Grammatical Evolution Neural Networks for Genetic Epidemiology

Alison Motsinger-Reif, PhD

Bioinformatics Research Center
Department of Statistics
North Carolina State University

Overview

- Epistasis and its implications for genetic analysis
- GENN Method
 - Optimization and dissection of the evolutionary process
 - Comparison to other NN applications
 - Comparison the other methods used in genetic epidemiology
 - Power studies
 - Application to an HIV Immunogenetics dataset
- Future directions

Genetics of Human Disease

Single Gene Single Disease

Multiple Genes ——— Complex Disease

Epistasis

gene-gene or geneenvironment interactