trend refers to the direction of change of ecological condition. For example, upward trend refers to ecological condition moving toward climax while downward trend refers to ecological condition moving away from climax. Ecological condition not changing would have static trend.
;

ł

No data is available concerning ecological trend. However, predictions for alternative 2. the no action alternative. are based on the existing situation, and

are considered to Indicate present trend in the EIS area (see Chapter 4. Table 22 for ecological trend),

Figure 2 Vegetation Type	es in Relation	to Elevation	
CONIFERS	¥.		
	LOW LA	WES' WES'	
	SAGEBRUSH	BIG AGEBRUSH	BIG
			SILVER SAGEBRUSH (INTERNAL BASIN)
Table 8 Vegetation Type	es	Percent of	
Vegetation Type	Acres	EIS Area	Primary Associated Plant Species ²
WESTERN JUNIPER Juniper-big sagebrush'	393,580	37	At least 10 percent juniper with Wyoming big sagebrush, basin big sagebrush, mountain big sagebrush, bluebunch wheatgrass, needle and thread grass, Thurber's needlegrass, Idaho fescue, squirreltail, junegrass, Kentucky bluegrass, basin wild ryegrass, Sandberg bluegrass, cheatgrass, phlox, aster.
Juniper-Iow sagebrush'	48,525	5	At least 10 percent juniper with low sagebrush, stiff sagebrush, and grasses and forbs.
Juniper- bitterbrush ¹	5,839	<1	At least 10 percent juniper with Idaho fescue, mountain sagebrush, Thurber's needlegrass, squirrel-tail, mountain brome. Resembles other brush in species composition.
Juniper bunchgrass ¹	1,795	<1	Mature juniper, bluebunch wheatgrass, Idaho fescue, needle grasses, bluegrasses.
BIG SAGEBRUSH'	398,778	37	Similar to juniper-big sagebrush without juniper.
LOW SAGEBRUSH			
Low sagebrush bunchgrass'	131,205	12	Stiff sagebrush, low sagebrush, early low sagebrush, cleft leaf sagebrush, Sandberg bluegrass, bluebunch wheatgrass, Idaho fescue, Thurber's needlegrass, biscuitroot, buckwheat, cheatgrass.
Intermittent lake beds'	4,484	< 1	Silver sagebrush, alkali muhly, wire rush, squirreltail.
' Corresponds lo wildlife habitats, Table ² See SOECIES list, Annendix O	11		

30

العجاب سويهوهم متوجيتني الحارات الراكا وموجور الانار المحار

ال 1993 میں ایک		a a a a a a a a a a a a a a a a a a a	
Table 8 Vegetation Types	s (continued)		
Vegetation Type	Acres	EIS Area	Primary Associated Plant Species*
	17 024	2.0	Antelone hitterbrush rabbitbrush
DOMINANT'			Idaho fescue, sagebrush, Sandberg bluegrass, cheatgrass, bluebunch wheatgrass, giant wildrye, salt grass, erigeron.
CONIFER/MTN. SHRUB			
Ponderosa pine ¹	11,766	1 1	Ponderosa pine, snowberry, juniper, sagebrush, bitterbrush, bluebunch
ن مرید ۱۹۰۱ و ۱۹۰۱ و ۱۹	n de la companya de l La companya de la comp	- i, ,	wheatarass. Idaho fescue; sedge. pinegrass, mountain brome, Sandberg bluegrass.
Mixed conifer'	920	<1 [*]	Douglas fir, white fir, ponderosa pine , mountain brome, bluegrass, pinegrass ,
	ي وي معند به در وي منه معند المراجع (ي المراجع) معند المراجع (ي المراجع) معند المراجع (ي المراجع)		forbs.
Mahogany dominant ¹	354	<1.	Curt leaf mountain mahogany, sage- brush, bluegrass, fescue, bluebunch wheatgrass, forbs.
GREASEWOOD BUNCHGRASS'	1 137	<1 ***	Black greasewood, giant wildrye, signal salt grass, muhlenbergia, forbs, thickspike wheatgrass.
GRASS/OTHER			
Wet meadow ¹	100	<1	Willows, Kentucky bluegrass, rabbitsfoot grass, sedges, rushes muhlenbergia, forbs.
Aspen ¹	45	<1	Aspen, cottonwood, snowberry, service berry, gooseberry, Oregon grape,
		e de la composition d La composition de la c La composition de la c	sedges, bluegrass, junegrass, bluebunch wheatgrass, Idaho fescue, giant wildrype, lupine, wax currant, sagebrush lily, paintbrush, green rabbitbrush.
Crested wheatgrass'	40,821	4	Crested wheatgrass, nomad alfalfa, intermediate wheatgrass, sage-brush, rabbitbrush, juniper, bunchgrass,
Bunchgrass'	9,581	1	forbs. Wheatgrass, needlegrass, fescue, ryegrass, forbs, sagebrush, rabbitbrush, bitterbrush, juniper.
Riparian 1	743		Perennial grasses, sedges, rushes, cattails, shrubs, deciduous trees, ": emergent water plants.
	ى ئەر بىلىرى ئىزىنى ئىزىنى ئىزىنى ئىزى	1	۲ مراجع المراجع ا مستخد المحاج من المراجع

Table 9 Present Ecological Condition

Ecological Condition Class	Acres	Percent of EIS Area
ALL VEGETATION TYPES		
Climax (excellent)	24,010	2
Late-seral (good)	234.657	22
Mid-seral (fair)	565,928	53
Early-seral (poor)	185,499	18
Other'	57,483	5
TOTAL ²	1,067,577	100
STREAM RIPARIAN		
Climax (excellent)	20	5
Late-seral (good)	97	24
Mid-seral (fair)	204	50
Early-seral (poor)	85	21
TOTAL	407	100
RESERVOIR RIPARIAN		
Climax (excellent)		
Late-seral (good)		
Mid-seral (fair)		
Early-seral (poor)		
TOTAL		

' Other: Vegetation no longer in "natural" condition. For example abandoned farmland or seedings. Rockland and sand dunes also included.

² Total

areas.

PLANT DIVERSITY

plant diversity is expressed as the number of different plant species found within a vegetation type for each of the 17 vegetation types, plant diversity varies in relation to ecological condition. For example, greater species diversity exists in a juniper-big sagebrush vegetation type when in lateseral ecological condition than in either early-seral or climax conditions. Plants in late-seral to climax condition may not be present in early-seral condition and plants commonly found in early-seral sites may not be evident in climax condition. This is because both early-seral and climax vegetation tends to be more homogeneous and thus has fewer plant species.

The greatest diversity of plant species is found in the lower half of late-seral and the upper half of midseral condition vegetation. Based on present ecological condition, plant diversity is high on 400,293 acres. Exceptions occur in riparian, wet meadow, greasewood, and aspen vegetation types where the greatest diversity is found in late-seral and climax condition classes. These types compose only 0.2 percent or 2,025 acres of the public land in the EIS area.

AVAILABLE FORAGE PRODUCTION

Of the total vegetation produced on a given site, a significant amount is not consumed by herbivorous animals. This portion of the total vegetation will vary in amount depending on vegetation type and ecological condition and is important for wildlife cover as well as watershed protection (see Figure 3). The remainder of the vegetation which is readily consumed by herbivorous animals is called total forage.

Of the total forage produced, a portion is not palatable to livestock, but provides important forage for wildlife (some forbs and shrubs). The remainder of total forage, generally grasses and some forbs, is palatable to, and could be consumed by, livestock. Deer and antelope also utilize grasses as part of their diet during certain times of the year. Total use on the grass-forb part of the forage must be regulated so that enough plant material remains for plant maintenance and soil protection. The remainder of the plant is available for grazing use, and is referred to as available forage. It is the available forage which is allocated to livestock and wildlife. Wildlife have use of not only a portion of the available forage but also that portion of grasses and forbs left for plant maintenance which can be used for habitat, Forage not palatable to livestock, and the woody part of the total vegetation is also available to wildlife.

Total available forage production for the EIS area is 89,104 AUMs, as shown in Table 3. Appendix B shows existing available forage production by allotment.

RESIDUAL GROUND COVER

Residual ground cover expresses the amount of live vegetation, standing dead vegetation, and litter which remains after grazing. Over time, the accumulation of this material provides protection for the soil surface from wind and water and replaces soil nutrients.

The existing amount of residual ground cover in the EIS area is unknown, but assumptions about changes in residual ground cover can be made based on the effects of proposed management activities in the EIS area (see Chapter 4, Vegetation).

PLANTS OF SPECIAL CONCERN

There are no plants within the EIS area which are listed as threatened or endangered under the Endangered Species Act of 1973. However, longbearded Mariposa lily, green-tinged Indian paintbrush, Peck's penstemon, and Columbia cress are under review by the U.S. Fish and Wildlife Service for possible listing. These plants have been found within the EIS area during surveys made in 1977 and 1979 or it is probable they occur within the area. In addition, four plants not currently under review for federal listing, but of Importance to the

ENVIRONMENTAL IMPACT STATEMENT

Figure 3 Relationship Available Forage to Total Vegetation

38

Oregon Natural Heritage Program, occur within the EIS area. Table 10 lists potential threatened or endangered and plants of concern and their occurrence.

AIR QUALITY

Under the Clean Air Act, as amended, the Central Air Quality Control Region at Bend (ODEQ) enforces class II air quality standards for the entire EIS area. Class II designation allows moderate dearadation within air quality standards.

Bend exceeded the standards for Total Suspended Particulates (TSP) (see glossary) for 5 days in 1979. This was principally from windblown dust from roads and fields (ODEQ, 1979).

الحقجعي دواد معايدتكم المهداني ا

The following sources of air pollution have been identified as principal contributors to the airshed: lumber mills in Prineville, Bend, and Redmond; occassional burns in sanitary landfills: slash burning; field and ditch burning in the Redmond-Madras area: wood burning stoves in Bend and Prineville when inversions predominate; Willamette valley field burning: and windblown dust from roads and fields.

Table 10 Plants of Special Concern			
Name	Category ¹	Habitat	Occurrence
Palmer's onion Allium bisceptrum	3	Open slopes east of Cascade Mins.	none known
Douglas' wormweed Artemisia ludoviciana ssp. nova	3	Along Deschutes River; Deschutes Co.	Cline Falls
Peck's milkvetch Astragalus peckil	3	Sandy or pumice soil, western	none known
long-bearded mariposa lily Calcochortus longebarbatus var. peckil	2	Meadows wet in spring and drying by summer, Ochoco Mtns. and associated drainages, Crook County	Allots. 26 27
green-tinged Indian paintbrush Castilleja chlorotica	1	Dry gravelly slopes and summits, Tumalo Creek area, Deschutes Co	none known
Peck's penstemon Penstemon peckli	1	Dry soils of ponderosa pine forest on east side of Cascade Mtns., Black Butte Deschutes Co.	none known
American pillwort Pilularia americana	3	Shallow vernal pools	none known
Columbia cress Rorjppa calcyna var. columbiae	2	Moist, sandy soil, Crook Co.	none known
Category 1: Sufficient biological justification exists for listing as threatened or endangered (Federal Register Vol. 45, No. 242, Dec. 15 1980)			
Category 2: Further study is needed to determine if biological justification for listing exists (Federal Register Vol. 45, No. 242, Dec. 15 1980)			
Category 3: Plant is considered important by the Oregon Natural Heritage Program			

WILDLIFE

UPLAND HABITAT DIVERSITY

In general, the greatest numbers and kinds of wildlife are found in areas with the highest habitat diversity. Habitat diversity is the amount of mixture or variety of land forms, vegetation, vegetation types, and water in any given habitat type. For example, sagebrush adjacent to seeded grass increases habitat diversity around the perimeter of the seedino (edge effect). A variety of plant species also increases habitat diversity. Structure, or the physical aspects of vegetation, increases habitat diversity. Specific examples are clumps of high grass in a grazed meadow, several age classes of aspen along a stream, and snags or dead trees in a stand of timber.

Habitat diversity can be correlated with ecological condition described in the vegetation section. Midor late-seral ecological condition has greater habitat diversity than early-seral or climax condition. Seedings have low habitat diversity.

For the purpose of this EIS, wildlife habitat was considered as the prime determinant of wildlife welfare. Since wildlife usually respond to vegetative structure rather than composition (Thomas 1979), structurally similar plant communities were grouped into distinct and important habitat types as described in the vegetation section (Table 8).

The large number of wildlife species present in this area makes it difficult to evaluate the effects of management practices on the total population of each species. However, the life form concept, the grouping of animals based on specific requirements for feeding and reproduction, (Thomas, 1979) allows a grouping of the 337 wildlife species found in the EIS area into 16 life form groups. (Appendix M lists wildlife species occurrance by habitat type, species preference, and life form.)

Big game, threatened or endangered species, upland birds, and waterfowl are discussed in detail because of their economic importance, legal status, or sensitive position in the planning area. Table 11 lists the numbers of wildlife species dependent on each habitat type. Table 12 shows acres of wildlife habitat and estimated populations for deer, elk, and antelope in the EIS area.

Table 11 Wildlife Habitat and	Species Use				
		Number	of Wildlife S	pecies Using H	labitats
Habitat Type	Dublic Acres	Primary Penroduction	Use ²	Second	lary Use 3
Juniper-big sagebrush	393 580 34			Reproduction	n Feeding
Juniper-low sagebrush	48 525		10	5	07
Juniper-bitterbrush	5 830	40.4		5.1.2	
Juniper-bunchgrass	1795	R. 200	44	27.3	00
Big sagebrush-bunchgrass	398.778	27777 ST	84	19	40
Low sagebrush-bunchgrass	131 205		23	18	1. Jan 30 1
Intermittent lake beds	4.464	30	190 41	15	59 52
Other brush dominant	17.924	41	45	20	65
Ponderosa pine	11.766	2. 71.	s 81	35 12	C 61-
Mixed conifer	** 1; ** * 920 S	86	87	36	21
Mahogany dominant	354	3-0-1	4	17	AT
Greasewood-bunchgrass	1,137	29.20	52 52	20.	69
Wet meadow	100	46	≨.±.92	16	62
Aspen	45	85.	100	14	42
Crested wheatgrass	40,821	N	44.32 G	11	40
Bunchgrass	9,581	42.		* E+ 22 1- 54	57
Riparian ⁴	743	C 213	265	- 14	28 -
			1. 1. Martin (1997)		
			A YSSA COM		. Service
				19-20- 2 -69-2	$\phi \in \{1, \dots, n\}$
Species may use more than one habitat				Sec. Sec. Sec. Sec.	
Habitat used less than 40 percent of time.					1.18
Includes reservoir and stream nparian areas in a			S. S. S. S.		

Species	Habitat (public acr	es) Present Population
MULE DEER Crucial winter range Summer range	142,914 1,067,577	12,000 9,700
ANTELOPE Crucial winter range Summer range	64,312 739,968	1,460 1,490
ELK Winter range Summer range	38.9'12 35,200	55 35
WATER ASSOCIATED BIRDS (includes surface water acres)	. 1,218	Moderate to' , abundant'
UPLAND GAME BIRDS Stream riparian habitat	407	Low to
Upland habitat 🤇 .	317,322 🔬 🗠	
NONGAME SPECIES Yearlong range	1,067,577	Moderate to abundant
Based on historical populations.		

Table 12 Wildlife Habitat and Populations

يىرى ئىلىچە ئىرىكى ئەربىي

Figure 4 Riparian Vegetation

RIPARIAN HABITAT

Riparian areas make up less than one percent of the public land in the EIS area, yet are often the most heavily utilized (Figure 4). Recreation, roads, livestock, irrigation, and wildlife all contribute to the total use of this fragile area.(Table 9 shows present ecological condition of riparian habitat.)

Stream riparian areas are used during all seasons of the year by more than 85 percent of the wildlife species in the area (Appendix M). These areas provide shade and escape cover for all species. Shrubs provide winter forage: grasses provide season-long green forage. When riparian areas are in the higher ecological condition classes, plant diversity is high allowing increased wildlife diversity. All reservoir habitats are primarily characterized by a dominance of rushes and sedges with occassional cattails, emergent water plants, and clumps of willows. Table 11 lists numbers of species that use riparian habitat for feeding and reproduction.

Stream riparian zones frequently become travel lanes for migrating big game animals. Song birds utilize trees and shrubs for spring nesting and for cover during winter periods. Other wildlife use includes brown headed cowbird, Brewers blackbird, redwinged blackbird, northern pacific rattlesnake, wandering garter snake, western skink, waterfowl, upland birds and several species of shorebirds. Appendix M lists species found in each of the 17 habitat types found in the EIS area.

FISHERIES

There are about 96 miles of stream on public lands that have fish or the potential to support fish. Eightyeight miles presently contain fish populations. Habitat condition and fish species by miles of stream on public lands are listed in Appendix K.

There were 18 miles of fish habitat rated in good condition, 40 miles in fair condition, and 38 miles in poor condition. None of the streams were rated in excellent condition.

DEER, ANTELOPE, AND ELK

Mule Deer

Mule deer are commonly found throughout the EIS area. Present populations are below the ODFW management objective numbers in all game units. All of the public lands in the EIS area provide summer habitat; 142,914 acres are considered crucial winter habitat.

Table 12 shows the estimated present population and acres of habitat in the EIS area.

Predation, housing developments, and livestock grazing continue to conflict with deer management. Coyote predatron on mule deer fawns is felt to be a major population influence factor (Trainer, 1977; Scott. pers. comm., 1981). Housing developments near Bend and Prineville have encroached on winter ranges. Spring competition for early grasses and forbs occurs whenever livestock use deer winter ranges prior to mid-April. However some seedings, water developments, and grazing systems have improved deer habitat.

Antelope

Antelope, like mule deer, are found in a wide variety of habitats in the EIS area. They are found not only in the traditional low sagebrush-grass habitats, but also are found in the juniper-low and big-sagebrush habitats (Kindschy. et al.. 1979). There are approximately 739.968 acres of summer habitat and 64.312 acres of habitat in EIS area. Population figures are listed in Table 12.

Elk

Elk populations on public lands are located around the Maury Mountains and along the southern boundary of the Ochoco National Forest. The on public lands is 55 (Table 12). There are approximately 35.200 acres of summer habitat. The ODFW has not identified any crucial elk winter range: however. approximately 38,912 acres of winter habitat are contained in the ElS area (Table 12)

OTHER WILDLIFE

Upland Birds

Upland birds are found throughout the EIS area and include sage grouse. California valley quail, chukar partridge, pheasant. mountain quail, blue grouse, and ruffed grouse.

Sage grouse are scattered throughout the southern portion of the EIS area but are found primarily in the low sagebrush-bunchgrass habitat type. Present populations are low, reflecting a downward trend over the last 20 years. This decline has Increased ODFW management emphasis and inventory of strutting and nesting areas. Twenty-three strutting grounds and associated nesting areas have been located within the EIS area. Strutting grounds and nesting areas are considered crucial habitat.

Small populations of chukar partridge are found in a few steep rocky areas near perennial water. California valley quail are closely associated with riparian areas. Blue grouse, ruffed grouse, and mountain quail are found in the conifer-vegetation types adjacent to the Maury and Ochoco Mountains. pheasants are found primarily on private lands around agricultural areas.

Waterfowl

Five species of geese and 23 species of ducks use the EIS area during migration or for nesting. These include mallard, pintail, Canada goose, scaup, redhead, and teal. Most of the associated habitat for waterfowl is on state, private, or Bureau of Reclamation lands.

Reservoirs that are important include Marshy and Muhly reservoirs, Ram Lake, and a portion of Merwin's Reservoir. Nesting habitat around unfenced reservoirs is often poor because concentrated livestock use removes most of the ground cover.

ENDANGERED OR THREATENED SPECIES

There are only two species listed by the Secretary of the Interior on the "endangered species" list (44 FR 12:3544, 1979) known to occur in the EIS area.

The bald eagle is classified as threatened in Oregon and is a to the area. Areas of high use include the upper Crooked River Valley near Paulina and the lower Crooked River Valley below Prineville Dam. Lesser use areas include Ochoco. Prineville, and Barnes Butte Reservoirs, and the Powell Butte area. Birds arrive as early as September, but numbers generally peak in March. The highest number recorded during a winter survey was 49 in 1980. There are no known breeding pairs of bald eagles in the Brothers EIS area. Peregrine falcons are classified as endangered. Two sightings of adult birds were made by BLM and ODFW personnel in 1978 near the G. I. Ranch. Both observations were made during the nesting season. Investigations failed to locate nest sites.

RECREATION

The Brothers EIS public lands receive nearly 1 million recreation visits annually, or about 235,000 visitor days (Table 13).

The only developed recreation site on public land is the Chimney Rock Recreation Site adjacent to the Crooked River, downstream from Bowman Dam (Prineville Reservoir). This site, and the 12-mile segment of the canyon in which it is located, is the most intensively used recreation area on public land in the EIS area. Annually it receives more than 60,000 visitor days of use.

Hunting, driving for pleasure, target shooting and photography are dispersed throughout the area. Rockhounding for obsidian, petrified wood, and agate-type material is concentrated around Glass Butte, Congleton Hollow, Liggett Table, Hampton Butte, and near Prineville Reservoir. The Crooked River, its tributaries, and portions of the Deschutes River accommodate nearly all fishing and watersports in the EIS area. Off-road vehicle use is concentrated in the Millican Valley ORV area, around Prineville Reservoir, and on public lands near Bend, Redmond, and Prineville. Hiking and camping on public lands is centered in the seven identified wilderness study areas and along the Crooked River.

Two river segments identified in the nationwide rivers inventory cross public land within the EIS area (Table 14).

Table 13 Summary of on Public Lands	1981 Rec	reation Use
	Main ANT SAF	1 Millay C. Lotter 4
Activity 12 Adda and 12 Adda	ge y in in the subset of the	LAND COLOR
Driving for pleasure	735,000	105,000
Fishing The gent of the about	74,000	31,000
Rockhounding	36,000	30,000
Off-road vehicle driving	42,000	23,000
Hunting	.10,000	18,000
Hiking or camping	6,000	9,000
Other ³	48,000	19,000
TOTAL IL A SA LAND	951,000	235,000
		12 相关 11 12 14
* A recreation visit is one person v	alting a given ar	ea to participate in a
recreation activity	THE WAY SA	min the second second
A visitor day is the aggregation o	f 12 hours of res	restion use.

 Table 14 Rivers Identified in the Nationwide Rivers Inventory

 River Segment
 Total Length
 Total BLM

 Deschutes River
 Total Length
 Total BLM

 Veschutes River
 26
 3

 Crooked River
 107
 16

 SOURCE: Heritage Conservation and Recreation Service, 1980

The State of Oregon has identified the segment of the Crooked River between Bowman Dam and the slack water of Lake Billy Chinook for possible inclusion in the State Scenic Waterways System.

Trends in outdoor recreation use in the EIS area have fluctuated widely in the past due to fuel availability, weather, inflation, and changes in user preference. A 4.5 percent decrease in overall traffic in the EIS area was experienced between 1979 and 1980. From 1980 to 1981 an increase of 1.6 percent to approximately 235.000 visitor days was experienced. Projections indicate hunting and fishing will remain relatively stable through the year 2000. Other recreational activities are expected to increase by 30 percent to 300,000 visitor days by the year 2000 (Pacific Northwest River Basin Commission, 1975).

VISUAL RESOURCES

Scenic quality, the visual sensitivity the public has for the landscape, and visual distance are used to determine the visual resource management objectives for an area (Map 8).

In the Brothers EIS area 600 acres of public land (Horse Ridge Research Natural Area) are managed to allow only natural ecological changes on the landscape (VRM Class 1). An additional 284,200 acres of public land are managed to allow surface disturbing activities to occur only if those projects are not evident on the characteristic landscape (VRM Class II). Another 483,400 acres are managed so surface disturbing projects do not dominate or change the character of the landscape (VRM Class III). Approximately 300,000 acres of public land are managed to allow surface disturbing activities to be dominant features on the landscape; however, they should fit into the characteristic landscape as much as possible (VRM Class IV).

Methodology for scenic resource evaluation under the visual resource program _{1s} available at the Prineville BLM Office.

CULTURAL RESOURCES

The cultural environment of the Brothers EIS area includes prehistoric and historic remnants of human activity during the last 12,000 to 13,000 years. Historic sites are locales used by Euro-Amencans from the 1820's to the 1930's. Prehistoric sites are locations used by native peoples prior to the 1850's.

A complete field survey to identify cultural resources eligible for inclusion in the National Register of Historic Places was not feasible, due to the size of the EIS area. However, a review and compilation of known cultural resource data (Class I inventory) was completed (Toepel and Beckham, 1978). A sampling field inventory (Class II) was completed in the Glass Butte area (Mack, 1975); 106 sites were identified durina the survey that covered 7.500 acres. This. plus the detailed surveys I (Class III) conducted prior to authorizing various activities resulted in an intensive survey on 21,905 acres of public land in the EIS area. This resulted in identification of site density ranging from 6 sites per 40 acres to one site per 640 acres.

There are no cultural sites in the Brothers EIS area listed on the National Register of Historic Places. However, Meek's Immigrant Road and two archeological districts, one near Post and the other on Twelvemile Table, were identified as potentially eligible for the National Register.

BLM has identified 238 prehistoric sites in the Brothers EIS area. Lithic scatters comprise the majority (77 percent) of these sites and temporary camps account for 7 percent. Other site types represented include quarry/workshops milling stations, rock art sites, rockshelter sites, burials, and other sites.

BLM has identified 62 historic sites. Sites with a settlement theme account for 45 percent and those of an exploration/transportation nature comprise 19 percent. Other themes Include townsite/public buildings, grave/cemetery. military, agriculture, industry, and others.

Based on the above information and a letter dated January 29, 1982, from the State Historic Preservation Officer (Appendix N), it is estimated there may be as many as 10.700 cultural resource sites on public lands within the EIS area.

PALEONTOLOGY

Relatively little is known about the overall extent or density of paleontological resources within the EIS area. A total of 42 paleontological sites have been located on or near public lands in the EIS area.

There are approximately 380,000 acres of geological formations (or 16 percent) in the EIS area which may contain fossils (paleontological sites).

BROTHERS GRAZING MANAGEMENT ENVIRONMENTAL IMPACE SEARCHARMENT

LEGEND

- -

Class II

Class IV

Class III

T. 22 S

MAP 8 VISUAL RESOURCE MANAGEMENT CLASSES

WILDERNESS

A wilderness inventory of the EIS area has been completed as required by Section 603 of the, Federal Land Policy and Management Act (1976). Seven wilderness study areas (see glossary) were identified (Table 15). Each meets the requirements that qualify them for further study.

Each of these areas will be evaluated in a Wilderness Environmental Impact Statement to be prepared in 1983 and 1984. Until that process is completed and a final decision regarding wilderness designation is made, all seven areas will be managed under the Interim Management Policy and Guidelines for Lands under Wilderness Review (December, 1979). The policy states that grazing use authorized during the 1976 grazing fee year is "grandfathered" and may continue. Range developments in existence as of October 21, 1976 can be used and maintained. New range improvements or changes in grazing levels or seasons of use will be allowed if the action is nonimpairing to wilderness suitability.

Data relating to the wilderness inventory are available for review in the Prineville District Office.

والمراجعة والمراجعة المحمد المحمد

		• • • • • •
Table 15 Wi Name and WSA Number	Iderness St Acres	of Allotments
Badlands OR-05-21	32,053 5	5108, 5204, 5207, 5209 , 2 1 3
North Fork OR-05-31	10.745	.0050,0053
South Fork OR-05-33	19,631	0009, 0047, 0056, 0064
Sand Hollow OR-0534	8.791	0009, 0056
Gerry Mountain OR-05-35	20,700	0009, 0070
Hampton Butte OR-05-42	10,600	0003.0044
Cougar Well OR-05-43	17.315	0044
TOTAL	119.635	

SPECIAL MANAGEMENT AREAS

RESEARCH NATURAL AREAS

The Horse Ridge Research Natural Area (also known as Western Juniper National Natural Landmark) is a nearly of western juniper-big sagebrush-threadleaf sedge (Franklin, Hall, Dryness, and Maser, 1972). The 600-acre area has been fenced and is managed for scientific and educational purposes.

AREAS OF CRITICAL ENVIRONMENTAL CONCERN

There are no areas of critical environmental concern (ACEC) proposed or designated in the Brothers EIS area.

Seven areas were nominated and studied as potential areas of critical environmental concern in BLMs planning process. However, none of the areas met the criteria for designation.

SOCIOECONOMIC CONDITIONS

For socioeconomic purposes, the EIS area is defined to include Crook and Deschutes Counties, even though a small portion of the area extends into Lake and Harney Counties.

POPULATION AND INCOME

The population of these two counties was 75,223 in 1980. Population growth during the 1960 s was moderate, averaging 2.2 percent per year; between 1970 and 1980 the population grew at an average rate of 7.4 percent per year. Most of this growth was in Deschutes County.

The portion of income attributable to labor and proprietor's income amounted to \$418.8 million. Of this, \$6.9 million was farm income and \$411.9 million was nonfarm income. Personal income in the EIS area in 1979 was \$566.7 million. Income per capita was \$8,334; the state-wide average was \$8.887.

Total farm proprietor income has wide annual variations. In the last eight years in this two county area it has ranged from \$4.3 million in 1974 to -\$1.3 million in 1977 and averaged \$1.2 million.

ECONOMIC ACTIVITY

The total labor force (people working or looking for work) averaged 36,610 in 1980. Unemployment was about 12.5 percent.

Approximately 26,000 workers were employed in nonagricultural wage and salary positions in 1980. This included lumber and wood products, manufacturing, construction, trade, and government employment (Oregon Department of Human Resources, 1981). During 1979 there were approximately 950 farm or ranch proprietors and an average of 500 farm wage and salary workers employed in the two county area (U.S. Department of Commerce, 1981). (1980 data unavailable.)

The value of agricultural products sold in 1980 in Deschutes and Crook Counties was \$32.7 million. This included 13.6 million in crops, \$14.8 million in cattle, and \$4.3 in other livestock products (Oregon Extension Service, 1981).

ECONOMIC SIGNIFICANCE OF PUBLIC LAND

The following sections describe several measures of the value of grazing on public land.. The amount of local income and employment generated by livestock use and recreation on the pulic lands is estimated.

DEPENDENCE OF LIVESTOCK OPERATORS ON PUBLIC FORAGE

During 1981, 119 operators grazed 48,711 cattle on public lands within the EIS area. There were 74.670 AUMs of forage available for sale; however-65.169 AUMs were actually sold. This was 11.2 percent of the total forage requirements of those operators.

Dependence on BLM-produced forage vanes monthly. Table 16 indicates dependency on public

land forage is the greatest during the spring and summer, and the least during the winter months.

BLM GRAZING LICENSES AND RANCH PROPERTY VALUES

Effects on ranch property values may occur as a result of BLM grazing permits even though permits are not vested property rights. Based on appraisal studies related to ranch sales, the asset value of public forage licenses is estimated to be about \$40-\$45 per AUM.

FINANCIAL VIABILITY OF RANCH ENTERPRISES

Return above cash cost has been designed to be used as a measure of the effect of changes in ranch enterprises. Return above cash cost can be used to apply to other costs such as depreciation, interest on investments or land, and family labor.

	Percent		Herd		
	Dependency	0 - 99	100 - 399	400 - 999	1,000 or more
Month	Range		Number of	Operators .	
March	o-19	44	36	25	9
	20 - 39	0	1	0	0
	40 - 59	0	1	0	0
	60 - 79	0	0	0	0
	80 - 100	0	1	0	0
April	o-19	32	25	18	6
	20 - 39	3	7	4	1
	40 - 59	5	3	3	2
	60 - 79	3	4	0	0
	80 - 100	2	0	0	0
May	o - 19	18	15	13	4
	20 - 39	7	10	6	2
	40 - 59	3	8	5	3
	60 - 79	9	2	1	0
	80 - 100	7	4	0	0
June	o-19	21	la	14	4
	20 - 39	6	9	5	2
	40 - 59	5	5	2	2
	60 - 79	6	4	3	1
	80 - 100	6	3	1	0
July	o - 19	27	18	14	4
	20 - 39	4	10	3	2
	40 - 59	6	4	4	1
	60 - 79	3	4	2	2
	80 - 100	4	3	1	0

Table 16. Operator Dependency on BLM-Produced Forage by Month

INCOME AND EMPLOYMENT FROM RECREATIONAL ACTIVITY

In 1981, hunting, fishing, camping and day-use on public lands generated 180 local jobs (see Chapter 3, Recreation and Appendix Q).

SOCIAL CONDITIONS

The user group which would be the most significantly affected by implementation of the proposed action or any of the alternatives is that . . . portion of the ranching community totalling approximately 670 people who are dependent upon BLM-produced forage. This group maintains a close connection between the ranching occupation and their personal, rural lifestyle. The ranch business often involves the entire family and plays a substantial role in developing personal and family ties.

Other effects on social conditions are primarily related to recreation users and their opportunity to pursue a variety of outdoor activities on public land (see Chapter 4, Recreation).

Chapter 4 Environmental Consequences

CHAPTER 4 ENVIRONMENTAL CONSEQUENCES

This Chapter identifies, summarizes, and compares the environmental impacts which are projected to occur to the environment as described in chapter 3 **as a** result of implementing the proposed action or one of the alternatives. Impacts are discussed in relation to two time frames: short term, those which are expected during project implementation, and long term, those which would result 15 years after Implementation.

The three features of the livestock grazing program analyzed under the proposed action and alternatives which would cause impacts are forage allocation, grazing systems, and rangeland improvements. Each resource is analyzed in terms of effect of these three actions.

Climate and special management areas were not analyzed since it was determined that they would not be affected by the proposed action or any of the alternatives. No impacts would occur to endangered or threatened species. They are dropped from further discussion.

The energy investment necessary for implementation of the proposed action would be 53.4 billion Btu's (less than .0001 percent of the total energy consumed in Oregon in 1981). Alternative 1 would require 88.2 billion Btu's and alternative 3 would consume 13.4 billion Btu's. No energy would be consumed under alternatives 2 and 4.

These criteria were used to determine the nature and extent of impacts:

Beneficial impact: conditions would improve relative to existing situation:

Adverse impact: conditions would deteriorate relative to the existing situation:

No impact: conditions would remain the same as the existrng situation.

The following assumptions have been made in this chapter:

- 1. BLM would have the funding and staff to fully implement the proposed action or selected alternative and interrelated elements as described in Chapter 2.
- 2. Standard procedures and design would be followed as specified in Chapter 2 for all rangeland Improvements.
- 3. All grazing systems and utilization levels would be followed.
- 4. The principal component directly affected is vegetation. Any change in vegetation would affect other resources.

- 5. Monitoring studies would be done and adjustments made as discussed in Chapter 2.
- Sufficient forage to meet ODFW management objectives will be allocated as it becomes available.

SOILS

The proposed action and each of the alternatives would have an effect on soils in the EIS area by causing changes in erosion rates and soil productivity. Increased erosion would reduce soil productivity which, in turn, would reduce the sustained production of plants and animals, Erosion would be caused by soil disturbance and/or a change in residual ground cover caused by livestock grazing and rangeland improvements.

Soil surface disturbances reduce the protective ground cover (vegetation, litter, and surface rock) and allows an increase in wind and water erosion. This, in turn, reduces soil productivity due to changes in infiltration rate, soil moisture, organic matter, surface soil structure, permeability, nutrient recycling, and compaction (Silvernale, Simonson, and Harward, 1976.)

Generally, as residual ground cover decreases, erosion would increase, and as residual ground cover increases, erosion would decrease.

Erosion caused by changes in forage allocation, grazing systems, and rangeland improvements are based on changes to residual ground cover, reflected in changes in ecological trend displayed in Table 22. Erosion would increase with continuous spring grazing under spring/summer, spring/ summer/fall, spring/fall, and early grazing systems. This would result from livestock trampling on wet soil and reduced residual ground cover on earlyseral rangelands (Smeins, 1975: Silvernale, Simonson, and Harward, 1976: Bedell and Ganskopp, 1980).

No significant erosion due to soil compaction is expected where utilization is less than 60 percent (Gifford, 1975; Holechek, 1980) under proposed action, alternatives 1, 2. and 3.

Construction of rangeland facilities and implementation of vegetative treatments would cause short term increases in erosion due to soil disturbances (Table 18) and reductions in residual ground cover. However, this erosion would decrease over the longterm as vegetation became re-established. Juniper control would reduce erosion in critical watersheds in the long-term (Dealy, Geist, and Driscoll, 1977; Martin. 1977; Winegar and Elmore, 1977).

Erosion would not increase in the short or long term on areas where sagebrush would be controlled by spraying as residual ground cover would remain onsite and soil surface disturbances would be

Table 18 Acres of Potential Soil Disturbance ¹

	_		Alter	native 1
	Propose	(Optimize Livestock)		
Rangeland	Short	Long	Short	Long
Improvements	Term	Term	Term	Term
Fences	70	0	57	0
Springs	1	1		
Wells	2	1	2	
Pipelines	933	467	939	470
Reservoirs	75	25	75	25
Waterholes	2		2	
Guzzlers	а	8	4	4
Rip-rap	164	0	41	0
Stream structu 62		0	16	0
Debris removal	15	0	15	0
Nest site const.	0	0	0	0
Spray/seed	3,200	0	6,250	0
Burn/seed	42,330	0	93.050	0
Plow/seed	8,625	0	17,650	0
Spray only	57.635	0	143.400	0
Burn-only	47,486	0	135.100	0
Chain only	5,000	0	11,000	0
Juniper control only	97.733	0	153.012	0
Juniper control/seed	4,700	0	7,600	0
TÖTAL	268,041	503	568,214	502

' No projects are proposed for alternatives 2 or 4

negligible. Sagebrush control by burning would cause short term reductions in residual ground cover and increase the potential for wind erosion on susceptible soils in mapping units 1, 3, 4, and 5.

Plowing, chaining, and seeding associated with brush control would cause short term soil surface disturbance. This would cause increases in compaction. surface soil structure breakdown, decreases in soil-water infiltration rates, and reduction of protective ground cover. This would result in potential increases of from mapping units 1, 3. and 5 (Gifford, 1975; Hessary and Gifford, 1979). Wind erosion potential is high for portions of mapping units 1 and 5: sagebrush removal from these soils would result in some seedling failure due to soil droughtiness and seedling burial (Gifford. 1975).

CONCLUSION

The rate of erosion over the long term would decrease under the proposed action and all alternatives. The proposed action and alternative 3 would show the greatest reduction. Under alternative 3 erosion would be reduced due to juniper control in critical watersheds and the elimination of livestock grazing in those areas.

Impacts due to range improvements would result in a short-term increase in soil erosion: however, an overall decrease in soil erosion would result as vegetative cover becomes established.

WATER

WATER QUANTITY

In general, surface runoff decreases with an increase in residual ground cover and improved ecological condition. Table 19 was used to predict acres affected by changes in surface runoff, due to expected long-term changes in residual ground cover. These changes are due to changes in ecological condition resulting from rangeland improvements, forage allocation, and grazing systems.

Alternative 3

(Optimize

Long

Term

0

1

0

0

10

3

10 0

0

0

0

0

0

0

0

0

0

0

0

24

Wildlife

Short

Term

64

1

6

0

30

5

10

206

78

15

0

0

0

0

0

0

0

58.204

68.028

126.647

Long

Term

Forage allocation and grazing systems would have no significant effect on surface runoff except where changes in residual ground cover would occur (See Vegetation).

Surface runoff would decrease most under alternative 3 (Table 19). With alternative 1, surface runoff would Increase due to decreases in residual ground cover. Juniper control would decrease surface runoff due to an increase in residual ground cover: the greatest benefit from jumper control in critical watersheds would be in alternative 3. proposed action and alternative 1, respectively.

Brush control (other than spraying and seeding) would cause a short term increase in surface runoff due to loss of residual ground cover and increased soil disturbances.

Table 19 Long-Term Trend, Acres Contributing to Surface Runoff'

	Proposed'	Alt. 1 (Optimize	Alt. 2	Alt. 3 (Optimize	Alt. 4 (Eliminate
Surface Runoff	Action	Livestock)	(No Action)	Watershed & Wildlife)	Livestock Grazing)
Upward	383,320	265,509	264,753	386,209	400,663
Downward	120,655	279,964	112,057	49,361	9,314
Static	563,602	522,104	690,767	632,007	657,600

* Acres contributing to surface runoff as a result of forage allocation and grazing systems

CONCLUSION

Changes in surface runoff would not have a measurable effect on mean annual water yield. However, it would change the magnitude and frequency of runoff events. The greatest decrease in surface runoff would be under the proposed action and alternatives 3 and 4.

WATER QUALITY

Water temperature. sediment, and late summer flows are affected by livestock forage allocation and grazing systems that allow the removal of riparian vegetation. This vegetation provides stream shade, channel stability. and water retention for higher late summer flows. The stability of stream channels is a major Indicator of water quality constituents (Table 20).

Fencing of riparian areas to exclude livestock would significantly improve riparian ecological condition,

therefore Improving channel stability and water quality.

Application of herbicides under the proposed action and alternative 1 would not affect water quality (Chapter 2, Standard Design).

CONCLUSION

Overall water quality would improve under the proposed action and alternatives 3 and 4. Overall water quality would remain static under alternatives 1 and 2 (Table 20).

Spraying and other range improvements are not expected to have a significant effect on surface runoff.

Construction or reservoirs would impound approximately 25 acre-feel of water per year under the proposed action and alternative 1, and 10 acrefeet under aiternative 3. This would have an insignificant effect on mean annual water yield. Ground water withdrawal under the proposed action

Table 20 Channel Stability, Estimated Condition and Trend, BLM Stream Miles

Excellent	Good	Fair	Ροοι
16	32	35	13
35	32	27	2
21	13	41	20
22	13	34	27
76	20	0	0
76	20	0	0
	Tre	nd	
Up	Sta	tic	Down
53	43	3	0
20	70	6	0
33	43	3	20
96	()	0
96	()	0
	Excellent 16 35 21 22 76 76 76 53 20 33 96 96 96	Excellent Good 16 32 35 32 21 13 22 13 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 20 76 33 43 33 96 0 96 0	Excellent Good Fair 16 32 35 35 32 27 21 13 41 22 13 34 76 20 0 76 20 0 76 20 0 76 20 0 76 20 0 76 20 0 76 20 0 76 20 0 76 20 0 76 20 0 76 33 43 20 76 33 96 0 0 96 0 0

and alternative 1 is estimated to be 45 acre-feet per year. This would have an insignificant effect on ground water.

VEGETATION

In this section the effects of forage allocation, grazing systems, and rangeland improvements on the six attributes of vegetation discussed in Chapter 3 (vegetation types, ecological condition and trend, plant diversity, available forage production, residual ground cover, plants of special concern) will be anaylzed. The situation as described in Chapter 3 is !he baseline from which all changes are projected.

VEGETATION TYPES

Forage allocation and grazing systems as proposed in this document would not have a significant effect on vegetation types. Any changes would be longterm changes in ecological condition, as discussed below.

Rangeland treatments would affect vegetation types through removal of sagebrush and juniper, converting big sagebrush vegetation type to native grassland-bunchgrass or crested wheatgrass. Table 21 shows changes in vegetation types resulting from brush and juniper control projects and seeding.

For the purpose of this analysis, ecological trend refers to direction of change of ecological condition. For example, upward trend refers to ecological condition moving toward climax, while downward trend refers to ecological condition moving away from climax. Ecological condition not changing would have static trend.

CONCLUSION

The greatest change in vegetation types would result from alternative 1, followed by the proposed action, and alternatives 2, 3. and 4.

ECOLOGICAL CONDITION AND TREND

FORAGE ALLOCATION

Initial forage allocation in the proposed action and alternatives is not projected to have a significant effect on ecological condition or trend. As discussed in Chapter 1, past problems of overgrazing largely have been alleviated in the EIS area.

GRAZING SYSTEMS

Plants draw on stored food in roots to initiate growth in the spring. Once sufficient vegetative material has been produced food is again stored in the roots to carry the plant through winter dormancy and provide for the next year's spring growth. The amount of grazing which would allow plants to complete this cycle has been called the proper stocking rate: the amount of use is proper use. However, the assumption that all plants in a pasture can be grazed to a proper level through regulation of the stocking rate is unrealistic because of the selective grazing habits of livestock. Livestock graze some plants heavier than others, regardless of the stocking rate and many plants are heavily utilized year after year. The key to improving the vegetation is not adjusting stocking rates, but managing grazing use in such a manner that these highlyutilized plants would be cared for (Hormay, 1970).

In order to improve plant vigor, reproduction, and hence, ecological condition, the grazed plants regularly must be allowed to complete a growth cycle. A growing season's rest, following a season of grazing, would allow grazed plants to make and store food, thereby increasing vigor. Further rest, beyond plant dormancy, would promote seedling establishment and allow litter accumulation between plants (Hormay, 1970). Extended rest would usually improve ecological condition (Hickey, 1969).

Grazing systems which allow complete or nearly complete growing season rest at regular intervals include rest rotation, deferred rotation, deferred, short duration, and winter grazing. An upward change in long term ecological condition would be expected with these grazing systems.

Table 21 Ac	cres of Vegetation	on Types Resulti	ng from Ra	ngeland Imp	d Improvements			
Vegetation	Type ¹	Proposed Action	Ait. 1 (Optimize Livestock)	(No Action)	(Optimize Watershed & Wildlife)	Ait. 4 (Eliminate)::::::::::::::::::::::::::::::::::::		
Juniper-big sage Big sagebrus Low sagebrush-I Bunchgrass Crested wheatgra All other types	brush sh-bunchgrass bunchgrass ass the configuration of the second the second second second second the second seco	291,147 260,848 1 2 8, 0 0 5 194,289 99,676 93,612 alternative 2.	232,968 33,528 118,705 423,393 165,371 93,612	393,580 398,778 131,205 9,581 40,821 93,612	325,552 354,202 131,205 122,185 40,821, 92 93,612	393,580 398,778 131,205 9,581 40,821 93,612 14,40,821 93,612 14,40,82114,40,821 14,40,82114,40,821 14,40,82114,40,821 14,40,82114,40,40,82114,40,40,40,40014,40,400,400,40		

Rotation and early grazing do not allow for extended growing season rest. While some improvement may result, for the purpose of analysis, it was assumed that ecological conditions would remain static with these systems.

Exclusion and rest result in extended rest of plants from livestock grazing.. For the purpose of analysis it was assumed that plant vigor and reproduction and hence, ecological condition class would improve with those treatments.

Grazing which does not allow plants to produce and store food reserves in the roots is especially detrtmental (Stoddart, 1955), and will cause the plant to weaken and lose vigor. Yearly grazing in this manner will eventually cause plants to die, resulting in a change in species composition and a downward change in ecological condition (Hormay, 1970). Grazing systems falling into this category include spring/summer, spring/summer/fall. and spring/fall.

Period of use under fenced federal range, where small Isolated parcels of BLM land are used in conjunction with private land, is not known, since it is at the discretion of the operator. It was assumed ecological condition would remain static.

Vegetation in the low end of the early-seral condition may not respond to grazing treatment or rest. Observations in the EIS area show that long-term rest of some pastures in extremely low early-seral condition has failed to produce even a small Increase in grass species composition due to the low occurrence of grass species. Similar results were observed by Tueller (1960). For this reason it was assumed that 50 percent of the present early-seral condition would not respond to management either through grazing or rest. Vegetation in late-seral ecological condition will not go to climax through management alone (Sneva. 1980). Fire control, coupled with past management practices, has allowed sagebrush and juniper to increase in composition over much of the EIS area. Once these species become a part of the plant community, they can only be removed by fire or artificial means. Their contribution to the total plant composition is enough to keep vegetation from achieving a climax condition, except over a very long time frame. In addition, plant communities in the low end of climax condition have enough sagebrush or juniper in their composition so that condition will change to late-seral over the long term. For the purposes of analysis, it was assumed that 40 percent of vegetation presently in climax would change to late-seral in the long term.

The only ecological condition classes which would improve through grazing management are the upper end of early-seral and mid-seral. Based on observation and professional judgement of BLM personnel, it is assumed for this analysis that longterm upward or downward changes in ecological condition resulting from grazing management would be limited to one condition class, i.e.. mid-seral would progress to late-seral.

The effect of grazing systems on riparian ecological condition is different than on other vegetation due to the presence of year-round water. Year-round water allows extended growth but also attracts livestock when surrounding upland vegetation is dry.

Increased vegetative cover gained during the rest year of rest rotation systems is often lost with livestock use during the following years. Depending on their potential and location in pastures, some riparian areas may improve; however, most would remain in their present condition (Crouse, pers. comm., 1981). This is also true for deferred rotation grazing.

Early, short duration, and rotation grazing systems would result in less livestock concentrating along streams early in spring because of abundant green growth in the uplands and low air temperatures along streams. Sufficient regrowth would occur each year to establish an upward trend. Consequently, ecological condition would improve one condition class (Myers, 1981).

Spring/summer, spring/summer/fall, spring/fall, and deferred grazing would concentrate livestock in riparian areas during all or most of the summer and fall; therefore, a slow downward trend would be expected. Ecological condition would drop one condition class (Duff, 1977; Crouse, pers. comm., 1981; Platt, 1981).

Livestock exclusion and rest allow all riparian plants to complete their annual growth cycle and to increase in vigor and reproduction. Woody plants would accumulate woody tissue and therefore increase in maturity and size. Within the EIS area, livestock exclusion has improved willow growth along Committee Creek (Allotment 0053). Through livestock exclusion and rest the ecological condition of riparian vegetation would improve by two classes in the long term (Duff, 1977; Bowers et al., 1979; Platt, 1981).

Fenced Federal range would be used in the same manner as adjoining private lands.

RANGELAND IMPROVEMENTS

Vegetation treatments have been proposed for some. plant communities to reduce or remove sagebrush or juniper to achieve a change of at least one ecological condition class.

The method of brush control determines vegetation composition following treatment. The expected results of burning are:

- Temporary elimination of sagebrush or juniper in treated areas;
- An increase in sprouting species such as rabbitbrush, if present in the treated area;
- An increase in perennial grass and forb species. This varies with timing and intensity of the burn. Under some circumstances perennial grasses may be damaged and could suffer a short term reduction in vigor.

Spraying is non-selective and would not only kill sagebrush but some other broad-leaved plants depending on stage of development during spraying. The expected results of spraying are:

- A reduction in sagebrush for the area treated;
- An increase in perennial grasses and annual forbs and grasses;
- A decrease in perennial forbs.

Chaining, while damaging some other plants, has a primary effect on brittle sagebrush plants. The expected results of chaining are:

- A reduction in sagebrush within the treated area and
- An increase in perennial and annual grasses and forbs.

Juniper control through cutting results in an immediate reduction of juniper in the treated area and is species-specific. Cutting removes only the juniper and leaves other plants intact. Juniper has been shown to use soil moisture at cooler soil temperatures than other species and as a result, much of the soil moisture has been depleted in juniper vegetation types before grasses can begin growth (Jeppeson, 1977). Therefore, the expected results of juniper control are: A reduction in juniper within the treated area

An increase in perennial and annual grasses and forbs resulting from increased availability of soil moisture.

Since the smallest juniper trees would not be cut, juniper would once again dominate in 15 to 20 years, although the composition would not be enough to cause a change in ecological condition. Future control would be by burning.

Where reduction in woody species would not result in an increased composition of grass species due to a negligible natural seed source, seeding is proposed. Since most seedings include a high proportion of crested wheatgrass, the native plant community would be irreversibly altered and cannot be evaluated on an ecological seral stage basis. Therefore, for the purposes of analysis, all seeded vegetation is classified as "other."

Rangeland improvements such as water facilities and fences allow control over livestock distribution and hence, utilization of forage. Water developments in particular also result in heavy use around the development itself. However, overall forage utilization becomes more uniform. These improvements per se would not cause significant changes in ecological condition, but would support implementation of grazing systems.

CONCLUSION

Ecological conditions would change under the proposed action and all alternatives. The greatest amount of change would occur with alternative 1, followed by the proposed action and alternatives 3, 4, and 2 (Table 22). The amount of vegetation in climax condition is greatest under alternative 1; the least amount of climax vegetation would be under alternative 2.

Streamside riparian vegetation would show improvement under all alternatives, most notably under alternatives 3 and 4. Reservoir riparian vegetation would show improvement only under alternatives 3 and 4. Table 22 shows ecological condition and trend of riparian vegetation for all alternatives.

PLANT DIVERSITY

As discussed in Chapter 3, plant diversity is greatest when vegetative communities are in mid- to lateseral ecological condition. Table 22 shows acres of high diversity resulting from the proposed action and alternatives.

Forage allocation as proposed in this document would have no significant effect on plant diversity.

Grazing systems would affect plant diversity as related to changes in ecological condition discussed previously.

Table 22 Long-Term Vegetation Impacts

	Existin Situatio	9 m	Propos Actio	ed 1	Alt. 1 (Optimi Livestoc	ze :k)	Alt. 2 (No Action)	Alt. 3 Optimiz Wildlife Watersh	ze e& ed)	Alt. 4 (Elimina Livestoc	ate :k)
	acres	percent	acres	percent	acres	percent	acres	percent	acres	percent	acres	percent
ALL VEGETATION TYPES Climax (excellent) Late-seral (good) Mid excel (foit)	24,010 234,657	2 22	41,007 603.976	4 57	83.639 574,635	8 54	12.922 421.442	1 40	14.023 467.504	1 44	15,037 554.439	5:
Early-serai (poor) Other	185,499 57.483	53 18 - 5	45.641 116.338	24 4 11	221.667 5,603 182,033	20 1 17	378,369 197.361 57.483	35 19 5	467.669 60.898 57,483	44 6 5	345.258 95.360 57,483	33 9 5
RIPARIAN VEGETATION Stream												
Climax (excellent) Late-seral (good) Mid-seral (fair) Early-seral (poor)	20 97 204 86	5 24 50 21	148 134 118 7	36 33 29 2	91 56 175 85	22 14 43 21	93 56 145 113	23 14 35 28	321 86 0 0	79 21	321 86 0 0	79 21
Reservoir Climax (excellent)	11	3	11	2	11	2	11	2	40	10	40	10
Late-seral (good) Mid-seral (fair) Early-seral (poor)	12 28 285	4 a a5	12 29 284	4 9 84	12 29 284	4 9 a4	12 29 284	3 4 9 a4	40 296 0 0	88	40 296 0 0	88 88
Ecological Trend 1 ALL VEGETATION TYPES				• •								
Upward Downward Static "Other" ²	264,753 112,057 690.767 0	25 10 65	493.441 9,314 505.967 58.855	46 1 47 6	555,009 9,314 378.704 124.550	52 35 12	264,753 112,057 690.767 0	25 10 65	386,209 49,361 632,007 0	36 5 59	400.663 9,314 657.600 0	38 61
Stream Upward	137	34	222	55	87	21	137	34	407	100	407	100
Downward Static	87 183	21 45	0 185	45	0 320	79	87 Ia3	21 45	0 0		0	
Reservoir Upward	23	7	23	7	23	7	23	7	336	100	336	100
Downward Static	312	~ 1 93	0 313	93	0 313	93	312	<1 93	0 0		0 0	
Plant diversity ³ High	400.293	37	432.296	40	398.152	37	399.906	37	467.587	44	449,849	42
Low	667.284	63	635.281	60	669,425	63	667.671	63	599.990	56	617,728	58
AVAILABLE FORAGE Production (AUMs) ⁴	89.104		174.828		209,204		129.770		155.262	17	71.168	
Ecological trend data for the exis those under alternative 2	ting situation	is unavaili	able, Howe	ever, the		the no		(2) are app	blicable; ac	res duplic	ate

GO to natural vegetation IO can no longer be evaluated on an ecological basis

³ High diversity is the total Of the lower half of the acres in late-seral condition and the upper hall of the acres in mid-seral condition. Low diversity is the remainder.

* Not necessarily allocated to livestock. See Table 3 and Figure 3.

а

Rangeland improvements would affect plant diversity as related to changes in ecological condition discussed previously. While removal of juniper or sagebrush may eliminate that species from the treated area, plant diversity would'increase since a greater number of plant species would replace the jumper or sagebrush. Seeding would reduce plant diversity on 58,855 acres in the proposed action and 124,550 acres in alternative 1.

CONCLUSION

Plant diversity would be highest and would increase under alternative 3, followed by alternative 4, and the proposed action. Decreases in plant diversity would occur with alternatives 1 and 2 (Table 22).

AVAILABLE FORAGE PRODUCTION

The forage allocation proposed in this document would not significantly affect available forage production. However, forage production is affected by grazing systems because of their effect on ecological condition. Improvement of ecological condition through increased plant vigor, seed production, and establishment of more seedlings increases the forage yield (Shiflet, 1971). Therefore, the higher the ecological condition, the greater the amount of forage production.

Forage production would be increased by some land improvements. Brush and juniper control would result in improved ecological condition (Table 23) through improved grass vigor, seed production, and seedling establishment (Vallentine, 1971). Seeding would convert low production early- and mid-seral vegetation to crested wheatgrass. For example, forage production on crested wheatgrass seedings can be as much as 1,000 pounds or more per acre on big sagebrush sites (Hull, 1974). A seeding in the Prineville BLM District was recently grazed at a stocking rate of 2.5 acres per AUM, with 30 percent utilization. At 60 percent utilization, the stocking rate would be less than 1.5 acres per AUM. Available forage production was approximately 640 pounds per acre, assuming 800 pounds of forage consumption per AUM.

CONCLUSION

Through a change in ecological condition, or rangeland Improvements, available forage production is expected to increase under all alternatives (Table 22). Alternative 1 would result in the greatest Increase compared to the existing situation (135 percent Increase) followed by the proposed action (96 percent increase), alternative 4 (92 percent Increase), alternative 3 (74 percent increase), and alternative 2 (46 percent Increase). These values were predicted by assigning average available forage productron values to each ecological condition class. For example, vegetation in climax condition was expected to have an average available forage production of 3 acres per AUM, lateseral 7 acres per AUM, mid-seral 11 acres per AUM. early-seral 15 acres per AUM. and non-seeded other 20 acres per AUM. Crested wheatgrass seedings were assigned 2 acres per AUM.

RESIDUAL GROUND COVER

FORAGE ALLOCATION

The initial forage allocation under each alternative would affect residual ground cover on a short-term basis. For example, if an initial increase in livestock grazing use would occur in an allotment, residual ground cover would be expected to decrease since more available forage would be consumed, leaving less on the ground. An increase in residual ground cover would be expected with a decrease in allocation.

GRAZING SYSTEMS

Residual ground cover would subtly change in the long term as a result of changes in ecological condition caused by grazing. As ecological condition changed from mid-seral to late-seral, a corresponding increase in residual ground cover would be expected, since, as ecological condition moves toward climax a general increase in vegetative production occurs. This increase may not be pronounced since, as ecological condition changes, one plant will replace another and only a slight increase in residual ground cover would occur.

Differences in maximum forage utilization levels, as shown in Table 21, would affect residual ground cover in the short term if a change in grazing system is made. For example, residual ground cover would be reduced in the short term if the existing spring/summer grazing system (40 percent utilization). is changed to deferred rotation (55 percent utilization). This short-term reduction would be mitigated by increased forage production later as a result of improved management.

Based on maximum forage utilization levels for each grazing system compared to the number of acres for each system, alternative 4 would result in the greatest increase of residual ground cover in the short term, since no forage utilization would occur by livestock. This alternative is followed by alternative 3, with 34 percent utilization (a 26 percent decrease from the present 45 percent utilization), alternative 2 with no change from present, and the proposed action and alternative 1, with 50 percent utilization (an increase of 11 percent).

RANGELAND IMPROVEMENTS

Rangeland improvements would both increase and decrease residual ground cover in the short and long term depending on the nature of the improvement (Table 23).

Rangeland improvements would decrease residual ground cover in the short-term through construction. While a fence would not occupy enough land to reduce residual ground cover in the long term, trampling of vegetation during construction would reduce short term cover, although not significantly compared to the total EIS area. 59

Table 23 Acres of Long-Term Change, Residual Ground Cover

	Pro Ad	posed ction	(Oj Live	Alt. 1 otimize estock)	(No	Action)	(C Wa V	Alt. 3 Optimize tershed& Vildlife)	(1	Eliminate Livestock Grazing)
Juniper control	(+)'	97,733	(+)	153,012		0	(+) 68	.028		0
Brush control Spray Burn or chain	(S) (-)	57.635 52,486	(S) (-)	143,400 146.100		0 0	(+) 58	0 3,204		0 0
Seeding	(-)	58.855	(-)	124,550		0		0		0
Grazing systems ²	(+) (-) (S)	285,587 9.314 505.967	(+ (-) IS)	112,497 9,314 378.704	(+) (-) (S)	264,753 112.057 690.767	(+) (-) (S)	259,977 49,361 632,007	(+) (-) (S)	400.663 9,314 657,600
TOTAL (+) TOTAL (-) TOTAL (S)		383.320 120,655 563.602		265,509 279,964 522,104		264,753 112.057 690,767		386,209 49,361 632,007		400,663 9.314 657.600

(+) = ground cover (-) = decrease in residual ground cover (S) = residual ground cover

² Reflects trend in ecological condition for those acres not subjected to rangeland improvements

All methods of brush control except spraying would reduce residual ground cover in both the short and long term. The short-term reduction would occur since the sagebrush cover would be removed and grass or forb species would not yet occupy the area. A long-term reduction would occur since the brush species would be replaced by plants suitable for livestock forage Assuming these new plants would be grazed by livestock, the residual ground cover would be less due to fewer nonpalatable plants on ground cover would Increase in alternative 3 because this Increased forage production is not allocated to livestock.

Spraying would increase residual ground cover in the short term since the dead, woody sagebrush plant would be left in place. There would be an initial release of the natrve vegetation resulting in greater In the long term, residual ground cover would be static as the dead sagebrush plant breaks down and decays.

Seeding would result in a decrease in residual ground cover in the short term since sagebrush or juniper cover would be removed or disturbed prior to or during seeding. In the long term, the proportion of forage plants would far outweigh the remaining non-forage species. and again assuming utilization by livestock, residual ground cover would be less

In the same manner as sagebrush spraying. Juniper control would Increase residual ground cover in the short term. In the long term. residual ground cover would also increase since the dead juniper tree would remain In place while forage production would Increase

CONCLUSION

Short-term residual ground cover, primarily related to forage allocations and rangeland improvements, would show the greatest increase under alternative 4 followed by alternative 3. Alternative 1 would result in the greatest short-term decrease of residual ground cover followed by the proposed action.

Short-term residual ground cover under alternative 2 would not change from the existing situation. Shortterm decreases in residual ground cover would be mitigated by long-term increases and are therefore not shown in Table 23.

The greatest net increase in long-term residual ground cover would occur under alternative 4, followed by alternative 3, the proposed action, and alternative 2. Alternative 1 would result in a net decrease in long-term residual ground cover, primarily as a result of rangeland improvements and the conversion of sagebrush to grassland or seeding (Table 23).

PLANTS OF SPECIAL CONCERN

Site-specific information concerning the occurrence of plants listed in Chapter 3 is not available. It is not known what effect, if any, livestock grazing per se would have on these plants since their occurrence in any given habitat has not been correlated to ecological condition. Also, it is not known what effect, if any, different allocations would have on these plants.

In relation to rangeland improvements. potential detrimental effects of the proposed action and

alternatives 1 and 3 would be avoided by conducting plant inventories before project implementation and modifying project layout if plants are found (Chapter 2, Standard Design).

Therefore, no impacts to plants of special concern are anticipated under the proposed action or any alternative.

AIR QUALITY

Air quality would be impacted by localized temporary increases in Total Suspended Particulates due to mechanical treatment or burning and dust from exposed and disturbed soil. These are not expected to significantly affect the Class II air quality designation.

WILDLIFE

UPLAND HABITAT DIVERSITY

Bureau policy states that public lands will be managed for the benefit of all wildlife species (BLM Manual Section 6500). The diversity of wildlife species is directly related to vegetative diversity and both are an integral portion of habitat stability (Thomas, 1979). The diversity of vegetation in any given habitat depends on its ecological condition class. Seral stages that commonly have the highest plant diversity range from mid-seral to the low end of late-seral ecological condition. Early-seral and condition generally contain a

lower diversity of plant species. Wildlife diversity and its relationship to habitat diversity is the basis for this impact analysis.

FORAGE ALLOCATION

Proposed vegetation allocation would not affect ecological condition (see chapter 4, Vegetation). Changes in ecological condition and vegetative diversity influenced by grazing systems are also discussed in the Vegetation section and are shown in Table 21.

GRAZING SYSTEMS

Rest rotation and deferred rotation grazing systems would Increase herbaceous ground cover for nesting waterfowl, upland birds, and nongame species. There would be a reduction of residual cover for nesting water birds along shorelines or reservoirs one year during the grazing cycle (Mundinger, 1975). Species dependent on bunchgrass would increase.

Short duration grazing systems would result in Increased cover for ground oriented wildlife species.

Exclusion of livestock would change ecological condition. It would approach late-seral ecological condition, improving habitat for nongame species on the 2,000 acres excluded. However, climax would

not be reached in the long term. Waterfowl use would increase when exclusion areas are adjacent to water. Impacts for rest would be the same as exclusion.

RANGELAND IMPROVEMENTS

Rangeland improvements would have the primary effect on ecological condition on treated acres. Changes in vegetative composition through the removal of sagebrush and juniper would reduce structural habitat diversity (Thomas, 1979). The significance of the impact depends on the existing ecological condition of the area. Primary and secondary habitat for some species would be eliminated.

Removal of sagebrush would increase ground cover and forage for many species. Burning rather than chemical treatment would favor establishment of forbs. Nesting and escape cover for non-game species would be temporarily reduced. Detrimental effects can occur to sage grouse when sagebrush removal projects are located in nesting or wintering areas (Klebenow, 1969; Peterson, 1970).

Juniper removal would increase ground cover and edge effect (Maser and Gashwiler, 1978). Nesting structure and food value for species like wood rats, robins, and yellowpine chipmunks would be lost.

Water developments would enhance habitat diversity and improve distribution and survival of many species of wildlife. These watering areas would improve overall nongame, upland bird, and big game habitat by allowing expansion into previously unwatered areas.

Spring developments would temporarily reduce some riparian vegetation used for cover and forage. New water developments could reduce forage competition around existing water developments through better livestock distribution. This would change ecological condition and improve habitat diversity on some areas. Some forage competition could also result from livestock use in areas previously used only by wildlife.

Proposed reservoirs would increase water availability for all species. Livestock use would determine riparian habitat improvement and subsequent wildlife density.

Livestock fences have not proven to have a significant effect on habitat diversity. Some big game mortalities occur immediately after fence construction, but this generally is low.

Table 24 lists anticipated habitat changes resulting from rangeland improvements, Wildlife species are displayed in terms of "species lost" or those species where portions of their primary habitat would be changed to another habitat, and "species gained" or those species which would benefit from the anticipated changes in habitat (Appendix M). These

Table 24 Acres of Habitat and Numbers of Wildlife Species Affected by Changes in Habitat Caused by Rangeland Improvements

-	_	-	Acres of					Wildlife Species Affected		
				Aļt.	Alt. 2	Alt. 23	Alt.			2 13 13
Present Habitat	Existing Acres	Future Habitat	Proposed Action	(Optimize Livestock)	(No Change)	(Optimize Wildlife& Watershed)	(Eliminate Livestock)	Existing Use	Species Lost	Specie: Gained
Big sagebrush- bunchgrass	390,778	bunchgrass	110.121	269.500	0	53,384	0	119	35	15
Big sagebrush- bunchgrass	398.778	crested wheatgrass	50,955	104.450	0	4.820	0	119	78	1 -
Juniper-big sagebrush	393.580	sagebrush- bunchgrass	_ 23.146	28,700	0	13.600	0	143	43	10
Juniper-big sagebrush	393,580	bunchgrass	74.587	124.312	0	54,400	0	143	55	g
Juniper-big sagebrush	393.580	crested wheatgrass	4.700	7.600	0	0	0	143	102	4
Low sagebrush- bunchgrass	131,205	crested wheatarass	3,200	12,500	0	0	0	73	35	6
All other habitats		no changes proposed	0	0	0	0	0	2	0	0

effects are projected only for the areas where corresponding rangeland improvement projects are proposed.

CONCLUSION

Actual changes in habitat types would occur primarily as a result of rangeland Improvement projects. The largest change would occur in alternative 1 where 567.062 acres are proposed for vegetative manipulation. The proposed action would change 266,709 acres and alternative 3 would change 126,232 acres. No rangeland imorcvement projects are proposed icr alternatives 2 and 4.

Alternative 3 would provide the largest increase in habitat diversity (17 percent). Alternative 4 would Increase diversity 12 percent, and the proposed action would increase diversity 8 percent, Alternatives 1 and 2 would decrease diversity by 1 percent.

Table 24 lists numbers of wildlife species affected by the changes from one habitat to another. Alternative 1 would have the largest impact on changes on wildlife species in proposed projects. Big sagebrushbunchgrass would be reduced by 92 percent (365.250 acres) and jumper-big sagebrush would decrease by 41 percent (160,612 acres). Crested wheatgrass would increase by 305 percent (124,550 acres). The proposed action would reduce big sagebrush-bunchgrass by 35 percent (137,930 acres) and juniper big sagebrush by 26 percent (102,433 acres). Crested wheatgrass would Increase by 144 percent (58.855 acres). Alternative 3 would reduce big sagebrush-bunchgrass by 11 percent (44,604 acres) and juniper big sagebrush by 17 percent (68,028 acres). No projects are planned for alternatives 2 and 4.

RIPARIAN HABITAT

Riparian habitat is used by more than 85 percent of the wildlife species found in the EIS area. Wildlife ripanan habitat condition is directly related to ecological condition. Plant diversity in nparian zones increases with an increase in ecological condition. Wildlife species diversity increases ecological condition (Thomas, Maser, Rodieck, 1979; Thomas, 1981). As ecological condition increases the total area of riparian habitat also increases. This not only allows for an increase in the species of wildlife using the habitat, but also provides more habitat for individuals within each species.

Effects of forage allocation, grazing systems, and rangeland Improvements on repartan habitat are discussed in vegetation section.

Table 22 shows the anticipated Impacts on ecological condition of nparian vegetation for the proposed action and each alternative.

CONCLUSION

Improvements in riparian habitat are expressed in change toward climax ecological condition. Alternatives 3 and 4 would improve all stream nparian habitat through livestock exclusion. The proposed action would improve 55 percent of stream riparian habitat primarily through livestock exclusion and grazing systems. Alternative 2 would Improve 33 percent of the riparian areas. Alternative 1 would provide the least riparian improvement with 21 percent.

Alternatives 3 and 4 would improve all perennial reservoir habitat through livestock reduction. The proposed action, alternative 1 and alternative 2 would improve 7 percent of the reservoir riparian habitat.

FISHERIES

There are approximately 96 miles of fisheries habitat or potential habitat in the EIS area. Eighty-eight of these stream miles presently support fish. The remaining eight miles have good potential for fish introduction with improvements in habitat condition. None of the stream miles were rated as having excellent overall fisheries habitat although some riparian areas along streams were in climax ecological condition.

Limiting factors for fish include stream structure, bank and channel stability, water quality, and inadequate food supplies. These are a result of sedimentation, irregular flow patterns, lack of riparian vegetation, and physical trampling of the stream bank. The contributing factors and shortage of habitat are closely interrelated.

Stream habitat has many components. Rocky and gravel areas are important in producing insects for food and in providing a stable area for fish spawning. Because of the flowing water, these riffle and rapids areas are kept relatively free of silt and contain a comparatively high level of oxygen. Large rocks and woody material provide cover and help to stabilize channels. Often they are important in providing pool areas and in retaining gravel for spawning. When silt loads increase, pool areas often fill in. Gravel and rock areas become compacted with silt so that they become marginal or useless for fish.

Riparian vegetation, in addition to providing bank stability and reducing sedimentation, is an integral part of the aquatic habitat system. The vegetation provides shade helping maintain lower summer water temperatures essential for trout and providing protection from winter ice damage. Insects falling from riparian vegetation form an important part of the diet of fish.

Grazing systems and their effects of riparian habitat are discussed in riparian vegetation section. Proposed rangeland improvements are not expected to affect fish habitat.

Table 25 shows stream miles of fish habitat and estimated condition and trend for the proposed action and alternatives.

CONCLUSION

Alternatives 3 and 4 would increase fish habitat on all streams due to improvement of riparian and upland vegetation. The proposed action would increase fish habitat on 50 miles of stream. Alternatives 1 and 2 would increase habitat on 16 miles and 25 miles respectively. Alternative 2 would decrease fish habitat on 20 miles of stream.

Table 25 BLM Stream Miles of Fish Habitat	, Estimated	Condition and Trend	
Ci	onditon	is is a suborgeneral	en en gelen
	Freelent	Good Fair	Poor
Alternauve	LAUCHEIN	18 40	38
Existing situation			
Proposed action	2/	38 29	Club Hermony R
Alternative 1. Optimize livestock	11		a 1 1 20.
Alternative 2. No action	10	20.443	
Alternative 3. Optimize	69	25 25	
watershed and wildlife		Section of the section of the	Propagate States in
Alternative 4. Eliminate	69	25 2	1
grazing			and the second second second
		enderste kalt un som stadstad.	
가 관련하는 것은 것을 통해 있는 것을 수 있는 것을 수 있는 것을 위한 것을 수 있는 것을 하는 것을 수 있다. 한국가 관련하는 것은 동안 문화가 하는 것은 것은 것을 위한 것을 수 있는 것을 하는 것을 수 있다. 것은 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 같이 같이 같이 같이 같이 같이 있	Trend		State Association and a
	lin	Static	Down
Alternative	OP CO		DOWN
Proposed action	50	1. 27. 1999 1997 1996 19 40 1945 1996 1997 - Jacobie 199 4 1 996 1997 1997 1997	0.1892 - 28 5 5 0 3 6 28 38 19
Alternative 1. Optimize	16	80	here beigenessing
livestock		and any grape with a said	w s mange Aureur
Alternative 2. No action	25	2040 - Constan 51, ada 54 4	
Alternative 3. Optimize watershed and wildlife			ייייים איטאלו הריי
Alternative 4. Eliminate	96		יווידע0איייחטייבווי
an grazing at the second second second second second		insurversite and be	Another Arthread Anto

DEER, ELK, AND ANTELOPE

There are 142,914 acres of crucial deer winter range and 64,312 acres of crucial antelope winter range on public lands in the EIS area. The period of use, intensity, and sequence of livestock grazing can determine the quality, quantity, vegetative diversity, and availability of big game habitat. The most important periods of grazing use for big game are during the spring and winter months when their body fat reserves are low and forage is limited.

The ecological condition of a habitat type directly affects the availability of forage, forage selectivity, and cover for big game species. However, net population trends are also affected by habitat condition, climate, predation, and disease. Because most of these factors are independent of livestock grazing management, actual populations were not estimated.

Allocation of forage for big game is the same for the proposed action and all alternatives. Short term allocations would meet present population needs for deer, elk, and antelope. There are 5,331 AUMs of competitive livestock forage allocated to big game in the short term and 7,427 AUMs allocated in the long term. The long term allocation is designed to accommodate ODFW proposed population increases of 27 percent for deer, 23 percent for antelope, and 71 percent for elk.

The anticipated population increase of 2.5 elk would not be significantly impacted by the proposed action or alternatives. It is therefore dropped from further discussion.

Deferred rotation grazing treatments would increase forage quality and availability for spring use by big game species by removing standing litter. Rest rotation systems would rotate early use between pastures, eliminating seasonal competition in each pasture every year. Rest rotation and deferred rotation would increase forage for big game.

Spring, spring/fall, and spring/summer systems would result in forage competition between big game and livestock each year in the same pasture. 64 Short duration grazing would result in spring competition between big game and livestock if grazed between April 15 and May 15. However, yearlong forage for big game would increase.

The shift of spring use by livestock to crested wheatgrass seedings from native range would increase the availability and big game use of grasses and forbs in both seeded and native pastures (Mackie, 1970; Knowles, 1975; Komberec, 1976). Burning to remove wolf plants and annual growth of crested wheatgrass would also increase big game use in seeded pastures (Leckenby and Adams, 1969).

The trend of crucial big game range was predicted by considering grazing systems, periods of use, changes in livestock allocation, and rangeland improvements. The results are tabulated in tables 26 and 27. Table 28 shows acres of deer an antelope crucial winter range that would be affected by rangeland improvements.

Sagebrush control and grass seedings would improve forage diversity for big game animals in monotypic stands of sagebrush. However, hiding and thermal cover could be lost (Leckenby et al., 1982). Generally the greatest habitat diversity would result from controlled burns which would create a higher percentage of diversity.

Juniper removal would increase big game forage, habitat diversity, and edge effect. However, thermal cover and escape habitat would be lost (Leckenby et al., 1982).

Impacts of water developments would be the same as discussed above in impacts on upland habitat diversity. Impacts of fences would be the same as discussed in upland habitat diversity.

CONCLUSION

Deer and antelope crucial winter range habitat trend would be upward in the proposed action and all alternatives. Alternative 3 has the largest increase while alternatives 2 and 4 have the smallest increases.

Allocations of forage for big game are the same for the proposed action and all alternatives. Net habitat trend would be up in the proposed action and all alternatives.

Projects having the largest positive impact are in alternative 3 and the proposed action. Alternative 1 would reduce essential cover and increase mono-typic stands of crested wheatgrass. Alternatives 2 and 4 do not have any projects.

OTHER WILDLIFE

Impacts to upland birds and waterfowl are discussed in habitat diversity.

Table 26 Expected Trend, Acres of Crucial Deer Winter Range ¹

Trend	Proposed Action	, Alt. 1 (Optimize Livestock)	Alt. 2 (No Action)	Alt. 3 (Optimize Water- shed & Wildlife)	Alt. 4 (Eliminate Livestock)
UP	77,185	71,032	64,471	84,328	57,165
Static	61,889	64,489	23,837	57,166	64,312
Down	2,808	7,393	53,574	1,420	21,437
Unknown	1,032	0	1,032	0	0

* Figures based on proposed projects, grazing systems. and professional judgment.

Table 27 Expected Trend, Acres of Crucial Antelope Winter Range ¹

Trend	Proposed Action	Alt. 1 (Optimize Livestock)	Alt. 2 (No Action)	Alt. 3 (Optimize Water- shed & Wildlife)	Alt. 4 (Eliminate Livestock)
UP	26,863	20,855	6,646	49,649	19,293
Static	34,234	33,811	46,062	12,863	38,587
Down	3,215	9,646	11,328	1,800	6,432
Unknown	0	0	286	0	0

' Figures based on proposed projects. grazing systems, and professional judgment.

Table 28 Acres'of Crucial Deer and Antelope Winter Range Affected by Rangeland Improvements

Trend	Proposed Action	Alt. 1 (Optimize Livestock)	Alt. 2 (No Action)	Alt. 3 (Optimize Water- shed & Wildlife)	Alt. 4 (Eliminate Livestock)
Crucial deer range	11,234	3,696	0	6,000	0
Crucial antelope range	14,014	41,710	0	9,000	0

RECREATION

Beneficial and adverse Impacts to recreation are quantifiable in terms of the expected change in visitor use that would result from implementation of the proposed action or any alternative (Tables 29 and 30) For purposes of this analysis it is assumed that few recreationists would be disturbed by livestock grazing if big game habitat, vehicle access, and landscape character were not impaired (Meganck and Gibbs, 1979; Downing and Clark, 1979).

Neither the proposed action nor any alternative would have a significant impact on those segments of the Crooked or Deschutes Rivers contained in the nation wide rivers inventory.

For purposes of this analysis, it is assumed that allocations of forage to livestock and the types of grazing systems implemented would not significantly impact recreation values. It is recognized,

65

Table 29 Long-TermImpacts to Recreation Activities ¹

		Alt.1	Alt.2	Alt.3 (Optimize	Alt	. 4
Recreation Activity	Proposed Action	(Optimize Livestock)	(No W Action) ((optimile) Atershed & Wildlife)	(Eliminate Livestock)	
Driving for pleasure	+L2	-L	NC	+L	+L	
Fishing	+M _	-L	NC	+H	+H	
Rockhounding	-L	-L	NC	+L	+L	
Off-road vehicle driving	-L	-L	NC	+L	+L	
Hunting	+M	-M	NC	+H	-L	
Hiking/camping	-L	-L	NC	+L	+L	
Overall Impact	+L	-L	NC	+M	+L	

Rating is overall average of quantity as well as quality.

² + beneficial impact	H high
-adverse impact	M moderate
NC no change	L low

Table 30 Estimated-Long-Term Changes in Visitor Days per Year

Visitor Dava	Proposed Action	NET CHANGE Alternative 1 (Optimize Livestock)	Alternative 2 (No Action)	Alternative 3 (Optimize Wildlife &	Alternative 4: (Eliminate Livestock)
VISITOR Days				watersned	
235,000 *	+2,900	-7,500	0	+9,400	+5,600 ,

'Existing use, 1981.

however, that Improvements in habitat for wildlife resulting from a reduction in livestock forage allocation or changes in grazing system would have a positive effect on wildlife populations. This would result in a positive effect on hunting, fishing, and wildlife viewing opportunities.

Impacts to wildlife are discussed in the wildlife section. Impacts on driving for pleasure are related to effects on and on scenic quality. Impacts on scenic quality are discussed in the visual section.

Fencing has the potential to create the most significant adverse impact on off-road vehicle driving, and hunting. Additional fencing would decrease cross-country access, creating an adverse impact on the estimated 94.000 visitors who participate in these activities each year. The resultant long-term impact would be an annoyance to some recreationists. reductions or relocation of those the local area.

Impacts on driving for pleasure resulting from the design and placement of rangeland improvements on the land would be the same as those analyzed in the Impacts of visual section 66

CONCLUSION

Neither the proposed action nor any of the alternatives would cause major shifts in recreation visitor use levels. Alternatives 3. 4. and the proposed action, would have beneficial impacts on recreation. Alternative 1 would have an adverse impact on all recreation activities which occur in the Brothers EIS area (Table 29).

VISUAL

No significant impacts to visual resources would result from vegetation allocation or grazing systems from the proposed action and alternatives 1, 2, and 3. The elimination of grazrng (alternative 4) would improve visual resources primarily due to Increased plant diversity and density.

The effect of rangeland Improvements on scenic quality would be the greatest and would decrease over time. The degree of visual contrast of these improvements would vary by type and location (Table 31)

The greatest potential for adverse Impacts would result from the construction of reservoirs.

embankments, and changes in vegetative composition resulting from land treatments proposed in Class II visual resource areas. The remaining land treatments, fences, springs, wells, buried pipelines, and waterholes would not have a significant adverse impact on visual resources.

Rangeland improvement in Class II areas may cause a degradation of visual quality. In other areas, land treatments and project construction may improve visual quality by adding variety to the landscape.

CONCLUSION

Alternative 3 would have the least potential for adverse impacts on visual resource, followed by the proposed action and alternative 1. Alternatives 2 and 4 would have no significant visual impacts (Table 31).

CULTURAL

Appendix N describes coordination with State Historic Preservation Officer (SHPO) and compliance with policy.

Livestock grazing adversely impacts surface sites by displacing, altering, and breaking artifacts and other cultural material (Logsdon. 1976: Roney, 1977). Consequently the interpretation of the disturbed site may be adversely affected. Standing structures are disturbed by livestock rubbing against them and using them for shelter. These impacts are most significant where livestock concentrate at water sources, salt licks, along trails and fences, and under trees.

Table 31 Potential Short Term Visual Imp	act of Prop	osed Rangelar	d Improvemer	its ¹
		Vieual Resource	Land by	NIS MANY SAV
a la se a la s	10			
Anernative	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Te star he hereit	the second second
Proposed action			Start Asta	
Fences (miles)	0	48 (M)	, , , , 163 (L), , , ,	<u>180.(-)</u>
Springs (#)		2 (L) 🖈	(-) (-) (-) (-)	21-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Buried pipelines (miles)		. دي. (L) 39 (L)	{	282 (=)
Wells, reservoirs, waterholes (#)		4 (H) (A	75 7 AA (M) + 44	164 520 (L)
Vegetation manipulation (acres)	0.0	26,430 (FI)		
Alternative 1. Optimize grazing			01127102 /1 1 L	154 6
Fences (miles)				14-14-32 AV
Springs (#)		30 (1) 12	148 (-)-	282 (-)
Buried pipelines (miles).		TA ATHIN	4 (M) 5	26 (L)
Wells, reservoirs, waternoies (#)		- 71 731 (H)	134,815 (M)	360,516 (L).
Alternative 2. No action			0.1	0
	°	0 2	0	
Springs (#)		0	2	C + 0
Wells reservoirs Waterholes (#) \$ 500 - 24	S		S. 24- 16 1 0	с. — О., С.
Vegetation manipulation (acres)	0,	÷ 0	A	s: ≁1+0.~5
		Surraily at 2	e en se en se	in grimmen.
Alternative 3. Optimize wildlife & watershed				1.100
Fences (miles)	0,	- 44 (M)		
Springs (#)	0 ***	0		
Buried pipelines (miles)	y. 0.	U	7 111	35 11-1-8 /I-Y
Wells, reservoirs, waterholes (#)		15 425 (4)	17 373. (M)	35 230 (L)
Vegetation manipulation (acres)		(13,423 (1)		*
		文书机 构之中的书题		
Alternative 4. Eliminate investock	· 0	0	· · · · · · · · · · · · · · · · · · ·	0.4
Soringe (#)	0	- -	0	**********
Buried pipelines (miles)	· · · · · ·	1 0		
Wells, reservoirs, waterholes (#).	,_, 0 , ∠	0	0	0.
Vegetation manipulation (acres)	AC	200 1 . The O/ . W		
	Ster S			20. and 1. (1997)
· Martin Carlos and Car	No Taxanti - An	and the second second		
(H); high: (M); moderate; (L); low; (-); no impact, (35)	AL ANY STURN	对于是可是认真		Nederland 1991

Impacts of grazing systems are essentially the same as those described under forage allocations. The amount of livestock trampling damage to cultural resources sites depends primarily on soil characteristics, such as soil stability and moisture content.

Rangeland improvements would indirectly benefit cultural resources due to increased Information obtained from the Class III surveys and mitigation work done before the improvements (Chapter 1). In one sense, mitigation work would destroy archeological sites. Future scientific use would be precluded since the information extracted would be limited by current research techniques andavailable technology. The potential for interpretation and sociocultural uses would be eliminated.

Sites could be impacted by range Improvement projects if the intensive survey failed to identify them. Where subsurface disturbance is involved (pipelines. guzzlers), burled sites may be simultaneously discovered and adversely impacted since they are rarely identified during survey. Fencing riparian areas and developing water sources away from springs would reduce trampling impacts to areas which often have a high density of sites.

Burning destroys perishable material and alters nonperishable material. Projects involving the temporary removal of vegetative cover may impact sites due to Increased wind and water erosion.

An increase of collecting and other vandalism would result as more people are out on the ground. Site knowledge and there is increased ground visibility due to short term removal of vegetation.

Rangeland Improvements intrude upon the environmental setting of some cultural resources sites. Consequently, they may lessen interpretive value of sites to be used for this purpose.

CONCLUSION

Alternative 1 and to a lesser extent the proposed action would have the greatest potential for adverse Impacts to cultural resources due to proposed range Improvements and numbers of livestock. Alternative 2 would be next because of continued spring grazing when sites are susceptible to disturbance.

Alternative 3 would result in an of cultural site trampling and erosion by reducing the numbers of livestock on the ground as well as the amount of grazing which would occur during the spring. Also, adverse Impacts would result from proposed rangeland improvements.

Alternative **4** would have no impacts because it eliminates livestock grazing and does not propose any rangeland Improvements.

Table 32 shows the estimated number of cultural resource sites that may be found in areas where rangeland improvements will occur.

Possible numbers of sites are based on estrmates of one site per.100 acres for mechanical treatments. one site per two linear miles for pipelines, and one site every third water development.

Table 32 Summary of Potential Impacts onCulturalResources

Alternative	of Surface Sites 1
Proposed action Mechanical treatments ² Water developments ³ Pipelines ⁴	2,667 42 233
Alternative 1. Optimize livestock Mechanical treatments Water developments Pipelines	5,603 29 235
Alternative 2. No action Mechanical treatments Water developments Pipelines	0 0 0
Alternative 3. Optimize wildlife & Mechanical treatments Water developments Pipelines	watershed 1,260 39 0
Alternative 4. Eliminate livestock Mechanical treatments Water developments Pipelines	0 0 0
These figures do not Include entirely burie ² Mechanical treatments include and seeding ³ Water developments include reservoirs, we and guzzlers. ⁴ Pipelines are burled lines that distribute wa	d sites. Ills. spring developments afer from its source.

PALEONTOLOGY

Paleontological resources would be adversely affected from trampling by livestock. Increased livestock forage allocations and grazing systems allowing grazing in wetland areas or during the spring would adversely affect the Integrity of the sites.

Complete field surveys would be conducted prior to carrying out any surface disturbing activities (Chapter 2, Standard Design). Paleontological resources buried beneath the ground would, however, not be discovered until they had been disturbed by project work. This disturbance would adversely affect the integrity of the site involved. However, equipment operators would be alerted to the possibility of fossil remains. With this awareness there would be a greater potential for gaining additional knowledge of the resource as new paleontological resources are found.

Although the extent of paleontological resources is unknown, it is estimated to be an average of one site per 10,000 acres of land surface or less.

CONCLUSION

Alternative 4 would have a beneficial impact on paleontological resources because it eliminates all livestock from the public lands. Even with preconstruction site surveys and salvage, alternative 1 would have the greatest adverse impact, having the potential of impacting an extimated 50 sites. The proposed action, alternative 3 and alternative 2 respectively would create the next greatest adverse impacts.

WILDERNESS

Within identified wilderness study areas interim management policy guidelines dictate whether changes in forage allocation, grazing systems, or rangeland improvements can be implemented. Changes in forage allocations or grazing systems can be made if those changes would not impair wilderness suitability. Rangeland improvements are permissable if they are non-impairing individually as well as collectively, or are temporary in nature.

Naturalness would be enhanced under Alternative 4 as livestock grazing would be eliminated and vegetation allowed to move up in ecological condition. No significant changes in naturalness would occur under the proposed action or alternatives 1, 2, or 3.

Table 33 shows the proposed rangeland improvements in WSAs for the proposed action and alternatives. Some rangeland improvements could comply with interim management policy guidelines and could be constructed prior to a final decision regarding wilderness designation. Brush control, juniper control, and those improvements not in compliance with interim management policy guidelines would be delayed until a decision regarding designation is made. Improvements would only be implemented if the areas were not designated as wilderness.

CONCLUSION

Alternative 1, followed by the proposed action, would have the greatest potential for adverse impacts to the natural character of the wilderness study areas. No change from present conditions would result under Alternative 2. Alternative 3 would have a limited beneficial impact with alternative 4 having the greatest positive effect on wilderness values.

Table 33 Proposed Rangela	nd Improven	nents within WS	SAs1	Alt. 3	
		Alt. 1	* Alt. 2	Watershed	Alt. 4
Type of Project	Proposed Action	(Optimize) Livestock)	(No Action)	& Wildlife)	(Eliminate Livestock)
fence construction (miles)	23	23	0		
spring developments (#)	1	2	0	0	0
water wells (#)	6	7	0	0	0
buried water pipelines (miles)	30	42	0	0	0
reservoirs (#)		5	0	0	0
brush control (acres)	0	27,270²	. 0	0	0
juniper control (acres)	0	34,000²	0	0	0
seeding (acres)	0		0	0 0	
, wildlife guzzlers (#)	18	11	Q	26	0
stream rip-rap (milks))	4	3	0	8	0
stream structure (#)	47	9	0 -	60	0
nesting structures (#)	30	19	- 7 0	50 50	
' These projects would be implemented only policy.	if they were found to	o be in compliance with	Interim manageme	nt guidelines and wilder	ness management
? These projects would not be implemented in	the WSAs were dea	signated wilderness.	المراجع المراج مراجع المراجع ال	وريم. والمعاد معدمة مريسات مريدة الما مريدور الم	
SOCIOECONOMIC CONDITIONS

Economic impacts of the proposed action and alternatives are expressed in terms of the effect on: annual forage needs of operators. ranch values, ranch income and operations. local personal income and employment from grazing, construction of rangeland improvements hunting and fishing, and other recreation activities. Social impacts not economic in nature are discussed as appropriate. Alternative 2, no action, is considered to have no socioeconomic effects.

ANNUAL FORAGE NEEDS OF OPERATORS

For purposes of this analysis the effect of change in forage allocations resulting from the proposed action and alternatives was based on 1981 actual use rather than active preference. This was done to measure net change from what actually occurred in 1981 rather than what would have been premitted had there been a demand for that available forage.

Table 34 summarizes the number of operators affected by changes in public forage allocation in the short and long term. Also shown is the average change in BLM-produced forage as a percent of operator's total annual requirements.

In the short term, only one operator would experience a loss of forage greater than IO percent of the operator's annual requirements under the proposed action or alternative I. Available forage for livestock would remain unchanged from present levels under alternative 2. Under alternative 3, IO operators would lose IO percent or more of their annual requirements. Under alternative 4 there would be no livestock use of forage; this loss would amount to IO percent or more of total forage requirements for 63 operators.

In the long term under the proposed.action, available forage would be increased by IO percent or more of annual requirements for 48 operators and

Table 34 Number of Operators Affected by Change in Public Forage Allocation (Change expressed as percent of annual forage requirements.)

Change in forage as percent of	Propose	d Action	A	ł.1				
annual requirements	Short Term	Long Term	short Term	Long Term	Alt. 3'	Alt. 4	,	
	HERD	SIZE - UND	ER 100 ANI	MAL UNITS				
Loss over -30.0%	-	-	-	-		4		
-20.0 to -29.9%	-		-	-	1	7	ş	
-10.0 to -19.9%	1	1	1		2	12		
Loss under -10%	5	1	5	1	10	21	•	
No change	19	6	19	3	16	2		
Gain to 9.9%	14	20	14	17	11			
+10.0 to 19.9%	3	9	3	8	4			
+20.0 to 29.9%	2	3	2	6	1			
+30.0 to 49.9%	2	5	2	5	1	-		
+50.0% or more	-	1	-	6				
Average Change	+3.3% ²	+10.3%	+3.3%	+21.6%	+0.5%	-13.7%		
	HERD	SIZE - 100	to 399 ANIM	AL UNITS				
Loss over -30.0%	-	- ,	-	-		5		
-20.0 to -29.9%	-	-	-	-	3	8		
-10.0 to -19.9%					2	12		
Loss under -10%	7	1	6	1	19	14		
No change	5	2	6	2	3			
Gain to 9.9%	23	18	23	15	10			
+10.0 to 19.9%	3	11	3	9	1	-		
+20.0 to 29.9%	1		1	2	1	-	;	
+30.0 to 49.9%		3		2			:	
+50.0% of more		4		8				
Averagechange	+2.5%	+13.6%	+2.7%	+29.1%	-0.9%	-13.1%	;	

÷ŝ.

Change in forage as percent of **Proposed** Action Aft.1 Alt. 4' annual requirements Short Term Long Term Short Term Long Term Alt. 3' HERD SIZE - 400 to 999 ANIMAL UNITS 3 Loss over -30.0% 2 -20.0 to 29.9% . 1 6 -10.0 to - 19.9% 1 Loss under -10.0 14 1 4 1 3 1 4 4 No change 4 4 Gain to 9.9% 14 14 5 13 16 +10.0 to 19.9% 4 4 1 4 +20.0 to 29.9% 1 1 +30.0 to 49.9% 2 1 +50.0% or more 2 6 Average change +3.5% +13.6% +3.6% +32.4% -1.9% -12.3% HERD SIZE - 1,000 OR MORE ANIMAL UNITS Loss over -30.0% -20.0 to -29.9% 2 -10.0 to -19.9% 2 Loss under -10.0% 5 2 No change 3 5 Gain to 9.9% 5 6 4 2 +10.0 to 19.9% 1 1 2 +20.0 to 29.9% +30.0 to 49.9% 1 +50.0% or more +9.2% +2.6% -1.9% -9.5% +2.5% Average change **ALL OPERATORS** Loss over -30.0% 12 19 -20.0 to -29.9% 5 -10.0 to -19.9% 5 32 1 1 Loss under -10.0% 3 50 54 3 14 16 24 2 No change 31 8 31 5 27 Gain to 9.9% 55 57 50 59 +10.0 to 19.9% 11 $\overline{27}$ 11 20 5 2 +20.0 to 29.9% 3 5 3 11 9 2 +30.0 to 49.9% 2 10 1 7 +50.0% or more 20 Average change +2.8% +11.3% +3.0% +23.0% -1.6% -1 1.2%

Table **34** Number of Operators Affected by Change In Public Forage Allocation (Change expressed a8 percent of annual forage requirements.) (continued)

¹ Effect of alternatives 3 and 4 are same for both short and long term. ² Net change in overall forage.

for 6I operators under alternative I (Table 34). Longterm Impacts under Alternatives 3. and 4 would be the same as short-term impacts.

An operator experiencing a substantial loss of forage might be forced to sell his ranch if he could

not find replacement forage. The social impact for the operator and family would be severe because of the connectron between the ranching occupation and lifestyle. Due to Involvement of the family in the ranch business, there would be a substantial social adjustment in changing livelihoods, A second factor increasing the difficulty of change may be the distance some ranches are from other job opportunities.

EFFECT ON RANCH VALUE

A temporary reduction in ranch value during implementation of rangeland Improvements would probably not be consequential unless a loan were sought or the property sold during that period.

The effect on ranch values for each alternative is shown in Table 35. Appendix R lists the number of operators who would experience a change in ranch value.

EFFECT ON RANCH INCOME AND OPERATIONS

Representative budgets for the four herd size classes were developed to determine the effect of changes in the availability of public forage on ranch sales

Table 36 Effect on Return Above Cash Costs¹

(Change from existing condition in dollars, 1978-80 average prices)

and operating income. Ranch budgets and results of the analysis are presented in Appendix R.

The average and total changes in operator's return above cash costs are shown in Table 36 for the proposed action and each alternative.

Table 35 Effects on Ranch Collateral and Sale Value

	Short Term	Long Term
Proposed action Alternative I	+ 1.2	+ 3.4
Optimize livestock Alternative 2	+ 1.2	+ 6.5
No action Alternative 3	0	0
watershed Alternative 4	- 0.9	- 0.9
Eliminate grazing	- 2.9	- 2.9

Effect	Propose Short Term	d Action Long Term	Alteri Short Term	native I Long Term	Alt. 3 ²	Alt. 4²
	HERD	SIZE - UND	ER 100 ANII	MAL UNITS		
Average change Total change for group	+277 +12,742	+784 +36,064	+277 +12,742	+1,630 +74,980	0 0	-1,361 -62.606
	HERD	SIZE - 100	to 399 ANIN	AL UNITS		
Average change Total change for group	+1,102 +42,978	+4,071 +158,769	+1,107 +43,173	+8,624 +336,336	-230 -8,970	-3,799 -148,161
	HERD	SIZE - 400	to 999 ANIN	AL UNITS		
Average change Total change for group	+2,880 +72,000	+11,404 +285,100	+2,980 +74,500	+27,161 +679,025	-1,581 -39,525	- 9,913 -247,825
	HERD SI	ZE - 1000 O	R MORE A	NIMAL UNITS	6	
Average change Total change for group	+7,190 +64,710	+26,004 +234,036	+7,401 +66,609	+ 42,282 380,538	-5,283 -47,547	-21,142 -190,278
		ALL OI	PERATORS			
Average change Grand Total	+ 1,6 17 + 192,430	+6,000 +713,969	+1, 656 + 197,204	+12,360 +1,470,879	-807 -96,042	-5,453 -648,870

Results of linear program analysts (see Appendix P).
 Short- and long-term effects are the same for alternative 3 and 4

Table 37 Effects of Changes in **Public** Forage on Personal Income and Employment ¹ (Income In thousands of dollars,, 1978-80 average prices)

	Propose	d Action	Alter	native I	A 1/ 62	
Effect	Short Term	Long Term	Short Term	Long Term	Alt. 3*	Alt. 4*
Livestock industry: Personal income Employment	\$120.7 24	\$449.0 91	\$123.7 25	\$915.1 186	-\$ 61.7 - 13	-\$389.2 - 79
Local economy ³ : Personal income Employment	\$405.6 58	\$1,508.2 216	\$415.6 59	\$3,074.4 440	-\$207.3 -30	-\$1,307.4 - 187

' Effects of forage changes based on factors shown in Appendix 0.

² Effects for short-term and long-term are the same. ³ Crook and Deschutes Counties.

EFFECTS ON LOCAL PERSONAL INCOME AND EMPLOYMENT

The effects of the proposed action or alternatives on personal income and employment are shown in Table 37.

In the short term under the proposed action, local income and employment attributable to public forage use would be increased, assuming that all active grazing preferences were utilized. Under alternative I, slightly larger increases would occur. Losses would be experienced under alternatives 3 and 4. Employment loss under alternative 4 would amount to 187 jobs.

In the long term under the proposed action, increased public forage would generate 2l6 more local jobs, and under alternative 1, 440 more jobs. Effects from alternatives 3 and 4 would not change from the short term.

OTHER EFFECTS

Table 38 shows the effects of construction activity resulting from the proposed action or alternatives. These effects would occur over the total construction period.

Effects of long term changes in recreational activity resulting from the proposed action and other alternatives are shown in Table 39.

In the short term, it is anticipated that about \$1.5 million income and 194 jobs would be generated, and in the long term there would be 52.3 million in income and 285 jobs with alternative 2. Table 39 shows how the implementation of the proposed action or alternatives 1.3, or 4 would effect this trend.

Table 38 Effects of Construction on Personal Income and Employment 1

Alternative	Personal Income ² (\$000)	E (w	Employment (work-years)				
Proposed action	, 6,6	8 3.	499	,	•••		
Optimize livestock	10,46	2	7	8	1		
Alternative 3			-	-			
watershed	513		3	8			

 Represents total amount generated during the construction period. Alternatives 2 and 4 would not involve construction activity.
 1978-1980 average DFICES.

Table 39 Effects of L&g-Term Changes in Recreational Activity on Personal Income and Employment ¹

Alternative ²	Personal Income ³ (\$)	Employment (jobs)
Proposed action	+ \$24,300	+ 3
Alternative I		
Optimize livestock	- 49,900	- 6
Alternative 3		
Optimize wildlife and		
watershed	+ 71,600	+ 9
Alternative 4		
Eliminate livestock	+ 11,900	+ 1

¹Long-term estimates are for the year 2031 (50 years In the future). Short-term effects are negligible.

 $^{\rm 2}$ Alternative 2 was not considered because no long term change would occur.

• 1979 prices.

BENEFIT/COST ANALYSIS

Economic efficiency is one of the criteria used to determine rangeland improvement project design and priority of implementation. In addition, multiple use benefits which cannot be easily quantified or assigned a monetary value are also considered. These values include water quality, soil erosion, visual and archeological resources.

A benefit/cost analysis of rangeland improvement projects contained in the proposed action and alternatives 1 and 3 will be completed before any decisions are made (see Chapter 1, The Decision). The record of decision will contain benefit/cost analysis information and will be circulated for public review and comment.

CONCLUSION

One operator would experience a long-term loss of BLM-produced forage greater than 10 percent of his total annual requirements under the proposed action. No long-term losses would result from alternative, 1 or 2. Ten operators would experience a permanent loss of BLM-produced forage greater than 10 percent of their total forage requirements under alternative 3; 63 operators would lose similiar amounts under alternative 4.

Forage availability for BLM permittees would be increased in the long term by 11 percent under the proposed action and by 23 percent under alternative 1. No change would occur with alternative 2. A decrease in available forage of 2 percent and 11 percent would result under alternatives 3 and 4, respectively 2

Two operators potentially would be affected by a reduction in their ranch value of more than \$5,000 in the short term under the proposed action and

alternative 1. Twenty-one operators would have losses of \$5,000 or more in ranch value under alternative 3. Under alternative 4, 69 operators would have losses of this magnitude or greater. In the long term, under the proposed action and alternative 1, most operators would gain increased ranch value. Long-term effects under alternatives 3 and 4 would be the same as short-term effects.

Effects on local personal income and employment are summarized in Table 40.

ADVERSE IMPACTS OF THE PROPOSED ACTION WHICH CANNOT BE AVOIDED

This section presents an analysis of the unavoidable adverse impacts which would result from the proposed action. Project design features discussed in Chapter 2 constitute best management practices; therefore, no additional mitigating measures are proposed.

As a result of rangeland improvements, shot-t-term soil disturbance would occur on 268,041 acres, exposing soil to potential wind or water erosion. A short-term increase in sediment would occur during rip-rap and stream structure construction and during debris removal.

Residual ground cover, important to wildlife for cover and important to soils for protection from erosion, would decrease in the short term due to an increased livestock forage allocation and construction of rangeland improvements.

Wildlife would be adversely affected due to a reduction in habitat diversity. Rangeland

Table 40 Summary of (Income in thousands	f Effects	on Persona 1978-80	al Income a average pr	ind Emploites)	oyment	And a second sec	
Activity	Short Term	Long Term Sh	Alternative lort Term Long	l Term Short	Alternative Term Long	3 Alto Term Short	emative 4
		LOCAL	PERSONA	L INCOM	IE .		
Livestock forage Recreation Construction 1	+\$ 405.6 + 668.3	+ \$ 1,508.2 + + 24.3	\$ 415.6 +s	3,074.4 - \$. 49.9 +	207.3. + 51.3	71.0	1,307.4 -\$ 1,307.4 + 11.9
lotal	+\$1,073.6	+S 1.532.5 +	\$1,461.8 +S	3,024.5 -\$	156.0 -5	135.7 -\$	1,307.4 -\$ 1,295.5
		LOC	ALEMPLOYM	ENT			
Livestock forage Recreation Construction ' Total	+ 58 + 50 + 108	+216 + 3 +219	+ 59 + 78 +137	+440 - 6 +434	- 30 + 4 - 26	- 30 + 9 - 21	- 187 - 187 - 1 - 187 - 186
' Construction activity is treated 88 I	f It were evenly	spread over the f	irst 10-year perio	d.		an 19 an 19 an 19 an 19 19 an 19	

improvement on 266,709 acres would create a loss of thermal and escape cover. As wildlife habitat, bigsagebrush-bunchgrass would be reduced by 35 percent and juniper-big sagebrush reduced by 26 percent.

The construction of 320 miles of new fence would restrict use of the public land by off-road vehicles and would be additional hindrance to rockhounds and hikers. Rangeland improvements on 26,440 acres would have a significant adverse impact on Class II visual resource management areas.

An increase in livestock forage allocation would have an additional impact on cultural and paleontological resources through trampling and breaking by livestock. Subsurface cultural and paleontological sites could be damaged during rangeland improvement construction if they are not detected prior to work.

RELATIONSHIP BETWEEN SHORT-TERM USE AND LONG-TERM PRODUCTIVITY

This section analyzes the trade-offs between shortterm uses of the environment and the long-term environmental enhancement expected as a result of these uses for the proposed action,

The overall increase in livestock forage allocation would reduce residual ground cover in the short term, affecting wildlife cover and soil protection. Short-term localized soil erosion and compaction, loss of structural habitat diversity important to wildlife, and increased visual contrasts would result from rangeland improvement. These short-term impacts would be mitigated by long-term changes in ecological condition resulting in increased forage production, a net increase in residual ground cover, and vegetation reestablishment on disturbed areas.

Proposed grazing systems may have initial shortterm impacts on some ranch operations by increasing the cost of the basic operation, increasing hay usage, or requiring more labor for livestock supervision, but these impacts would be mitigated in the long term through increased forage production and hence, increased livestock forage allocations.

IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES

This section identifies the extent to which the proposed action would irreversibly limit potential uses of the land and irretrievably commit other resources. The 500 acres which would be occupied by range improvements such as water troughs, pipelines, guzzlers, etc., would lose their capacity to produce vegetation for the life of the improvement. This would be an irretrievable although insignificant commitment of the vegetation resource. The loss of soil through increased wind and water erosion during the construction of range improvements would also be an irretrievable loss.

Seeding of crested wheatgrass on 58,855 acres would irreversibly change the vegetation composition.

Damage to undiscovered cultural and paleontological resources through rangeland improvement would result in an irreversible and irretrievable loss of information from these sites, although new sites would be discovered through this process.

Energy would be irretrievably committed to install, operate, and maintain rangeland projects. The initial investment of energy for improvement construction during the implementation period and the annual investment of energy for project maintenance represent an irretrievable reduction of supplies of petroleum-derived energy.

LIST OF AGENCIES, ORGANIZATIONS AND PERSONS TO WHOM COPIES OF THE STATEMENT ARE SENT

Comments on the DEIS will be requested from the following agencies and interest groups:

Federal Agencies

Advisory Council on Historic Preservation Department of Agriculture Forest Service Soil Conservation Service Department of Defense Army Corps of Engineers Department of Energy Region X Department of the Interior Bureau of Mines Bureau of Reclamation Corps of Engineers Fish and Wildlife Service Geological Survey National Park Service Environmental Protection Agency

State and Local Government

Association of Oregon Counties Central Oregon Intergovernmental Council Crook County Planning Commission Deschutes County Planning Commission Harney County Planning Commission Lake County Planning Commission National Assoc. of Conservation Districts Oregon Dept. of Fish and Wildlife Oregon State Clearinghouse Oregon State Department of Forestry Oregon State Historic Preservation Officer

310 interested individuals also received copies of the document, including all grazing permittees in Brothers EIS area.

Interest Groups

1000 Friends of Oregon Ada County Fish and Game League All Grazing Permittees in the Brothers EIS Area American Fisheries Society American Horse Protection Association Association of Oregon Archaeologists Audubon Society Defenders of Wildlife **Deschutes 4-Wheelers Desert Trails Association** Federation of Western Outdoor Clubs Friends of the Earth Izaak Walton League League of Women Voters Maintain Eastern Oregon Wilderness Mazamas National Association of Conservation Districts Mazamas National Council of Public Land Users National Wildlife Federation Native Plant Society of Oregon Natural Resources Defense Council, Inc. Nevada Outdoor Recreation Assoc., Inc. Northwest Federation of Mineralogical Societies Oregon Association of Conservation Districts Oregon Cattlemen's Association Oregon Council of Rock and Mineral Clubs Oregon Environmental Council Oregon High Desert Study Group Oregon Natural Area Preserve Advisory Comm. Oregon Natural Heritage Program Oregon Sheepgrowers Oregon Snowmobile Association Oregon Student Public Interest Research Gp. Oregon Wilderness Coalition Oregon Wildlife Federation Pacific N.W. 4-Wheel Drive Association Public Lands Council Sagecounty Alliance for a Good Environment (SAGE) Sierra Club Society for Range Management Southern Oregon Resource Alliance(SORA) Sunrise I-Wheelers The Wilderness Society Wildlife Management Institute Wildlife Society, Oregon Chapter

LIST

While individuals interdisciplinary team e	ffort. In	an EIS	, is an preparation.
and	by process.	was	BLM
Name	Primary Responsibility	Discipline	Related Professional Experience
		Forestry, Range Management	20 (Range Conservationist)
	Socioeconomics	Economics	2-1/2 Economist BLM 7-1/2
			Engineers 2-1/2 Federal Reserve Bank of San Francisco 6-1/2 Analyst) Wash. Dept. of Commerce 3 years (Tax Analyst) Wash. Tax Commission 4 years
Suzanne Crowley	Cultural Resources	Archeology, Anthropology	5 years, BLM (Archeologist)
	Teamleader, Recreation Visual Resources, Wilde ness, Paleontological	, Recreation, rr Landscape Architecture	14 years, Spec., Outdoor Recreation
	Areas		
Wayne Elmore	Vegetation, Threatened, Endangered Species	Forestry, Wildlife Mgmt.	14 years, BLM (Wildlife Biologist, Forester)
Ron Halvorson	Vegetation. Threatened, Endangered Species, Data Management	Animal Science, Range Management	8 (Range Conservationist)
	Writer/Editor	Management, Communications	1/2 year, BLM (writer/ editor) 5-1/2
			Officer, Writer/Editor,
			1-1/2 of
			Information Officer
	Technical Coordinator	Fish and Wildlife Manage	22 Resources, State
		Management	Envir. Coordinator, of
			Operations, Range Conservationist)
Larry Thomas	Climate, Air Quality,	Soil Science, Biology	5 years, BLM 1 year, USDA-BIA (Soil Scientist)
	Word Processing	Administration	3 years,
			Typist)

1

APPENDIX A Summary and Results of EIS Scoping

Public meetings for the purpose of scoping the Brothers Grazing Management Environmental Impact Statement (EIS) were combined with the meetings to discuss the development of the preferred alternative for the Brothers Management Framework Plan (MFP). The MFP at that stage consisted of three land use allocation alternatives which had been developed from criteria established . with earlier public input. All three alternatives called for increased allocation of forage for livestock.

Alternatives presented in the MFP were discussed in public meetings in Portland, Prineville, and Bend, and with the Prineville District Advisory Council in September, 1981. Many oral and written comments were received and used in developing the proposed action and other alternatives analyzed in the Brothers EIS.

Public comment established a solid consensus favoring implementation of a juniper control program which was identified in alternative 1 of the MFP. As a result, juniper control in the EIS proposed action was subsequently set at 102,433 acres.

Consistent public support was expressed for protection and increased management of riparian habitat. Livestock operators did not express concerns regarding a significant impact to their ranching operations. In response to public comments and BLMs concern for riparian habitat management, one of the major elements of the EIS proposed action is the protection and management of riparian areas to maintain 60 to 100 percent of vegetative potential. A channel stability rating of good or better is proposed for all streams.

Concern was expressed in the Portland and Bend meetings that all MFP alternatives proposed increases in livestock grazing at the expense of other values. Many felt that the EIS should consider an alternative that analyzed a significantly lower level of livestock grazing from what presently exists. It was felt that this alternative should be oriented toward natural ecosystem management, maximizing habitat diversity. Public comment also requested an alternative which eliminated livestock grazing from the public lands. These comments were analyzed and used to formulate EIS alternatives 3 and 4.

Alternative 1, analyzed in the EIS, is essentially the same as the rangeland management elements of the "commodity production alternative" in the MFP, since the public suggested little modification of that alternative. Alternative 2 (continue present management) is required by law and provides a basis for comparison between present management and management changes under the proposed action

and each of the alternatives. Alternative 3 (optimize wildlife habitat and watershed values), calls for a significantly lower level of livestock grazing than did any of the MFP alternatives. Alternative 4 calls for total elimination of all livestock grazing public lands.

Other potential EIS alternatives suggested during the scoping process were the selling of livestock forage allocations on the open market by various means and the paying of ranchers for not using livestock forage allocated to them. These suggestions were considered but not included in the EIS because they were felt to be beyond the scope of this document; they raise larger questions (requiring Congressional legislation to implement) than can be effectively addressed in a grazing management EIS for a single BLM district.

APPENDIX B Available Forage Allocation and Production (AUMs)

1.1

				LIVESTOCK				WILD							
						A - N A I I V E S 1 2			:	3		d Action		Existing	
						Maxin			-	Opti	mize	and all			AUMs
		Acres	Active	Proposed	Action Long	Lives	stock Long	No C	hange Long	watersne	Long	Allern	Long	Adjust.	Avail- able
Allotmer	nt No. and Name	Public Land	Pref.	Initial	Term	Initial	Term	Initial	Term	initi a l	Term	Initial	Term	AUMs1	Forage
0001	ALASKA PACIFIC	2 172	123	98	142	123	178	123	123	51	51	30	53	-25	153
0003	HAMPTON	57,438	6 629	6.629	7 790	6.629	a 395	6 629	6 629	6.229	6.229	152	172	0	6.781
0004	MINERS FLAT POST	2.908 1.240	201 78	291 98	4/1 147	291 98	481 147	201 78	201 78	0 37	0 37	52 22	63 25	90 20	343
0007	RIVER	240	0	0	0	0	0	0	0	0	0	4	5	0	4
0009	COLD SPRINGS	37.134	2.142	2,554 70	3.229 70	2.652	3 558 70	2.142	2.142	2.142	2 142 50	64 4	143	412	2.716
0012	SHEEP MTN COMM	5 782	298	474	574	582	682	298	298	298	298	29	65	176	611
0014	SHEEP MTN INDIVIDUAL	3.050	305	322	352	330	360	305	305	157	157	27	57	17	357
0017	BONNIEVIEW	1.436	168	96	96	96	96	168	16.8	96	96	20	49 23	-72	116
0018	JUNIPER SPRINGS	1,625	165	187	287	187	345	165	165	0	0	44	51	22	23
0019	LOWER 12 MILE TABLE	9.722	684	684	1.113	684	1 227	684	684	0	0	91	131	0	1.022 775
0021	MID FK TWELVE MILE CK	1.795	193	193	193	193	193	193	193	193	193	14	17	0	207
0022	ANGELI	7 672 1517	483 141	600 125	912 206	639 125	1 097	483	483	0 125	0 125	18	33 14	-16	657 136
0024	UPPER BUCK CREEK	6,991	624	644	791	644	791	624	624	0	0	112	132	20	756
0025	BUCK CREEK FLAT	5.850	271	325	542 753	325 562	610 753	271	271 635	0	0	47 103	55 116	54 -73	372
0020	UPPER POCKET COMM	4,853	274	330	396	330	396	274	274	274	274	93	121	56	423
0028	FERIAN	446	30	30	30	30	30	30	30	0	0	11.	12	0	41
0029	CONGLETON	2.128	0 197	83 203	83 244	226	83 271	197	197	83 184	184	19 79	23 114	a3 6	102 305
0034	LOWER POCKET COMM	1.968	160	160	192	160	192	160	160	a2	a2	31	36	0	191
0035	BULGER CREEK	2.560	775	a55	a55	a55	855 10	775	775	660 10	660 10	9 10	11	80 -2	864
0030	FOSTER. V	160	15	15	15	15	15	15	15	15	15	4	6	0	19
0038	CAVE	3.035	165	194	312	215	338	165	165	30	30	23	47	29	238
0039	LAYTON	1.642	a7 123	103	124	103	124	123	123	74	74	20	26	-12	131
0042	OWENS WATER COMM	4.389	241	293	464	293	498	241	241	241	241	15	35	52	308
0043	BARNEY BUCK CREEK	5.150 131.678	242 10 7 44	409 10.068	596 13 143	409 10.068	709 1546 3	242 10 7 4 4	242 10.744	0 6 669	0 6.669	66 285	79 351	-676	475 10 353
0045	EAST MAURY	5.133	295	326	518	408	654	295	295	169	169	58	118	31	466
0047	LISTER	27 174	2.155	2.614	3 137	2.614	3 141	2 155	2.155	1,260	1,260	92	163	459	2,706
0049	MCCULLOUGH	163	10	5	5	5	5	10	10	5	5	2	2	-5	49
0050	RABBIT VALLEY	15.160	548	493	567	548	630	548	548	113	113	331	395	-55	879
0051	MILLER	2.622	22	148	13	13	189	22	22	13	13	65 2	84 2	-9	229
0053	NORTH FORK	10.999	740	752	902	752	902	740	740	a3	83	244	287	12	996
0054 0056	DAGIS LAKE	880 1 1 401	a2 487	a2 868	111 1 076	82 949	128 1 259	02 487	82 487	0	0	19 26	21 62	0 381	101 975
0058	COYOTE SPRINGS	4.418	404	404	610	427	738	404	404	404	404	89	102	0	516
0059 3060	DRY LAKE	610 1 706	33 80	33	33	33	33 80	33	33 80	33 80	33 80	4	10 34	0	37
0062	BENNETT FIELD	1314	68	68	68	68	68	68	68	68	68	38	77	0	106
0064	CAMP CREEK COMM	17,861	966	1 122	1.801	1.122	1.877	966	966	916	916	88	218	156	1.210
0066	CLOVER CREEK	8.017	541	423	549	518	5 718	541	541	423	ہ 423	25	57	-118	543
0071	COFFEE BUTTE	4.266	468	609	792	609	911	468	468	385	385	2:	72	141	636
0072	WEIGAND	1 120 160	52 15	52 15	80 15	52 15	98 15	52 15	52 15	52 15	52 15	0	0	0	52 17
0076	WEST PINE CREEK	481	45	35	45	45	45	45	45	45	45	3	7	0	48
5001 5002	SANOWSKI	120 40	7	10	14	7	14	7	7	0 10	0	1	1	0	8 11
5003	BROADDUS-CARTER	15	4	2	2	2	2	4	4	0	0	5	5	-2	7
5004		63	6	6	7	6	10	6	6	6	6	5	5	0	11
5000	HARSCH	506	19	19	19	19	47	19	19	19	19	6	6	20	25
5010	HARRINGTON	80	2	2	4	2	7	2	2	2	2	0	0	0	2
5022	AIRPORT	a92 597	49 49	49 49	91 64	49 49	64	49 49	49 49	49 49	49 49	5 4	5 5	0	54 53
5024	COUCH	768	ò	30	30	30	32	0	0	30	30	7	7	30	37
5029 5030	KEYSTONE	296	4 30	- 4 30	40	4 30	11	4 30	4 30	4 10	4 10	4	5	0	5 34
5031	MAYFIELD-HARRIS	1 509	124	124	132	124	135	124	124	109	109	5	6	0	129
5032 5050	GREV BUTTE	238	24 28	24 28	24 5.1	24	34 135	24	24 28	24 28	24 20	4	5	0	28
5051	SHERWOOD CANYON	, 117	51	65	100	65	162	51	51	51	51	5	10	14	70
5052	SMITH ROCKS	174	9	17	24	17	33	9	9	9	9	3	5	8	20
506 I 5064	WILLIAMS	763	44	44	52	44	52	44	44	338	330	26	31	346	70
5065	LOWER BRIDGE	5 521	310	310	516	310	969	310	310	310	310	107	113	0	417
5066 5067	FINE RIDGE	358	34 0	3 4 14	-14 14	34 14	50 14	34 0	34 0	34 14	34 14	5 4	6 5	0 14	39 18
506.3	STEVENS-FREMONT	285	0	46	46	46	46	0	õ	46	46	5	7	46	51
5069 5070	SQUAW CREEK	192 3 795	0	۲ 259	20	17 25 A	20	0	0	17	17	4	5	17	21
5071	ODIN FALLS	3 869	ŏ	252	250	252	416	0	0	230	230	40	42	250	292
5072	STRUSS	2.294	143	143	143	143	238	143	143	143	143	10	10	0	153
5073 5074	FRYREAR BUTTE	4 422 6 994	202 498	202 498	333 992	202 498	398 789	202 498	202 498	202 498	202 498	15 20	15 20	U 0	217 518
5075	DESERT SPRINGS	1 947	112	150	247	150	296	112	112	112	112	10	10	38	160
5078 5079	HUME RANCH WHISKEY STILL	3.831 1.034	193	246	348 166	246	400	193	193 111	193 111	193 111	0	0 4	53 0	246 115
5080	MASTON	3 382	209	209	J29	209	390	209	209	209	209	13	13	0	222
5081 5082	PAULUS BULLFLAT	152 116	14	14	18	14 7	25 50	14 0	14	14 7	14	4	5 2	0	18 A
					55		00	5	0				4		

82

Line Line J Perspectation J Perspectation									LIVES	STOCK			WILL	DLIFE		
Lower Lower <thlower< th=""> Lower <thl< th=""><th></th><th></th><th></th><th></th><th>Propos</th><th>ed Action</th><th>M</th><th>1 aximize vestock</th><th>No</th><th>2 Change</th><th>. Gp Watersh</th><th>3 stimize jed/Wildlife</th><th>Propos an Alter</th><th>ed Action Id all natives</th><th></th><th>Existing AUMs Avail-</th></thl<></thlower<>					Propos	ed Action	M	1 aximize vestock	No	2 Change	. Gp Watersh	3 stimize jed/Wildlife	Propos an Alter	ed Action Id all natives		Existing AUMs Avail-
Some Long Long <thlong< th=""> Long Long <thl< th=""><th>Allo</th><th>tment No. and Name</th><th>Acres Public Lan</th><th>Active d Pref.</th><th>Initial</th><th>Long Term</th><th>Initial</th><th>Long Term</th><th>initial</th><th>Long Term</th><th>Initial</th><th>Long Term</th><th>Initial</th><th>Long Term</th><th>Adjust AUMs'</th><th>able Forage</th></thl<></thlong<>	Allo	tment No. and Name	Acres Public Lan	Active d Pref.	Initial	Long Term	Initial	Long Term	initial	Long Term	Initial	Long Term	Initial	Long Term	Adjust AUMs'	able Forage
Billing Difference Billing	5086	LONE PINE CANYON	120	5	5	6	3	8	5	5	5	5	1	1	0	6
Same Description Description <thdescription< th=""> <thde< td=""><td>5088 5089</td><td>BURNS-MONTGOMERY KNOCHE</td><td>160 185</td><td>17 6</td><td>8 6</td><td>a 13</td><td>8</td><td>9 18</td><td>17 6</td><td>17 6</td><td>17</td><td>17</td><td>3 1</td><td>5 1</td><td>-9 0</td><td>11 7</td></thde<></thdescription<>	5088 5089	BURNS-MONTGOMERY KNOCHE	160 185	17 6	8 6	a 13	8	9 18	17 6	17 6	17	17	3 1	5 1	-9 0	11 7
Solve Exponent Solve	5090	ZEMLICKA	344	18	18	26	18	26	18	18	18	18	2	3	0	20
Sec. BOX Control Contr	5092 5093		717 321	33 19	62 19	100 51	62 19	130 67	33 19	33 19	33	33	4	5	29 0	66 23
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	5094	BROWN	493	40	JO	78	40	97	40	40	30	30	8	11	0 0	48
Diff Control PELGS Title Sig	5096 5097	FOSTER RUSSELI	200 277	24 16	24 16	24 33	24 -16	27 41	24 16	24 16	24 16	24 16	2	2	0	26 23
100 24.1. CPUD TYPE 1 288 75 85 75 75 75 75 75 75 75 75 75 75 75 75 75	5107	CAIN FIELDS	114	36	36	36	36	36	36	36	36	36	3	3	0	39
introcement 1000	5108	ZELL POND	1.228	75 262	75	75	75 262	113 403	75 262	75	75	75	4	5 21	0	79 270
111 COCK 1400 0 400 <td>5110</td> <td>BRUCKERT</td> <td>126</td> <td>35</td> <td>35</td> <td>35</td> <td>35</td> <td>35</td> <td>35</td> <td>35</td> <td>35</td> <td>35</td> <td>4</td> <td>5</td> <td>0</td> <td>39</td>	5110	BRUCKERT	126	35	35	35	35	35	35	35	35	35	4	5	0	39
111 LOCCES-MAGENIG 40/19 109 107	5111		1 860	0	49	49	49	60 172	0	0	49	49	8	15	49	57
111 MCENALON 2 bits 177 <th< td=""><td>5113</td><td>HACKER-HASSING</td><td>4019</td><td>99</td><td>99</td><td>172</td><td>99</td><td>238</td><td>99</td><td>99</td><td>99</td><td>99</td><td>13</td><td>20</td><td>0</td><td>140</td></th<>	5113	HACKER-HASSING	4019	99	99	172	99	238	99	99	99	99	13	20	0	140
10 Biblion Jack 12 13 <th13< th=""> 13 <</th13<>	5114	WEIGANO. N	2.651	177	177	233	177	233	177	177	177	177	9	.10	0	186
intr PERLINE 5.227 513	5110	REDMOND AIRPORT	3 554 5,467	228	226	165 228	110 226	394	110 228	228	110 228	228	17	10 20	0	118 245
11 Display Display 7	5117	PIPELINE	8 227	513	513	723	513	723	513	513	513	513	21	25	0	534
1:00 HUTTON 4 66 254 255	5118	CRENSHAW BLACKROCK	7 267 254	392 0	405 24	505 24	405 24	555 24	392 0	392	392 24	392 24	21	25 0	13 24	426 24
SH2 Derrit ED 2.60 120	5120	HUTTON	4.616	254	254	331	254	370	254	254	254	254	13	15	0	267
State Sunkap 10, 200 and 20	5121	OERTLE	2.629	120	120	157	120	175 102	120	120	120	120	9 4	10	0	129
Dist MAYELD POND 4.548 305 304 305 304 305	5124	SMEAD	755	23	23	50	23	50	23	23	23	23	2	3	0	25
Diff Diractic lumit Liss Desk Desk <thdesk< th=""> <thdesk< th=""> Desk</thdesk<></thdesk<>	5125	MAYFIELD POND	4.549	305	305	364	305	394	305	305	305	305	13	15	0	318
MSM MCCLELLAN 661 76 75	512:	POWELL BUTTE	1.394	a4	84	950 435	680 84	782	680 84	64	680 a4	84	30 26	35 28	0	110
1130 LUTS, NS.LOW 330 1/2 <	5131	MCCLELLAN	661	75	75	75	75	229	75	75	75	75	15	20	0	90
Sins DWY CREEK 706 334 334 134 334 1386 334 334 138 213 Phile	5133 5134	LONG HOLLOW STEARNS	300 18 407	17 652	17 852	50 1 140	17 652	90 1.330	17 852	17 1352	12 817	12 817	2 106	5 126	0	19 958
1310 DAVIS 3.584 2.13 2.33 2.23 2.13 2.13 0 0 5.4 5.4 2.21 2.21 2.13 0 0 5.4 5.4 2.21 2.23 0 0 0 5.4 5.4 2.23 0 <td>5135</td> <td>DRY CREEK</td> <td>7.055</td> <td>334</td> <td>334</td> <td>1.134</td> <td>334</td> <td>1 386</td> <td>334</td> <td>334</td> <td>101</td> <td>101</td> <td>67</td> <td>74</td> <td>0</td> <td>401</td>	5135	DRY CREEK	7.055	334	334	1.134	334	1 386	334	334	101	101	67	74	0	401
Sing PLATEAU Soft	5136	DAVIS PRINEVILLE DAM	3.584	213	234	253	234	708	213	213	0	0	34	38	21	268
S130 DUMHAM 6.126 323 323 110 323 323 313 317 66 115 975 SALT CR ALAUL BU 10.118 688 140 140 803 214 688 474 735 85 917 665 SALT CR ALAUL BU 1189 146 46 136 140 220 166 914 223 166 914 224 0	5138	PLATEAU	5 47i	252	252	441	252	532	252	270	0	0	15	1.5	0	267
International control Distance	5139	DUNHAM	6.126	323	338	1.150	338	2.110	323	323	313	313	37	66	15	375
5142 CAREY 11.29 46 6 125 46 0 0 20 22 0 66 5146 EACLE FTO 968 55 84 82 84 226 55 4 4 42 44 42 40 22 0 0 5147 EENOLS 533 0 0 75 75 75 75 4 4 42 40 22 0 76 5178 GRIZLY MIN 711 69	5140	SANFORD CREEK	6.924	152	152	536	152	2.280	152	688 152	417	417	32 10	80 24	112	632 162
No. EVALE MOX-MALLY 4 A68 202 202 0 0 45 50 0 0 10 0 10 0 10 <th10< th=""> 10 10</th10<>	5142	CAREY	1.129	46	46	136	46	225	46	46	0	0	20	22	0	66
5176 MCCABE 350 10 22 22 22 22 10 11 10 11 10	5145 5149	EAGLE ROCK-BAILEY EEOLETTO	4 766 968	262 55	262 84	622 89	262 84	1,660 260	262 55	262 55	0	0 4	45 24	50 40	0 29	307 108
117 REYMOLOS 1,333 101 176 372 101 101 61 15 300 75 191 117 GRZZY MIN 701 69 50 77 71 16 14	5176	MCCABE	350	10	22	22	22	22	10	10	10	10	0	0	12	22
Strip UTLE CREEK 120 13 13 13 13 13 14 14 14 13 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 15 14 </td <td>5177 5178</td> <td>REYNOLDS GRIZZLY MTN</td> <td>1.838</td> <td>101 69</td> <td>176 69</td> <td>319 69</td> <td>176</td> <td>372 152</td> <td>101 69</td> <td>101</td> <td>61 69</td> <td>61 69</td> <td>15 3</td> <td>30 5</td> <td>75 0</td> <td>191 72</td>	5177 5178	REYNOLDS GRIZZLY MTN	1.838	101 69	176 69	319 69	176	372 152	101 69	101	61 69	61 69	15 3	30 5	75 0	191 72
S100 GOLDEN HORSENDE 107 14 14 23 14 1	5179	LYTLE CREEK	120	a	a	3	8	18	8	a	0	0	1	2	0	9
3133 Fault HOLLOW 115 10 110 110 10 110 1	5180	GOLDEN HORSESHOE	197	14	14	23	14	42	14	14 7 i	14	14	3	5	0	17
5188 LALER-GOVE 529 15 15 15 15 15 15 15 3 5 0 18 5201 ALFALRA MKT 2.436 141	5183	RAIL HOLLOW	115	10	10	1.30	10	230	10	10	0	0	25	3	0	12
Data ALFALEAT MAN 2435 Int	5198	LAIER-GOVE	529	15	15	96	15	137	15	15	15	15	3	5	0	18
B206 ARNOLD CANAL 2.791 0 87 87 87 270 0 0 0 0 16 19 a7 103 SC7M BARLOW CAVE 9.101 600 600 930 800 2900 120 90 0 a4 99 0 684 SC7M BARLOW CAVE 9.101 600 600 930 800 200 166 166 166 16 94 221 558 S210 HORSE RIDGE 22.022 1624 1839 2011 1830 320	5201	SINCLAIR	2 436 630	38	30	200	30	200	38	3.8	30	30	3	10	-8	33
S207 MICHAELS 6.353 2200 196 196 220 280 196 196 22 22 6.4 218 S208 LAVA BEDS COMM 16 354 729 508 508 508 508 1214 729 770 470 80 94 -221 558 S201 LAVA BEDS COMM 16 354 729 180 180 180 180 180 180 180 180 180 180 172 215 1346 S211 PINE MCUNTAIN 5 323 320 <td>5206</td> <td>ARNOLD CANAL</td> <td>2,791</td> <td>0</td> <td>87</td> <td>87</td> <td>87</td> <td>270</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>16</td> <td>19</td> <td>a7</td> <td>103</td>	5206	ARNOLD CANAL	2,791	0	87	87	87	270	0	0	0	0	16	19	a7	103
EXP EXPS	5207 5208	MICHAELS BARLOW CAVE	6.353 9.101	280	196 600	196 930	196 600	400 2 900	280 600	280 600	196 0	196 0	22 a4	26 99	-64 0	218 684
S210 HORSE RIDGE 22 082 1 624 1 839 2911 1 839 6 070 1.624 1.624 1.580 1.590 1.070 127 215 1.346 S211 PINE MOUNTAIN 53.23 320 320 320 320 320 320 320 320 320 320 320 107 107 107 107 107 107 107 107 107 1007 <td>5209</td> <td>LAVA BEDS COMM</td> <td>16 354</td> <td>729</td> <td>508</td> <td>508</td> <td>508</td> <td>1,214</td> <td>729</td> <td>729</td> <td>470</td> <td>478</td> <td>80</td> <td>94</td> <td>-221</td> <td>588</td>	5209	LAVA BEDS COMM	16 354	729	508	508	508	1,214	729	729	470	478	80	94	-221	588
S212 MILLICAN 32.560 1705 2800 4.388 2000 8.020 1705 2005 605 106 12 108 2.906 S213 RAMEO 15997 572 605 1019 605 1019 607 1705 8005 605 633 63 63 638 633 638 633 638 633 638 633 638 633 638 633 638 633 638	5210 5211	HORSE RIDGE	22 092 5 323	1 624	1 839	2911	1 839	6 070 1 390	1.624	1,624	1 580	1.580	107 21	127	215	1.946
213 RAMBO 15 997 572 605 1019 672 672 672 605 605 53 63 -67 658 2514 WILLIAMSON CREEK 12905 1007 1007 1901 1001 1001 1001 1001 1001 1001 1001 1001 1001	5212	MILLICAN	32.560	1705	2 800	4.368	2 800	8 932	1 705	1 705	805	805	106	126	1,095	2,906
2.1 MILLIAMOU CALLIX 1203 1001 1003 1001 1003 1001	5213	RAMBO	15 997	572	605	1019	605 1.007	1019	672	672	605	605	53	63 52	-67	658
5216 GRIEVE 64 4 4 6 4 4 4 4 1 1 0 5 5219 KLOOTCHMAN 210 26 36 26 45 26 26 26 26 0 0 0 26 5213 NYE 8627 422 212 942 3 163 422 242 299 299 34 62 0 456 5233 SCOTT 4625 255 255 1337 255 255 199 199 5 9 0 250 5235 MOFTIT 30506 2,334 2330 4326 2 800 8061 2 334 2 337 3009 1 552 2 429 2 429 2 429 2 429 2 429 2 429 2 429 4 10 10 102 2 04 5235 BCATTHES 2 8465 2 49 3008 4 370 3008 7 570 3073 3 073 3 073 3 073 3 073 3 08 3 076 3 066 6 300 6 980 <	52'5	COATS	9.594	653	1 063	1 400	1 063	2 516	853	653	638	638	26	36	210	1.091
22.33 NLOUTDENT 11 366 806 942 20 20 20 20 20 0 0 0 20 20 2521 WEST BUTTE 11 366 806 942 21 (12) 942 5 665 806 761 781 50 59 136 992 2523 NYE 8 667 422 422 422 422 299 299 34 62 0 455 2533 SCOTT 4627 422 422 430 4337 425 423 434 1614 1611 1071 771 30 64 491 1582 2535 MOFTIT 30 506 249 0 0 4 1010 204 233 233 8601 234 2334 1614 1614 1071 771 30 64 293 3073 3073 3073 3073 3073 3073 3573 3073 3073 3073 3073 23 54 169 590 36 807 1002 410 <td>5216 5220</td> <td>GRIEVE</td> <td>64</td> <td>4</td> <td>4</td> <td>5</td> <td>4</td> <td>6</td> <td>4</td> <td>4</td> <td>4</td> <td>4</td> <td>1</td> <td>1</td> <td>0</td> <td>5</td>	5216 5220	GRIEVE	64	4	4	5	4	6	4	4	4	4	1	1	0	5
5323 NVE B 627 422 422 1009 422 3 163 422 422 299 299 34 62 0 456 5233 SCOTT 4 625 255 255 1337 255 255 199 199 5 9 0 266 5233 MOFFITT 30 506 2.334 2830 4326 2 830 8061 2 334 2.334 1.614 107 129 496 2.937 5235 BERGREEK 1 750 98 200 220 200 520 98 98 0 0 4 10 102 204 5235 BERGREK 1 750 98 200 2429 2.429 2.429 2.429 65 73 579 3.073 5235 GRASSY BUTTE 25 701 3.018 4 100 4.66 4 100 5 376 3.018 3.018 3.008 3.008 5.00 67 1.062 4.150 5240 FEHRENBACHER 6.285 492 800 2.770	5231	WEST BUTTE	11 386	806	942	2012	942	5 665	806	806	761	781	50	59	136	992
2233 SUCH 1 4 bzb 255 265 255 255 265 265 265 265 265 265 265 265 265 265 265 265	5232	NYE	8 627	422	422	1,009	422	3 163	422	422	299	299	34	62	0	456
5235 MOFFITT 30 506 2,334 2830 4 326 2 830 8051 2 334 2,334 1,614 1.07 129 496 2.937 5236 BEAR CREEK 1 750 98 200 222 200 520 98 98 0 0 4 100 102 204 5237 BROTHERS 28 465 2 429 3 008 4 270 3008 7520 2.429 2 429 465 73 579 3.073 5238 x 76 490 7 100 17 100 17 66 7100 50 6.980 6.980 2.937 16 3008 807 5240 FEHRENBACHER 6.285 492 800 2.270 492 492 492 7 16 308 807 5242 SPRING CREEK 6.245 401 401 1820 401 403 643 623 623 22 44 357 1.022 5242 SPRING CREEK 6.285 499 519 2.402 777 777	5233 5234	HAUGHTON	4 625 18 437	255 1061	255 1 552	693 3 00 9	755 1 552	4 960	255 1061	255 1061	199 771	199 771	5 30	9 64	0 491	1.582
b2150 BEAR CREEK 1750 98 200 292 200 520 98 98 0 0 4 10 102 204 5237 BCAT CREEK 28465 2429 3008 4270 3008 7 520 2429 2429 2429 2429 2429 65 73 579 3073 5238 zx 76 490 7100 7100 17 662 7100 27 344 7100 7100 6 980 6 980 223 474 0 7.323 5240 FERNBACHER 6.285 492 800 2.270 492 492 492 492 492 492 492 492 492 492 492 507 16 3088 807 5242 SPRING CREEK 6 245 401 401 978 401 1820 401 401 0 0 2.5 69 0 429 590 5243 BRGHT 6 245 401 400 1000 1.042 643 643 643 623	5235	MOFFITT	30 506	2,334	2830	4 326	2 830	8051	2 334	2.334	1,614	1.614	107	129	496	2.937
Example Discretion Discretion Trice Trice <td>5236 5237</td> <td>BEAR CREEK BROTHERS</td> <td>1 750 28 465</td> <td>98 2 429</td> <td>200 3.008</td> <td>292 4 270</td> <td>200 3008</td> <td>520 7 520</td> <td>98 2 4 2 9</td> <td>98 2 429</td> <td>0 2 429</td> <td>0 2 429</td> <td>4</td> <td>10 73</td> <td>102 579</td> <td>204 3.073</td>	5236 5237	BEAR CREEK BROTHERS	1 750 28 465	98 2 429	200 3.008	292 4 270	200 3008	520 7 520	98 2 4 2 9	98 2 429	0 2 429	0 2 429	4	10 73	102 579	204 3.073
52.19 GRASSY BUTTE 25.701 3.018 4.100 4.466 4.100 5.376 3.018 3.018 3.006 3.008 50 67 1.062 4.150 5240 FEHRENBACHER 6.285 492 800 1.240 800 2.270 492 493	5238	zx	76 490	7 100	7 100	17 662	7 100	27 344	7 100	7 100	6 980	6 980	223	474	0	7.323
Description 1000000 1200 1000 1200 1000<	5239 5240	GRASSY BUTTE	25 701 6 285	3.018	4 100 800	4 466	4 100	5 376	3.018	3018	3.006	3.008	50 7	67 16	1.062	4.150
5242 SPRING CREEK 6 245 401 401 978 401 1 820 401 401 0 0 25 69 0 429 5213 BRIGHT 6 269 643 1000 1000 1.482 643 663 623 22 44 357 1.022 5243 IMPERIAL 12322 777 777 2.802 777 775 25	5241	BICKMAN-MCCOBMACK	7 991	398	567	2 494	567	4 969	398	398	370	378	23	54	169	590
22.1.3 Differing 6.293 0.43 1.000 1.002 043 043 023 023 22 44 337 1.022 52.44 IMPERIAL 1.2322 777 777 2.802 777	5242	SPRING CREEK	6 245	401	401	978	401	1 820	401	401	0	0	2.5	69	0	429
5245 RAM LAKE 10 235 499 519 2740 519 4 630 499 49	5244	IMPERIAL	12332	777	777	2.802	777	4 553	777	777	777	777	37	55	0	814
02-49 HATFIELD 122 3 5 15 5 5 5 5 0 0 0 5 2547 LIZARD CREEK 3 280 636 280 1113 280 280 280 63 280 1113 280 280 280 63 280 1113 280 280 280 63 280 1113 280 280 280 7 15 0 287 5248 POTHOOK 2 454 140 140 140 140 140 140 140 140 140 140 140 140 15 32 0 155 5250 COFFELT 440 20 20 69 20 123 20 20 20 2 5 0 22 5 0 22 5 0 22 5 0 22 5 0 25 0 25 0 22 5 0 25 0 25 0 25 0 25 0 38	5245	RAM LAKE	10 235	499	519	2740	519	4 630	499	499	499	499	41	45	20	560
5248 POTHOOK 2 454 140 140 140 915 140 140 140 15 32 0 155 5248 MCCORMACK HOME RANCH 1 274 54 66 328 68 874 54 54 54 13 13 14 81 5249 MCCORMACK HOME RANCH 1 274 54 66 328 68 874 54 54 54 13 13 14 81 5250 COFFELT 440 20 20 69 20 123 20 20 20 2 5 0 22 10 96 HANCH 6771 482 482 2145 482 4477 482 17 17 19 46 0 501 5254 MEISNER 124 34 <td>5246 5247</td> <td>HATFIELD LIZARD CREEK</td> <td>3 263</td> <td>3 280</td> <td>5 280</td> <td>636</td> <td>5 280</td> <td>1,113</td> <td>280</td> <td>5 280</td> <td>5 280</td> <td>280</td> <td>0</td> <td>0 15</td> <td>0</td> <td>5 287</td>	5246 5247	HATFIELD LIZARD CREEK	3 263	3 280	5 280	636	5 280	1,113	280	5 280	5 280	2 8 0	0	0 15	0	5 287
V2/49 MCCUMMACK HOME RANCH 1 274 54 66 328 68 874 54 54 54 13 13 14 81 57:50 COFFELT 440 20 20 69 20 123 20 20 20 2 5 0 22 1:51 96 HANGH 6771 482 482 2145 482 4477 482 482 17 17 19 46 0 501 5:54 MEISNER 124 34	5248	POTHOOK	2 454	140	140	140	140	915	140	140	140	140	15	32	0	155
151 96 HAN(3H) 6771 482 482 2145 482 4477 482 482 17 17 17 19 46 0 501 5:54 BARBWIRE 7 029 694 870 1.450 870 2 550 694 694 694 694 12 25 176 882 9998 C UNALLOTTED 11260	5249 5250	MCCORMACK HOME RANCH	1 274 440	54 20	66 20	328 69	68 20	874 122	54 20	54	54 20	54	13	13	14	81
5.52 MEISNER 124 14 34	.51	96 HANCH	6 7 7 1	482	482	2145	482	4 477	482	482	17	17	19	46	0	501
Visit Production Provide the second structure	5.152	MEISNER	124	34	34	34	34	34	34	34	34	34	4	5	0	38
P999 DESC UNALLOTTED 11260 TOTALS 1067 577 74 769 83 087 132.795 83.773 201 777 /4 769 74 769 56.831 56.83 15.33 17.427 6.318 89.104 Difference between existing livestock allocation and proposed action initial livestock allocation 0	9998 9998	C 0 UNALLOTTED	7 029	094	0/0	1.450		2 550	094	694	694	694	12	25	1/6	002
TOTALS 1067 577 74 769 83 087 132.795 83.773 201 777 /4 769 74 769 56.831 56.83 15.33 17.427 6.318 89.104	9999	DESC UNALLOTTED	11260													
Difference between existing livestock allocation and proposed action initial livestock allocation		TOTALS	1067 577	74 769	83 0 87	132,795	83.773	201 777	<i>4</i> 769	74 769	56,831	56.83	15.33	17.427	6,318	89.104
	Diffe	rence between existing livest	ock allocativ	on and o	ronosed s	iction in	tial lives	tock alloc	ation				2.50			

APPENDIX C Existing and Proposed Grazing Systems,' by Allotment

	Rest R	otation	Deferred	Rotation	Rotat	on	Deterre	d	Ear	Y	Spring/Su	Inner
Allot.	EX	PR	EX	PR	EX	PR	EX	PR	EX	PR	EX	PR
0001	0	0	0	2.172	0	0	0	0	0	0	2, 172	0
0003	46,309	2 696	3,769	6,750 919	0	0	0	0	0	0	0	0
0004	2,050	2,050	360	1.240	0	õ	õ	0	ů 0	Ő	0	ŏ
c m7	ō	0	0	0	0	0	0	0	0	0	0	0
0009	33,288	37, 132	0	0	0	0	0	0	0	0	3. 271	0
0012	0	0	0	920	0	0	0	0	0	0	0	0
0013	0	1. 704	5. 695 2. 413	4. 210	0	ŏ	õ	0	Ů	ů 0	0	ŏ
0016	0	0	1.631	1.622	0	0	0	0	0	0	0	Ō
0017	0	0	0	1,436	0	0	0	0	0	0	0	0
0018	0	1.625	0	0	0	0	0	0	0	0	1.625	0
0019	0	9,714	0	0	0	ŏ	ŏ	0	0	0	9. 722	ŏ
0021	Ů	0,714	Ů	1. 795	Ő	ō	1. 795	0	0	0	0	ō
0022	0	0	0	7.672	0	0	0	0	7,672	0	0	0
0023	0	0	0	1.517	0	0	0	0	1.157	0	0	0
0024	U	5 850	2,075	0. 991	4, 116	0	0	0	0	0	ŏ	0
0026	0	0,000	2.266	4. 936	0	ŏ	0	Ő	Ŏ	ů	ŏ	ō
0027	0	0	4.653	4.650	0	0	0	0	0	0	0	0
0028	0	0	0	446	0	0	0	0	0	0	0	0
0329	U 1 750	0	0	065	0	0	665	0	0	0	0	0
0034	1,759	1.968	0	30 9 0	0	0 0	0	0	0	0	0	ŏ
al 35	0	0	2. 560	2.560	0	D	0	0	0	0	0	0
0036	0	0	0	80	0	0	0	0	0	0	0	0
0037	0	0	0	160	0	0	0	0	0	0	0	0
0030	0	U O	1 138	3.027	0	ŏ	0	0	0	0	0	ŏ
C041	Ő	Ő	0	1. 416	Õ	ō	0	0	0	0	0	Ó
co42	0	0	0	4. 389	0	0	0	0	0	0	4. 389	0
0043	0	5. 150	0	0	0	0	0	0	5.150	0	0	0
0044	0	120. 021	125,100	3.775	U A	3,735	0	0	U 4. 493	0	0	0
0047	23. 616	23. 599	594	3. 464	0	õ	0	Ő	0	0	Ő	ō
0048	0	0	0	324	0	0	0	0	0	0	0	0
0049	0	0	0	163	0	0	0	0	0	0	0	0
0050	0	0	0	15,130	0	0	0	0	0	0	15,130	0
C052	0	0	0	120	0	ŏ	0	0	120	0	2, U22 0	ŏ
0053	7.693	7, 673	2,640	2. 640	0	ō	0	0	0	0	0	0
0054	0	0	0	060	0	0	0	0	595	0	0	0
0056	11, 121	11, 115	0	280 4 4 1 8	0	0	0	0	U 4 416	0	0	0
0059	0	0	0	610	0	0	0	0	4.410	0	0	ő
0060	0	0	0	1,694	0	ō	0	0	1,706	0	0	0
0062	0	0	0	1.311	0	0	0	0	0	0	1, 314	0
0064	0	17.617	0	0 80	15.936	0	1.913	0	0	0	0	0
0070	7.265	7. 265	0	752	0	ŏ	0	0	0	0	0	ŏ
0071	0	0	Ő	4. 266	0	õ	0	0	0	0	0	Ó
0072	0	0	0	0	0	0	0	0	1,120	0	0	0
0075	0	0	0	160	0	0	0	0	0	0	0	0
5001	0	0	0	401	0	0	0	0	120	0	0	ŏ
5002	Ů	Ő	Ů	Ŭ	Ő	ŏ	Ő	Ů	40	Ő	Ő	ō
5003	0	0	0	0	0	0	0	0	15	0	0	0
5004	0	0	0	0	0	0	0	0	63 107	0	0	0
5007	0	0	0	0	0	0	0	0	107	0	506	0
5010	Ő	Ő	Ő	Ő	0	õ	0	0	Ő	Ő	80	ō
5018	0	0	0	0	0	0	0	0	0	0	0	0
5022	0	0	0	0	0	0	0	0	597 768	0	0	0
5029	0	0	0	0	0	0	0	0	/06	0	0	0
5030	ů	ů 0	Ő	ů 0	Ő	ō	Ő	Ő	Ő	Ő	Ő	ŏ
5031	0	0	0	1. 509	0	0	0	0	0	0	0	0
5032	0	0	0	0	0	0	0	0	0	0	0	0
5050 5051	0	0	0	0	0	ő	0	0	0	0	ет 1.117	0
5052	ů	0	Ő	ů 0	Ő	ō	Ő	ů 0	Ő	Ő	174	ō
5061	0	0	0	0	0	0	0	0	6,065	0	0	0
5064	0	0	0	763	0	0	0 5 900	0	0	0	763	0
3083 5066	U A	U	U	5. 521 A	U	0	3, 339 A	0	0	U	0 350	0
5067	0	0	Ő	0	0	ŏ	0	Ő	389	Ő	0	õ
5068	0	Ō	0	0	0	0	0	0	265	0	0	Ō
5069 5070	0	0	0	0	0	0	0	0	192	0	0	0
5070	0	U	0	3, 795	0	0	U A	0	3. 795 3. Aro	0	0	0
5072	ŏ	0	0	2. 294	0	õ	0	0	2. 294	0	0	õ
5073	0	0	0	4, 422	4, 422	0	0	0	0	0	0	õ
5074	0	0	0	6.994	6.994	0	0	0	0	0	0	o
5075 5076	0	U	U	1. 947 O	Ű	0	0	U	U 3, 631	U	1.947 0	U n
	-	•	v	•	v	~	-		0.001	•	•	~

a 4

	Spring/Sum	mertall	Spring/I		Short	Duration	WI	nter	Exclus	ion	Hes	1	Fenced Fe	deral Range
ANOL	EX		EX	PR	EX.	PR	EX	PR	EX	PR	EX	PR	EX	PR-
0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0003	0	0	1,095	U	0	0	0	U	U	0	5.054	0	1.211	0
0004	0	0	0	0	0	0	0	0	0	Ű	0	0	212	0
0006	0	0	0	0	ů N	0	U	0	U	0	0	0	880	0
0007	075	0	U	U	0	0	U	U	-	4	236	236	0	U
0009	2/5	0	0	U	0	0	U	U	0	z	U	U	300	U
0012	U	Ň	U	U	0	0	U	U	U 67	U 97	U	U	920	U
0013	U	Ň	0	0	0	0	U O	U	0/ 0		U A	0	0	U
0016	0	ň	0	0	õ	0	0	0	õ	3	0	0	037	U O
0017	U	õ	0	0	ŏ	0	0	ů,	0	9	0	0	1 490	U
0018	0	ň	0	0	ň	0	0	0	0	0	0	0	1, 430	U A
0019	0	ň	0	0	ő	0	٠ň	0	0	0	0	0	0	0
0020	ů	ñ	ů	ů	õ	ů 0	ŏ	ů	ů	6	0	0	0	0
0021	ů	õ	0	Ő	ō	Ő	ů	ů	ő	Ő	ů	ů	ů	ů
W2 2	0	õ	Ő	Ő	ō	õ	ů	ů	ő	ŏ	ů	ŏ	0	0
0023	0	ō	0	Ō	ā	Ō	0	ů	Ő	Ő	0	Ō	360	ů
0024	0	ō	0	Ō	ō	0	Ő	Ő	0	õ	0	0	0	ů
W2 5	0	0	0	0	Ó	Õ	0	0	0	0	0	0	0	0
0026	0	O	0	0	Ō	Ō	0	0	Ő	0	0	Ō	2.670	Ő
0027	0	0	0	0	0	0	0	0	0	3	0	0	0	0
0028	0	0	0	0	0	0	0	0	0	0	0	0	446	0
0029	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0033	0	0	0	0	0	0	0	0	0	0	0	0	369	0
0034	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0035	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0036	80	0	0	0	0	0	0	0	0	0	0	0	0	0
0037		0	0	0	0	0	0	0	0	0	Q	0	160	0
0038	3. 03:	0	0	0	0	0	0	0	0	8	0	0	0	0
0039	504	0	0	0	0	0	0	0	0	0	0	0	0	0
0041	757	0	0	0	0	0	0	0	0	0	0	0	661	0
0042	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0043	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0044	0	0	630	0	0	0	2,821	0	505	505	1,622	1,622	0	0
0045	640	0	0	0	0	0	0	0	0	0	0	0	0	0
0047	703	0	0	0	0	0	0	0	72	91	0	0	2. 187	0
0048	0	0	0	0	0	0	0	U	0	0	0	0	324	0
0049	0	0	163	U	0	0	U	U	0	0	U	U	U	U
0050	U	8	U	U	0	0	U	0	30	30	U	U	U	U
0051	U	0	U	U	0	0	U	0	U	z	U	U	U	U
0052	U	ŏ	U	U A	ň	0	0	0	405	496	U	0	178	U
0053	0	ő	0	0	0	0	0	U	405	480	U A	0	1/8	U
0054	285	ň	0	0	õ	0	0	U	U	6	0	0	990	0
0058	0	õ	0	0	ñ	0	0	0	0	0	0	0	200	0
0059	0	ñ	0	0	õ	0	0	0	0	0	ů	0	0	0
0060	0	ñ	0	0	õ	0	0	0	0	19	ů	0	0	0
0062	ů	ã	0	ŏ	õ	Ő	0	0	0	3	ů	ő	ů	0
0064	ů	ă	0	ō	ō	õ	0	Ő	10	44	Ő	Ő	Ő	Ő
0066	Ő	ō	Ő	ō	ō	Õ	Ő	0	0	0	0	Ő	60	0
0070	0	ō	0	Ō	ġ	0	0	0	0	0	0	0	752	0
0071	4. 266	ō	Ő	Ō	ō	Õ	ů 0	0	0	0	0	Ō	0	0
W7 2	0	Ó	0	0	0	1. 120	0	0	0	0	0	0	0	0
w75	0	0	0	0	0	0	0	0	0	0	0	0	160	0
0076	0	0	0	0	0	0	0	0	0	0	0	0	481	0
5001	0	0	0	0	0	120	0	0	0	0	0	0	0	0
5002	0	0	0	0	0	40	0	0	0	0	0	0	0	0
5003	0	0	0	0	0	15	0	0	0	0	0	0	0	0
5004	0	0	0	0	0	63	0	0	0	0	0	0	0	0
5006	0	0	0	0	0	107	0	0	0	0	0	0	0	0
5007	0	0	0	0	0	506	0	0	0	0	0	0	0	0
5010	0	0	0	0	0	80	0	0	0	0	0	0	0	0
5018	0	0	692	0	0	892	0	0	0	0	0	0	0	0
5022	0	0	0	0	0	597	0	0	0	0	0	0	0	0
5024	0	0	0	0	O	766	0	0	0	0	0	0	0	0
5029	0	0	0	0	0	80	0	0	0	0	0	0	80	0
5030	0	0	0	0	0	296	0	0	0	0	0	0	296	0
5031	0	0	1.509	0	0	0	0	0	0	0	0	0	0	0
5032	0	0	0	0	0	236	0	0	0	0	0	0	238	0
5050	0	0	0	0	0	809	0	0	0	0	0	0	0	0
5051	0	0	ů Â	0	U	1, 117	0	0	0	0	0	0	0	0
5052	U	0	0	0	0	174	0	0	0	0	U	0	0	0
5064	U	0	U	U A	0	0, UG5 A	U	U	U A	U	U A	U	U	U
JU04 508=	U	0	U A	U A	0	U	U	U	U	U	U A	U	109	U
5066	0	õ	U A	U A	ñ	35.8	U A	U	U A	U A	U A	0	102	U
5000	0	õ	U A	U A	õ	360	U A	U A	U A	U A	U	U A	U A	U
5066	о О	õ	0	0	ñ	303 965	0	0	0	0	•	0	U 0	U 0
5069	0	õ	ő	õ	õ	192	0	0	0	0	0 0	0	0	0
5070	Ő	ō	Ő	Ő	ō	0	0	0	0	å	0	0	0	0
5071	0	0	õ	Ő	Ő	3, 869	Ň	0	Ő	õ	Ő	Ő	0	ů
5072	Ō	0	0	Ó	ő	0	Ő	Ő	Ő	õ	Ő	Ő	0	ů
5073	0	0	0	0	Ó	Õ	Ō	0	Õ	Õ	Õ	Õ	Ő	Õ
5074	0	0	0	0	0	0	0	0	Ō	ō	Ō	Ō	0	Ū
5075	0	0	0	0	0	0	Ō	0	0	Ó	0	Ō	0	0
5078	0	0	0	0	0	3.831	0	0	0	0	0	0	0	0

APPENDIX C (continued)

A 11 = 4	Ree	Rotation	Deter	red Rotation		Rotation		Deferred		Earty		Spring/Sur	hmer
AHOL	ЕX		PH a		PR EX	[PR LX	(197)	R EX		PR	EX	PR
5079	0	0	0	1.034	0	0	0	0	103 4	1 (D	0	0
5080	0	0	0	3. 382	0	0	0	0		0 0	0	3.362	0
5081	0	0	0	0	0	0	0	0	15	2	0	0	0
536Z	0	U	U	U	0	U	U	0	12		U N	U	0
5088	0	0	0	0	0	0	0	ő	16	o i	n	0	0
5089	ů	ů 0	0	Ő	0	Ő	Ů	ō		0 (0	165	ŏ
5090	0	0	0	0	0	0	0	0	34	4 (D	0	Ō
5092	0	0	0	0	0	0	0	0	71	7 (D	0	0
5093	0	0	0	321	0	0	0	0	321	L (0	0	0
5094	0	0	0	- 0	0	0	0	0		0 0	0	493	0
5107	0	U	0	0	0	0	0	0		0 0	n	114	0
5108	0	0	0	0	0	0	ů 0	ŏ	1.19	6 (D	0	ŏ
5109	0	0	0	5,096	0	0	0	0		0 (D	0	Ó
5110	0	0	0	0	0	0	0	0		0 (D	0	0
5111	0	0	0	0	0	0	0	0	1,86	0 (D	0	0
5112	0	0	0	3,058	0	0	0	0		0 0	0	3.058	0
5113	U	0	U	4.019	U	0	U	0			U N	4.019	0
5115	0	U	0	2.051	0	0	0	õ		0 0	0	3. 554	ŏ
5116	ů	ů	0	5.467	5.467	Ő	0	0		0 (0	0	ō
5117	0. 227	0	0	a. 227	0	0	0	0		0 (D	0	0
5116	0	0	0	7.267	7.267	0	0	0		0 (D	0	0
5119	0	0	0	254	0	0	0	0	25	4 (0	0	0
5120	0	0	0	4.616	4,818	0	0	0		0 0	0	0	0
5121	0	U	2.629	2, 029	1 394	0	0	ő		0	0	0	ő
5124	0	0	0	755	755	Ő	Ő	õ		0 0	0	Ő	ō
5125	0	0	0	4. 549	4.549	0	0	0		0 0	0	0	0
5127	0	0	0	13, 156	0	0	0	0	13.15	8 (0	0	0
5130	0	0	0	0	0	0	0	0		0	0	0	0
5131	0	0	0	0	0	0	0	U	66.		0	0	0
5133	0	U	18 407	U 16 407	0	U	U	0		0	U N	0	0
5135	0	0	7, 055	7.055	0	0	ů	ŏ		0	Ő	0	ŏ
5136	0	0	0	3. 583	0	0	0	0	3. 56	4	0	0	0
5137	0	0	0	3. 925	0	0	3, 925	0		0 0	0	0	0
5138	0	0	0	5.477	5.477	0	0	0		0	0	0	0
5139	0	0	0	6, 126	6. 126	0	0	0		0	0	0	0
5140	0	0	10.116	10.107	0	0	0	0	6 09	0	0	0	0
5141	0	U O	U	6. 924 1 129	0	0	0	ő	0, 94	0	0	1, 129	0 0
5145	4, 766	4. 761	0	0	0	Ő	0	õ		0	ů O	0	ō
5149	0	0	0	968	0	0	0	0		0	0	0	0
5176	0	0	0	0	0	0	0	0	35	0	0	0	0
5177	0	0	0	0	0	0	0	0	1,83	8	0	0	0
5176	0	0	0	0	0	0	0	0	70	1	0	U 190	0
5180	0	0	0	0	0	0	0	ő		0	0	197	ŏ
5182	0	ů 0	0	Ő	0	Ő	Ő	õ	1.02	7	Ő	0	õ
5183	0	0	0	0	0	0	0	0	11	5	0	0	0
5196	0	0	0	529	0	0	0	0		0	0	0	0
5201	0	0	0	2.436	0	0	0	0		0	0	2.436	0
5204	0	0	0	63U 9 701	630	U	U	0		0	0	U 9 701	0
5207	0	0	0	6. 353	6, 353	0	0	ő		0	0	2.751	ŏ
5206	0	ů 0	0	9. 101	0.000	0	Ő	Ō		0	Õ	9, 101	Ō
5209	0	0	0	16.354	0	0	0	0		0	0	16, 354	0
5210	0	0	0	21.492	0	0	21.492	0		0	0	0	0
5211	0	0	5.003	5. 323	0	0	0	0	32	0	0	0	0
5212 5919	32,300	U	U	32,300	15 007	U	U	0		0	0	U	n o
5214	12.905	0	0	12. 905	10, 007	0	0	ŏ		0	0	Ő	ŏ
5215	0	Ő	6, 164	8. 256	0	0	0	Ō	9	2	0	0	Ō
5216	0	0	0	0	0	0	0	0		0	0	84	0
5229	0	0	0	0	0	0	0	0		0	0	0	0
5231	0	0	11,386	11,386	0	0	0	0		0	0	0	0
5999	0	0	U 4 695	a. 579	0. 579	U	U	0		0	U A	U	0
5234	0	0	18, 437	16. 437	0	0	0	ő		0	0	0	ő
5235	20. 413	Ő	0	20763	Ő	0	Ő	õ	35	ŏ	Õ	Ő	ō
5236	0	0	0	0	0	0	0	0		0	0	1,750	0
5237	0	0	25,068	25.068	0	0	0	0		0	0	0	0
5236 5920	76.496	76.496	0	0	0	0	0	0		U	U A	0	0
523 3 5240	0	U 0	Z5701 £ 9£5	25701 6 965	0	0	0	0		U A	U 0	U	0
5241	0	0	7 991	7 991	0	0	0	n 0		0	õ	0	õ
5242	Ō	Ő	0	6, 245	6, 245	0	0	õ		0	0	Ō	ō
5243	0	0	0	6 269	0	0	0	0		0	0	6. 269	0
5244	0	0	0	12.332	12. 332	0	0	0		0	0	0	0
3243 5946	0	0	10. 235	10. 235	0	0	0	0		U A	U A	U	U O
5247	0	0	122	122 3. 263	U 3.963	0	U 0	0		0	0	0	0
5246	ů 0	0	2. 454	2. 454	0. 200	0	ů O	Ő		0	0	õ	ŏ

86

Aliot.	Spring/Summe EX	PR .	EX	PR .	EX	PR	EX	nter Pi	R EX	EXCILISION	n PA	ιx	Real	PR	Fenced I EX	Pederal Hange PR
5079		0			0				•	n		_/(0
5080	· 0	ñ	0	0	0	0	0		0	õ	0	0		0	0	n n
5081	0	ň	0	ŏ	0	152	0		ů N	õ	ů	0		0	0	ñ
5082	0	õ	ő	Õ	ů	116	Ő		0	ō	ő	ő		0	ő	õ
5086	0	ō	Ő	Õ	ů 0	120	0		0	ō	Õ	Ő		Ő	Ő	ō
5088	0	ō	0	0	0	160	Ō		0	0	Ō	Ō		0	0	ō
5069	0	0	0	Ō	0	185	0		0	0	0	0		0	0	0
5090	0	0	Ō	0	0	344	0		0	0	Ō	0		Ō	0	0
5092	0	0	0	0	0	717	0		0	0	0	0		0	0	0
5093	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5094	0	0	0	0	0	493	0		0	0	0	0		0	0	0
5096	0	0	0	0	0	200	Ð		0	0	0	0		0	0	0
5097	0	0	0	0	0	277	0		0	0	0	0		0	0	0
5107	0	0	0	0	0	114	0		0	0	0	0		0	0	0
5106	0	0	0	0	0	1,198	0		0.	30	30	0		0	0	0
5109	0	0	5,090 106	0	0	126	U		0	0	0	0		0	0	U O
5110	U	0	120	0	U A	1 860	0		0	0	0	0		0	0	0
5112	0	n n	0	0	0		0		0	Ň	0	0		0	0	õ
5113	0	ñ	0	0	0	0	0		0	ñ	0	0		0	0	õ
5114	ů	ō	0	Ő	Ő	õ	Ő		ů 0	õ	ŏ	Ő		ů	ő	õ
5115	ŏ	ō	0	Ő	0	0	0		0	õ	0	Ő		0	Ő	õ
5117	0	0	0	0	0	0	0		0	0	0	0		0	0	Ó
511%	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5119	0	0	0	0	0	0	0		0	0	0	0		0	0	O
5120	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5121	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5122	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5124	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5125	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5127	0	0	0	0	0	1 204	0		0	0	0	0		0	0	0
5130	1,394	0	0	U	U	1,394	U		0	0	U	0		0	U	0
5122	0	0	0	0	0	300	U		0	0	0	0		0	300	0
5134	0	0	0	0	0	300	0		0	0	0	0		0	300	ő
5135	0	õ	0	Ő	ů	0	0		ů N	õ	ŏ	Ő		0	ő	ő
5136	0	õ	0	Ő	Ő	õ	Ű		0 ·	õ	1	Ő		ů	Ő	õ
5137	0	õ	Õ	Ő	ŏ	ŏ	ů 0		0	0	Ó	Õ		Ő	0	ō
5138	Ō	ō	0	0	0	0	0		0	Ó	0	0		0	0	0
5139	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5140	0	0	0	0	0	0	0		0	0	11	0		0	0	0
5141	0	0	С	0	0	0	0		0	0	0	0		0	0	0
5142	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5145	0	0	0	0	0	0	0		0	0	5	0		0	0	0
5149	968	0	0	0	0	0	0		0	0	0	0		0	0	0
51/6	0	0	0	0	0	350	0		0	0	0	0		0	0	0
51//	0	0	0	0	U	1.838	0		0	0	0	0		0	0	0
5170	0	0	0	U	U	120	U A		0	0	0	0		U A	U	0
5180	0	ň	0	U	U	120	0		0	0	0	0		0	U 0	0
5162	0	ñ	0	0	0	1 027	0		0	õ	õ	0		ŏ	0	õ
5183	0	õ	0	ů	Ő	115	ů 0		0	ō	Õ	0		Õ	Ő	õ
5198	õ	ō	Õ	Ő	ŏ	0	0		0	ō	õ	Ő		0	529	ō
5201	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5204	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5206	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5207	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5208	0	0	0	0	0	0	0		0	0	0	. 0		0	0	0
5209	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5210	0	0	0	0	0	0	0		0 5	00	600	0		0	0	0
5211	0	0	0	0	0	0	U		0	0	0	0		U	0	0
5212	0	0	0	U	U	0	U		0	0	0	0		0	0	0
5213	0	0	0	0	0	0	0		0	0	0	0		0	0	ů
5215	0	0	0	0	0	0	1 338	1 33	A	ñ	0	0		0	0	ő
5216	0	õ	0	0	0	84	1.000	1,00	õ	õ	Ő	0		0	0	õ
5229	õ	õ	Õ	ŏ	ŏ	210	õ		0	0	õ	Ő		ŏ	210	õ
5231	õ	õ	Ō	0	0	0	Ō		0	Ō	0	Ō		0	0	Ō
5232	Ō	ō	Ō	0	0	0	0		0 .	48	40	0		0	0	0
5233	0	0	0	0	0	0	0		0	0	3	0		0	0	0
5234	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5235	0	0	0	0	0	0	9.743	9,74	3	0	0	0		0	0	0
5236	0	0	0	0	0	1.750	0		0	0	0	0		0	0	0
5237	0	0	0	0	0	0	3.397	3.39	/	0	0	0		0	0	0
5238	0	U	Ű	0	0	U	0		U	0	0	0		0	0	0
5239 5240	U	0	0	U	U	0	0		0	0	0	0		U	0	U
J∠40 52/1	0	0	0	U	U	U N	0		0	0	0	0		U	0	U O
5241	0	ñ	0	0	0	0	0		0	0 0	0	0		0	0	u n
5243	0	ő	ñ	0	Ő	ñ	0 0		õ	å	0	0		0	0	n
5244	Ő	ā	õ	õ	õ	0	Ő		õ	õ	õ	0		Ő	0	ő
5245	ŏ	0	Ō	0	Ō	Ō	Ō		0	ò	Õ	0		0	0	ō
5246	0	0	Ō	0	0	0	0		0	0	0	0		0	Ō	0
5247	0	0	0	0	0	0	0		0	0	0	0		0	0	0
5240	0	0	0	0	0	0	0		0	0	0	0		0	0	- 0

i

APPENDIX C (continued)

AlloL	Rest R Ex	iotation PR	Deferre EX	d Rotation PR	Rot	ation PR	Dela EX	rred PR	Ex Ex	rty PR	Spring/ EX	Summer PR
5249	0	0	1,274	1,274	0	0	0	0	0	0	0	0
5250	0	0	0	440	440	0	0	0	0	0	0	0
5251	0	0	6.771	6.771	0	0	0	0	0	0	0	0
5252	0	0	0	0	0	0	0	0	124	0	0	0
5254	0	0	7,029	7,029	0	0	0	0	0	0	0	0
9998		0	0	0	0	0	0	0	0	0	0	0
9999	0	0	0	0	0	0	0	0	0	0	0	0
TOTALS	291,089	4ao.942	341,696	593.725	121.164	5,755	35.329	0	65.191	0 11	6.393	0

- -

' Acreages shown are for the existing situation and proposed action.

EX: existing PR: proposed

For alternative 1, compare existing and proposed acres under exclusion. If additional acres are shown under proposed compared to existing, these additional acres will not be excluded but managed along with the remainder of the allotment. For example: no acres are presently excluded in allotment 0020, but 8 acres are proposed. Under alternative 1 these acres would not be excluded but managed under rest rotation.

For alternative 2. the existing grazing systems are applicable.

For alternative 3. the existing grazing systems would remain except for those acres excluded for wildlife or watershed values. While acres of exclusion are not shown for this alternative, refer to Appendix B, Available Forage Allocation and Production, to gain an indication of how much of the allotment would be excluded by comparing livestock forage allocations for alternatives 2 and 3. For example, the livestock forage allocation for alternative 3 and 0 AUMs under alternative 3. This would Indicate that the entire allotment would be excluded under alternative 3.

No grazing would be allowed with alternative 4.

	Spring/Summ	verfall	Spring/i	Fall	Short	Duration	Win	ter	Exclu	Non	Re	st	Fenced Fede	rat Range
Allot.	LX	PR	EX	PR	EX	PR	EX	PR	EX	PR	EX	PR	EX	PA
5249	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5250	0	0	0	0	0	0	0	ρ	0	0	0	0	0	0
5251	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5252	0	0	0	0	0	124	0	0	0	0	0	0	0	0
5254	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9998	0	0	0	0	0	0	0	0	0	2	414	412	0	0
9999	0	0	٥	0	0	0	0	0	0	0	11.260	11.280	0	0
TOTALS	12.907	0	9.511	0	0	37.144	17.299	14.478	1.371	2,003	18.586	13.530	16,539	0

APPENDIX D Proposed Action, Rangeland Improvements by Allotment

	RANG	BELAND	IMPROVI	EMENTS			VEGETATION TREATMENT Brush Control and Seed Brush Control (Orthu				
Aliot.	Fence (miles)	Riparlan Fence (miles)	Spring Develop. (No.)	Pipe- line (miles)	Weils (No.)	Resvits (No.)	Water- holes (No.)	Spray (acres)	Burn (acres)	Chain (acres)	Plow (acres)	Spray (acres)	Burn (acres)	Chain (acres)	Juniper Control (acres)
0001	02	0 0	0	0 0	o	1	0	0	0	0	0	0	0	0	(
0003	00	00	0	140	0	0	2	0	0	0	15/5	0 200	0	0	(
0006	0.0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	Ó
0007	00	00 18	0	000	0	0 4	0	0	0	0	0	2.000	0 3 020	0	(
0012	0.0	0 0	0	0 0	Ō	0	0	0	0	0	0	0	0	0	(
0013	02 50	00 31	1	00	0	1	0	0	0	0	0	0	0	0	(
co16	45	59	0	0 0	ō	ŏ۰	0	Ő	0	0	0	0	0	0	(
0017	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
0019	32	00	0	120	1	1	0	0	0	0	1.300	3 120	0	0	i
0020	1.7	5.1	0	50	1	0	0	0	0	0	0	2.815	0	0	(
0022	12	0.0	0	00	ō	1	Ő	Ő	0	0	0	880	0	0	(
0023	00	00	0	00	0	0	0	0	0	0	0	265	0	0	(
0024	00	00	0	65	Ť	0	0	0	0	0	0	0	2.550	Ő	(
0026	12.0	00	0	00	0	0	0	0	0	0	0	0	0	0	(
0028	00	00	0	00	ŏ	0	Ő	0	0	õ	0	0	0	Ő	(
0029	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
0033	30	00	0	00	ŏ	0	0	0	0	0	0	0	0	0	(
0035	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
0038	00	00	0	00	õ	0	0	0	0	0	0	0	0	0	(
CO38	72	26	0	00	0	1	0	0	0	0	0	709	0	0	(
0039	00	0.0	0	00	ō	0	0	0	0	0	0	0	0	0	(
W42	02	00	1	00	0	1	0	0	0	0	0	0	0	0	1 050
0043	27 0	00	1	190	3	0	0	0	0	0	5 7 50	8.000	1.726	5.000	(
0045	20	0.0	1	00	0	0	0	0	0	0	0	873	0	0	(
0047	19	79 00	0	00	0	0	0	0	0	0	0	0	0	0	(
0049	00	0 0	0	00	0	0	0	0	0	0	0	0	0	0	(
0050	95 22	0.0 2.0	0	00	0	2	0	0	0	0	0	0	0	0	
0052	0 0	0 0	0	0.0	0	0	0	0	0	0	0	0	0	0	
0053	122 02	12 00	1	00	0	1	0	0	0	0	0	0	0	0	(
CO56	05	31	0	00	0	2	0	0	0	0	0	1.260	0	0	(
CO58 0059	02	00	0	00	0	0	0	0	0	0	0	893 0	0	0	(
0060	00	2.6	0	00	0	Ő	0	0	0	ů 0	0	0	0	0	(
0062	20 110	31 127	0	00 43	0	0	0	0	0	0	0	0	0 2 500	0	3.00
0066	00	0.0	0	00	0	ō	Ő	Õ	Ő	Ő	Ő	0	0	Ő	(
0070	47	00	0	00	0	0	0	0	0	0	0	3	0	0	(
0072	00	00	0	00	0	Ő	0	0	0	ő	0	0	0	0	170
0075	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
5001	00	00	0	co	0	õ	0	0	0	0	0	ő	0	0	, (
5002	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
5003	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
5006 5007	00	00	0	00	0	0	0	0	0	0	0	0	0	0	(
5010	00	00	0	00	0	ő	0	0	20	0	0	0	0	0	200
5018	00	00	0	00	0	0	0	0	100	0	0	0	0	0	150
5022	00	00	0	00	0	Ő	Ő	0	0	0	0	0	0	0	(
5029	00	00	0	0.0	0	0	0	0	0	0	0	0	0	0	(
5031	00	00	0	00	0	0	0	0	0	0	0	0	0	0	250
5032	00	00	0	00	0	0	0	0	0	0	0	0	0	0	20
5050 5051	00	00	0	00	0	0	0	0	100	0	0	0	0	0	30
5052	00	00	0	00	0	0	0	0	25	Û	0	0	0	0	7
5064	00	00	0	20	õ	0	0	0	0	0	0	0	0	0	101
5065	60	00	0	60	0	0	0	0	400	0	0	0	0	0	1.20
5067	00	00	0	00	0	0	0	0	0	0	0	U	0 0	0	80
5068	00	00	0	00	0	0	0	0	0	ŋ	0	0	0	0	(
5069 5070	00 70	00	0	40	0	0	0	0	225	0 0	0	U 0	U Q	0	(70)
5071	100	00	0	0.0	0	0	0	Ó	0	9	Ō	0	0	0	
5072 5073	50 00	00	0	20 60	0	0	U 0	0 ()	40 450	0	0	0	0	0	30) 90)
5074	70	00	0	4 J	0	Ö	0	Ō	225	ŏ	ő	ő	ō	0	704
5075 5078	00 00	00	U 0	00 30	0	U C	0	0	250 200	0	0	0 0	0 0	0	404
5079	00	00	0	20	0	0	0	0	200	0	Ō	0	Ű	Ű	200
508 1	20 00	00	0	30 00	0	0 0	0	0	260	0 0	0	0	0	0	500
5082	00	00	0	õõ	0	0	õ	0	ŭ	ŭ	0	0	Ő	ő	(
5086	00	00	0	00	0	0	0	0	0	ŋ	0	0	0	0	(

RANGELAND IMPROVEMENTS

VEGETATION TREATMENT

		.	. .	-				-		Bruen C	Jonator and e	99Q		arum Comr	d Only
Allol	Fence (miles)	Riparian Fence (miles)	Spring Develop. (No.)	Pipe- line (milet)	W I (No.)	Resvrs. (No.i	Water- holes (No.)	Epray (acres)	Burn (acres)	Chein (ecres)	Plow (acros)	Spray (acres)	Burn (acros)	Chain (acres)	Control (acres)
							(• •	•	• •	• •			
5088	00	00	0	00	0	0	0	0	0	0	0	0	0	0	0
5099	00	0.0	0	00	0	0	0	0	0	0	0	0	0	0	0
5092	0.0	00	0	00	0	0	0	0	0	0	0	0	0	0	175
5093	00	0.0	0	00	0	0	0	0	30	0	0	0	0	0	60
5094	00	00	0	00	0	0	0	0	0 25	0	0	0	0	0	25
5097	00	0.0	0	00	0	0	0	0	23	0	0	0	0	0	100
5107	00	00	0	00	ŏ	Ő	Ő	Ő	0	0	Ő	Ő	0	0	0
5108	0.0	00	0	00	0	0	0	0	0	0	0	0	0	0	300
5109	2.0	00	0	5.0	0	0	0	- 0	350	0	0	0	0	0	700
5110	0.0	00	0	00	0	0	0	0	0	0	0	0	0	0	0
5112	0.0	00	0	00	0	0	0	0	500	0	0	0	0	0	750
5113	2.0	00	õ	40	Ő	Ő	õ	0	150	Ő	ő	0	0	Ő	700
5114	1.5	00	0	30	0	0	0	0	100	0	0	0	0	0	250
5115	1.5	00	0	30	0	0	0	0	250	0	0	0	0	0	500
5116	0.0	00	0	5.0	0	0	0	0	300	0	0	0	0	0	700 500
5118	1.5	00	Ő	60	Ő	0	Ő	0	400	0 0	0	0	0	0	1,000
5119	0.0	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0	0
5120	0 0	0.0	0	3.0	0	0	0	0	250	0	0	0	0	0	500
5121	00	00	0	2.0	0	0	0	0	100	0	0	0	0	đ	250
5122	00	0.0	0	0.0	0	0	0	0	150	0	0	0	0	0	200 500
5125	0.0	0.0	Ő	2.0	Ő	0 0	Ő	0	200	ő	ů 0	Ő	0 0	Ő	500
5127	3.0	00	0	11 0	0	0	0	0	500	0	0	0	0	0	1,600
5130	0.0	0.0	0	0 0	0	0	0	0	150	0	0	0	0	0	800
5131	0.0	00	0	0.0	0	0	0	0	0	0	0	0	0	0	350
5133	60	0.0	0	90	0	0	0	0	1 000	0	0	0	0	0	3 000
5135	0.0	00	Ő	0.0	Ő	0	Ő	Ő	300	ő	ő	0	Ő	Ő	4.m
5136	40	15	0	0 0	0	0	0	0	250	0	0	0	0	0	2,000
5137	0 0	0.0	0	0 0	0	0	0	0	120	0	0	0	0	0	1,000
5138	5.0	00	0	80	0	0	0	0	200	0	0	0	0	0	1,000
5139	5.0	76	8	100	0	0	0	0	800	0	0	0	0	0	2.750
5141	70	00	0	1.0	Ő	Ő	Ő	0	800	Ő	0	0	0	0	2,000
5142	25	0 0	0	0.0	0	0	0	0	400	0	0	0	0	0	120
5145	2.0	4.4	0	3.0	0	0	0	0	1.000	0	0	0	0	0	1,000
5149	0.0	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0	300
5176	0.0	00	0	00	0	0	0	0	0	0	0	0	0	0	300
5178	0.0	0.0	Ő	0.0	Ő	0 0	0	ů 0	0	ő	ő	Ő	0	0	325
5179	2.0	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0	33
5180	00	0 0	0	00	0	0	0	0	60	0	0	0	0	0	80
5182	0.0	00	0	00	0	0	0	0	160	0	0	0	0	0	002
5183 5198	0.0	00	0	00	0	0	0	0	0	0	0	0	0	0	0
5201	15	00	Ő	30	0	0	0	0	150	0	ů 0	Ő	0	Ő	350
5204	00	0 0	0	00	0	0	0	0	100	0	0	0	0	0	400
5206	00	00	0	00	0	0	0	0	200	0	0	0	0	0	400
5207	30	00	0	10	0	0	0	0	250	0	0	0	200	0	750 500
5208	70	00	0	90	0	0	0	0	600	0	0	0	400	0	1.000
5210	10	00	õ	160	Ő	Ő	Õ	Ő	2.000	Ő	Ő	3,500	0	0	500
5211	0 0	0 0	0	30	0	0	0	1,000	500	0	0	MO	0	0	0
5212	60	0 0	0	350	0	0	0	0	2.300	0	0	500	0	0	3.000
5213	60	00	0	80	0	0	0	200	300	0	0	500	0	0	2,000
5215	00	00	0	20	0	0	0	-00	580	0	0	2 m	420	0	400
5216	00	00	õ	00	Ő	Ő	0	ō	0	Ő	õ	0	0	0	0
5229	00	0 0	0	00	0	0	0	0	0	0	0	0	0	0	140
5231	00	00	0	40	0	0	0	0	1.000	0	0	1,000	0	0	9,000
5232 5233	40	0.0	0	40	0	0	0	0	1000	0	0	200	0	0	2.500
5234	60	00	0	160	0	0	0	0	0	0	0	2.000	0	0	8,000
5235	170	0 0	0	190	0	0	0	0	3.m	0	0	6.000	3.m	0	0
5236	00	0 0	0	30	0	0	0	0	100	0	0	0	0	0	350
5237	00	00	0	190	0	0	0	0	1775	0	0	4.000 8.000	4,725	0	0 5 000
5230	50	00	0	740 SO	0	0	0	0	1250	0	0	2,000	2 750	0	3.000
5240	4.5	00	0	20	Ő	0 0	0	0	700	0	0	300	2.750	Ő	ů 0
5241	1.0	0 0	0	13.0	0	0	0	0	2,000	0	0	0	0	0	5.000
5242	60	0 0	0	40	0	0	0	0	400	0	0	0	0	0	1,000
5243 5244	20	00	0	30	0	0	0	1 600	1 700	0	0	1,0000	500	0	^
5245	40	00	0	60	0	0	0	000.1	1,400	0	0	2,000	0	0	4,500
5246	00	0.0	õ	00	õ	õ	õ	Ő	0	0	0	2.100	0	0	60
5247	20	0 0	0	20	0	0	0	0	300	0	0	0	600	0	1.500
5248	00	0.0	0	00	0	0	0	0	400	0	0	0	0	0	2.200
5249 5 25 0	00	00	0	00	0	0	0	0	250	0	0	0	0	0	1,000
5251	20	00	0	50	0	0	0	0	700	0	0	0	0	0	5000
5252	0.0	0 0	0	00	0	0	0	0	0	õ	Ő	õ	Ő	Ő	0
5254	30	0 0	0	30	0	0	0	0	650	0	0	1.000	850	0	0
9998	00	08	0	00	0	0	0	0	0	0	0	0	0	0	0
9999	00	00	U	00	U	U	U	U	U	0	U	U	U	U	U
TOTALS	S 319.9	709	13	466.5	7	25	2	3,200 4	42.330	0	3,625	57635	47436	5.000	102.433

APPENDIX E Alternative 1, Rangeland Improvements by Allotment

	_	RANC	GELAND	IMPRO	DVEMEN	ΤS		Brush Cont	V E	GETATI	ATION TREATMENT Brush Control Only			
Allot.	Spring Fence (miles)	Pipe- Develop. (No.)	line (miles)	Weila (No.)	Water- Resvrs. (No.)	holes (No.)	Spray (acres)	Bum (acres)	Chain (acres)	Plow (acres)	Spray (acres)	Bum (acres)	Chain (acres)	Juniper Control (acres)
0003	0.2	0	140	0	0	2	0	0	0	3.150	1,000	4,500	1,000	0
0004 0006	07 0.0	0	0.0 0 0	0	, 0	0	0	0	0	0	500 0	0	0	0
0007	0.0	0	0 0	0	0	0	ō	0	0	0	0	0	0	ŏ
0009 0012	30 0.0	0	0.0 0.0	0	4 0	0	0	0 0	0	0	5,000	6,000 0	0	0
0013	0.2	1	0 0	0	1	0	0	0	0	0	0	0	0	ŏ
0014	50 45	0	0.0	0	0	0	0	0	0	0	0	0	0	0
0017	0.0	0	0.0	0	0	0	0	0	0	0	1 000	0	0	0
0019	3.2	0	120	1	1	0	0	0	0	3,000	9,000	0	õ	0
0020	1.7	0	5.0	1	0	0	0	0	0	0	7,000	0	0	0
W22	1.2	0	0.0	0	1	0	o	0	0	0	5.000	0	0	0
W23	0.0	0	0.0	0	0	0	0	0	0	0	1.000	0	0	0
0024	00	0	0.0 6 5	1	0	0	0	0	0	0	0	5,100	a	0
0026	12.0	0	00	0	0	0	0	0	0	0	0	0	0	0
0028	2.2	0	0.0	õ	0	0	ō	0	0	0	0	0	õ	ŏ
w29	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0	0
0033	3.0	0	0.0	ŏ	0	0	ő	0	0	0	0	0	õ	ŏ
0035	0.0	0	00	0	0	0	0	0	0	0	0	0	0	0
al37	00	0	0.0	ö	0	0	ō	0	0	0	0	0	õ	ŏ
0038	72	0	0.0	0	1	0	0	0	0	0	2.000	0	0	O O
0041	0.0	0	0.0	ŏ	0	0	ő	0	0	0	0	0	ŏ	ő
0042	0.2	1	0.0	0	1	0	0	0	0	0	0	0 4 000	0	1.750
co44	27 0	1	19.0	3	ò	0	0	0	0	11,500	15.000	24,500	10,000	ŏ
0045	2.0	1	0.0	0	0	0	0	0	0	0	2,000	3,000	0	0
0048	00	0	00	0	ò	0	õ	0	0	0	0	0	õ	ŏ
0049	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0	0
0051	2.2	0	0.0	0 0	1	0	ŏ	Ő	0	0	0	0	õ	ŏ
0052	00	0	00	0	0	0	0	0	0	0	0	0	0	0
0054	0.2	0	0.0	Ö	1	0	ō	0	Ő	0	600	0	ō	Ō
0056 0058	0.5	0	0.0	0	2	0	0	0	0	0	3,200 3,600	0	0 0	0
0059	00	0	0.0	0	Ö	0	ō	0	Ö	0	0	Ö	Ō	Ó
0060 0062	2.0	0	00	0	0	0	0	0	0	0	0	0	0	0
0064	110	0	4.0	1	2	0	0	0	0	0	0	2,500	Ó	7,700
0066	00 47	0	0.0	0	0 1	0	0	0	0	0	0	0	0	0
0071	30	0	0.0	0	0	0	0	0	0	0	0	0	0	0
0072	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0	1/0
0076	0.0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
5302	0.0	0	00	0	0	0	0	0	0	0	0	0	ö	ő
5003	00	0	0 0	0	0	0	0	0	0	0	0	0	0	0
5004	00	0	00	0	0	0	0	0	0	0	0	0	0	ő
5007	00	0	00	0	0	0	0	100	0	0	0	0	0	280
5018	0.0	0	00	0	0	0	õ	100	0	0	0	0	õ	150
5022	00	0	00	0	0	0	0	40	0	0	0	0	0	100
5029	00	0	00	0	0	0	ō	0	0	0	0	0	õ	ŏ
M30 5031	00	0	0.0	0	0	0	0	0	0	0	0	0	0	0 250
5032	00	0	0.0	0	0	0	ō	0	0	0	0	0	ŏ,	0
5050 5051	00	0	00	0	0	0	0 D	175 300	0	0.	0	0	0	200
5052	00	0	0.0	Ő	õ	0	Ö	25	0	Ő	0	0	õ	75
5061 5064	00	0	00	0	0	0	0	0	0	0	0	0	0	100
5065	60	0	60	Ö	Ö	0	0	600	0	Ő	0	Ö	õ	1,200
5066 5067	00	0	00	0	0	0	0	0	0	0	0	0	0	80 0
5068	0 0	0	0.0	Ö	0	0	0	Ö	Ő	Ő	Ő	Ö	õ	õ
5069 5070	00	0	00 40	0	0	0	0	0 225	0	0	0	0	0	0 700
5071	100	0	00	Ŏ	Ő	0	õ	0	õ	õ	0	Ö	ő	õ
5072 5073	50 00	0	20 60	0	0	0	0	40 450	0	0 0	0	0	0	300 900
5074	70	0	70	0	Ō	0	0	500	0	0	Ő	Ő	Ŏ	1,000
5075 5076	00	0	00 30	0	U 0	0	0	250 200	0	U 0	0	U O	0	400 750
5079	0.0	0	20	0	0	0	0	200	0	0	0	Ó	0	200
5000	20	0	00	0	0	0	0	200	0	0	0	0	0	000
5062	00	0	00	0	0	0	0	40	0	0	0	0	0	50
02	00	U	00	U	U	U	u	U	U	U	U	U	U	Ų
52														

Spring	Pipe-			water-			Brush
Fence (miles)	Develop. (No.)	(ine (miles)	Wells (No.)	Resvrs. (No.)	holes (No.)	Spray (acres)	Bu (ac)
00	0	0.0	0	0	0	0	
0.0	0	00	0	0	0	0	
00	0	0.0	0	0	0	0	
0.0	õ	0.0	õ	Ő	0 0	Ő	3
0.0	0	0.0	0	0	0	0	
0.0	0	0.0	0	U A	0	0	2
0.0	Ő	0.0	Ő	Ŏ	õ	Ő	
00	0	0.0	0	0	0	0	05
2.0	0	5.0 0.0	0	0	0	0	30
00	0	0 0	0	0	0	0	
00	0	0.0	0	0	0	0	50
15	0	3.0	Ő	Ő	Ő	Ŏ	10
1.5	0	3.0	0	0	0	0	25
00	0	5.0 80	0	0	0	0	20
15	0	6.0	0	0	0	0	40
00	0	0.0	0	0	0	0	25
0.0	0	2.0	0	0	0	0	10
0 0	0	00	0	0	0	0	15
00	0	0.0	0	0	0	0	20
3.0	0	11.0	0	Ő	0	Ő	50
00	0	0.0	0	0	0	0	20
00	0	0.0	0	0	0	0	ļ
6.0	0	90	0	0	0	0	1.000
0.0 4.0	0	0.0	0	0	0	0	60
0.0	0	0.0	0	0	0	0	20
5.0	0	6.0 5.0	0	0	0	0 1 250	30
5.0	8	10.0	0	0	0	0	6.00
70	0	10	0	0	0	0	2.00
2.5 2.0	0	0.0 3.0	0	0	0	0	3.00
0.0	0	0.0	0	0	0	0	(
0.0	0	0.0	0	0	0	0	(
0.0	Ő	0.0	0	Ő	0	0	í
2.0	0	00	0	0	0	0	(
0.0	0	0.0	0	0	0	0	16
00	0	00	0	0	0	0	(
0.0	0	00 30	0	0	0	0	(15(
0.0	0	0.0	0	Ō	0	0	40
00	0	00	0	0	0	0	20
50	0	100	0	0	0	0	3.00
70	0	90	0	0	0	0	80
0.0	0	3.0	0	0	0	3.m	3,00
6.0	0	350	0	0	0	2,000	3,00
60 00	0	8.0 7.0	0	0	0	0	1.50
00	0	20	0	Ō	0	0	60
00	0	00	0	0	0	0	(
0.0	0	40	0	0	0	Ŭ	4,00
40	0	4.0	0	0	0	0	4.00
20	0	2.0	0	0	0	0	2.00
170	0	190	0	0	0	0	8.00
00	0	3.0	0	0	0	0	30
160	0	740	Ő	ů	0	0	6.000
50	0	50	0	0	0	0	3.00
10	0	∠0 130	0	0	0	0	6,00
6.0	0	40	0	0	0	0	4,00
2.0 3.0	0	3.0 7 0	0	0	0 0	0	1.00
40	Ö	6.0	0	Õ	0	Ő	2.000
00	0	00	0	0	0	0	50
0.0	0	0.0	õ	0	0	0	60
00	0	0.0	0	0	0	0	40
20	0	50	0	0	0	0	1.00
00	0	00	0	0	0	0	
30 00	0	30 00	0	0	0	U	1,00
00	õ	00	õ	ŏ	õ	Ő	

7

25

2

6.250

93.050

0

17.650

143,400

135,100

13

3199

469.5

TOTALS

		Brush Cont	V E	GETATIO	ON TREA		ontrol Only	
oles No.)	Spray (acres)	Burn (acres)	Chain (acres)	Plow (acres)	Spray (acres)	Bum (acres)	Chain (acres)	Juniper Control (acres)
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	90
0	0	0	0	0	0	0	0	175
0	0	30	0	0	0	0	0	60
0	0	25	0	0	0	0	0	25
0	0	0	0	0	0	0	0	100
0	0	0	0	0	0	0	0	300
0	ů.	350	0	Ő	0	0	0	700
0	0	0	0	0	0	0	0	0
0	0	500	0	0	0	0	0	750
0	0	150	0	0	0	0	0	700
0	0	250	0	0	0	0	0	250 500
0	0	200	0	Ō	0	0	0	700
0	0	300	0	0	0	0	0	500
0	ŏ	0	0	0	0	õ	0	0
0	0	250	0	0	0	0	0	500
0	0	150	0	0	0	0	0	250
0	0	500	0	0	0	0	0	500
0	0	200 500	0	0	0	0	0	500
0	0	200	0	0	0	0	0	800
0	0	0	0	0	0	0	0	350
0	0	1.000	0	0	0	0	0	3,000
0	0	1.000	0	0	0	0	0	4,000
0	0	600 200	0	0	0	0	0	2.000
0	Ů	300	0	0	0	0	0	1,000
0	1,250	1,000	0	0	0	0	0	2.750
0	0	2.000	0	0	0	0	0	5.000
0	0	600	0	0	0	0	0	2 w
0	0	3,000	0	0	0	0	0	4,000
0	0	Ő	0	Ő	0	Ő	0	0
0	0	0	0	0	0	0	0	400
0	0	0	0	0	0	0	0	325
0	0	60	0	0	0	0	0	80
0	0	160 0	0	0	0	0	0	475 0
0	0	Ő	0	Ő	0	0	0	0
0	0	150	0	0	0	0	0	350
0	0	200	0	0	0	0	0	400
0	0	250	0	0	0	0	0	750
0	0	3,000	0	0	4,500 0	1,000	0	2,300
0	0	5,000	0	0	0	0	0	15,000
0	3.m 2000	3 000	0	0	0	4,000	0	3.000
0	0	1.500	0	Ő	0	woo	0	2,000
0	0	1,000	0	0	3,000	1,000	0	1,500
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	140
0	0	4,000	0	0	0	0	0	8,000
0	0	500	0	0	0	0	0	2.500
0	0	2,000	0	0	5,000	5,000	0	5.000
0	Ö	300	0	ů 0	0	0	0	1.756
0	0	3.m	0	0	9,000	6,000	0	0
0	0	3.000	0	0	15.000	0	0	5.000 0
0	0	1.000	0	0	4,000	0	0	0
0	U 0	4,000	0	U O	U 0	0	0	6,000
0	0	1.000	0	Ō	1.000	2.000	0	500
0	0	5.000	0	0	4,000 1,000	4,000	0	0 5.000
õ	0	2.000	0	0	0	0	õ	60
0	0	500	0	0	0	1,500	0	1.500
0	0	400	0	0	0	0	0	2.200 1, 000
0	0	200	0	0	0	0	0	400
U 0	U	1.000	0	0	0	0	0	5.000 0
0	Ō	1,000	õ	Ő	4.000	0	õ	0
0	0	0	0	0	0	0	0	0
-	-	•		•	•	~	•	

160,612 **93**

11,000

APPENDIX F Alternative 3, Rangeland Improvements by Allotment

		Spring		Water-	Brush	Juniper
	Fence	Develop.	Resvrs.	holes	Control	Control
Allot.	(miles)	(No.)	(No.)	(No.)	(acres)	(acres)
0004	4.0	•	0	0	0	•
0001	4.0	U	U	U	0	0
0003	0.2	0	0	0	1,500	Ű
0004	0.0	0	ň	ő	0	0
0007	0.0	ő	0	Ő	0	0
0009	2.0	õ	õ	õ	2.500	ŏ
0012	2.7	Õ	ō	ō	0	ŏ
0013	1.4	0	0	0	0	ō
0014	5.0	0	0	0	0	0
0016	0.0	0	0	0	0	0
0017	0.0	0	0	0	0	0
0018	0.0	0	0	0	0	0
0019	0.0	0	0	0	0	0
0020	0.0	U	Ŭ	0	0	0
0021	0.0	0	0	U	0	0
0022	0.0	0	0	0	000	0
0024	0.0	0	0	0	0	0
0025	0.0	0	õ	ň	2 550	ő
0026	7.5	õ	õ	ŏ	2,000	ő
0027	5.0	õ	õ	ŏ	0	õ
0028	0.0	õ	õ	ŏ	ů 0	ŏ
0029	0.0	Ō	0	0	0	Ō
0033	4.0	0	0	0	0	0
0034	22.4	0	0	0	0	0
0035	0.0	0	0	0	0	0
0036	0.0	0	0	0	0	0
0037	0.0	0	0	0	0	0
0038	4.2	0 0	0	0	0	0
0039	0.0	0	Ŭ	0	0	0
0041	1.7	U	0	ů v	0	1 050
0042	0.0	0	0	0	620	1,050
0044	0.0	0	Ů	5	030	ő
0045	7.0	0	0	5	19,070	0
0047	11.0	n	0	0	0	0
0048	0.0	Ő	0	õ	0	õ
0049	0.0	õ	Ő	0	Õ	ŏ
0050	22.0	0	0	0	0	0
0051	5.0	0	1	0	0	0
0052	0.0	0	0	0	0	0
0053	5.0	0	0	0	0	0
0054	0.0	0	0	0	0	0
0056	0.0	0	0	0	0	0
0058	0.0	0	0	0	893	0
0059	0.0	0	0	0	0	0
0060	2.0	0	0	0	0	0
0064	3.0	0	0	0	0	2 -
0066	20.0	0	0	0	0	3.11
0070	0.0	ñ	0	0	0	0
0071	3.0	õ	0	Ő	õ	0
0072	0.0	ō	0	0	0	170
0075	0.0	Ō	0	0	0	0
0076	0.0	0	0	0	0	0
5001	0.0	0	0	0	0	0
5002	0.4	0	0	0	0	0
5003	0.0	Ō	0	0	0	0
5004	0.0	0	0	0	0	0
5006	0.0	0	0	0	0	0
5007	0.0	U	U	U	U	0
5010	0.0	U O	U	U	0	U
0010 5022	0.0	U C	0	0	0	U
5022	0.0	0	0	0	0	0
5024	0.0	0	0	0	0	0
5030	4.0	ñ	0	õ	õ	0
5031	2.2	õ	õ	õ	Õ	250

94

Fance Develop. Resurt. holes Control Control 5030 0.0 0 0 0 0 0 5031 0.0 0 0 0 0 3300 5051 0.0 0 0 0 0 3300 5052 0.0 0 0 0 0 0 3300 5064 0.0 0 0 0 0 0 0 50657 0.0 0 0 0 0 0 0 50668 0.0 0 0 0 0 0 0 50774 0.0 0 0 0 0 0 0 50774 0.0 0 0 0 0 0 0 50775 0.00 0 0 0 0 0 0 50775 0.00 0 0 0 0 0 <td< th=""><th></th><th></th><th>Spring</th><th></th><th>Water-</th><th>Brush</th><th>Juniper</th></td<>			Spring		Water-	Brush	Juniper
Akb. (miss) (hc.) (hc.) <th< th=""><th></th><th>Fence</th><th>Develop.</th><th>Resvrs.</th><th>holes</th><th>Control</th><th>Control</th></th<>		Fence	Develop.	Resvrs.	holes	Control	Control
552 00 0	Allot.	(miles)	(No.)	(No.)	(No.)	(acres)	(acres)
SALE DD D	5000	0.0	0	•	0	0	•
Subs OD OD OD Subs 50512 QO <	5032	0.0	0	0	0	0	0
bisic DO DO <thd< td=""><td>5050</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>200</td></thd<>	5050	0.0	0	0	0	0	200
biof Col Col Col Col Col 5064 0.0 0 0 0 0 0 5066 0.0 0 0 0 0 0 5067 0.0 0 0 0 0 0 0 5068 0.0 0 0 0 0 0 0 0 5069 0.0 0	5051	0.0	0	0	0	0	300
5064 CO O <td>5052</td> <td>2.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>75</td>	5052	2.0	0	0	0	0	75
Sode Sode Sode Sode Sode Sode Sode Sode	5064	0.0	0	Õ	ő	0	0
1066 0	5065	0.0	0	õ	Ő	0	0
5067 0.0 0 <td>5066</td> <td>0.0</td> <td>ŏ</td> <td>õ</td> <td>ŏ</td> <td>Õ</td> <td>õ</td>	5066	0.0	ŏ	õ	ŏ	Õ	õ
5068 0.0 0 0 0 0 0 5070 0.9 0 0 0 0 0 5071 6.0 0 0 0 0 0 5072 0.0 0 0 0 0 0 0 5074 0.0 0 0 0 0 0 0 5075 0.0 0 0 0 0 0 0 5076 0.0 0 0 0 0 0 0 5081 0.0 0 0 0 0 0 0 5082 0.0 0 0 0 0 0 0 5088 0.0 0 0 0 0 0 0 5089 0.0 0 0 0 0 0 0 5099 0.0 0 0 0 0 0 0	5067	0.0	Ō	Õ	õ	Õ	0
5068 0.0 0 0 0 0 0 5070 0.9 0 0 0 0 0 5071 6.0 0 0 0 0 0 5073 0.0 0 0 0 0 0 0 5074 0.0 0 0 0 0 0 0 5078 0.0 0 0 0 0 0 0 5079 0.0 0 0 0 0 0 0 0 5080 0.0 0 0 0 0 0 0 0 5084 0.0 0<	5068	0.0	Ō	Ó	Ō	0	0
5070 0.9 0 0 0 0 0 5072 0.0 0 0 0 0 0 5073 0.0 0 0 0 0 0 5076 0.0 0 0 0 0 0 0 5078 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 5081 0.0 0 0 0 0 0 0 0 0 5082 0.0 0 0 0 0 0 0 0 0 5084 0.0 0<	5069	0.0	0	0	0	0	0
5071 6.0 0 0 0 0 0 5072 0.0 0 0 0 0 0 5073 0.0 0 0 0 0 0 5075 0.0 0 0 0 0 0 0 5079 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 5081 0.0 0 0 0 0 0 0 0 5084 0.0 0 0 0 0 0 0 5084 0.0 0 0 0 0 0 0 5084 0.0 0 0 0 0 0 0 5094 0.0 0 0 0 0 0 0 5096 0.0 0 0 0 0 0	5070	0.9	0	0	0	0	0
5072 0.0 0 0 0 0 0 5074 0.0 0 0 0 0 0 5075 0.0 0 0 0 0 0 5078 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 0 5082 0.9 0 <t< td=""><td>5071</td><td>6.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	5071	6.0	0	0	0	0	0
5073 0.0 0 0 0 0 0 5075 0.0 0 0 0 0 0 5078 0.0 0 0 0 0 0 0 5079 0.0 0 0 0 0 0 0 0 5081 0.0 0 </td <td>5072</td> <td>0.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5072	0.0	0	0	0	0	0
5074 0.0 0 0 0 0 0 5075 0.0 0 0 0 0 0 0 5073 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 5082 0.3 0 0 0 0 0 0 5088 0.0 0 0 0 0 0 0 5089 0.0 0 0 0 0 0 0 5093 0.0 0 0 0 0 0 0 5094 3.0 0 0 0 0 0 0 5094 3.0 0 0 0 0 0 0 5097 0.0 0 0 0 0 0 0 5108 0.3 0 0 0 0	5073	0.0	0	0	0	0	0
5075 0.0 0 0 0 0 0 0 5079 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 5081 0.0 0 0 0 0 0 0 5086 0.0 0 0 0 0 0 0 0 5088 0.0 0 <t< td=""><td>5074</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	5074	0.0	0	0	0	0	0
50/8 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 5082 0.9 0 0 0 0 0 0 5088 0.0 0 0 0 0 0 0 5089 0.0 0 0 0 0 0 0 5093 0.0 0 0 0 0 0 0 5094 0.0 0 0 0 0 0 0 5095 0.0 0 0 0 0 0 0 5107 0.0 0 0 0 0 0 0 5108 0.0 0 0 0 0 0 0 5110 0.0 0 0 0 0 0 0 5111 0.0 0 0 <t< td=""><td>5075</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	5075	0.0	0	0	0	0	0
b)/9 0.0 0 0 0 0 0 0 5080 3.0 0 0 0 0 0 0 5082 0.9 0 0 0 0 0 0 5088 0.0 0 0 0 0 0 0 5089 0.0 0 0 0 0 0 0 5093 0.0 0 0 0 0 0 0 5094 3.0 0 0 0 0 0 0 5095 0.0 0 0 0 0 0 0 5096 0.0 0 0 0 0 0 0 5107 0.0 0 0 0 0 0 0 5111 0.0 0 0 0 0 0 0 5113 0.0 0 0 0<	5078	0.0	0	0	0	0	0
S080 3.0 C O O O O O O 5081 0.0 0	5079	0.0	0	0	0	0	0
Solid O <td>5080</td> <td>3.0</td> <td>0</td> <td>0</td> <td>U O</td> <td>0</td> <td>0</td>	5080	3.0	0	0	U O	0	0
3082 0.9 0 0 0 0 0 0 0 5086 0.0 0	5081	0.0	0	0	0	0	0
000 0	5066	0.9	0	0	0	50	0
Social CO C </td <td>5088</td> <td>0.0</td> <td>0</td> <td>0</td> <td>Ö</td> <td>0</td> <td>0</td>	5088	0.0	0	0	Ö	0	0
560 0	5089	0.0	õ	õ	ů	0	0
5662 00 0 0 0 0 0 175 5933 0.0 0 0 0 0 0 0 0 5094 3.0 0	5090	0.0	õ	õ	ŏ	0	Õ
5693 00 0 <td>5092</td> <td>0.0</td> <td>0</td> <td>õ</td> <td>õ</td> <td>Õ</td> <td>175</td>	5092	0.0	0	õ	õ	Õ	175
6084 3.0 0 0 0 0 0 0 5096 0.0 0 0 0 0 0 0 0 5107 0.0 0 0 0 0 0 0 0 0 5108 0.3 0	5093	0.0	0	Ó	ō	0	0
5096 0.0 0 <td>5094</td> <td>3.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5094	3.0	0	0	0	0	0
5097 0.0 0 0 0 0 0 0 100 5107 0.0 <	5096	0.0	0	0	0	0	0
5107 0.0 0 0 0 0 0 0 0 5108 0.3 0 0 0 0 0 0 0 5110 0.0 0 0 0 0 0 0 0 5111 0.0 0 0 0 0 0 0 0 5112 0.0 0 0 0 0 0 0 0 5113 0.0 0 0 0 0 0 0 0 0 5114 0.0 0	5097	0.0	0	0	0	0	100
5108 0.3 0 0 0 0 0 0 0 5109 0.0 0 0 0 0 0 0 0 5110 0.0 0 0 0 0 0 0 0 5111 0.0 0 0 0 0 0 0 0 5113 0.0 0 0 0 0 0 0 0 5114 0.0 0 <t< td=""><td>5107</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	5107	0.0	0	0	0	0	0
5109 0.0 0 <td>5108</td> <td>0.3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5108	0.3	0	0	0	0	0
5110 0.0 0 0 0 0 0 5111 0.0 0 0 0 0 0 0 5112 0.0 0 0 0 0 0 0 5113 0.0 0 0 0 0 0 0 5114 0.0 0 0 0 0 0 0 5115 0.0 0 0 0 0 0 0 5118 0.0 0 0 0 0 0 0 5120 0.0 0 0 0 0 0 0 5122 0.0 0 0 0 0 0 0 5122 0.0 0 0 0 0 0 0 5131 0.0 0 0 0 0 0 0 5133 1.7 0 0 0 0	5109	0.0	0	0	o	0	0
5111 0.0 0 0 0 0 0 5112 0.0 0 0 0 0 0 0 5113 0.0 0 0 0 0 0 0 5114 0.0 0 0 0 0 0 0 5115 0.0 0 0 0 0 0 0 5116 0.0 0 0 0 0 0 0 5118 0.0 0 0 0 0 0 0 5120 0.0 0 0 0 0 0 0 5121 0.0 0 0 0 0 0 0 5122 0.0 0 0 0 0 0 0 5133 0.0 0 0 0 0 0 300 5133 0.0 0 0 0 0 <td>5110</td> <td>0.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5110	0.0	0	0	0	0	0
5112 0.0 0 0 0 0 0 0 5113 0.0 0 0 0 0 0 0 5114 0.0 0 0 0 0 0 0 5115 0.0 0 0 0 0 0 0 5117 0.0 0 0 0 0 0 0 5118 0.0 0 0 0 0 0 0 5120 0.0 0 0 0 0 0 0 5121 0.0 0 0 0 0 0 0 5122 0.0 0 0 0 0 0 0 5122 0.0 0 0 0 0 0 0 5133 1.7 0 0 0 0 300 5133 1.7 0 0 0 0 <td>5111</td> <td>0.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5111	0.0	0	0	0	0	0
5113 0.0 0 <td>5112</td> <td>0.0</td> <td>0</td> <td>0</td> <td>U</td> <td>0</td> <td>0</td>	5112	0.0	0	0	U	0	0
5114 0.0 0 <td>5113</td> <td>0.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5113	0.0	0	0	0	0	0
0.13 0.0 0 0 0 0 0 0 0 5116 0.0 0 <td< td=""><td>5114</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	5114	0.0	0	0	0	0	0
5117 0.0 0 <td>5116</td> <td>0.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5116	0.0	0	0	0	0	0
5118 0.0 0 <td>5117</td> <td>0.0</td> <td>õ</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5117	0.0	õ	0	0	0	0
5119 0.0 0 0 0 0 0 0 5120 0.0 0 0 0 0 0 5121 0.0 0 0 0 0 0 5122 0.0 0 0 0 0 0 5124 0.0 0 0 0 0 0 5125 0.0 0 0 0 0 0 5130 0.0 0 0 0 0 0 5131 0.0 0 0 0 0 300 5133 1.7 0 0 0 0 3000 5134 10.0 0 0 0 0 3000 5134 0.0 0 0 0 0 $4,000$ 5136 0.0 0 0 0 0 $1,000$ 5138 0.0 0 0 0 0 $2,000$ 5138 0.0 0 0 0 0 $2,000$ 5141 0.0 0 0 0 0 $1,000$ 5144 0.0 0 0 0 0 $1,000$ 5145 0.0 0 0 0 0 0 5145 0.0 0 0 0 0 0 5176 0.0 0 0 0 0 0 5178 0.0 0 0 0 0 0 5178 0.0 <td>5118</td> <td>0.0</td> <td>õ</td> <td>Õ</td> <td>õ</td> <td>0</td> <td>õ</td>	5118	0.0	õ	Õ	õ	0	õ
5120 0.0 0 0 0 0 0 0 5121 0.0 0 <td< td=""><td>5119</td><td>0.0</td><td>Ō</td><td>0</td><td>ō</td><td>Õ</td><td>0</td></td<>	5119	0.0	Ō	0	ō	Õ	0
5121 0.0 0 0 0 0 0 5122 0.0 0 0 0 0 0 0 5124 0.0 0 0 0 0 0 0 0 5125 0.0 0 0 0 0 0 0 0 5127 0.0 0 0 0 0 0 0 0 5130 0.0 0 0 0 0 0 300 5133 1.7 0 0 0 0 300 5134 10.0 0 0 0 3,000 5135 0.0 0 0 0 2,000 5136 0.0 0 0 0 1,000 5138 0.0 0 0 0 2,750 5140 6.0 0 0 0 2,500 5141 0.0 0 0 0 1,000 5142 0.0 0 0 0 300	5120	0.0	Ó	0	0	0	0
5122 0.0 0 0 0 0 0 0 5124 0.0 0 0 0 0 0 0 5125 0.0 0 0 0 0 0 0 5130 0.0 0 0 0 0 800 5131 0.0 0 0 0 350 5133 1.7 0 0 0 300 5134 10.0 0 0 0 300 5135 0.0 0 0 0 400 5136 0.0 0 0 0 4000 5136 0.0 0 0 0 4000 5137 0.0 0 0 0 1,000 5138 0.0 0 0 0 2,750 5141 0.0 0 0 0 2,000 5142 0.0 0 0 0 1,000 51445 0.0 0 0 0 0	5121	0.0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5122	0.0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5124	0.0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5125	0.0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5127	0.0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5130	0.0	0	0	0	0	800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5131	0.0	0	0	U	0	350
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5133	1.7	0	0	0	0	2 000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5134 5125	10.0	0	0	0	0	3,000
5137 0.0 0 0 0 0 1,000 5137 0.0 0 0 0 0 1,000 5138 0.0 0 0 0 0 1,000 5139 4.0 1 0 0 0 2,750 5140 6.0 0 0 0 0 2,500 5141 0.0 0 0 0 120 5142 0.0 0 0 0 120 5145 0.0 0 0 0 300 5145 0.0 0 0 0 300 5176 0.0 0 0 0 300 5177 5.2 0 0 0 300 5178 0.0 0 0 0 325	5136	0.0	0	0	0	0	2,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5130	0.0	0	0	0	0	2,000
5139 4.0 1 0 0 0 2,750 5140 6.0 0 0 0 0 2,750 5141 0.0 0 0 0 0 2,500 5142 0.0 0 0 0 0 120 5145 0.0 0 0 0 0 120 5145 0.0 0 0 0 120 5145 0.0 0 0 0 120 5145 0.0 0 0 0 300 5176 0.0 0 0 0 0 300 5177 5.2 0 0 0 0 325 5178 0.0 0 0 0 325 325	5138	0.0	õ	0	ñ	0	1,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5139	4.0	1	0	ŏ	0	2 750
5141 0.0 0 0 0 0 2,000 5142 0.0 0 0 0 0 120 5145 0.0 0 0 0 0 120 5145 0.0 0 0 0 0 1,000 5149 0.5 0 0 0 0 300 5176 0.0 0 0 0 0 0 5177 5.2 0 0 0 300 5178 0.0 0 0 325	5140	6.0	ò	õ	õ	Ő	2,500
5142 0.0 0 0 0 120 5145 0.0 0 0 0 120 5145 0.0 0 0 0 1,000 5149 0.5 0 0 0 0 300 5176 0.0 0 0 0 0 0 0 5177 5.2 0 0 0 0 300 5178 0.0 0 0 0 325	5141	0.0	ō	õ	ŏ	õ	2.000
51450.00001,00051490.5000030051760.000000051775.2000030051780.0000325	5142	0.0	Ō	0	ō	Õ	120
51490.5000030051760.000000051775.2000030051780.0000325	5145	0.0	0	0	0	0	1,000
5176 0.0 300 300 3178 0.0 0 0 0 0 325 <th< td=""><td>5149</td><td>0.5</td><td>0</td><td>0</td><td>0</td><td>0</td><td>300</td></th<>	5149	0.5	0	0	0	0	300
51775.2000030051780.00000325	5176	0.0	0	0	0	0	0
5178 0.0 0 0 0 0 325	5177	5.2	0	0	0	0	300
	5178	0.0	0	0	0	0	325

A CONTRACTOR OF A CONTRACTOR OFTA CONT

APPENDIX F (continued)

Allol.	Fence (miles)	Spring Develop. (No.)	Rrwa (№.)	Water- hoies (No.)	Brush Control (acres)	Juniper Contro (acres)
5179	0.0	0	0	0	0	33
5180	0.0	0	0	0	0	80
5182	0.0	0	Õ	Õ	0	300
5183	0.0	Õ	0	0	0	0
5198	0.0	0	Õ	Ō	0	Ō
5201	0.0	Õ	Õ	0	0	0
5204	0.0	Õ	0	Ō	0	0
5206	0.0	0	Õ	0	0	0
5207	0.0	0	0	0	0	0
5208	0.0	Õ	0	Õ	0	0
5209	5.0	Õ	Õ	Õ	Õ	0 0
5210	8.5	Õ	Õ	Õ	2 000 2	0 0
5211	0.0	Õ	0 0	Õ	1 000	Ő
5212	4.5	0	0	Õ	0	Ő
5213	4.0	0	0	Õ	ů 0	0
5214	2.0	0	0	Õ	0 0	1 500
5215	2.0	0	0	Õ	1 000	400
5216	0.0	0	0	Õ	0	001
5229	0.0	0	0	Õ	0	140
5223	2.5	0	0	0	0	9 000
5237	2.5	0	0	Õ	0	2 500
5232	3.0	0	0	0	0	2,500
5234	9.0	0	0	0	0	8,000
5235	7.0	0	0	0	6000	0,000
5235	7.0	1	0	0	0,000	350
5230	0.0	0	0	ů	5 000	0.00
5237	0.0	0	1	0	9,000	0
5230	10	0	0	0	0,000	0
5239	1.0	0	0	0	500	0
5240	0.0	0	0	0	500	5 000
5241	5.0	0	0	0	0	1,000
5242	0.0	0	0	0	0	1,000
5243	3.0	0	0	0	2 000	0
5244	0.0	0	0	0	3,000	0
5245	0.7	0	0	0	0	0
5246	0.0	0	0	0	0	60
5247	0.0	0	0	0	0	1,500
5248	0.0	0	0	0	0	2,200
5249	1.1	0	0	0	0	1,000
5250	0.0	U	U	U	U	400
5251	0.0	U	U	U	U	5,000
5252	0.0	0	U	U	0	0
5254	0.0	0	0	U	1.250	0
9998	0.8	0	0	Û	0	0
9999	2.8	0	0	0	0	0
TOTALS	349.4	3	10	5	58.204	66.028

APPENDIX G Methodology, Existing Available Forage Production and Future Ecological Condition and Trend

The existing available forage production was estimated for each allotment based on the following information when available or applicable:

- 1. Average livestock use in the allotment during the last five years.
- 2. Estimated big game use in the allotment.
- 3. Actual use studies.
- 4. Forage utilization studies showing average percent livestock use by pasture or grazing unit.
- 5. Utilization mapping showing livestock use patterns in each pasture or grazing unit.
- 6. Ecological trend study photos.
- 7. Climatic studies.
- 8. Range suitability studies showing areas which cannot or should not be used by livestock.
- 9. Existing ecological condition.
- 10. Other factors which affect livestock distribution such as rock fields.
- 11. The professional judgement of the area range conservationist and area manager in each area.

Since exact quantification of ecological condition by vegetation type by allotment was unavailable for analysis, assumptions were made for the EIS area as a whole. Annual variation in precipitation and soil moisture make precise quantification of impacts to vegetation impossible. Therefore, this analysis produced predictions which are useful as a relative comparison between alternatives.

To assess change in ecological types will respond to management or treatment, while others will not. Those not responding included greasewood, other brush, and conifer/mountain shrub, or about 3 percent of the total EIS area. In addition, it was assumed that these types are equally distributed throughout the EIS area.

For the purpose of this analysis, it was assumed that ecological condition classes are equally distributed within each vegetation type. For example, climax ecological condition can be found in 2.25 percent of the greasewood vegetation type as well as big sagebrush vegetation type.

The following analysis of ecological conditions in the Ibex Butte Allotment (0019) shows how the analysis was conducted and how predictions for long-term changes in ecological condition class were made.

The Ibex Butte Allotment is currently managed under a spring/summer grazing system. There are no **exclosures** and no riparian areas. Current ecological conditions are: climax - 0 acres; late-seral - 900 acres; mid-seral - 7,434 acres; early-seral -3,785 acres: and other - 111 acres.

The following actions are proposed for the allotment under the proposed alternative:

- Rest-rotation grazing on 12.230 acres; Plowing and seeding 1,200 acres of big sagebrush;
- Spraying 3,120 acres of big sagebrush; No change in current livestock allocation or season of use:
- Construction of 1 well, 12 miles of pipeline and troughs, and 1 reservoirconstruction about 3 miles of fence to protect proposed seeding.

About 1,200 acres of early-seral big sagebrush would be plowed and seeded, then classified as other. Of the 3,120 acres proposed for spraying, 2,340 acres would be on mid-seral big sagebrush going to late-seral, and 780 acres would be on earlyseral big sagebrush going to mid-seral. Of the remaining 1,805 acres early-seral, 72 acres would stay early-seral due to unresponsive nature. This leaves 1,733 acres in early-seral, of which 50 percent, or about 867 acres would go to mid-seral through management. The rest of the early-seral would stay early-seral. The remaining 5,094 acres of mid-seral would be subject to management, of which 96 percent, or 4,890 acres would improve to late-seral, and 4 percent, or 204 acres, would stay in mid-seral, not responding to management. All existing late-seral and other condition classes will stay the same.

The predicted long-term ecological condition class acreages are climax - 0 acres; late-seral - 8,130 acres; mid-seral - 1,851 acres; early-seral - 938 acres; and other - 1,311 acres.

Based on the above analysis, trend would be upward on 8,877 acres (3,120 acres sprayed and 5,757 acres improving through management), static on 2,153 acres (early-seral and mid-seral not responding to management, all late-seral and existing other), and 1,200 acres would go to "other" through seeding.

APPENDIX H Soil Interpretations and Characteristics for Soil Map No. 5

					Limiting Laver		Erosion		Poten-	Avail.
Map	Soil	Depth (inches)	Perm-	Bunoff	Kind	depth (inches)	Potential*		tial Prod. #/ac.drv	Water Capa-
Symbol 1	Selles	2	3	4	King	(IIICIIE3) S	water	wind	wt. ⁷	- City
1	Borow	20 - 40	mod. rapid to mod. slow	very slow	weakly cemented h ardpan bedrock	20 - 40 60	slight	severe	200-800	High
1	Swaler	60		very slow	flooding alkalin- ity	surface ponding o - w	slight	mod.	150-800	High
1	Willow- dale	60	moderate	siow			mod.	slight	200-5200	High
2	Canest	O-10	slow	rapid	cobbles pebbles bedrock	O-10 o- 10 5-10	mod.	slight	150-400	Very Low
2	Choptie	10 - 20	moderate	medium	bedrock	10-20	mod.	slight	150-1800	Low
3	Biayden	12 - 20	moderate	medium	duripan	12-20	mod.	slight	250-700	Very Low
3	Embal	60+	moderate	v ery siow			slight	mod.	500-l 500	High
3	Ratto	10 - 20	slow to very slow	slow	stones duripan	o - 5 20-48	slight	slight	250-800	Low
4	Ceschutes	20 - 40	mod. rapid	very slow	bedrock	20 - 40	slight	mod.	300-900	Low
4	Houstake	40+	rapid to very slow	v ery slow	weakly cemented hardpan	20 - 40	slight	severe	200-700	Mod.
						bedrock	60			
4	Stat2	10 - 20	mod. rapid to very slow	very slow	duripan bedrock	10-20 20-40	slight	mod.	150-900	Mod.
5	Dester	20 - 40	mod. slow to very slow	slow	duripan bedrock	20 - 35 25-40	slight	mod.	200-900	Mod.
5	Gardone	40 - 60	rapid	slow	ashy sand	0 - 40+	slight	severe	400- 1700	High
5	Stookey	20 - 40	rapid to moderate	slow	hardpan bedrock	14 - 20 20 - 40	slight	severe	200-950	Mod.
6	Anawalt	IO- 20	slow	siow	bedrock	10 - 20	slight	slight	200-l 100	Very Low
6	Bieber	10-20	siow	medium	duripan bedrock	10-20 60	mod.	slight	150-800	Very Low
6	Varco	10-20	slow	medium	duripan cobbles bedrock	12-20 o - 4 40 - 60	mod.	slight	150-1000	Low
7	Day	40 - 60	very slow	rapid	clay	0 - 60	severe	slight	200-1000	Low
7	Simas	60	slow	rapid	clay	16-40	severe	slight	200-1000	Mod.

					Limiting Layer		En	osion	Poten-	Avail.	
Map Symbol	Map Soli D Symbol Series (In 1		Perm- ®ability 3	Runofi +	Kind	depth (inches) s	Potential ^e water wind		Prod. #/ac dry wt. ⁷	Capa- city inches	
8	Menbo	20 -40	slow	medium	pebbles stones cobbles bedrock	O-40 0 - 40 O-40 20 - 40	mod.	slight	250-I 700	Low	
8	Westbutte	20 - 40	moderate	medium	stones cobbles	0 - 40	mod.	slight	200-l 200	Mod.	
9	Lorella	10-20	slow	rapid	pebbles stones cobbles bedrock	0 - 20 0 - 20 0 - 20 10-20	severe	slight	250-900	Very Low	
9	Redcliff	20 - 40	moderate	medium	stones cobbles bedrock	0 - 40 20 - 40	severe	slight	200-800	Low	
9	Stukel	10 - 20	moderate	rapid	bedrock	10-20	severe	slight	1 SO-650	Very Low	
2.7.8	Madeline	10 - 20	slow	medium	bedrock	12-20	mod.	slight	200-1000	Very Low	

¹ Soil association symbol on Soil Map 5.
² Depth in inches of soil profile and/or depth to which plant root would penetrate soil profile.
³ The rate at which water and air may move through the soil profile.
⁴ Relative rate that water flows off soil surface.
⁵ Kind: Type of restricting material. Depth: Location of
⁶ Susceptibility of the soil to erode when no cover is present. dry wt.) Estimates for unfavorable - favorable years.
⁶ The soil profile's ability to store water for plant growth.

APPENDIX I Watershed Conditions

Watersheds	Allotment #	Total Acres 1	% BLM	Erosion Condition (SSF) ²	Estimated Precipitation	Present Estimated Runoff
Alkali Creek	5140.5141	3,685	73	Moderate	12-18	o-5.4
Alkali Creek	0022, 0034, 0039, 0041 , 0047	26,220	37	Slight	11-13	0-0.4
Ant Creek	5240, 5241, 5248, 5249	3,565	39	Moderate	12-16	o-3.4
Antelope Creek	5135.5142, 5145	4,385	62	ModCritical	11-13	0-0.4
Bear Creek	5139, 5140, 5214.5232, 5233, 5234, 5236, 5240, 5241, 5248, 5249	53.480	53	Slight-Mod.	11-16	o-3.4
Beaver Creek	0026, 0028, 0029, 0038, 0039, 0048	6,810	34	Slight	11.6-16	o-3.4
N.F. Beaver Cr.	0026	8,280	32	Moderate	14-18.4	1.4-5.8
SF. Beaver Cr.	0004, 0026, 0054, 0058	17,680	55	Moderate	14-18.6	1.4-6.0
Beaver Dam Creek	0026	430	46	Slight	14-18.6	1.4-6.0
Bronco Creek	0026	170	100	Slight	14-18.0	1.4-5.4
Buck Creek	0023, 0024, 0035, 0044	26,490	48	Moderate	11-16	o-3.4
Buckhorn Canyon	5070, 5071	2,680	40	Slight	8-10	0
Burnt Log Spg. Cr.	0016.0051	40	100	Slight	14-16	1.4-3.8
Camp Creek 0009.	0013, 0045, 0050, 0056, 0059, 0062, 0064, 0066, 0070	22,305	77	Moderate	12-16	o-3.4
M.F. Camp Creek	001 4, 5246 , 5251	12,265	56	Moderate	12-16	O-3.4
S.F. Camp Creek	0009.0013.0042.0044, 0070, 5247.5254	24,705	46	ModCritical	12-16	o-3.4
W.F. Camp Creek	0013, 0014, 0070, 5239. 5246, 5248	25,185	36	Moderate	12-16	o-3.4
Committee Creek	0053	380	72	Slight	14-18	1.4-5.4
Conant Creek	5149	1,270	36	Slight	12-18	0-5.4
Congleton Hollow	004	1,590	88	Moderate	12-14	o-1.4
Cottonwood Creek	0062	1,105	29	Moderate	12-18	o-5.4
Cow Creek	5242, 5248	3.650	8	Moderate	12-16.3	o-3.7
Lower Crooked Rv	0072.5016, 5021, 5022. 5029, 5031, 5032, 5033, 5050. 5051, 5052, 5062, 5064, 5086. 5088.5089.5090.5092, 5094, 5110, 5111, 5112, 5113, 5115, 5117.5120.5121.5125, 5127, 5134, 5136, 5138, 5186, 5204, 5206, 5208, 5209, 5210, 5216	120,355	73	Stable-Slight	10-13	0-0.4
N F Crooked Rv	0029, 0045, 0050, 0051, 0053	15.690	66	Slight	12-22	o-9.4

Watersheds Allotment #		Total Acres 1	% BLM	Erosion Condition (SSF) ²	Estimated Precipitation (inmean® nnual)	Present Estimated Runoff (in. mean annual)
SF. Crooked Rv.	0009, 0013, 0018, 0019, 0020, 0023, 0024, 0038, 0042, 0044, 0056, 0064, 0070	196,225	79	Moderate	10-18	o-5.4
Upper Crooked Rv	0001, 0007, 0039, 0045, 0049, 0050, 0053, 0059, 0060, 0064.0066.5029.5130.5131, 5133, 5135, 5136, 5137, 5138, 5139, 5140, 5141, 5142, 5149, 5214	42,075	35	Moderate	12-18	o-5.4
Davis Creek	0013, 0014, 0062	2,880	51	Moderate	12-18	o-5.4
Deep Canyon	5065, 5070, 5074, 5075, 5078	8,605	52	Slight	9-12	0
Deer Creek	5140.5141.5248	3,800	82	Moderate	13-19.5	0.4-6.9
Deschutes River	5001, 5002, 5003, 5004, 5006, 5007, 5010, 5012, 5016, 5018, 5024, 5062, 5064, 5070, 5071, 5072, 5073, 5074, 5078, 5079, 5080, 5116, 5118, 5119, 5120, 5122, 5124	71,900	72	Stable-Slight	9-14	o-1.4
Desert Creek	0003, 5247, 5254	5,995	13	Moderate	14-18	1.4-5.4
Dry Creek	5097, 5134, 5135, 5136, 5145	22,125	25	Moderate	10-14	o-1.4
Dry River	0042, 0044, 5002, 5015, 5017, 5031, 5070, 5089, 5092, 5093, 5094, 5108, 5109, 5110, 5112, 5113, 5115, 5117, 5125, 5127, 5134, 5209, 5210, 5211, 5212, 5213, 5214, 5215, 5234, 5235, 5239, 5240, 5241, 5243, 5346, 5247, 5251	267,980	59	Stable-Slight	9-14	o-1.4
Eagle Rock Creek (O'Neil)	5130, 5131, 5135, 5145	5,205	58	Moderate	12-14	o-1.4
Ferguson Creek	5248.5249	1,530	2	Moderate	14-20	1.4-7.4
Fox Canyon Creek	0050.0053	435	94	Stable	15-19	2.4-6.4
Fremont Canyon Cr	5066, 5067, 5068	3,450	20	Slight	9-12	0
Grindstone Creek	0021.0022. 0023.0039. 0042, 0054, 0058, 0071	18.130	38	Moderate	12-15	O-2.4
Heisler Creek	0026	170	100	Slight	14-18.8	1.4-6.2
High Desert	0003, 0044, 5235, 5237, 5230.5239.5243.5244.5245. 5247	293,635	77	Stable-Mod	9-13	o-o.4
Horse Heaven Cr	0001	1,130	0		12-18	0-5.4
Indian Creek	0016	880	100	Slight	14-16.4	1.4-3.8
Jake Hollow	0064.0047	2,485	36	Slight	12-14	o-1.4
Jep Creek	5086	35	100		9-14	o-1.4
Jones	0064	1.775	97	Moderate	12-18	o-5.4
Juniper Canyon	5240.5241.5249	3,225	48	Moderate	13-16	0.4-3.4
Kelly Cr. Canyon	0060.0064	5,115	99	Moderate	11-13	0-0.4

APPENDIX I (continued)

Watersheds	Allotment #	Total Acres 1	% Blm	Erosion Condition (SSF).²	Estimated Precipitation annual)	Present Estimated Runoff (inmean® nnual)
Klootchman Creek	5248	310	0		12-20	O-7.4
Little Bear Creek	5140, 5232, 5233, 5242 , 5248.5250	11,615	17	Moderate	12-16	o-3.4
Lizard Creek	0003, 5254, 5247	3.600	27	Moderate	12-18	o-5.4
Long Hollow Cr.	5133	1,460	7	Moderate	12-14	o-1.4
Long Hollow Cr.	0024	3,165	27	Slight	12-16	o-3.4
Lost Creek	0001	4,665	9	Slight	12-18	o-5.4
Lytle Creek	5176, 5177, 5178, 5179 5180, 5182, 5183	9,555	19	Slight-Mod.	1 O-20	0-7.4
McKay Creek	5177, 5182, 5183, 5198	5.280	28	Moderate	1 o-22	o-9.4
McKenzie Canyon	5064, 5065, 5070, 5081	12.375	53	Slight	9-12	0
McVeen Creek	5178	10	0			
Morris Creek	0024	420	0			
Newhill Creek	5178, 5179	50	20			
Nicoll Creek	0024	70	0			
Norman Canyon	5241 , 5249	1,070	93	Moderate	12-14	o-1.4
Ochoco Creek (Combs Flat) (Juniper Canyon)	5030, 5097, 5130, 5134, 5135, 5145, 5177, 5198	17.315	21	Slight	11-20	0-7.4
Owl Creek	5142, 5145	1.390	64	Moderate	12-14	o-1.4
Paulina Creek	0016, 0027, 0028, 0029, 0033, 0039, 0048, 0050, 0051	24,160	37	Slight	12-17	0-4.4
Pine Creek	5050.5051, 5086 , 5178	2,060	46	Slight	10-18	o-5.4
Pine Creek	0001, 0045	1.195	60	Moderate	12-18	o-5.4
Poison Creek	0045.0062	590	37	Moderate	12-18	o-5.4
Pole Creek	0014, 0042, 5251	3.215	57	ModCritical	12-16	o-3.4
Powell Creek	0026	2,840	12	Slight	12-18	o-5.4
Rabbit Valley	0007, 0028, 0039, 0050.	29.600	59	Slight-Mod.	12-16	o-3.4
Roba Creek	0016.0027	890	100	Slight	12-17	o-4.4
Rocky Canyon	5134, 5138.5214	14.715	59	Moderate	10-13	0-0.4
Rough Canyon Cr.	0053	1.025	58	Slight	12-18	o-5.4
Sage Hollow	5139. 5215, 5231, 5232, 5233. 5234	28,985	73	Moderate	12-14	o-1.4
Salt Creek	5140. 5250	4,145	70	Moderate	12-14	O-I.4
Sand Creek	5133, 5141	915	48	Moderate	12-14	o-1.4
Sand Hollow Cr.	0009, 0056	19,960	99	Moderate	11-13	o-O.4
Sanford Creek	5133, 5140, 5141	5.530	31	Moderate	11-15.4	O-2.8

Watersheds	Allotment #	Total Acres '	% BLM	Erosion Condition (SSF) ²	Estimated Precipitation (in. mean annual)	Present Estimated Runoff (in. mean annual)
Sheep Rock Cr.	0001.0053	2,645	59	Moderate	12-17	o-4.4
Soldier Creek	524695248.5249	5,350	1		13-18	0.4-5.4
Squaw Creek	5066.5067	2,140	15	Slight	10-14	o-1.4
Stevens Creek	5068	170	0		9- 12	0
Stub Creek	0001	2,050	15	Slight	12-18	0-5.4
Swamp Creek	0044	2,615	50	Slight	12-15	O-2.4
Swartz Canyon	5031, 5127, 5134	4,460	29	Slight	10-13	o-o.4
Tracy Creek	5031, 5094, 5134	3.030	26	Moderate	10-14	o-1.4
Trout Creek	0052, 0058	3,055	24	Moderate	12-18	0-5.4
Twelvemile Cr.	0013, 0020, 0021, 0036, 0042, 0056, 0071	29,480	43	Moderate	12-15	O-2.4
White Butte Cr.	0058	445	50		12-15	O-2.4
Williamson Cr.	5232.5231	20.130	53	Moderate	12-15	0-2.4
Wolf Creek	0047.0048	1,980	8		13-18	0.4-5.4
N.F. Wolf Creek	0033, 0048	1,460	50	Slight	13-18	0.4-5.4

¹ Acres were rounded to nearest 5 acre and are only acres located within allotment boundaries. ² SSF: an expression of current erosion activity that corresponds to a numerical rating developed for each erosion condition category. These categories are: stable (O-20): slight (21-40); moderate (41-60); critical (61-80); and severe (81-100).

i : (

l

1

APPENDIX J Water Quality Measurements

		Tempe	Temperature ° F			Spec.				Total	
Stream	River Mile	Air	Water	Count (Total)	Turb.	Cond.	Dis. 0 ₂ mg/1	со ₂ рн	mg /1	Alkallnity mg/1 Ca	Nitrate CO ₂ mg/1
Crooked River	59.75	63	50			185	12			100	
(lower)	65.0	60	50			180	115			90	
	71.75	59	49			180	11.5			90	
	65.0	81	59		2-3 ft.		16	8.5	4		0
	71.75	82	55		2-3 ft.	.		77	8		0
	65.0			8							
	71.75			18							
Bear Creek			(53-82) ²								
	4.25-8.0		(53-79)						**	••	
	IO28.25		(65-82) (59-82)								
			(61-84)								
	10.5	84	76			650	11			300	
	12.0	69	66			640	15			310	
	11.25	68	69			640	12	- -		300	
	10.5	68	67			660	14			300	
	2.0	68	68			640	13			320	
	12.0	85	67		clear			8.1	4		0
	11.25	85	67		clear			77	16		0
	10.5	85	62		clear		15	76	16		Ō
	2.0	90	64		clear		12	75	16		õ
	2.0	30	04	11	cieai			75			· ·
	2.0 10 F			4							
	10.5			4							
	12.0			9							
Fagle Creek	0.5		72			600					
Lugio orook	0.5	77	65			610				310	
	0.5	62	53	32	clear		5	74	28		0
Crooked River	124.7	70	69			700	12.5			350	
(upper)	124.7	85	68	58	4-5	ft.		11	74		0
(114.0	85	68	36	4-5 ft		10	7.9	24	370	0
	95.0	87	72	23	4-5 ft.		13	7.9	20	280	Ō
North Fork	6.0-8.5		(50-56)		clear						••
Crooked River	8.5-18.5		(46-74)		clear						
above pool	13.0		73		clear		1				
below riffle			73		clear		8				
end of pool	13.0		70		clear		6				
end of pool	18.0		64		clear		5-6				
side of pool					clear		1	*			
head of pool	18.0		64		clear		1				
end of pool	18.0		63		clear		8				
	12.0		05	25	clear		0				
	13.0	71	6 9	35	clear	170		-		100	
	13.0	/1	00	4.4	clear	170	12		0	100	
	13.0	80	74	11	clear		11	7.5	0		0
	18.0	64 74	57	32	clear	160		7.0 	100		
Sheen Rock Creek			(45-50)		clear				•-		
	6 25	74	53		oloui	185	12			110	
	6.25	76	46				13	78			0
	6.25	10		8				. -	 		
Committee Creek	O-2.0		(62-74)		clear						
	2.5	73	64			230	12		+-	140	
	2.5	76	51				12	78			0
	2.5			48							-
Rough Canyon	o- 75		(49-50)		clear						
Creek	0.75	77	63			215	6	6.8		120	0
	0.75			302				*-			*•
Hail Creek	2575		(44-46)		clear						
	0.75	72	65			220	10	7.5		120	0
	0 75			27							**
Fox Canyon	2546	~~	46		clear						
Creek	1.25	62	60			1/0	6			90	
	1.25	81	59	28			10	7.2	16		0

		Tempe	Temperature * F			Spec.				Told		
Stream	River Mile	Air	Water	Count (Total)	Turb.	Cond.	Die. 02 mg/1	с0 ₂ рН	mg /1	Alkailnity mg/1 Ca	Nitrate CO ₂ mg/1	
Camp Creek	4.6	61	58			435				160	-	
(main stem)	7.9	65	58		a-to ft.	440				190		
	4.6	/6 75	59				11	a.4			0	
	7.9 4.6	75	54	29			10	0.1			0	
	7.9			40								
	10.1	52	54	63	4 NTU	600	12	a.5	20	250		
Camp Creek	1.4	54	56			650	11			315		
(west)	3.0	63 59	58			790	11			380		
	4.75	30 80			clear	115	13	7.6	10		0	
	3.0	a2	62		clear		13	7.6	16		õ	
	4.75	a4	63		clear		13	77	20		0	
	1.4			41					-			
	3.0 4.75			158 118								
South Fork	O-36.0		(60-70)		clear	-				••	-	
Crooked River			(55-74)				-			0.45		
	1.4	56	59			480	7			245		
	11.6	60	64 65		rifflo	560	10			245		
	20.0	69	60		nne-	400 600	11.5			270		
	14			a9		000						
	11.6			131	-							
	20.0			25						-		
	1.4							a.5	190		0	
	11.8							8.1	190		0	
	20.0							7.6	80		0	
Paulina Creek	O-lo.65	_	(62-65) (63-67)	••• 	clear	**						
	0.0		61			220						
	0.0		61		**	220			-			
	a.5	68	54		225		10		-	130		
	0.0	75	60			210				110		
	a.5	77	55	10			11	77	12		0	
	0.0	a7	62				7		a		0	
	0.0	13	60	03				8.0				
Roba Creek	20-36		(46-52)									
	3.16	68	54		clear		10	77		100		
	3.16		75		**	145	- 5					
	3.10		57	150		170	a.5 11		12	80	0	
	0.10	70	(50.00)	100					12		Ŭ	
Indian Creek	25-2.0	76	(59-66)		clear	225						
	0.25		59			225	5			130		
	0.25	77	56	130			10	74			0	
East Burnt Log			(59-70)		clear						••	
Creek	0.25		66		••	205						
	025	78	62	200			10	76	12	170	0	
March During Lan	0.23									170		
west Burnt Log	0.15		(62-79)		clear	250						
	0.15	78	55	240		200		79	16	•-	0	
	0.25	-	•-							150		
Beaver Creek	9.25-10.9		(62-73)		clear							
	975		65			385			••			
	975		66			320						
	975	79	/1			500 205				230		
	9.75		02 65			200						
	9.75	79	69			340				160		
	9.75	73	62	212			10	75	10		0	
NF Wolf Creek	4.25		62		••							
	425	74	74		clear	120				70		
	425	78	01	14			1	6.0	16		U	

APPENDIX J (continued)

۱

Stream	River Mile	Tempera Air	iure * F Waler	Coliform count (Total)	Turb.	Spec. Cond.	Dis. 0-2 mg/1	с0 ₂ рн	mg /1	Total Alkalinity mg/1 Ca	Nitrate CO ₂ mg/1
NF Beaver Creek	6.0 6.0 6.0	61 84	64 62	39	8-10 ft. 8-10 ft.	275	7 11	7.2	20	150	0
Beaver Dam Creek	0.25 0.25 0.25	60 84	61 74	20	clear	180	10 10	7.0	8	90	0
Merwins Res ., end of dike		61	60			230	12	9.5	0	50	
Lower Merwin Res. 300 yds from mouth		61	61		60 ntu	278	7	8.2	16	110	
Price Valley Res. , end of plank		58	54	0	15 ntu	750	9	9.3	0	40	
Marshy Res at willows along dam		83	58		10 ntu	130	12	9.7	0	40	
Forest Boundary Res., at big ponderosa pine		52	52	75	9 ntu	165	10	9.1	0	10	
Reynolds Pond. at small dam		42	52	1	15 ntu	62	9	9.3	0	10	

¹ Micromohs per centimeter.

 $\ensuremath{^2}$ Numbers in parenthesis () are range of temperatures recorded.

APPENDIX K Stream Channel Stability and Fish Habitat and Estimated Trend¹

	Public		Present Stream	Present Fish	2	,	
Stream	Stream	Allotmonte	Channel Condition	Habitat Condition	Est. Trend	Species	comments
Stream		ANUTITI	o o nation	Condition	rrend		commenta
Alkali Creek	.75	5136	Poor	Poor	D	no fish	Low flows. high water temperature.
Bear Creek	9.10	5234.5232. 5241.5140.	Fair •	Poor		Rb,LpD,Bsu SpD,LnD	Low flow, siltation, high water temperature.
Bear Creek. Little	1.35	5233 5249.5232	Poor	Poor	D	no fish	exclosure improving habitat. Low flow, siltation, high water temperature
Beaver Creak	1.70	0034	Good	Fair	S	Bsu,Sq,LpD, Cch,SpD	Siltation, limited gravel, high water temp irrigation
Beaver Creek (N. Fork)	2.04	0026	Fair	Good	S	Rb.Sq,Bsu, LpD	Good stream shade , low flow, good gravel.
Beaver Creek (S. Fork)	.25	0004	Fair	Fair	S	Rb,LpD,Bsu	Irrigation withdrawal. limited
Beaverdam Creek	1.53	0026	Fair	Fair	S	Rb,LpD,Bsu	Low flow to intermittent. siltation.
Bronco Creek & tributary	1.50	0026	Good	Fair	S	Rb,LpD,Bsu	Low flow, limited pool area. high
Burnt Log Cr. (E & W Fk.)	1.06	0051	Fair	Fair	S	Rb,Sc,LpD	Low flows. good spawning gravel.
Camp Creek (main stem)	3.46	0062,0064 , 0045	Poor	Poor	D	LpD, UmD	Low flow, siltation, irrigation wtthdrawal. high water
Camp Creek (middle fork)	.30	0014	Poor	Pwr	D	no fish	Intermittent, siltation, poor bank
Camp Creek (south fork)	.50	0070 , 0009	Poor	Poor	S	no fish	Very low flow. poor bank and
Camp Creek (west fork)	4.80	0013, 0014	Poor	Poor		UmD	Siltation, low flow, limited
Committee Creek	3.50	0053	Fair	Fair		Rb	Low flow, logging damage. siltation, exclosure improving
Crooked River (lower)	6.75	5137, 5134	Excellent	Good	s	Rb.Bt.Wf. Brb. B	Siltation from Prineville Reservoir.
Crooked River (upper)	1.60		Fair	Fair	S	Rb,Sb,Csu, Sq,LnD,LpD, SpD,Chc,Brb Bsu	Irrigation withdrawal, low flow. high water temperature, siltatton.
Crooked River (N. Fork)	10.70	0053, 0050	Good	Fair	S	Rb.Sq.LpD. Bsu.Sc	High water temperature, gravel, stable
Crooked River (S. Fork)	13.75	0038, 0064, 0009, 0056, 0047	Good	Fair	D	Sq,LpD,Bsu, Chc,SpD,LnD	Streamside cover scarce. abundant
Davis Creek	2.34	0014	Fair	Fair	S	no fish	Low water temperature.
Deschutes River	7.35	5070, 5080, 5071, 5062, 5021, 5082,	Excellent	Good	S	Rb,Bt,Wf, Brb,R	Good streamside cover. irrigation withdrawal, good water quality.
Eagle Creek	2.20	5145	Fair	Pwr	S	Rb-spawning	Low flow, limited stream cover.
Fox Canyon Creek	1 75	0053	Good	Fair	s	Rb. LpD	Intergravel flow, bed-rock fails.
Hail Creek	.50	0053	Fair	Poor	S	Rb. LpD	Low flow, poor
Heisler Creak	146	0026	Good	Poor	S	Rb, LpD	tency. good stream cover, high
Higgins Creek	54	0033	Fair	Poor	S	Rb. LpD	water temperature. Intermittent flow, limtted gravel. good shade cover
	1 75	0016	Fair	P <u>.w</u> r	S	Rb,Bsu,LpD	Intermittent flow, silt- gravel
Meadow	1.16	0016, 0027	Good	Pwr	D	no fish	Intermittent flow, poor stream structure and habitat.
O'Neil Creek	25	5145	Poor	Poor	S	no fish	Low flow, siltation, poor bank condition, no structure.
Paulina Creek	1.70	0016, 0034, 0051	Fair	Poor	S	Rb.Sc.Cch, Sa.LpD Bsu	Low flow, limited
Pole Creek	50	0014	Poor	Poor	D	no fish	Siltatton. low flow. poor bank
	1.60	W27	Fair	Poor	s	Rb	Intermittent low flow, siltation.
APPENDIX K (continued)

Stream	Public Stream Miles	Allotments	Present S h a m Channel Condition	Present Fish Habitat Condition	Est. Trend	3 Species Present	Comments
Rough Canyon Creek	.75	0053	Fair	Poor	S	no fish	Intergravel flows, series of bedrock falls.
Sheep Rock Creek	.62	0053	Farr	Poor	S	Rb	Steep gradient, limited gravel, algae blooms.
Twelvemile Creek	3.75	0047, 0020	Fair	Poor	S		Intermittent flow, high water temperature.
Wolf Creek (mouth)	.14	0034	Poor	Poor	S	Bsu. LpD	Low flow, siltation, pwr banks, no shade cover.
Wolf Creek (north fork)	1.26	0033	Fair	Poor	D	Rb. LpD	Low flow, limited gravel limited pool area.

¹ Survey represents 100% of BLM perennial streams miles and 96% of Intermittent stream miles.
 ² I-Improving
 ³ Rb-Rainbow trout. Bt-Brown trout, Wt-Mountain Whitefish, Sq-Northern squawfish. Bsu-Bridgelip sucker, Sb-Smallmouth bass. Csu-Coarsescale sucker, SpD-Speckled dace, Lnd-Longnose dace, LpD-Leopard dace, Cch-Chiselmouth chub, UmD-Umatilia dace, Sc-Sculpin, Brb-Brown Bullhead. R-Roach. Ct-Cutthroat trout, Lb-Largemouth bass.

APPENDIX L. Ecological Condition by Allotment

Allot	Climax	. Late-seral	Mid-seral	Early-seral	Other
0001	0	0	765	1,407	0
0003	0	5,403	23.916	17,782	10,337
0006	0	1,892	698 1.076	318	0 164
0007	õ	0	1,070	140	0
0009	Q	1,148	29.2	3.987	2,974
0012	0	920	0.57.	0	0
0013	0	1,496	2.57:	0	1,714
0016	ŏ	235	1.472	124	0
0017	0	0	0	1,436	0
0018	0	765 -	860	2 70.	111
0020	ő	483	8.829	410	0
0021	Ō	1.774	-,		0
0022	0	4,583	2.4:	55:	39
0023	0	403 2 281	666 4 195	515	300 0
0025	ŏ	0	5,558	292	ŏ
0026	732	1,363	2.805	36	0
0027	0	U	4,535	318	U
0029	0	0	865	0	ŏ
0033	Ō	112	1.101	915	Ō
0034	0	0	0	1,968	0.44
0035	0	80	420	0	2.14:
0037	ŏ	Ő	16Ŏ	ŏ	ŏ
0038	0	0	2,687	348	õ
0039	0	0 157	612	1,030	0
Oil42	ŏ	0	4.038	351	0
0043	0	0	4,267	43	840
0044	0	10,257	85,511	27.081	8,829
0045	0	11.231	4,712	2.310	160
0048	Ō	0	0	324	Õ
0049	õ	0	163	0.05	0
0050	0	2,218	9.165	3.25:	522
0052	ŏ	120	2.211	0	ŏ
0053	100	1,346	7.56;	1.738	248
0054	83 174	797	6 302	() 1 977	0 1 500
0058	0	2.267	2.151	0	1,509
0059	0	0	454	146	10
0060	0	0	249	1.457	0 53
0064	ŏ	1.730	12.617	678	2.836
0066	0	0	0	80	0
0070	0	432	5,391	695	1,499
0072	0	4,134	1.025	95	0
0075	Ō	Õ	160	Ő	õ
0076	0	0	481	Ő	0
5001 5002	ŏ	0	120	0 40	0
5003	ō	õ	ŏ	15	õ
5004	0	0	0	18	45
5006 5007	0	U 138	107 368	0	0
5010	ŏ	0	80	0	ŏ
5018	0	892	0	Ō	0
5022	0	0	597	0	0 177
5029	0	0	403	80	0
5030	õ	221	75	0	õ
5031	0	50	1,330	129	0
5052 5050	0	423	238	U 0	0 D
5051	ŏ	68	796	0	253
5052	Ő	õ	174		0
5064	0	U	2,623	3.35:	86
5065	ŏ	2.25:	2,547	724	Ő
5066	Ō	0	358	0	ō
5067 5068	0	149	54	186	0
5069	0	59 63	103	63 0	U 0
	-		120	v	0

APPENDIX L. (continued)

Allot	Climax	Late-seral	Mid-seral	Early-seral	Other
5070	0	317	2,944	132	402
5071	0	1.545	1,334	892	98
5072	0	0	2,294	0	0 510
5073 5074	0	48	2,000 5,815	384	747
5075	ŏ	25	1,560	200	162
5078	0	Q	3,502	184	145
5079	0	0	997	2 8	0
5080	ŏ	ŏ	71	2.0,. 81	ő
5082	0	0	116	0	0
5086	0	0	0	120	0
5088 5089	0	0	185	ő	ő
5090	0	Ó	344	0	0
5092	0	717	0	0	0
5094	0	323	0	31 170	0
5096	õ	0	200	Ő	Ō
5097	0	112	80	85	0
5107 5108	0	8	114 1 124	104	0
5109	õ	ŏ	281	4.815	õ
5110	0	•	0	126	õ
5111	0	8	24	1,836	U
5112	õ	ŏ	0	4,019	ŏ
5114	0	0	2,542	109	0
5115	0	0	3,538	16	0
5110	ŏ	0	7.305	525	397
5118	Ō	Ō	7,267	0	0
5119	0	0	254	0	0
5120	0	0	2 629	13	1,291
5122	ŏ	õ	631	763	ŏ
5124	0 0	Ő	755	0	0
5125 5127	0 0	871	2.275	2,274 7,456	0
5130	ŏ	82	1,151	161	ŏ
5131	0	37	824	0	0
5133	0	673	300 5 261	10 939	1 534
5135	ŏ	1,833	3,085	2,137	0
5136	0	30	3,445	109	0
5137	79 26	14	3,786	46	0
5139	138	1.163	3.477	1,350	ŏ
5140	246	65	7,155	2.231	421
5141	0	242	4,449	2.475	0
5145	ŏ	850	2.735	1.070	111
5149	0	163	805	0	0
5176	0	270	0	80	0
5178	ŏ	346	38	206	111
5179	0	0	40	80	0
5180	0	0	42	155	0
5183	Ö	0	2 54 89	26	ő
5198	Ō	55	393	81	ŏ
5201	0	0	2,436	620	0
5206	ŏ	Ő	2.56	230	ŏ
5207	ō	0	1,004	5,349	ŏ
5208	0	6.626	2.465	10	0
5209	523	9.064	8.652	3.218	635
5211	0	673	3.807	663	180
5212	252	14,087	13.355	4.398	468
5213 5214	0	290	8.511 8.690	7,160 2 606	36
5215	ŏ	2.609	5,641	1.233	111
5216	õ	0	84	0	0
5229 5231	U	140 6 381	/U 4 577	U 428	U O
5232	57	2,055	5,018	1.497	ŏ
5233	891	295	3.380	19	40
5234	176	9,166	8,537	558	0

110

Allot	Climax	Late-seral	Mid-serai	Early-seral	Other
5235	714	19.047	9,774	249	722
5236	0	258	1,492	0	0
5237	1.859	20.477	5,238	891	0
5238	497	30.230	43.221	2.295	255
5239	10.333	13,606	1.581	27	154
5240	2.097	3.041	1,147	Ö	0
5241	_,0	1.823	6,168	ō	Ō
5242	325	4.316	1.435	169	Ō
5243	320	5 223	726		ō
5244	0	1 764	7.744	2.82	õ
5245	õ	114	9 913	208	õ
5246	õ	42	80	0	õ
5247	ŏ	13	2 988	262	õ
5248	43	363	1 813	235	ñ
5240	0	200	1 074	200	ň
5250	Ő	200	398	42	õ
5251	ŏ	3 184	3 195	29	363
5252	õ	3,104	0,100	124	ñ
5252	4 345	1 955	729	124	ŏ
0000	4.545	1,855	129	ŏ	414
9999 9999	ŏ	ŏ	ŏ	õ	11,260
TOTALS	24,010	234,657	565,928	185.499	57,483

APPENDIX - M Wildlife Habitat Interrelationships

		1	2	3	4	5	6	7	9	9 10	11	12	13	14	15	16	17
	Abun	. Juni- • Per	Wet Mea-	Bunch	Crestd Wheat	Big t- Sace	Low Sage	Other	Junip. Bitter	Bla Low	Aspen Shrub	Riper-	Min. Mahog-	Pond	Fir-li Pine	Lake	-wood
Common Name	danc	e Grass		gr	855		В	rus	h t	orush Sage Sa	ge Gras	s ian	any	Pine	Mixed	Beds	Gnu
1. Reproduces in wate	r		in														
	11											DEVD					
BLUEGILL	č											RFXP					
BRIDGELIP SUCKER	c											RFXP					
BROWN BULLHEAD	ç											RFXP					
CARP	ū											RFXP					
CHANNEL CATFISH	Ř											RFXP					
CHISELMOUTH CHUB	c											RFXP					
	U R											REXP					
LARGE SCALE SUCKER	c											RFXP					
LARGEMOUTH BASS	С											RFXP					
LEOPARD DACE	C											REXP					
NORTHERN SQUAWFISH	č											RFXP					
	U											RFXP					
PUMPKINSEED	R											RFXP					
SMALLMOUTH BASS	č											RFXP					
SPECKLED DACE	č											RFXP					
UMATILLA DACE	R											RFXP					
WHITE CRAPPIE	U											KFAP					
BULLFROG	U											RFXP					
2. Reproduces in wate	r and	d feeds	on		in	bushe	es, ar	nd/or i	n	specie	s).						
CREAT BASIN SPADEFOOT				PEYP		DEVD											EL O
NORTHERN I ONG-TOED SALAMANDER	Ř		RFXP	RFLO		RFAF		RFLO	RFLO		RFXP		RFXO	RFXO			120
PACIFIC TREE FROG	С		RFXP	RFLO		RFXO		RFXO	RFLO	RFLO	RFXP	RFXP	RFLO	RFXP	RFXP		RFLO
SPOTTED FROG	c					RFXO		DEVD	RFLO	RFLO	RFXP	RFXP		RFLO	RFLO		510
WESTERN TOAD	U		KFXP	RFLO		RFXU		REAF	RFLO	RFLO	REAF	KFAF	RFLO	RFLU	RFLO		FLO
LIFE FORM 3. Reproduces on the ground	d aro	und wate	er (or	in emerg	gent ve	egetation	, or	on floa	ting v	vegetation) an	d feeds	on th	e groun	d, and	in bus	hes. I	rees
and water (61 species).																	
COMMON GARTER SNAKE	С	RFYO	RFLO	RFXO		RFXP		RFXP			RFXP	RFXP		RFXO	RFXO		
MESTERN SKINK	U 11	RFLO	PELE	P PIO		RFLO		RFLO	RFLU	RFLO	RFAP	REXP	RFLU	KFXP	RFLP	RFI P	RFLP
AMERICAN BITTERN	Ř		RFLO	NL0								RFXP					
AMERICAN COOT	С		FXO				FXO					RFXP				RFXP	
	R		BELL								DEVD	RFXP			PEYD	ELO.	
BAIRDS SANDPIPER	Ē		RFLP	FLU							NFAF	RFLP			RFLP	120	
	U		FLO	RLP													
BLACK-BELLIED FLOVER	Ř		RFLO									RFLP				RFLP	
BLUE-WINGED TEAL	U		RFLP	RFLO								RFXP				RFXP	RFLO
	U		RFXP	DID								RFXP				FLO	
CANADA GOOSE	č		RFXP									RFXP				FXO	
CANVASBACK	R											FXP					
CINNAMON TEAL	R		RFLO	RFLO								RFXP				RFXP	RFLO
COMMON PINTAIL	c		RFXP	RFLO								RFXP				RFXP	
COMMON SNIPE	Ř		RFXP									RFXP					
COMMON YELLOWTHROAT	Ŕ		RFLO									RFXP				FLO	
FARED GREBE	8											RFXP					
EUROPEAN WIGEON	E		FLO									FLP		_		FLP	RFXO
FORSTERS TERN	R		FLO	RLP								RFLP		FLO			
GADWALL	E R		RELO	RELO								RFXP		FLU		RFXP	RFXO
GREATER SCAUP	Ü											RFXP					
GREATER YELLOWLEGS	U		RFLP									RFLP				RFLP	DEVO
GREEN-WINGED TEAL	C		RFXP	RFLO								REXP				REXP	REXO
HARLEQUIN DUCK	Ĕ		NI AI	10 20								FLP					
HORNED GREBE	Ε											RFXP					
	C C											REXP					
LESSER SCAUP	c											RFXP					
LESSER SNOW GOOSE	R		FXP									FXP				FLO	
LESSER YELLOWLEGS	U		RFLP	DEVD								RFLP				RFLP	
LONG-BILLED CORLEW	н С		RFIO	KFXP								REXP				RFXP	
MALLARD	v		RFXP	RFXO								RFXP				RFXP	RFXO
MARBLED GODWIT	E		RFLF	RLP								RFLP				RFLP	
MARSH WKEN NORTHERN SHOVELER	R 11		RFLO	REXO								REXP				FLO REY	
PIED-BILLED GREBE	Ŭ											RFXP					20
REDHEAD	U		.	-								RFXP	n		<u>-</u>		
RING-BILLED GULL RING-NECKED DUCK	U		FLO	нLР								RFXP	KFLP		FLU	EL O	
RUDDY DUCK	Ŭ											RFXP					
SANDERLING	R		RFLO				F 1 A					RFLP				RFLP	
SANDHILL GRANE	H U		RFXP	KFLÜ			FLU					RFXP				FX0 FLO	

	Real Abur	1 L. Juni- I- per	2 Wet Mea-	3 Bunch	4 Cmt Whea	5 d Big t- Sage	6 Low Sage	7 Otho	8 Junip. erBit	9 Junip. ter Big	10 Junip. Low	11 Aspen Shrub	12 Riper-	13 Mtn. Mahog	14 - Pon	15 Fir- ii d. Pir	16 ntermt Je Lake Rode	17 Grease -wood	
SPOTTED SANDPIPER TRUMPETER SWAN WESTERN GREBE WESTERN SANDPIPER	CER		RFXO FXP	сназа у		, n u	Gnu	БTU	311 -	10811 34	iye sey	Gin	RFXP FXP RFXP RFXP	• •	- 119		RFXP	8-•	
WHISTLING SWAN WHITE PELICAN WHITE-FRONTED GOOSE WILLET	U R R U		RFXP FXP RFXP										RFXP FXP FXP RFXP				FLO RFXP		
WINTER WREN	U												FXO		RFXP	RFXP			
LIFE FORM 4. Reproduces In cliffs,	U		and/or	talus an	d fee	diss on t	he gro	und or	in the	air (24	specie	S).			KI LF				
SIDE-BLOTCHEO LIZARD	с	RFLP	RFLO	RFXP F	RELO	RFXP	RFXP	RFXO	RFLO	RFXP	RFXP	,	RFLO					RFLO	
BARN SWALLOW CANYON WREN CHUKAR CLIFF SWALLOW	U U C C		FLP	FLO RFXP RFXO FLO		RFLP RFL(RFXI RFL	D RFL P FLO P FLO	P FLO RFXP FLO	FLO FLO RFLO FLP	R F L O FLP	FLO	RFLP	RFLF RFXF FXP RFLF	P FLO P FLO P FLO			FLO	FLO RFLP FLO FLO	
COMMON RAVEN FERRUGINOUS HAWK GOLOEN EAGLE	v C c	RFXP RFLO RFXO	RFXP FXP FXP	RFXP RFLP FXP	FXO FLO FLO	RFXP FLO FXP	RFXP FLO	RFXP FLO FLO	RFXP RFLO RFXO	RFXP RFLO RFXO	RFXP RFLO RFLC	RFXP	RFXP RFXO RFXP	RFXP RFXO FLO F	RFXP RFLO RFLO	RFXP FXP RFXO	RFXP FXP	RFXP RFLP	
PEREGRINE FALCON PRAIRIE FALCON ROCK DOVE	E U C	FLO RFLO	FLP FLO FLO	FLO RFXP RFXP	FLO FLO	FLO RFXP R LP	FLO RFXO RFLP	FLO RFXO	FLO RFXO	FLO RFXC	FLO RFXC	FLO FLO	FXP FXP RFLP	FLO FLO I	FLO RFLO	FLO FLO R	FLP F X P	FLO FXP	
SAYS PHOEBE TURKEY VULTURE	U C	RFLP FXO	FLO	FXP	FLO	FLP FLP RFXP	FLO FXO	FXO	FLP RFXP	RFLP P RFXP	RFLP P RFXF	RFLO • FLO	RFLP FXP	FLP FLP	RFLP RFXO	RFXO	RFLO	FLO FXO	
BOBCAT BUSHY-TAILEO WOODRAT CANYON MOUSE	U C U	RFXP RFXP RFLO	FLP	FLP FXO RFLP	FLO	RFXP FXP RFXP	RFLP FXO	RFXP FLO	RFLP RFXP RFLO	RFLP RFXP RFLO	RFLP RFXO	RFLP	RFXP FLO RFLO	RFLP	RFXO	RFLO RFXO	RFLP	RFLP FLP	
MOUNTAIN LION PALLID BAT PINON MOUSE	E R C	FLO	FLO FLO	FLP		FXO R F L RFXO	P FLO	FLO RFLO	RFLF RFLO	RFLF RFXP	FLO FLO RFLO	FLP FLO I	FXP RFLP	RFXP RFLO	RFXP	RFXP			
SMALL-FOOTED MYOTIS TOWNSEND BIG-EARED BAT WESTERN PIPISTRELLE	H H U C	RFXP	RFXO	RFLP		R F L RFXF RFLP	P FLO P RFLO	RFXP RFLO	RFXO	RFXP FLO	RFLO	RFLP	RFLP RFXP RFLP		PEVO				
LIFE FORM 5. Reproduces on the ground	d wi	thout s	pecific	water, c	liff. rí	mrock	or tal	us asso	ociation	and fe	eds on	the g	round	(37 spe	cies).				
DESERT NIGHTSNAKE	E		FLO	RFLP	FLO	RFLP	RFL	P FLO						FLO			RFLP		
GOPHER SNAKE NORTHERN PACIFIC RATTLESNAKE	C C	RFXP RFXP	RFXP FXO	RFXO RFXP	RFXC	RFXP RFXF	RFLO	0 RFXP 0 RFX	AFXP P RFX	RFXP O RFX	RFXO P RFX	D FLO	RFXP RFXP	RFXO	RFXC	FLO F	RFXP	RFLP	
SAGEBRUSH LIZARD STRIPED WHIPSNAKE WANDERING GARTER SNAKE	C R U	P F X P RFLO	RFLP	RFLO FLO RFLP		RFXF RFXF RFLO	P RFLC	RFLC RFLO	RFLP RFLP RFLP	RFLO RFLO	RFLO	RFXP	RFXP	RFLO			RFLO	RFLP	120
WESTERN FENCE LIZARD WESTERN YELLOW-BELLIED RACER	Ċ C	RFXP	FLO	RFXP RFLP	RFLC	RFXP RFLP	RFXP , RFLP	RFLO	RFLO RFLO	RFLO RFLP	RFXP RFLO		RFLP	RFLO	RFLO		RFLO	RFLP	
BOBOLINK CALIFORNIA OUAIL GRAY PARTRIDGE	R C E	RFLO	RFLP RFLO	RFXP		RFXP		RFXF RFXP	P RFLC	D RFXF	P FLO		RFLP RFXP RFLO				RFLC	FLO FLP FLO	
HORNED LARK LARK SPARROW	C C	RFLO	FLP	RFXP FLO	FXO	RFXP	RFXP RFLO			FLO	FLO		RFLP		HFLU	KFAF	FLO	RFLO	
MARSH HAWK MOUNTAIN OUAIL NORTHERN JUNCO	C R C	FLO	RFXF RFLP	P RFXP	FLO	FXP RFXF	P RFLC	RFLP RFXP RFXF	P RFLP	RFLP	RFLO	RFLP	RFLP RFXP RFLP	FLO	RFXP	RFXP	FLP	FXO RFLO	
RING-NECKED PHEASANT RUFFEO GROUSE SAGE GROUSE	U R U		FXP	RFXP FXP	FXC	RFXP RFX	P FLO	RFXP RFXP FLO		FLO	FLO	RFXP	RFXP RFXP FLP		RFXO	RFXP		FLP	
SAVANNAH SPARROW SHORT-EARED OwL TURKEY	C R R	FLO	FLO RFLC FXP	RFXP FXP FLO	FLO	RFLO FLP	RFXP FLO	FLO RFXP	RFLO	FLP RFXP	FLO	FLO RFXP	FLO RFXP FLP		RFXP	RFLO	FLO FLO	FLO	
VEERY VESPER SPARROW WATER PIPIT	н С Я	FLP	FLO FL FLO	RFLP		RFLC) RFL	P FLO		FLO		RFLO	RFLP FLO FLO	FLO			FLO FLO	FLO	
WESTERN MEAOOWLARK WILSONS WARBLER	c R	RFXO	FXP FLO	RFXP	FLO	RFXO FLO	RFXP	RFLO FLO	RFXO	RFLO	RFXO	RFLO RFLP	FLP RFLP					RFLO	
BLACK-TAILED JACKRABBIT FERAL HORSE FERAL HOUSE CAT	C A R	RFXO RFLP	FLP FXP FLP	RFXO RFLP RFLP	FLO FLO	RFXP RFXP RFXP	RFXP FLO F	RFLO RFLP I RFLO	RFXO RFLP RFLP	RFXO RFLP RFLP	RFLO RFLO	FLP	FLP FXP RFLP		RFXP	RFXP	FXP RFXO	FXP FLP RFLP	
PRONGHORN ANTELOPE ROCKY MOUNTAIN ELK	C U	RFXO	FXP FLP	FXO	FXP	RFXP FLO	RFXP FLO	RFLO	FXP	RFXP	RFXP	RFXP	RFXP	FLO FLO	FLO RFXP	RFXP	RFXP	FXP	
ROCKY MOUNTAIN MULE DEER SNOWSHOE HARE WHITE-TAILED JACKRABBIT	V Rr E	RFXP R F L O	FXP	RFXO RFXP	FXP	RFXP RFLO	FXP	RFXP FLO	RFXP FLO	RFXP FLO	FXO FLO	RFXP	FXP FLO FLP	FLO I	RFXP	R F X P RFLP	FLO FLO	FXO	
LIFE FORM 6. Reproduce1 on the ground	and	feeds	In bush	es. tree	s. or	the sir	(6 spe	icies).											
COMMON NIGHTHAWK COMMON POOR-WILL	UA	RFLP FLP	FXP FLP	FLP FLP		RFLP RFLP	RFLP RFLP		RFLO FLO	RFLP	RFLO FLO	RFLP FLO	P FLP FLP	RFLO				FLP FLP	
LINCOLNS SPARROW NASHVILLE WARBLER ORANGE-CROWNED WARBLER	C E R		51.0			RFXI	> FLO	RFXP				RFLP RFLP	RFXP RFLP RFLP			RFLP			
TOWNSEND'S SOLITAIRE	Ċ	RFXP	FLU	FLO		RFXP			RFXO	RFXP		RFXP	FXP					FLO	
PORCUPINE	С	RFXP	FLO			RFXO		RFLO	RFXO	RFXO			RFXO	RFXO	RFXP	RFXP			

APPENDIX - M (continued)

Common Marra	Reall	1 Juni-	'2 Wet Mea-	3 Bunci	4 Cresto h Whe	S t Big Int-Sage Grant i	6 LOW Sage	7 Other	8 Junip. r Bitter	9 Junip. Big	10 Junip. Low S	11 Aspen Shrub e Gras	12 Ripar-	13 Mtn. Mahog-	14 Pond Pine	15 Fir- ii Pine Mixed	16 ntermt Lake Beda	17 Grease -wood Grass
	d foo	de on th		und in	wator	or the r		snecie	⇒s).		.ge 019			ay	1.115	MIXED	5603	01000
LIFE FORM 7. Reproduces in busiles an			e grou		water			DEVD	DEVD	DEVD		DEVD	DEVD		5.0	510		
AMERICAN KOBIN BLACK-BILLED MAGPIE BLACK-CROWNED NIGHT HERON BLACK-THROATEO SPARROW REFWERS, BLACKBIRD	C R E V	FXP FXP FLO FLO	FXO FXO FLO FLO RFXP	FXO FXO FLO FLO	FXO	RFXP	FXO	RFXP RFXP RFLP FLO	RFXP	RFXP RFXD RFLO FLO	RFXO	RFXP RFLO RFLO	RFXP RFXP RFLO RFLO	RFXC	FLO	FLO	FLO RFLO RFXP	FLP FLP
BREWERS SPARROW BROAD-TAILED HUMMINGBIRD BROWN-HEADED COWBIRD	U R C		FLP RFXP	FLO FLO		RFXP RFLO	FLO	RFLP RFLO FLO	RFLO	R F L P	FXO	RFLP	FLO RFLP RFXP		RFXO	RFXO	RFXO	FLO FLP
CALLIOPE HUMMINGBIRD CHIPPING SPARROW COMMON REDPOLL EASTERN KINGBIRD	н U R U	FLO FLO FLP	FLP FLO	FLO FLO FXP		RFLP RFXP		RFLO	RFLO RFXP	RFLP RFLP FLP RFXP	RFLO RFXO	RFLP	RFLP	RFLO	FLO RFLO FLP	R F L C FLP	FLO	FLO FLO
FOX SPARROW GRAY FLYCATCHER GREEN-TAILEO TOWHEE LAZULI BUNTING	U R R			FLO		RFXP RFLP	FLO	FLO RFLO I RFLO	R F L P RFLP	R F X RFXP FLO	P FLO	FLO R F L I R F L I R F L I	RFLP PRFI DFLO RFLP	FLO F L P FL(R F X P D FLO FLO	RFXP		FLP FLP
LESSER GOLDFINCH LOGGERHEAD SHRIKE MACGILLIVRAYS WARBLER	R C U	FLO	FLO	FLO	FLO	RFLP	RFLC	REXO RFLO	RFLC) RFLF	P RFLC	RFLP FLO RFXP	RFXP FLO RFXP	FLO	FLO			RFLP
NORTHERN SHRIKE RED-WINGED BLACKBIRD RUFOUS-SIDED TOWHEE SAGE SPARROW	C V R U	FLO	FLÖ RFXP	FXP	FXO RFXF	FXP RFLP RFXO	FLO RFLC	FLP RFLO RFLO	FLO RFLP	FLP RFLO RFXO	FXC) FLO	FLO RFXP RFXP	FLO	FLO	FLO RFLO	FLO I RFXP FLO	rfxp fl0
SAGE THRASHER SONG SPARROW SWAINSONS HAWK SWAINSONS THRUSH THEE SDABDOW		FLO RFXP	FLO FXP	FLO FXP	FLO	RFXP RFXP FLO FLO	FLP RFLP FLP	FLO FLO FLO	RFLF RFXP RFLO	RFLI RFXP RFXP	P FXO	R F L FLO RFLP RFLP	RFLP RFXP RFXP	P FLU	RFLO RFLP	FLÓ RFLO RFLP	RFLO	FLP FLO FLO
WHITE-CROWNED SPARROW YELLOW-HEADED BLACKBIRD	C C	FLO	FXO	rtu		RFXP		RFXP		FXP	FXO		RFLO RFXP				R F L C RFXO	FLO
LIFE FORM 8. Reproduces in bushes an	d fee	ds in tr	ees, b	ushes, o	or the	5	species	5).										
AMERICAN GOLDFINCH BUSHTIT DUSKY FLYCATCHER YELLOW WARBLER YELLOW-BREASTED CHAT				FLO FLO		FLO FLP		R F L (FLO RFLO RFLO	O FLO RFLO RFLP FLP	FLO RFLP RFLP FLP	RFLO	RFLP RFLF RFXP FLO	RFXP RFLP FLO RFXP RFLP		RFXO FLO FLO	rflo flo		FLO FLP FLO FLO FLP
LIFE FORM g. Reproduces primarily in	decidu	ious tree	es and	i teeds	in tre	es, bush	es, or	the air										
AMERICAN REDSTART BOHEMIAN WAXWING CEDAR WAXWING HOUSE FINCH NORTHEEN OPIOLE	e F U C D							R F L I RFLP	FLO P FLO	FXP FXP FLP	FLO FLO I	RFLP FLP RFLP RFLF RFLF	RFXP FLP RFLP RFLP RFLP		FLP FLO	FLO FLO		FLO
LIFE FORM 10. Reproduces primarily in	con	i fers an	d feed	s in tre	es. bu	shes. or	the a	_{ir} (12 s	Species).	. 20 .				. 20	120		
BLACK-THROATEO GRAY WARBLER CLARKS NUTCRACKER GOLDEN-CROWNEO KINGLET OLIVE-SIDEO FLYCATCHER	R E R	RFLO				FXO		RFLP	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RFLP		RFLO FLO FLO	FLP		RFXP FLP RFLP	RFLP RFXP RFLP RFLP	RFLO	
PINYON JAY RED CROSSBILL RUBY-CROWNED KINGLET TOWNSENOS WARBLER						FXO			RFXF	P RFXF	P RFLC	FLO FLO	FXP RFLO		FLO FLP FLP FLP	RFXP RFXP RFLP		FLO
VESTERN FLYCAICHER WESTERN TANAGER YELLOW-RUMPEO WARBLER	U U U								FLO	FLO		RFXP FLO	RFXP		RFXP FLO	RFXP		FLU
LIEF FORM 11 Reproduces in conifers of	decid	tuous tr	ees an	d feed	s in	trees. in	bush	ies on	the ar	ound a	or ift the	air	120		NI XI	NI AI		
BLACK-HEAOEO GROSBEAK CASSINS FINCH COMMON CROW	U R U		FLO	FLO			2001	FLO	RFLO R F L O	RFLO R F X (D FLO	R F L F FLO FLP	RFLP RFLP RFXP		RFLP RFLF RFXP	RFLP RFLF RFXP	• FLO	RFLO
COOPER'S HAWK EVENING GROSBEAK GOSHAWK GRAY JAY HAMMONOS ELYCATCHER		fin		មក					FLO FLO FLO	FLO FXO FLO FLO	FLO FLO FLO I	FXP FLP RFXP FLO RFLP	RFXP RFXP FXP FLO FLO	FLO	RFXP RFXP RFXP RFXP RFXP	RFXP RFLP RFXP RFXP RFXP		
LONG-EARED OWL MERLIN MOURNING DOVE PINE GROSBEAK	R E V	RFXP	FLO FLO FLO FLO	R F X P FXP FXP	FLO			FL0	RFLO RFXP	RFXP FLO RFXP	RFLC	RFXP FLO RXP FLO	RFXP FLP RXP RFLP	FLO	FLO FLP RFLO RFXP	R F L O R F L P R F L P		FLO RFXO
PIRESISKIN PURPLE FINCH RED-EYED VIREO RUFOUS HUMMINGBIRD SHARP-SHINNED HAWK			FLO FLO	FLO FLO				FLO	RFLO FLO	RFXO FLO	FLO	FLO FLO RFLP RFXF FXP	FLP RFLP RFLP FLP FLP FXP	FLO	RFLP RFLP FLO RFXP RFXP	RFLP RFLP RFLP RFLP		FLO
SOLITARY VIREO STELLERS JAY VARIED THRUSH WARBLING VIREO								FLO	FLO	FXO	FXO	FLP FLO FLP RFLP	FLP R F L O RFLP	FLP	FLP RFXP RFXP FLO	RFLP RFXP		
WESTERN KINGBIRD WESTERN WOOD PEEWEE WILLOW FLYCATCHER	U U U	FLO		FLO FLO		RFXP	FLO	RFLO I	RFLO	RFXP FLO FLO	RFXO FLO I FLO	RFXP RFXP R F L	RFXP RFXP P FLP		RFLP RFLP	RFLP RFLP		FLO FLO
HOARY BAT	£								RFLC	RFLO	RFLO	RFLP	RFLP		RFLP	RFLP		FLO

Common Name	Real danc	1 t.Juni- aeGnu	2 Wet Mea dow	3 - Bu Grass o	4 Cresto nch 1 Sarass G	5 5 Big Whedt- iress Gr	6 Low Sege S ass Bru	7 age Oti ish -bru	5 Junip. her Biti ish Sag	9 Junip. Ier Big e Sag e	10 Junip. Low	11 Aspen 1 u	12 Ian	13 Mtn. Mehog-	14 Pond Pine	15 Fir- I Pine Mixed	16 ntermt Lake Beds	17 Greese -wood Grees
LIFE FORM 12 Penroduces on very th	ick br	anches	and for	de on	the g	round c	r in w	ator (1	eneci	(20				•				
LIFE FORM 12. Reproduces on very in		anches			une gi	round d	or in w	ater (1	o speci	es).		51.0	EVE		51.0	5.0		
COMMON EGRET	E	FXO	FLP	FXP						FAP		FLO	FLP		FLU	FLO	FLO	FLU
GOLDEN EAGLE GREAT BLUE HERON	C U	RFXO	FXP FXP	FXP	FLO	FXP	FLO	FLO	RFXO	REXO	RFLC	RLP	RFXP	FLO	(FXO	RFXO	FXP FLO	RFLP FLO
GREAT HORNED OWL GREEN HERON	C E	RFXO	FLO FLP	FLP	FLO	FLP	FLO	FLO	RFLO	RFXO	FLO F	RFXP	RFXP FIP	FXO	RFXP	RFXP	FLO FLO	RFLP
OSPREY	Ř	DEVD	- <u>-</u> .	EVD	EVO	EVD	EVO	51.0	DEVD	DEVD	PEVO	DEVD	AFXP		RXP	RLO	EVD	EVD
ROUGHLEGGED HAWK SNOWY EGRET	C E	FLO	FLP FLP	FLP	FXU	<u>F</u> LO	1.00	FLO			KI XO	FLO	FLP FLP	100	FLO	FLO	FLO	FLO
LIFE FORM 13. Reproduces in own hole	exca	vated in	tree a	nd fee	dissin t	trees, ir	h bushe	es, on	the gro	und, o	r in the	e air (1	3 spec	ies).				
ELACKBACKEDTHREETOED																		
WOODPECKER COMMON FLICKER	R C	RFXP		FXO		FXO	FXO	FXO	RFXP	RFXP	RFXP	RFXF	RFX	P FLO	FLP RFXP	RFXP RFXO	FLO	FLP
DOWNY WOODPECKER	U									RFLO		RFXP	RFXP		FLO REYP	REID		
LEWIS WOODPECKER	Ü	RFLO							RFLO	RFXO		RFXP	RFXP		RFXP	RFXP		
PILEATED WOODPECKER	E														RFXP	RFXP		
PYGMY NUTHATCH RED-BREASTEDNUTHATCH	R											FLP			RFXP FXP	RFXP RFXP		
RED-NAPPED SAPSUCKER WHITE-BREASTED NUTHATCH	C R											RFXP	RFXP		RFXP RFXP	RFXP RFXP		
WHITE-HEADED WOODPECKER	R											RLP	REXO		RFXP RFLP	RFXP		
LIFE FORM 14 Reproduces in a hole m	nade h	v anoth	er snec	ies or	Inan	atural h	ole an	d feeds	on th	e arour	nd in v	vater o	r the	air (36	specie	s).		
	1000 D			EVD	EVO	FYP		FYP	REYP	REYP	REXO	REY(REXO	RIO	EVD	
AMERICAN RESTREE ASH-THROATEO FLYCATCHER	Ŭ		1.0	FLO	FX0	I AI	FAU		RFLP	AFXP		RFLP	RFLP	1 120	RFLO		FAP	FLO
BARN OWL BARROWS GOLDENEYE	R	RFLO	FLP	rlu	FLO			FLU	RFLU	RFLP	RFLU	RFLP	REXP		RLO	RFLO	FLO	
BLACK-CAPPED CHICKADEE BROWN CREEPER	R U					FLO		FLO		RFLO		RFXP RFXO	RFXP RFLO		RFXO RFXP	RFXP		
BUFFLEHEAD COMMON GOLCENEYE	U												RFXP	R 10		R LO		
	c												RFXP		DEVD			
HOODED MERGANSER	R			-									RFXP		RLO	RLO		-
HOUSE SPARROW HOUSE WREN	С	RFXP		FLO		RFLP		FXP	REXP	REXP	REXO	RFXP	RFXP		RFXP	RFLP		FLO
MOUNTAIN BLUEBIRD MOUNTAIN CHICKADEE	C C	RFXP	FXP	FXP	FXO	FXP	FLO	FLO FLO	RFXP	RFXP FXO	RFXO FLO	RFXP RFXP	RFXP RFXP	FXO	RFXO RFXP	A LO RFXP		FL?
PIGMY OWL	Ř	RFLP	FL3					FLO		RFLP	RFLO	RFLP	RFLP		RFLP	RFLP		
SAW-WHET OWL	Ř	DEVD		51.0						DEVE		RFLP	RFLP		RFXP	RFLP		
STARLING	N V	RFXP	FLP	FLP			FLP	FLP	RFLO	RFXP	RFLO	RFXP	RFXP		FLU			FLO
TREE SWALLOW VAUXS SWIFT	C U	RFLO	FXP FLP						RFXO	RFXF	P FLO	RFXP RFLO	RFXP RFLP		RFXO RFLP	RFXO RFLP		FLO
VIOLET-GREEN SWALLOW	C	RFIP	FXP FLP	FI P	FLO	FXP	FLO	FLO	RFIP	REXP	RFLO	RFXP RFXP	RFXP RFXP	ELO.	RFXO	1 0	FLO	FLP
WOODDUCK	Ř										10.20	RLO	RFXP		RLO	RFLO		
BIG BROWN BAT	R	RFLO	FLP						RFLC	RFLC	RFLO	FLP	FLP		RFLP	RFLP	FLO	FLP
FRINGED MYOTIS	R	RFLO	FLF						RFLO	RFLO	RFLO	FLP	FLP	RFLP	KFLF	RFLP	FLO	FLP
LITTLE BROWN MYOTIS LONG-EARED MYOTIS	R R	RFXP FLP							FLP	RFLP FLP	RFLO FLO	FLP FLP	FLP FLP	FLO	RFLP RFLP	RFLP	FLO	FLP FLP
LONG-LEGGED MYOTIS MARTEN	R E	FLP	FLP						FLP	FLP	FLO	FLΡ	FLP		RFLF	RFLF	P FLO RFXP	FLP
NORTHERN FLYING SOUIRREL	A		FLO									REXP	REXP		RFXP	RFXP RFXP		FLO
SILVER-HAIRED BAT	Ř	FLO	FLP						FLO	FLO	FLO	FLP	FLP		RFLF	RFLF	FLO	FLP
LIFE FORM 15 Paproducos In a burrow			I and f	oode o	n tha	around	or up	dor it	(22 600		FLO		KILI				10	L L L
	w una	erground		eeus o	n the	ground	or un		(ss spe	icies).								
	н 		KFLF	DEVE			DEVO		E L O	51.0			AFLF		FLO	X F L F		51.5
	U	RFLO	DEVO	RFAF	, KLY		RFXC		FLO	FLUI	RFLO	DEVE	EVD		DEVO	DEVO		FLP
BELDING GROUND SQUIRREL	V	RFXP	RFXD	RFXP	RFXO	RFXO	FXU	RFXP	RFXP	RFXP	RFXU	RFXP	RFXP		RFXU	RFXC	FLO	FLO
BLACK BEAR COAST MOLE	R		FLO RFLP	RFLP				FLO				FLP RFLP	FLP RFXP		RFLP RFLP	RFXP RFLP		
COYOTE DARK KANGAROO MOUSE	V F	FXO	FXP	FXP	FXO	RFXP RFI P	RFXO	RFXP	RFXP	RFXP RFI P	RFXO	RFXP	RFXP	RFXO	RFXP	RFXP	RFXO	RFXP
DEER MOUSE	V	RFXP	RFXP	RFXP RFXP	RFXO	RFXP	RFXO	RFXP	RFXP	RFXP	RFXO RFYP	RFXP	RFXP	RFXO	RFXP	RFXO RFYP	RFXO	RFXP
GREAT BASIN POCKET MOUSE	Ċ	RFXP		//		RFXP	RFXO		RFXP	RFXP	RFXO		LU		IN AP	IN AF		RFLP
HOUSE MOUSE	E C		RFXP					RFCP					RFLP				KFLP	
LEAST CHIPMUNK LONG-TAILED VOLE	U E	RFLO RFLO	RFLP	RFLO		RFXP	RFLO		RFLO	RFLP	RFLO	RFLP	RFLP		RFLO	RFLO		RFXP RFLO
LONGTAIL WEASEL MERRIAM SHREW	U E	RFLP	RFLO	RFLO	FLO I	RFLP # RFLP	LO RE	FLP R RFLO	FLP R	FLP R	FLO F	RFXP	RFLP		RFLO	RFLC	FLO	FLO

APPENDIX - M (continued)

	Realt.	1 Juni-	2 Wet	3 Bunch	4 Crestd	5 Big Sace	6 LOW	7 Other	6 Junip. Bitter	9 Junip. Bla	10 Junip.	11 Aspen Shrub	12 Biner-	13 Mtn. Meboga	14 Pond	15 Fir- Pine	16 Intermt	17 Grease
Common Name	dance	Grass	dow	Grass	grass	Grass	Grass	Bru	sh	-brush	Sage S	age Gr	ass len	• •	Pine	Mixed	Beds	Grass
MONTANE VOLE MOUNTAIN COTTONTAIL NORTHERN GRASSHOPPER MOUSE	c C	RFXP	RFXP FXP	RFXP FXP	FLO	RFXO RFXP RFLP	RFXO	RFXP	RFLO RFXP	RFLO RFXP RFLP		RFXO RFXF	RFXP P RFX	P FLO				RFLO RFXO
NORTHERN POCKET GOPHER ORD KANGAROO RAT	v C C	RFXP RFXO	RFXP	RFXP	RFXO RFXO	RFXP RFXP RFXO	RFXO	RFXO	RFXP RFXO RFLO	RFXP RFXP RFXP	RFXO	RFXP	RFXP	RFXO RFLO	RFXP	RFXP	RFXO	RFLO RFXP
PINGIN MODE PYGMY RABBIT SAGEBRUSH VOLE	Ĕ			RFLP		RFLP RFLP			RFLO	RFLP	RFLO	DEVO			DEVE	DEVD		
SHORTTAIL WEASEL SOUTHERN RED-BACKED MOUSE SPOTTEDSKUNK	8 8							RFLP				RFLP	RFLP		RFLO RFLO	RFLP RFLO		RFLO
STRIPED SKUNK TOWNSEND GROUND SQUIRREL VAGRANT SHREW	U C U	RFXP	RFXP RFXO R F X	RFXP P	RFXO	RFXP	RFXO	RFLP	RFXP	RFXP	RFXO	RFLP	RFXP RFXO RFLP					RFLO
WESTERN HARVEST MOUSE YELLOW-PINE CHIPMUNK	U C	RFXP		RFXP		RFXP R F X F	P FLO	RFLP	RFLO RFXP	RFXP RFXP	RFXO	RFXO	RFXP RFXP	RFLO	RFXP	RFXP		RFXP
LIFE FORM 16. Reproduces in a burrow	unde	rground	and f	eeds in	the ai	r or in	water	(9 spe	ecies).									
BANK SWALLOW BELTED KINGFISHER ROUGH-WINGED SWALLOW	C U C												RFXP RFXP RFXP					FLO FLO
BEAVER MINK MUSKRAT RIVER OTTER WATER SHREW WATER VOLE	С С С Е Е Е	FXO	FXO			FXO		FLO	FXO	FXO		FXP	RFXP RFXP RFXP RFXP RFLP RFLP					

	Relative Abundance		
V	Common in this area.	R	Species reproduces in this type of habitat
С	Common in this area.	F	Species feeds in this type of habitat.
υ	Uncommon I" this area	L	Species orientation determined from literature
R	Rare in this area	Х	Species orientation determined from observation
ε	Extremely rare in this area	P	Species prefers this type of habitat.
		0	Species occasionally uses this type

.

APPENDIX N

Department of Transportation STATE HISTORIC PRESERVATION OFFICE

Parks and Recreation Division

525 TRADE STREET S.E., SALEM, OREGON 97310

January 29, 1982

In Reply Refer to File No

PAUL W ARRASMITH PRINEVILLE BUREAU OF LAND MANAGEMENT PO BOX 550 PRINEVILLE OR 97754

Dear Mr. Arrasmith:

RE: Brothers Grazing EIS Inventory Adeqaucy Menorandum of Agreement

We have a copy of the Brothers Cultural Resource Overview (Class 1 Inventory) by Toepel and Beckham. The report adequately gives an overview of the existing history of archeology and cultural resources. We do not have a copy of the Joanne Mack Glass Butte Survey (that I can find) so we cannot comment on the adequacy of the inventory.

The Prineville BLM is one of the few districts sending the State Historic Preservation Office Class 3 negative reports. These are valuable documents for evaluating site densities and distributions for our site file and we appreciate the effort.

The two percent sample, derived from project-related CRM surveys, is not adequate for making predictive statements for large land areas. Based on the data available, predictive models for site densities and distribution or patterns would necessarily be at a gross level, with wide confidence intervals.

This is not a criticism of the CRM program for the Prineville BLM merely a fact derived from limited manpower, funding and capabilities of CRM within the legal and regulatory system Predictive models are necessarily based on systematic sampling and a cultural resource program is necessarily responsive to the demands of ground disturbing activities rather than systematic research. My best guess on site densities, based on an overview distribution map for sites with permanent site file numbers, would be five to six plus or minus three sites per square mile in the basin and range province, and two to three plus or minus three sites per square mile in the high lava plains province. This is a <u>guess</u> based on limited data from the entire region, and may be wrong by orders of magnitude.

Sincerely,

all Lo

Leland Gilsen SHPO Staff Archeologist

117

APPENDIX 0 Species List

Common Name

American pillwort alder alkali muhly antelope bitterbrush aspen aster basin big sagebrush basin wild ryegrass big sagebrush biscuitroot bitterbrush black greasewood bluebunch wheatgrass bluegrass bracken fern buckwheat Columbia cress cattail cheatgrass chokecherry cleftleaf sagebrush cottonwood crested wheatgrass curlleaf mountain mahogany Douglas fir Douglas' wormwood early low sagebrush elk sedge erigeron fescue giant wildrye gooseberry greasewood green rabbitbrush green-tinged Indian paintbrush horsetail Idaho fescue intermediate wheatgrass iunegrass juniper Kentucky bluegrass long-bearded mariposa lily low sagebrush lupine mahogany mountain big sagebrush mountain brome muhlenbergia needle and thread grass needlegrass nomad alfalfa Oregongrape Palmer's onion Peck's milkvetch Peck's penstemon paintbrush phlox pinegrass

Scientific Name

Pilularia americana Alnus spp. Muhlenbergia richardsonis Purshia tridentata Populus tremuloides Aster spp. Artemisia tridentata ssp. tridentata Elymus cinereus Artemisia tridentata Lomatium spp. Purshia tridentata Sarcobatus vermiculatus Agropyron spicatum Poa spp. Pteridium aquilinum Eriogonum spp. Rorippa calcyna var. columbiae Typha spp. Bromus tectorum Prunus spp. Artemisia arbuscula ssp. thermopola Populus trichocarpa Agropyron cristatum Cercocarpus ledifolius Pseudotsuga menziesii Artemisia ludoviciana ssp. nova Artemisia longiloba Carex geyerii Erigeron spp. Festuca spp. Elymus cinereus Ribes spp. Sarcobatus vermiculatus Chrysothamnus viscidiflorus Castilleja chlorotica Equisetum spp. Festuca idahoensis Agropyron intermedium Koeleria cristata Juniperus occidentalis Poa pratensis Calochortus longebarbatus var. peckii Artemisia arbuscula Lupinus spp. Cercocarpus spp. Artemisia tridentata ssp. vaseyana Bromus inermis Muhlenbergia spp. Stipa comata Stipa spp. Medicago sativa Berberis repens Allium bisceptrum Astragalus peckii Penstemon peckii Castilleja spp. Phlox spp. Calamagrostis rubescens

ponderosa pine rabbitbrush rabbitsfoot grass rush rve grass Sandberg's bluegrass sagebrush lily sagegrush saltgrass sedge serviceberry silver sagebrush snowberry squirreltail grass stiff sagebrush Thurber's needlegrass thickspike wheatgrass threadleaf sedge timothy vetch Wyoming big sagebrush wax currant western juniper wheatgrass whiplash willow white fire willow wire rush

01 BLACK CRAPPIE 01 BLUEGILL 01 BRIDGELIP SUCKER 01 BROWN BULLHEAD 01 BROWN TROUT 01 CARP 01 CHANNEL CATFISH 01 CHISELMOUTH CHUB 01 CUTTHROAT TROUT 01 KAMLOOP TROUT 01 LARGE SCALE SUCKER 01 LARGEMOUTH BASS 01 LEOPARD DACE 01 LONGNOSE DACE 01 NORTHERN SQUAWFISH 01 PIUTE SCULPIN 01 PUMPKINSEED 01 RAINBOW TROUT 01 SMALLMOUTH BASS 01 SPECKLED DACE 01 UMATILLA DACE 01 WHITE CRAPPIE

Pinus ponderosa Chrysothamnus spp. Polypogon monspeliensis Juncus spp. Elymus spp. Poa sandbergii Calochortus spp. Artemisia spp. Distichlis stricta Carex spp. Amelanchier spp. Artemisia cana Symphoricarpos spp. Sitanion hystrix Artemisia rigida Stipa thurberiana Agropyron dasytachyum Carex filifolia Phleum spp. Vicia spp. Artemisia tridendata ssp. wyomingensis Ribes cereum Juniperus occidentalis Agropyron spp. Salix caudata Abies concolor Salix spp. Juncus spp.

FISH

POMOXIS NIGROMACULATUS LEPOMIS MACROCHIRUS CATOSTOMUS COLUMBIANUS ICTALURUS NEBULOSUS SALMO TRUTTA CYPRINUS CARPIO ICTALURUS PUNCTATUS ACROCHEILUS ALUTACEUS SALMO CLARKI SALMO GAIRDNERI KAMLOOPS CATOSTOMUS MACROCHEILUS

RHINICHTHYS FALCATUS RHINICHTHYS CATARACTAE

CO-I-I-US BELDINGI LEPOMIS GIBBOSUS SALMO

RHINICHTHYS OSCULUS RHINICHTHYS OSCULUS UMATILLA POMOXIS ANNULARIS

AMPHIBIANS

01 BULLFROG
02 BREAT BASIN SPADEFOOT
02 NORTHERN LONG-TOED SALAMANDER
02 PACIFIC TREE FROG
02 SPOTTED FROG
02 WESTERN TOAD

SCHAPHIOPUS INTERMONTANUS AMBYSTOMA HYLA REGILLA RANA PRETIOSA BUFO BOREAS

REPTILES

03 COMMON GARTER SNAKE
05 DESERT NIGHTSNAKE
05 GOPHER SNAKE
05 NORTHERN PACIFIC RATTLESNAKE
05 PIGMY HORNED LIZARD
15 RUBBER BOA
05 SAGEBRUSH LIZARD
04 SIDE-BLOTCHED LIZARD
05 STRIPED WHIPSNAKE
05 WANDERING GARTER SNAKE
05 WESTERN FENCE LIZARD
03 WESTERN SKINK
05 WESTERN YELLOW-BELLIED RACER

THAMNOPHIS SIRTALIS HYPSIGLENA TORQUATA DESERTICOLA PITUOPHIS MELANOLEUCUS CROTALUS VIRIDIS OREGANUS PHRYNOSOMA DOUGLASSI DOUGLASSI CHARINA BOTTAE SCELOPORUS GRACIOSUS UTA STANSBURIANA

THAMNOPHIS ELEGANS VAGRANS SCELOPORUS OCCIDENTALIS EUMECES SKILTONIANUS COLUBER CONSTRICTOR MORMON

BIRDS

03 AMERICAN AVOCET 03 AMERICAN BITTERN 03 AMERICAN COOT 03 AMERICAN DIPPER 08 AMERICAN GOLDFINCH 14 AMERICAN KESTREL 09 AMERICAN REDSTART 07 AMERICAN ROBIN 03 AMERICAN WIGEON 14 ASH-THROATED FLYCATCHER 03 BAIRDS SANDPIPER 12 BALD EAGLE 16 BANK SWALLOW 14 BARN OWL 04 BARN SWALLOW 14 BARROWS GOLDENEYE 16 BELTED KINGFISHER 03 BLACK TERN 03 BLACK-BELLIED PLOVER 07 BLACK-BILLED MAGPIE 14 BLACK-CAPPED CHICKADEE 07 BLACK-CROWNED NIGHT HERON 11 BLACK-HEADED GROSBEAK 03 BLACK-NECKED STILT 10 BLACK-THROATED GRAY WARBLER 07 BLACK-THROATED SPARROW 13 BLACKBACKED THREETOED WOODPECKER RECURVIROSTRA AMERICANA BOTAURUS LENTIGINOSUS FULICA AMERICANA CINCLUS MEXICANUS

FALCO SPARVERIUS SETOPHAGA RUTICILLA TURDUS MIGRATORIUS ANAS AMERICANA

CALIDRIS BAIRDII HALIAEETUS LEUCOCEPHALUS

TYTO ALBA

BUCEPHALA ISLANDICA MEGACERYLE ALCYON CHLIDONIAS NIGER SQUATAROLA SQUATAROLA PICA PICA

PHEUCTICUS MELANOCEPHALUS HIMANTOPUS MEXICANUS DENDROICA NIGRESCENS AMPHISPIZA BILINEATA

03 BLUE-WINGED TEAL 05 BOBOLINK 09 BOHEMIAN WAXWING 07 BREWERS BLACKBIRD 07 07 BREWERS BROAD-TAILED SPARROW HUMMINGBIRD 07 14 BROWN-HEADED BROWN CREEPER COWBIRD 14 BUFFLEHEAD **15 BURROWING OWL** 08 BUSHTIT 03 CACKLING GOOSE 03 CALIFORNIA GULL 05 CALIFORNIA QUAIL 07 CALLIOPE HUMMINGBIRD 03 CANADA GOOSE 03 CANVASBACK 04 CANYON WREN 11 CASSINS FINCH 09 CEDAR WAXWING 07 CHIPPING SPARROW 04 CHUKAR 03 CINNAMON TEAL 04 10 CLARKSC L ! F FSWALLOWNUTCRACKER 11 COMMON CROW 12 COMMON EGRET **13 COMMON FLICKER** 03 14 COMMON COMMON GOLDENEYE LOON **14 COMMON MERGANSER** 06 COMMON NIGHTHAWK 03 COMMON PINTAIL 06 COMMON POOR-WILL 04 COMMON RAVEN 07 COMMON REDPOLL 03 COMMON SNIPE 03 COMMON YELLOWTHROAT 11 COOPER'S HAWK 03 DOUBLE-CRESTED CORMORANT 13 DOWNY WOODPECKER 08 DUSKY FLYCATCHER 03 EARED GREBE 07 EASTERN KINGBIRD 03 EUROPEAN WIGEON **11 EVENING GROSBEAK** 04 FERRUGINOUS HAWK 14 FLAMMULATED OWL 03 FORSTERS TERN 07 FOX SPARROW 03 FRANKLINS GULL 03 GADWALL 04 GOLDEN EAGLE 12 GOLDEN EAGLE

BOMBYCILLA GARRULUS EUPHAGUS CYANOCEPHALUS SPIZELLA BREWERI SELAPHORUS PLATYCERCUS CERTHIA FAMILIARIS MOLOTHRUS ATER BUCEPHALA ALBEOLA ATHENE CUNICULARIA

BRANTA CANADENSIS MINIMA LARUS CALIFORNICUS LOPHORTYX CALIFORNICUS STELLULA CALLIOPE BRANTA CANADENSIS AYTHYA VALISINERIA CATHERPES MEXICANUS CARPODACUS CASSINII BOMBYCILLA CEDRORUM SPIZELLA PASSERINA ALECTORIS CHUKAR ANAS CYANOPTERA

PETROCHELIDON PYRRHONOTA CORVUS BRACHYRHYNCHOS

COLAPTES AURATUS BUCEPHALA CLANGULA

MERGUS MERGANSER CHORDELES MINOR ANAS ACUTA PHALAENOPTILUS NUTTALLII CORVUS CORAX CARDUELIS FLAMMEA CAPELLA GALLINAGO

ACCIPITER COOPERII PHALACROCORAX AURITUS PICOIDES PUBESCENS

TYRANNUS TYRANNUS ANAS PENELOPE HESPERIPHONA VESPERTINA BUTEO REGALIS OTUS FLAMMEOLUS STERNA FORSTERI PASSERELLA ILIACA LARUS PIPIXCAN ANAS STREPERA AQUILA CHRYSAETOS AQUILA CHRYSAETOS

10 GOLDEN-CROWNED KINGLET 11 GOSHAWK 07 GRAY FLYCATCHER 11 GRAY JAY 05 GRAY PARTRIDGE 12 GREAT BLUE HERON 12 GREAT HORNED OWL 03 GREATER SCAUP **03** GREATER YELLOWLEGS 12 GREEN HERON 07 GREEN-TAILED TOWHEE 03 GREEN-WINGED TEAL 13 HAIRY WOODPECKER 11 HAMMONDS FLYCATCHER 03 HARLEQUIN DUCK 05 HERMIT THRUSH 14 HOODED MERGANSER 03 HORNED GREBE 05 HORNED LARK 09 HOUSE FINCH 14 HOUSE SPARROW 14 HOUSE WREN 03 KILLDEER 05 LARK SPARROW 07 LAZULI BUNTING 03 LEAST SANDPIPER 07 LESSER GOLDFINCH 03 LESSER SCAUP 03 LESSER SNOW GOOSE 03 LESSER YELLOWLEGS 13 LEWIS WOODPECKER 06 LINCOLNS SPARROW 07 LOGGERHEAD SHRIKE 03 LONG-BILLED CURLEW 03 LONG-BILLED DOWITCHER 11 LONG-EARED OWL 07 MACGILLIVRAYS WARBLER 03 MALLARD 03 MARBLED GODWIT 05 MARSH HAWK 03 MARSH WREN 11 MERLIN 14 MOUNTAIN BLUEBIRD 14 MOUNTAIN CHICKADEE 05 MOUNTAIN QUAIL 11 MOURNING DOVE 06 NASHVILLE WARBLER 05 NORTHERN JUNCO 09 NORTHERN ORIOLE 03 NORTHERN SHOVELER 07 NORTHERN SHRIKE 13 NORTHERN THREETOED WOODPECKER 10 OLIVE-SIDED FLYCATCHER 06 ORANGE-CROWNED WARBLER

REGULUS SATRAPA

EMPIDONAX WRIGHTII PERISOREUS CANADENSIS PERDIX PERDIX ARDEA HERODIAS BUBO VIRGINIANUS AYTHYA MARILA TRINGA MELANOLEUCA

PIPILO CHLORURA ANAS CRECCA PICOIDES VILLOSUS EMPIDONAX HAMMONDII HISTRIONICUS HISTRIONICUS CATHARUSGUTTATUS LOPHODYTES CUCLLATUS

EREMPOPHILA ALPESTRIS CARPODACUS MEXICANUS PASSER DOMESTICUS TROGLODYTES AEDON CHARADRIUS VOCIFERUS CHONDESTES GRAMMACUS PASSERINA AMOENA

AYTHYA AFFINIS CHEN CAERULESCENS CAERULESCENS TRINGA FLAVIPES MELANERPES LEWIS MELOSPIZA LINCOLNII

NUMENIUS AMERICANUS LIMNODROMUS SCOLOPACEUS ASIO OTUS

ANAS PLATYRHYNCHOS LIMOSA FEDOA CIRCUS CYANEUS CISTOTHORUS PALUSTRIS FALCO COLUMBARIUS SIALIA CURRUCOIDES PARUS GAMBELI O R E O R T Y X PICTUS ZENAIDA MACROURA

JUNCO HYEMALIS ICTERUS GALBULA ANAS CLY PEATA

PICOIDES TRIDACTYLUS NUTTALLORNIS BOREALIS VERMIVORA CELATA

12 OSPREY 04 PEREGRINE FALCON 03 PIED-BILLED GREBE 14 PIGMY OWL 13 PILEATED WOODPECKER 11 PINE GROSBEAK 11 PINE SISKIN 10 PINYON JAY 04 PRAIRIE FALCON 11 PURPLE FINCH 13 PYGMY NUTHATCH 10 RED CROSSBILL 14 RED-BREASTED MERGANSER 13 RED-BREASTED NUTHATCH 11 RED-EYED VIREO 13 RED-NAPPED SAPSUCKER 12 RED-TAILED HAWK 07 RED-WINGED BLACKBIRD 03 REDHEAD 03 RING-BILLED GULL 03 RING-NECKED DUCK 05 RING-NECKED PHEASANT 04 ROCK DOVE 04 ROCK WREN 16 ROUGH-WINGED SWALLOW 12 ROUGHLEGGED HAWK 10 RUBY-CROWNED KINGLET 03 RUDDY DUCK 05 RUFFED GROUSE 11 RUFOUS HUMMINGBIRD 07 RUFOUS-SIDED TOWHEE 05 SAGE GROUSE 07 SAGE SPARROW 07 SAGE THRASHER 03 SANDERLING 03 SANDHILL CRANE 05 SAVANNAH SPARROW 14 SAW-WHET OWL 04 SAYS PHOEBE 14 SCREECH OWL 11 SHARP-SHINNED HAWK 05 SHORT-EARED OWL 03 SMALL CANADA GOOSE 06 SNOW BUNTING 12 SNOWY EGRET 11 SOLITARY VIREO 07 SONG SPARROW 03 SPOTTED SANDPIPER 14 STARLING 11 STELLERS JAY 07 SWAINSONS HAWK 07 SWAINSONS THRUSH 06 TOWNSEND'S SOLITAIRE 10 TOWNSENDS WARBLER

FALCO PEREGRINUS PODILYMBUS PODICEPS **GLAUCIDIUM GNOMA** DRYOCOPUS PILEATUS **PINICOLA ENUCLEATOR** CARDUELIS PINUS **GYMNORHINUS** CYANOCEPHALUS FALCO MEXICANUS CARPODACUS PURPUREUS SITTA PYGMAEA LOXIA CURVIROSTRA MERGUS SERRATOR SITTA CANADENSIS VIREO OLIVACEUS **BUTEO JAMAICENSIS** AYTHYA AMERICANA LARUS DELAWARENSIS AYTHYA COLLARIS COLUMBA LIVIA SALPINCTES OBSOLETUS **BUTEO LAGOPUS REGULUS CALENDULA OXYURA JAMAICENSIS** BONASA UMBELLUS SELASPHORUS RUFUS **PIPILO ERYTHROPHTHALMUS** CENTROCERCUS UROPHASIANUS AMPHISPIZA BELLI OREOSCOPTES MONTANUS CALIDRIS ALBA **GRUS CANADENSIS** PASSERCULUS SANDWICHENSIS OTUS ASIO ASIO FLAMMEUS BRANTA CANADENSIS LEUCOPAREIA PLECTROPHENAX NIVALIS EGRETTA THULA **VIREO SOLITARIUS**

ACTITIS MACULARIA STURNUS VULGARIS CYANOCITTA STELLERI BUTEO SWAINSONI CATHARUS USTULATUS MYADESTES TOWNSENDI DENDROICA TOWNSENDI

07 TREE SPARROW 14 TREE SWALLOW 03 TRUMPETER SWAN 05 TURKEY 04 TURKEY VULTURE 11 VARIED THRUSH 14 VAUXS SWIFT 05 VEERY 05 VESPER SPARROW 14 VIOLET-GREEN SWALLOW 11 WARBLING VIREO 05 WATER PIPIT 14 WESTERN BLUEBIRD 10 WESTERN FLYCATCHER 03 WESTERN GREBE 11 WESTERN KINGBIRD 05 WESTERN MEADOWLARK 03 WESTERN SANDPIPER 10 WESTERN TANAGER 11 WESTERN WOOD PEEWEE 03 WHISTLING SWAN 03 WHITE PELICAN 13 WHITE-BREASTED NUTHATCH 07 WHITE-CROWNED SPARROW 03 WHITE-FRONTED GOOSE 13 WHITE-HEADED WOODPECKER 03 WILLET 13 WILLIAMSONS SAPSUCKER 11 WILLOW FLYCATCHER 05 WILSONS WARBLER 03 WINTER WREN 14 WOODDUCK 08 YELLOW WARBLER 08 YELLOW-BREASTED CHAT 07 YELLOW-HEADED BLACKBIRD 10 YELLOW-RUMPED WARBLER

BADGER
 BEAVER
 BELDING GROUND SQUIRREL
 BIG BROWN BAT
 BLACK BEAR
 BLACK BEAR
 BLACK-TAILED JACKRABBIT
 BOBCAT
 BUSHY-TAILED WOODRAT
 CALIFORNIA MYOTIS
 CANYON MOUSE
 COAST MOLE
 COYOTE
 DARK KANGAROO MOUSE
 DEER MOUSE
 DOUGLAS SQUIRREL

SPIZELLA ARBOREA IRIDOPROCNE BICOLOR OLOR BUCCINATOR MELEAGRIS GALLOPAVO CAJHARTES AURA

CHAETURA VAUXI CAJHARUS FUSCESCENS POOECETES GRAMINEUS

VIREO GILVUS

SIALIA MEXICANA EMPIDONAX DIFFICILIS AECHMOPHORUS OCCIDENTALIS TYRANNUS VERTICALIS STURNELLA NEGLECTA CALIDRIS MAURI

CONTOPUS SORDIDULUS OLOR COLUMBIANUS PELECANUS ERYTHRORHYNCHOS SITTA CAROLINENSIS ZONOTRICHIA LEUCOPHRYS ANSER ALBIFRONS PICOIDES ALBOLARVATUS CATOPTROPHORUS SEMIPALMATUS

EMPIDONAX TRAILLII

TROGLODYTES TROGLODYTES AIX SPONSA

ICTERIA VIRENS XANTHOCEPHALUS XANTHOCEPHALUS DENDROICA CORONATA

MAMMALS

CASTOR CANADENSIS

EPTESICUS FUSCUS URSUS AMERICANUS LEPUS CALIFORNICUS LYNX RUFUS NEOTOMA CINEREA

PEROMYSCUS CRINITUS SCAPANUS ORARIUS CANIS LATRANS MICRODIPODOPS MEGACEPHALUS PEROMYSCUS MANICULATUS TAMIASCIURUS DOUGLASII

05 FERAL HORSE 05 FERAL HOUSE CAT 14 FRINGED MYOTIS 15 GOLDEN MANTLED GROUND SQUIRREL 15 GREAT BASIN POCKET MOUSE 15 HEATHER VOLE 11 HOARY BAT 15 HOUSE MOUSE 15 LEAST CHIPMUNK 14 LITTLE BROWN MYOTIS 14 LONG-EARED MYOTIS 14 LONG-LEGGED MYOTIS 15 LONG-TAILED VOLE 15 LONGTAIL WEASEL 14 MARTEN 15 MERRIAM SHREW 16 MINK 15 MONTANE VOLE 15 MOUNTAIN COTTONTAIL 04 MOUNTAIN LION 16 MUSKRAT 14 NORTHERN FLYING SQUIRREL 15 NORTHERN GRASSHOPPER MOUSE 15 NORTHERN POCKET GOPHER 15 ORD KANGAROO RAT 04 PALLID BAT 04 PINON MOUSE 15 PINON MOUSE 06 PORCUPINE 05 PRONGHORN ANTELOPE 15 PYGMY RABBIT 14 RACCOON 16 RIVER OTTER 05 ROCKY MOUNTAIN ELK 05 ROCKY MOUNTAIN MULE DEER 15 SAGEBRUSH VOLE 15 SHORTTAIL WEASEL 14 SILVER-HAIRED BAT 04 SMALL-FOOTED MYOTIS 05 SNOWSHOE HARE 15 SOUTHERN RED-BACKED MOUSE 15 SPOTTED SKUNK 15 STRIPED SKUNK 04 TOWNSEND BIG-EARED BAT 15 TOWNSEND GROUND SQUIRREL 15 VAGRANT SHRES 16 WATER SHREW 16 WATER VOLE **15 WESTERN HARVEST MOUSE** 03 WESTERN JUMPING MOUSE 04 WESTERN PIPISTRELLE 05 WHITE-TAILED JACKRABBIT 04 YELLOW-BELLIED MARMOT 15 YELLOW-PINE CHIPMUNK 14 YUMA MYOTIS

EQUUS SPP FELIS SPP MYOTIS THYSANODES SPERMOPHILUS LATERALIS PEROGNATHUS PARVUS PHENACOMYS INTERMEDIUS MUS MUSCULUS EUTAMIAS MINIMUS MYOTIS EVOTIS **MYOTIS VOLANS** MICROTUS LONGICAUDUS MUSTELA FRENATA MARTES AMERICANA SOREX MERRIAMI MUSTELA VISON MICROTUS MONTANUS SYLVILAGUS NUTTALLI **FELIS CONCOLOR** ONDATRA ZIBETHICUS **GLAUCOMYS SABRINUS** ONYCHOMYS LEUCOGASTER THOMOMYS TALPOIDES DIPODOMYS ORDI ANTROZOUS PALLIDUS PEROMYSCUS TRUE PEROMYSCUS TRUEI ANTILOCAPRA AMERICANA SYLVILAGUS IDAHOENSIS PROCYON LOTOR LUTRA CANADENSIS CERVUS ELAPHUS NELSONI

ODOCOILEUS LAGURUS CURTATUS MUSTELA ERMINEA LASIONYCTERIS NOCTIVAGANS

LEPUS AMERICANUS CLETHIONOMYS GAPPERI

MEPHITIS MEPHITIS PLECOTUS TOWNSENDI SPERMOPHILUS TOWNSENDI SOREX VAGRANS SOREX PALUSTRIS MICROTUS RICHARDSON1 REITHRODONTOMYS MEGALOTIS

PIPISTRELLUS HESPERUS LEPUS TOWNSENDI MARMOTA FLAVIVENTRIS EUTAMIAS AMOENUS

APPENDIX P Ranch Budgets: Linear Programming Process

A survey of ranchers using BLM-produced forage in Crook and Deschutes Counties was conducted by the USDA Economics and Statistics Service, with assistance by Tom Bunch of the Cooperative Extension Service. Representative budgets were constructed for cattle-calf operations based on typical feed-buying patterns, use of BLM-produced forage, pasture and hay use, use of supplemental protein, fuel, hired labor, and other factors of production (Gee, 1982). The value of sales was based on average price in each sales category for the **1978-80** period. Cost estimates were based on local data when available. A simulated profit maximization operation linear program model was constructed based on budget data.

The model -optimizes the return above cash cost for the rancher, taking into account physical limitations of the operation and price constraints. The model incorporates influence of seasonal variations in public forage and feed or rangeland availability.

Table P-2 shows the ranch budgets developed for each herd size class. Table P-I shows the results of the linear program analysis.

Table P-I Major Elements of Ranch Budgets for Proposed Action and Alternative Actions'

		Proposed	Action	Alternati	ve 1		
	Existing Condition2	Short Term	Long Term	Short Term	Long Term	AH. 33	AH. 43
	L	ESS THA	N 100 ANII	MALS			
Gross income	\$15,234	\$15,860	\$17,044	\$15,860	\$19,018	\$15,333	\$13,441
Total cash costs	8,150	8,499	9,176	8,499	10,304	8,249	7,718
Value of family labor	3,200	3,331	3.580	3,331	3,994	3,239	2,823
Depreciation	1.967	1,985	2,017	1,985	2,071	1,972	1,918
Interest on investment other than land	5,057	5,220	5,528	5,220	6,042	5,105	4,590
Return above cash costs	7,084	7,361	7,868	7,361	8,714	7,084	5,723
		100 to 3	99 ANIMA	LS			
Gross income	\$63,364	\$66,133	\$73,596	\$66,143	\$85,038	\$62,787	\$53,814
Total cash costs	36,327	37,994	42,488	37,999	49,377	35,980	30,576
Value of family labor	8,040	8,391	9,338	8,392	10,790	7,967	6,828
Depreciation	6,768	6,859	7,109	6,861	7,486	6.749	6,451
Interest on investment other than land	21,124	21,912	24,034	21,914	27,289	20,960	18,408
Return above cash costs	27,037	28,139	31,108	28,144	35,661	26,807	23,238

Table P-I Major Elements of Ranch Budgets for Proposed Action and Alternative Actions'

		Proposed	Action	Altern	ative 1		
	Existing Condition ²	Short Term	Long Term	Short Term	Long Term	Alt. 33	Alt. 43
		400 to 9	99 ANIMA	LS			
Gross income	\$186,253	\$193,927	\$216,651	\$194,194	\$258,656	\$182,035	\$159,826
Total cash costs	113,350	118,144	132,344	118,311	158,592	110,713	96,836
Value of family labor	19,489	20,292	22,670	20,320	27,065	19,047	16,724
Depreciation	18,413	18,673	19,441	18,682	20,962	18,271	17,519
Interest on investment other than land	62,689	64,937	71,594	65,015	83,898	61,453	54,950
Return above cash costs	72,903	75,783	84,307	75,883	100,064	71,322	62,990
	1	,000 OR N	IORE ANII	MALS			
Gross income	\$870,270	\$892,417	\$950,363	\$893,067	\$1,000,501	\$853,998	\$805,154
Total cash costs	557,256	572,213	611,345	572,652	645,205	546,267	513,282
Value of family labor	30,855	31,641	33,695	31,664	35,473	30,279	28,547
Depreciation	87,077	87,894	90,034	87,918	91,885	86,476	84,673
Interest on investment other than land	313,547	320.583	338,990	320,789	354,917	308,378	292,863
Return above cash costs	313,014	320,204	339,019	320.415	355,296	307,731	291,872

¹ Dr Kerry Gee, U S. Dept of Agriculture, Economics and Statistics
 ² No action condition (Alternative 2) considered same as existing condition.
 ³ Short and long term conditions are the same for

Program Analysis for Brothers EIS Area, 1982.

Table P-2 Costs and Returns for Livestock Operators by Herd Size¹

	Under 100 Cows ²		100-399 Cows ³		400-999 COWS'		1 000 or More Cows ⁵	
Livestock Sales Quantity	Number	Av Weight	Number	Av. Weight	Number	Av. Weight	Number	Av Weight
Steer calves	3	425	38	425	150	410	484	410
Heifer calves	9, 9	375	92	375	68	360	419	360
Voarling steers	5 16	745	23 47	745	108	730	725	730
Veerling beifere	0	/4J 695	-17	695	1 U U 91	680	2/1	690
	9	025	20 20	025	01	050	490	000
Cuil cows	U	975	30	973	91	930	420	930
Livestock Sales Value	Price/Cwt.	Value	Price/Cwt.	Value	Price/Cwt.	Value	Price/Cwt.	Value
Steer calves	80.67	1,029	80.67	13.028	80.67	49, 612	80.67	160, 082
Heifer calves	66. 33	746	66.33	5, 721	66. 33	16. 238	66. 33	100.052
Yearling steers	63. 58	7, 579	63. 58	22, 263	63. 58	50. 126	63.58	336. 497
Yearling heifers	59, 75	3, 361	59.75	9, 709	59.75	32.910	5975	97,918
Cull cows	43. 22	2,528	43. 22	12, 642	43. 22	37, 364	43. 22	175, 733
Total		15 949		62 262		186 950		570 989
Total		13, 243		219 /1		200 87		J/U. 202
TOTAI/COW		340, 43		510.41		500.07		201.07
Cash Costs	Total Amt.	Amt./Cow	Total Amt.	Amt./Cow	Total Amt.	Amt./Cow	Total Amt.	Amt./Cow
BLM grazing fee	179	4.08	727	3.65	2.058	3.41	5. 581	183
Forest grazing fee	36	.82	145	.73	925	1.53	11.433	3.74
Private range lease/rent			1.056	531	3, 280	5.44	14. 428	4.72
State lease					_			
Hav (produce)	2, 302	52.32	7. 491	37.64	25, 196	4178	130, 754	42.80
Hay (purchase)	,		4.027	20. 24	11.894	1972	53. 536	17.52
Protein supplement	534	12.13	575	2.89	4, 227	7.01	15. 575	5 10
Irrigated pasture	419	9.51	936	470	421	70	2.094	.69
Salt and mineral	a6	1.97	393	1.97	1, 170	1.94	6. 020	1.97
Concentrate feeds								
Veterinary and medicine	317	7.20	1, 761	8.85	3, 618	6.00	17.108	5.60
Hired trucking	76	1.72	100	.50	603	1.00	6.415	2.10
Marketing	88	2.01	66	.33	1,507	2.50	6.813	223
Fuel and lubricants	607	13.80	2.386	11.99	7.947	13.18	48.045	15.73
Repairs	625	14.20	2.175	10.93	6.612	10.96	32.792	10. 73
Taxes	1 600	36. 37	5.900	29.65	15.191	2519	64. 293	21.05
Insurance	291	6. 62	1, 132	594	3. 575	5.93	17.641	5.77
Interest on operating capital	546	12.41	2. 316	11.64	7.112	11. 79	33, 516	10.97
General farm overhead	430	9.77	1 859	9.34	6,030	10.00	16 986	5. 56
Other cash costs	100		-,000		0.000			
Hired labor			3 216	16, 16	12,059	20.00	74, 053	24 24
Total cash costs	8, 136	184. 91	36. 311	182.47	113. 425	188.10	557.083	182.35
Other costs:								
Family labor	3,200	72.72	a. 040	40.40	19, 489	32. 32	30.853	10.10
Depreciation	1.967	4471	6.768	34.01	18,413	3054	87.077	28.50
Interest on investment other								
than land	5.057	114.93	21, 124	106.15	62.689	10396	313. 548	102.63
Interest on land	15, 715	357.17	58. 531	294.13	150. 176	249.05	633, 818	20747
Total other costs	25, 939	589.52	94, 463	474.69	250, 767	41587	1.065296	348.71
Total all costs	34, 075	774.43	130. 774	657.16	364. 192	603. 97	1. 622. 379	531.06
Return above cash costs	7, 107	161.52	27, 052	135.94	72.825	120.77	313. 199	102.52
Return above cash costs and								
family labor	3.907	88.80	19.012	95. 54	53. 336	8845	282.346	9242
Return to total investment	1,940	44.09	12.243	6153	34, 923	5792	195. 269	6392
Return to land	- 3, 117	- 70. 84	-8,880	- 44. 62	- 27. 766	- 46. 05	-118,279	- 38. 72
	•							

'Kerry Gee. U.S. Department of Agriculture, Ranch Budgets for Brothers EIS Area. 1962

¹ Kerry Gee. U.S. Department of Agriculture, Ranch Budgets for Brothers EIS Area. 1962
² Average nerd 44 cows. 92% calt crop based on Jan. 1 bred cow Inventory. 5% calf loss birth to weaning. 3% annual cow loss. 20% replacement rate cattle and ourchased hav prices 1978-80 averages. all other prices 1980 annual feed sources 12% BLM. 2% Forest Serwce. 34% deeded range 15% irrigated pasture, 9% crop residue, 27% produced hay, 1% protein supplement, real estate valued on an AU basis
³ Average herd 199 cows. 90% calf crop base on Jan. 1 bred cow Inventory. 5% calf loss birth to weaning. 3% annual cow loss. 20% replacement rate. cattle and ourchased hav prices 1978-80 averages. all other costs 1980, annual feed sources 11% BLM. 2% Forest Serwce 41% deeded range 4% private lease, 6% crop residue, 21% hav produced, 5% hav purchased, real estae valued on an AU basis
⁴ Average herd 603 cows. 90% calf crop based on Jan 1 bred cow inventory. 5% calf loss birth to weaning, 3% annual cow loss 20% replacement rate. 20 cows per bull, cattle and purchased hay prices 1978-80 averages, all other costs 1960, annual feed sources 10% BLM. 4% Forest Serwce 45% deeded range 4% private lease. 1% irrigated pasture, 7% crop residue, 23% produced hay. 5% purchased hay. 1% protein supplement, real estate valued on an AU basis.
⁵ Average herd 3.055 cows. 66% calf crop based on Jan 1 bred cow Inventory. 10% calf loss birth to weaning, 4% protein supplement, rate estate valued on an AU basis.
⁵ Average herd 1.055 cows. 66% calf crop based on Jan 1 bred cow Inventory. 10% calf loss birth to weaning, 4% protein supplement, rate estate valued on an AU basis.
⁵ Average herd 3.055 cows. 66% calf crop based on Jan 1 bred cow Inventory. 10% calf loss birth to weaning, 4% protein supplement, real estate valued on an AU basis.

APPENDIX Q Estimates of Gross Sales, Personal Income, and Employment

These measures were estimated by use of an interindustry computer model developed by the U.S. Forest Service, representing the economy of Crook and Deschutes Counties.

An interindustry (or input-output) model is a summary of all the transactions occurring in an area during a one-year period, showing for each industry or economic sector the amount of its purchases from each industry (inputs) and the amount of its sales to each industry (outputs). Purchases of goods to be sold by trade industries are treated as direct sales by the producing industry, and trade industry transactions are limited to their gross margin

accounts or the part of their transactions over and above the cost of goods sold. This information represents the interindustry relationships in the area and permits the estimation of how a change in one industry would affect other industries and the economy as a whole.

When a specific change occurs in the economy, such as an increase in cattle sales due to increased forage availability, the cattle industry purchases more from its suppliers, ranch families spend more, and so on. Recipients of these purchases increase their purchases. The end result of this process is increased activity throughout the economy. The relationships between these end results and the initial changes in sales or gross margins are shown in Table Q-I as ratios of the initial amount. Also shown are the estimated values of physical units such as AUMs, board-feet, and activity-days by which the physical quantities were converted to economic terms.

Table Q-I Economic Relationships

		Per Phy	sical Unit	Direct		Total	Total	
Nature	Physical Measure	Gross Sales ²	Gross Margins ³	Personal Income	Direct Employment	Gross Sales	Personal Income	Total Employment
Livestock production	AUM	\$25.50	\$ 25.50	.2287	.0464	2.406	.7683	.1100
Timber production	1,000 b.f.	273.86	273.86	.2844	.0189	1.872	.6322	.0472
Big game hunting	Hunterday	17.62	a. 36	.7571	.1215	2.114	1.2665	.1711
Waterfowl hunting	Hunter-day	12.92	6 46	.7403	.1134	2.044	1.2182	.1598
Upland game hunting	Hunter-day	12.17	6.40	.7462	.1153	2.059	1.2312	1624
Warm water fishing	Angler-day	10.90	6.21	7389	.1171	NA	1. 3012	.1676
Cold water fishing	Angler-day	10.93	5.14	7385	.1349	2. 225	1.3488	.1895
Recreational day use	Visitor-day	9.94	4.80	.7424	.0983	1.905	1.1562	1386
Camping	Visitor-day	5.35	2.99	.7428	.0935	1.861	1.1366	.1318

¹ Derived from inter-industry model for Crook and Deschutes Counties ² Livestock sales value dewed from ranch budget study as total gross income (in 1978-80 average prices) divided by total forage requirements. Timber value obtamed from Forest Service RARE II study (1977 data). Sales Per day estimates for recreational activities derived from BLM Brothers Planning Area Resource Industry Analysis and adjusted to 1978 price levels. ³ Gross margins represent the portion of gross sales remaining after deducting the cost of goods sold from sales by retail trade industries. Estimates of Industry gross margins were obtamed from the Survey of Current Business. Feb. 1974. pp 30-32, and applied to estimates of expenditures by Industry for each recreational activity as contained in the Brothers Planning Area Analysis

APPENDIX **R** Effect of Change in Forage Availability on Ranch Value

The amount of forage available to a ranch operation is an important component of ranch value. Table R-1 shows by size of change in ranch value, the number of operators affected for the proposed action and alternatives 1 and 3. Table R-2 shows the same information for alternative 4.

Table R-I Number of Operators with Change in Ranch Value (Changes based on assumed value of \$45 per AUM active preference)

Proposed Action

Alternative 1

Change in Ranch Value	Short Term	Long Term	Short Term	Long Term	Alt			
HERD SIZE - UNDER 100 ANIMAL UNITS								
Loss over \$5,000 -\$1,000 to -\$4,900 Change under ± \$1,000 Gail under \$5,000 +\$5,000 to +9,900 +\$10,000 to +\$19,900 +20,000 to +\$49,900 +50,000 or more	2 35 7 2	1 22 16 4 3	2 34 8 2	20 15 4 3 3	1 5 32 6 2			
	HERD SIZE -	100 to 399 A	NIMAL UNIT	S				
Loss over \$10,000 -\$5,000 to \$9,900 -\$1,000 to -\$4,900 Change under ± \$1,000 Gain under \$5,000 +\$5,000 to +9,900 +\$10,000 to +\$19,900 +20,000 to +\$49,900 +50,000 to +\$99,900 +\$200,000 or more	1 21 8 23 5	8 11 6 5 7 1 1	1 22 8 3 5	6 6 9 3 9 2 4	4 3 9 16 2 2 3			
	HERD SIZE -	400 to 999 A	NIMAL UNIT	S				
Loss over \$10,000 -\$5,000 to \$9,900 -\$1,000 to -\$4,900 Change under ± \$1,000 Gain under \$5,000 +\$5,000 to +\$,9900 +20,000 to +\$49,900 +50,000 to +\$99,900 +\$100,000 to +\$99,900 +\$500,000 to +\$999,000 +\$1 million or more	1 3 5 4 3 4 3 2	1 5 2 8 3 2 4	3 5 3 4 3 2	1 - 3 3 6 4 - 6 2	3 4 9 4 3 1 - 1 -			

1 3 0

HERD SIZE - 1,000 OR MORE ANIMAL UNITS

Loss over \$50,000	-	-	-	-	1
	-	-	-	-	2
	-	-	-	-	1
-\$5,000 to - \$9,900		-	-	-	2
-\$1,000 to -\$4,900	-		-		1
Change under ± \$1,000	3 -	1	2	-	1
Gain under +\$5,000	-		-	1	-
+\$5,000 to +9,900	-	1	1	-	-
+\$10,000 to +\$19,900	3	-	3	1	-
+20,000 to +\$49,900	1	2	1	1	1
+50,000 to +\$99,900	1	2	1	-	-
+\$100,000 to +\$499,900	1	3	1	5	-
+\$500,000 to +\$999,000		-	-	1	-
+\$1 million or more-	-	-		-	

' Effects of alternative 3 are same for both short and long term.

Table R-2 Number of Operators with Loss in Ranch Value under Alternative 4 - Eliminate Livestock (Calculated on assumed value of \$45 per AUM active preference)

Implied Loss in Ranch Value	Under 100 Animals	100-399 Animals	400-999 Animals	1,000 or More Animals	Total
Under \$1000	18	2	1	0	21
\$ 1,000 - 4,900	17	7	5	0	29
\$ 5,000 - 9,900	6	5	3	1	15
\$ 10,000 - 19,900	3	9	1	1	14
\$ 20,000 - 29,900	2	13	2	1	18
\$ 30,000 - 39,900	0	2	4	0	6
\$ 40,000 - 49,900	0	0	2	0	2
\$ 50,000 - 99,900	0	1	3	0	4
\$100.000 - 199,000	0	0	4	4	8
\$200,000 - 299,000	0	0	0	0	0
\$300,000 - 399,000	0	0	0	1	1
\$400,000 - 499,000	0	0	0	1	1
Total	46	39	25	9	119

GLOSSARY

- ACRE-FOOT. The volume of water that will cover 1 acre to a depth of 1 foot.
- ACTIVE GRAZING PREFERENCE. That portion of the total grazing preference for which grazing use may be authorized.
- ACTUAL USE. The use made of forage on any area by livestock and/or wildlife without reference to permitted or recommended use. It is usually expressed in terms of animal-unit months or animal-units.
- ADVERSE IMPACT. Conditions would decline relative to existing situation.
- **ALLOTMENT.** An area of land where one or more livestock operators graze their livestock. Generally consists of public land but may include parcels of private or state lands. An allotment may consist of one or several pastures.
- ALLOTMENT MANAGEMENT An intensive livestock grazing management plan dealing with a specific unit of rangeland. based on multiple use resource management objectives. The AMP considers livestock grazing in relation to the renewable resources -- watershed, vegetation, and wildlife. An AMP establishes the period of use, the number of livestock to be permitted on the range and the range improvements needed.
- ALLUVIAL SOIL. A soil developing from recently deposited alluvium and showing essentially no development of layers or modification of the recently deposited materials.
 - (AUM). The amount of forage required to sustain one cow with one calf, or their equivalent for one month (800 pounds of forage).
- ANNUAL VEGETATIVE GROWTH. The total amount of vegetative matter produced during one growing season
- ANNUAL FORAGE PRODUCTION. That portion of the current year's palatable vegetative growth which is available to be utilized by grazing animals.
- AVAILABLE FORAGE. That portion of the total forage, usually consisting of grasses and forbs. available for use by livestock and wildlife.
- AVAILABLE The portion of water in a soil that can be absorbed by plant roots, commonly defined as the difference between the amount of water at field capacity and the amount at wilting point. Commonly expressed as inches of water per inch of soil.
- **BENEFICIAL IMPACT.** Conditions would improve relative to existing situation.
- **CHANNEL STABILITY RATING.** The relative capacity of a stream to resist erosion. The rating includes the evaluation of the upper banks, lower banks, and stream bottom.
- **CHARACTERISTIC LANDSCAPE.** The established landscape within an area being viewed This does not necessarily mean a natural character. It could refer to a farming community. an urban landscape, or a primarily natural environment.
- CLIMAX. The final or stable biotic community in a successional series; it is usually self perpetuating and in equilibrium with the physical habitat (Artz, 1980). This corresponds to 76 to 100 percent of the plant composition found in the potential natural plant community. Synonomous with excellent range condition.

- **COMPOSITION.** The proportion of various species in relation to the total for a given area.
 - **PERIOD.** The portion of a plant's growing season, generally between flowering and seed dissemination, when food reserves are being stored and seeds produced.
- **CRITICAL WATERSHED.** Those watersheds whose water is utilized for other than livestock use. Also watersheds contributing excessive amounts of sediment.

The area of land, water and airspace required for the normal needs and survival of an endangered species.

- **CRUCIAL WILDLIFE HABITAT.** Parts of the habitat necessary to sustain a wildlife population at critical periods of its life cycle. This is often a limiting factor on the population, such as breeding habitat, winter habitat, etc.
- CULTURAL RESOURCES. Includes resources of archaeologic or historic significance which are fragile, limited, and non-renewable.
- **EARLY-SERAL.** Ecological condition class corresponding to 0 to 25 percent of the plant composition found in the potential natural plant community. Synonomous with poor range condition.

The present state of vegetation of a range site in relation to the potential nature of the plant community for the site. It is an expression of the relative degree to which the kinds, proportions and/or amounts of plants in a plant community resemble that of the climax plant community.

- **ECOSYSTEM.** An ecological community together with its physical environment. Its functioning involves the circulation of matter and energy between organisms and their environment.
- EF **SION.** Detachment and movement of soil or rock fragments by water, wind, ICe, or gravity.
- **EXCLOSURE.** An area fenced to exclude livestock

The amount of forage that is produced within a designated period of time on a given area (expressed in AUMs or pounds per acre).

- FORB. Any non grasslike herbaceous plant
- **GRAZING SYSTEM.** As used in this document, the manipulation of livestock grazing to accomplish a desired result.
- **GROUNDWATER.** Subsurface water that Is in the zone of saturation.
- **HABITAT.** A specific set of physical conditions that surround a species. group of species or a large community. In wildlife management, the major constituents of habitat are considered to be food, water, cover and living space.
- **HABITAT DIVERSITY.** The relative degree or abundance of plant species, communities. **habitats** or habitat features (e.g. topography, canopy layers) per unit of area.
- **HABITAT TYPE.** The collective area which one plant association occupies or will come to occupy as succession advances. The habitat type is defined and described on the basis of the vegetation and associated environment. (Artz, 1980)
- HERBACEOUS. Relating to the non-persistent, non-woody growth of plants.
- **IMPACT.** A change in the environment caused by the proposed action or alternatives.

- **INFILTRATION.** The gradual downward flow of water from the surface into the soil profile.
- LAND TREATMENT. All methods of artificial range improvement and soil stabilization such as reseeding, brush control (chemical fire, and mechanical), waterspreading, etc.
- LATE-SERAL. Ecological condition class corresponding to 51 to 75 percent of the plant composition found in the potential natural plant community. Synonymous with good range condition.

A group of wildlife species whose **requirements** for habitat are satisfied by **similiar** successional stages within given plant communities.

- LITTER. A surface layer of loose, organic debris, consistingof freshly fallen or slightly decomposed organic materials.
- LONG TERM. Ten to fifteen years following implementatron of features of proposed action or alternatives.

An activity of man placed or undertakenon the landscape for the purpose of harvesting, traversing, transporting, protecting, changing or replenishing natural resources.

MANAGEMENT FRAMEWORK A BLM planning decision document that establishes, for a given planning area, land use allocations coordination guidelines for multiple use, and management objectives to be achieved for each class of land use protection.

(BLM land use plan for public lands which provides a set of goals, objectives, and constraints for a specific planning area to guide the development of detailed plans for the management of each resource.)

- MID-SERAL. Ecological condition class corresponding to 25 to 50 percent of the composition found in the potential natural plant community. Synonymous with fair range condition.
- MULTIPLE USE. The management of the public lands and their various resource values so that they are utilized in the combination that will best meet the present and future needs of the American people. This Includes but is not limited to recreation, range, timber, minerals, watershed, wildlife and fish, and natural scenic. scientific and historical values.
- NON-CONSUMPTIVE USE. A use of vegetation which does not consume. alter, or destroy that resource: i.e., sightseeing, photography, hiking, soil protection.
- **PALEONTOLOGY.** Science dealing with the life of past geologic periods as known from fossil remains.
- PASTURE. A fenced subdivision of a grazing allotment capable of being grazed by livestock independently from the rest of the allotment.
- **PERCHED WATERTABLE.** A perched water-table is a saturated area below the surface and above the major aquifer.
- **PERENNIAL STREAM.** A stream or portion of a stream that flows year long. It receives water from precipitation. springs. melting snow and/or ground-water.
- **PERIOD** The time of livestock grazing on a range area.
- **PERMIT (GRAZING).** An authorization that permits the grazing of a specified number and kind of **livestock** on a **designated** area of BLM lands for a period of time. usually not more than one year.

PLANT DIVERSITY. The relative number of dissimilar plants in a given area. A monoculture, such as a seeding, would have low plant diversity, while a native sagebrush-bunchgrass community in mid-seral ecological condition would be said to have high plant diversity due to the large number of dissimilar plants.

The process of vegetative development whereby an area becomes **successively** occupied by different plant **communities** of higher ecological orders.

COVER. See watershed cover.

- **RANGELAND IMPROVEMENT.** A structure, action or practice that increases forage production. improves watershed and ecological condition or facilitates management of the range or the livestock grazing on it.
- REPRESENTATIVE AREA. An area within a pasture used to determine livestock utilization. In pastures where utilization is consistently uniform the representative area may include most of the pasture. In pastures where utilization vanes considerably; the representative area may be many smaller areas scattered throughout, which are indicative of average utilization. These areas would be established prior to AMP development and would be tailored to each allotment.
- **RESEARCH NATURAL AREAS.** Areas established and maintained for research and education. The general public may be excluded or restricted where necessary to protect studies or preserve research natural areas. Lands may have: (1) Typical or unusual faunistic or floristic types, associations, or other biotic phenomena, or (2) Characteristic or outstanding geologic, pedologic or aquatic features or processes.

COVER. That portion of the total vegetative ground cover that remains after livestock grazing.

- **RIPARIAN.** Related to wet areas associated with streams, springs, seeps, meadows and reservoirs.
- RUNOFF. That portion of the precipitation on a drainage area that is discharged from the area in stream channels, including both surface and subsurface flow.
- SEDIMENT. Soil, rock particles and organic or other debris carried from one place to another by wind, water or gravity.
- **SENSITIVE SOIL.** Soils whose physical properties and geographic location are such that they are potentially highly erodible or very productive.

SERAL COMMUNITY. A successional community.

- SERAL STAGE. See early-seral. mid-seral. late-seral, or climax.
- SHORT TERM. The one to two year period following implementation of features of proposed action or alternatives.
- **SOIL.** The unconsolidated mineral material on the immediate surface of the earth that serves as a natural medium for the growth of land plants,
- SOIL MOISTURE. Water held in the root zone by capillary action. Part of the soil moisture is available to plants, part is held too tightly by capillary or molecular forces to be removed by plants.

Capacity of a soil, in its noraml environment. for producing specified plants under specified management systems.

SOIL SERIES. The of soil classification, being a subdivision of a family and consisting of soil which are essentially alike in all major profile characteristics except in the texture of the "A" horizon (or surface layer).

FACTOR (SSF). An expression of current erosion activity. Seven **categories** of surface features are considered in the examination of the area with both wind and water **being** considered for each category. The categories are: soil movement, surface litter, surface rock, pedestaling, rills, flow patterns and gullies. Numerical values are assigned to each category, and these are totaled to determine the SSF. This value determines the erosion condition class of the area.

THERMAL COVER. Vegetation or topography that prevents wildlife raditation heat loss, reduces wind chill during cold weather, and intercepts solar radiation during warm weather.

(**TSP**). Air borne suspended solid and liquid particles of soot, dust aerosols and fumes averaging about 2 microns in size (1 micron = 1/2 540").

- **UNALLOTTED LANDS.** Public lands which currently have no authorized livestock grazing.
- **UNALLOCATED FORAGE.** Available forage which has not been allocated to livestock or wildlife, but could be.
- **UNIT RESOURCE ANALYSIS (URA).** A BLM planning document of physical resource data and an analysis of the current use, production, condition and trend of the resources and the potentials and opportunities within a BLM planning unit. including a profile of ecological values.

UPLAND. All rangelands other than riparian or wetland areas

- UTILIZATION. The proportion of the current year's forage production that is consumed or destroyed by grazing animals. This may refer either to a single species or to the whole vegetative complex. Utilization is expressed as a percent by weight. height or numbers within reach of the grazing animals. Four levels of utilization are used in this document: slight (0-20%), light (21-40%), moderate (41-66%), heavy (61-80%), and severe (81-100%).
- **VEGETATIVE POTENTIAL.** Plant composition and vegetative production which would occur on a given soil if the vegetation were in climax condition.
- VEGETATION ALLOCATION. In reference to forage, the distribution of the available forage production to the various resource needs such as wildlife, livestock, wildhorses, and non-consumptive uses.
 - **COVER.** The percent of land surface covered by all living vegetation (and remnant vegetation yet to decompose) within 20 feet of the ground.
 - As used in this statement, refers to seeding, brush control and juniper control range improvements.
- **VEGETATIVE STRUCTURE.** The form or appearance of a plant community; the arrangement of the canopy: the volume of vegetation in tiers or layers.
- **VIGOR.** The relative well-being and health of a plant as reflected by its ability to manufacture sufficient food for growth, maintenance and reproduction.
- **VISUAL RESOURCE.** The land, water, vegetative, animal and other features that are visible on all public lands.

MANAGEMENT The degree of alteration that is acceptable within the characteristic landscape. It is based upon the physical and sociological characteristics of any given homogenous area.

- **WATERHOLE.** An artifical catchment for livestock/wildlife water, developed in naturally occuring, intermittent lakebeds. Usually a pit is excavated in the center of the **lakebed** which fills in early spring. A waterhole differs from a reservoir in that reservoirs impede the flow of water down a channel. Synonyms include pit reservoir, charco pit, charco.
- **WATER QUALITY.** The chemical, physical and biological characteristics of water with respect to its suitability for a particular use.
- **WATERSHED.** All lands which are enclosed by a continuous hydrologic drainage divide and lie **upslope** from a specified point on a stream.
- **WATERSHED COVER.** The material (vegetation, litter, rock) covering the soil and providing protection from, or resistance to, the impact of raindrops and the energy of overland flow, and expressed in percent of the area covered.
- **WATER YIELD.** The quantity of water derived from a unit area of watershed.
- WETLANDS. Permanently wet or intermittently flooded areas where the water table (fresh, saline or brackish) is at. near or above the soil surface for extended intervals, where hydric wet soil conditions are normally exhibited and where water depths generally do not exceed two meters.

AREA. A roadless area or island that has been inventoried and found to have characteristics as described in Section 603 of the Federal Land Policy and Management Act of 1976 and Section 2(c) of the Wilderness Act of 1964.

WOLF PLANT. (1) A plant that, though of a species generally considered palatable, is not grazed by livestock. (2) An isolated plant growing to extraordinary size, usually from lack of competition.

SELECTED REFERENCES

- Anderson, B. 1981. Personal communication to collect water yeild data in Brothers EIS area. U.S. Forest Service (USDA), Ochoco National Forest, Prineville, Oregon.
- Artz, J.L. 1980. Range inventory standardization committee (RISC) report, draft standard definitions and terminology. Rangelands 2(4):165-167.
- Bedell, T.E. and Ganskopp, D.C. 1980. Rangelands in dry years. Pacific Northwest Cooperative Extension Service PNW 200, Oregon State University, Corvallis, Oregon.
- Bowers, W., et al. 1979. Wildlife habitats in managed rangelands: the great basin of southeastern Oregon, native trout. Pacific Northwest Forest and Range Experiment Station, general technical report PNW 84. Portland, Oregon.
- Bureau of Land Management. 1979. Brothers visitor use study, plus annual traffic counter updates for 1980 and 1981. Prineville BLM District, Prineville, Oregon.

• 1980(a). Dry River unit resource analysis, Unpublished. Prineville BLM District, Prineville, Oregon.

• 1980(b). Upper Crooked River unit resource analysis. Unpublished. Prineville BLM District, Prineville, Oregon.

• 1981 (a). Brothers EIS soil survey, SVIM 1978-1980. Unpublished. Prineville BLM District, Prineville, Oregon.

. 1981 (b). Unit resource analysis, Brothers planning area. Prineville BLM District, unpublished. Prineville, Oregon.

- CH²M Hill. 1970. Deschutes County, Oregon comprehensive water and sewage planning study. Corvallis, Oregon.
- Crouse, M. 1981. Personal communication to collect data on effects of grazing systems on fish habitat. Vale BLM District. Vale, Oregon.
- Dealy, J.S., Geist, J., and Driscoll, R.S. 1977.
 Communities of western juniper in the intermountain northwest. In Proceedings of the western juniper ecology and management workshop, ed. R. E. Martin, J. E. Dealy, and D. L. Caraher, pp. 11-29.
 Pacific Northwest Forest and Range Experiment Station, general technical report PNW-74. Portland, Oregon.

- Downing, K. and Clark, R. 1979. Users' and managers' perceptions of dispersed recreation impacts: a focus on roaded forest lands. In Recreation impacts on wildlands: conference proceedings. US Forest Service, Pacific Northwest Region.
- Duff, D.A. 1977. Big Creek aquatic habitat management and impacts from livestock grazing. Presented, Bonneville Chapter of the American Fisheries Society Annual Meeting, Feb. 4-5, 1977, Salt Lake City, Utah.
- Environmental Protection Agency. 1979. Livestock grazing management and water quality protection. EPA and BLM, Seattle, Washington.
- Franklin, J.F., Hall, F.C., Dryness, CT., and Maser, C. 1972. Federal research natural areas in Oregon and Washington: a guidebook for scientists and educators. Pacific Northwest Forest and Range Experiment Station. Portland, Oregon.
- Gee, K. 1982. Ranch budgets and results of linear program analysis for Brothers EIS area. USDA Economics and Statistics Service. Fort Collins, Colorado.
- Gifford, G.F. 1975. Beneficial and detrimental effects of range improvement practices on runoff and erosion. In Watershed Management: A symposium. American Society of Civil Engineers. Logan, Utan.
- Hessary, I.K. and Gifford, G.F. 1979. Impact of various range improvement practices and watershed protective cover and annual production within the Colorado River basin. Journal of Range Management 32(2):134-140
- Holechek, J. 1980. Livestock grazing impacts on rangeland ecosystems. Journal of Soil and Water Conservation 35(4):162-64. Hessary, I.K. and Gifford, G.F. 1979. Impact of various range improvement practices and watershed protective cover and annual production within the Colorado River basin. Journal of Range Management 32(2):134-I 40
- Holechek, J. 1980. Livestock grazing impacts on rangeland ecosystems. Journal of Soil and Water Conservation 35(4):162-64.
- Hormay, A.L. 1970. Principles of rest-rotation grazing and multiple-use land management. BLM and US Forest Service. Washington, D.C.

1 3 7

- Hickey, W.C., Jr. 1969. A discussion of grazing management systems and some pertinent literature (abstracts and excerpts) 1895-1966. US Forest Service, Region 2. Denver, Colorado.
- Hull, A.C. and Klomp, G.J. 1974. Yield of crested wheatgrass under four densities of big sagebrush in southern Idaho. USDA Agricultural Research Service, technical bulletin 1483. Washington, D.C.
- Jeppeson, D.J. 1977. Competitive moisture consumption by the western juniper: In Proceedings of the western juniper ecology and management workshop, ed. R. E. Martin, J. E. Dealy, and D. L. Caraher, pp. 83-90. Pacific Northwest Forest and Range Experiment Station, general technical report PNW-74. Portland, Oregon.
- Kindschy, R.R., Sundstrom, C. and Yoakum, J.D. 1979. The pronghorm on managed rangelands. Pacific Northwest Forest and Range Experiment Station, general technical report PNW-74. Portland, Oregon.
- Klebenow, D.A. 1970. Sagegrouse versus sagebrush control in Idaho. Idaho Cooperative Wildlife Research Unit. In Proceedings of 22nd annual meeting, Society of Range Management. Calgary, Alberta.
- Knowles, C.J. 1975. Range relationships of mule deer, elk and cattle in a rest-rotation grazing system during summer and fall. M.S. Thesis, Montana State University. Bozeman, Montana.
- Komberec, T.J. 1976. Range relationships of mule deer, elk and cattle in a rest-rotation grazing system during winter and spring. M.S. Thesis, Montana State University. Bozeman, Montana.
- Leckenby, D.A. 1977. Western juniper management for mule deer. In Proceedings of the western juniper ecology and management workshop, ed. R. E. Martin, J. E. Dealy, and D. L. Caraher, pp. 137-161. Pacific Northwest Forest and Range Experiment Station, general technical report PNW-74. Portland, Oregon.
- Leckenby, D.A. and Adams, A.W. 1969. Ecological study of mule deer. Oregon Department of Fish and Wildlife. In Federal Aid Progress Reports Wildlife project no. W-53-R-I 1, Job No. 1. Portland, Oregon.

- Leckenby, D.A., et al. Wildlife habitats in managed rangelands. The great basin of southeast Oregon: mule deer. Unpublished draft. Pacific Northwest Forest and Range Experiment Station, general technical report. Portland, Oregon.
- Logsdon, Robert L. 7976. Flake damage and dispersion produced by cattle: a report of a field experiment. Unpublished. Western Washington State College, Bellingham, Washington.
- Mack, J.M. 1975. Cultural resources inventory of the potential glass buttes geothermal lease area, Lake, Harney, and Deschutes Counties, Oregon. Department of Anthropology, University of Oregon, Eugene, Oregon.
- Mackie, R.J. 1970. Range ecology and relations of mule deer, elk, and cattle in the Missouri River Breaks, Montana. Wildlife monograph 20. The Wildlife Society, Washington, D.C.
- Martin, R.E. 1977. Fire manipulation effects in western juniper. In Proceedings of the western juniper ecology and management workshop, ed. R. E. Martin, J. E. Dealy, and D. L. Caraher, pp. 121-136. Pacific Northwest Forest and Range Experiment Station, general technical report PNW-74. Portland, Oregon.
- Maser, C. and Gashwilder, J. 1977. Interrelationships of wildlife and western juniper. In Proceedings of western juniper ecology and management workshop, ed. R. E. Martin, J. E. Dealy, and D. L. Caraher, pp. 37-82. Pacific Northwest Range and Experiment Station, general technical report PNW-GTR-74. Portland, Oregon.
- Mattison, J.L. and Buckhouse, J.C. 1977. Ecological land units of Bear Creek watershed and their relationship to water quality. Water Resources Research institute, WRRI-53, Oregon State University. Corvallis, Oregon.
- Meganck, Rich and K. Gibbs. 1979. A methodology applied to the analysis of selected grazing management strategies and dispersed recreation. School of Forestry, Oregon State University, Corvallis, Oregon.
- Mundinger, J.G. 1975. The influence of rest-rotation grazing management on waterfowl production on stock-water reservoirs in Phillips County, Montana. M.S. Thesis. University of Montana. Bozeman, Montana.
- Myers, L.H. 1981. Impacts of livestock grazing systems on riparian habitats in southwestern Montana. Unpublished. Lewiston BLM District, Lewiston. Montana.

Oregon Department of Environmental Quality. 1979. Air quality annual report. Portland, Oregon.

> • 1980. Oregon administrative rules. Chapter 340, Division 41, DEQ water quality standards. Portland, Oregon.

Oregon Department of Human Resources, Employment Division 1977-1981. State/ county resident labor force, unemployment and employment. Annual issues. Salem, Oregon.

• 1979-1981. Covered employment and payrolls. Salem, Oregon.

- Oregon State Water Resources Board. 1961. Deschutes river basin. Salem, Oregon.
- Pacific Northwest River Basin Commission. 1975. Regional recreation data program for the northwest. Ed. Recreation data subcommittee. Vancouver, Washington.
- Peterson, J. 1970. Gone with the sage. Montana Outdoors. Montana Fish and Game Department. 5(9).
- Platt, W.S. 1981. Influence of forest and rangeland Management on anadromous fish habitat in western North America: Effects of livestock grazing. Pacific Northwest Forest and Range Experiment Station, technical note PNW 124. Portland, Oregon.
- Roney, John. 1977. Livestock and lithics: the effects of trampling. Unpublished. Winnemucca BLM District, Winnemucca, Nevada.
- Scott, H. 1981. Personal communication to collect data on big game predation. Oregon Department of Fish and Wildlife, Prineville, Oregon.
- Shiflet, T.N. and Heady, H.F. 1971. Specialized grazing systems: their place in range management. USDA Soil Conservation Service, technical publication 152. Washington, D.C.
- Silvernale, C.E., Simonson, G.H., and Harward, M.E. 1976. Soil and watershed characteristics in relation to turbidity of the Prineville Reservoir. Agricultural Experiment Station, special report 453. Oregon State University, Corvallis, Oregon.
- Smeins, F.E. 1975. Effects of livestock grazing on runoff and erosion. In Watershed Management: A symposium. American Society of Civil Engineers. Logan, Utah.

- Sneva, F.A., Rittenhouse, L.R., and Tueller, P.T. 1980. Forty years, inside and out. Unpublished. Squaw Butte Experiment Station. Burns, Oregon.
- Stoddart, L.A. and Smith, A.D. 1955. Range management. New York: McGraw Hill
- Thomas, J.W., ed. 1979. Wildlife habitats in managed forests. The Blue Mountains of Oregon and Washington. Pacific Northwest Forest and Range Experiment Station, agriculture handbook No. 553. Portland, Oregon.
- Thomas, J., Maser, C., and Rodick, J. 1979. Wildlife habitats in managed rangelands: the great basin of southeastern Oregon, riparian zones. Pacific Northwest Forest and Range Experiment Station, general technical report PNW-80. Portland, Oregon.
- Toepel, K.A. and Beckham, SD. 1978. Cultural resource overview of the Brothers EIS area, Prineville District, Oregon. Department of Anthropology, University of Oregon, Eugene, Oregon.
- Trainer, et al. 1978. Steens mountains mule deer population study, aspects of fawn mortality. In Federal aid progress **resports**, wildlife, 1978. Project number W-70-R-8 Oregon Wildlife Research, Oregon Department of Fish and Wildlife, Portland, Oregon
- Tueller, P. and Poulton, C. 1960. Vegetation changes at Squaw Butte, 1937-1960. Unpublished. Squaw Butte Experiment Station, Burns, Oregon.
- U.S. Department of Commerce. 1981. Census of population: 1980. Washington, D.C.
- U.S. Forest Service. 1980. 1977 county interindustry tables. Unpublished materials developed for RARE II studies. Region 6, Portland, Oregon.
- USDA Soil Conservation Service. 1966. Soil survey, Prineville area, Oregon. Series 1955. No. 12. Washington, D.C.
 - 1973. General soil map with interpretations for land use planning, Deschutes County, Oregon. Portland, Oregon.
 - •1975. Soil taxonomy. Agriculture handbook no. 436. Washington, D.C.
- Vallentine, J.F. 1971. Range development and improvements. Provo, Utah: Bringham Young University Press. Provo, Utah.

Winegar, H.H. 1977. Camp Creek channel fencing, plant, wildlife, soil, and water response. Rangeman's Journal. 4(1)10-1 2.

• 1980. Riparian recovery, water resource relationships. Unpublished. Prineville, Oregon.

Winnegar, H.H. and **Elmore**, W. 1977. Mechanical manipulation of western juniper: some methods and results. In Proceedings of the western juniper ecology and management workshop, ed. R. E. Martin, J. E. Dealy, and D. L. Caraher, pp. 107-119. Pacific-Northwest Forest and Range Experiment Station, general technical report PNW-74. Portland, Oregon.

100 A 100 A 10 A

1 4 0

INDEX WORDS

Air Quality, Affected Environment 39

Alternatives to the Proposed Action, Description of Eliminate Livestock 12 No Action 11 Optimize Livestock 10 Optimize Wildlife and Watershed

Areas of Critical Environmental Concern 11

Available Forage Allocation 12, 14, 38, 82-83, 97

Available Forage Production 12, 37-38, 82-83, 97

Climate, Affected Environment 26

Consultation and Coordination 4, 18

Cultural Resources Affected Environment 44 Environmental Consequences **22-23, 67-68, 74** Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75

Ecological Condition 29, 32, 55-57, 58, 109-111

Grazing Systems 14-17, 84-89

Herbicides 18

Impacts, Summary of 22-23

Implementation of the Decision 3

Land Status 4, 5

LCDC 3

Paleontology Affected Environment 44 Environmental Consequences **22-23, 68-69** Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75

Proposed Action, Description of 10

Rangeland Improvements Design Elements 18–19 Proposed Action/Alternatives 14 Standard Procedures 18

Recreation

Affected Environment 43-44 Environmental Consequences **22-23, 65,** 66, 74 Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75

Research Natural Area 47

*GPO 1982 594-588

Riparian Vegetation 30, 35 Habitat 41, 62 Scoping Process 4, 81 Setting 4 Socioeconomics Economic Relationships 74, 129 Impacts on 22-23, 70-74,75 Present Condition 47-50 Ranch Budgets 72, 126-128, 130-131 Soils Affected Environment 26, 27 Environmental Consequences 22-23, 52-53, 71 Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75 State Historic Preservation Office(r) 18, 44, 67, 117 Threatened/Endangered Species Animals 18, 43, 52 Plants 37 Vegetation Affected Environment 29 -38 Environmental Consequences 22-23, 55-61, 74 Irreversible and Irretrievable Commitments 75 Residual Ground Cover 37, 59-60,74 Short-Term UseLong-Term Productivity 75 Species , egention Types 29-31 Visual Resources 44, 45 Affected Environment 26,29 Environmental Consequences 22-23, 53-54 Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75 Water Affected Environment 26, 29 Environmental Consequences 22-23, 53-54 Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75 Wilderness Affected Environment 47 Environmental Consequences 22-23, 69 Wildlife Affected Environment 40-43 Big game 42, 64 Environmental Consequences 22, **23, 61-65, 74, 75** Fisheries **42, 63,** 107,108 Irreversible and Irretrievable Commitments 75 Short-Term Use/Long-Term Productivity 75 Species 118-125 Upland Birds 42, 64 Waterfowl 43, 64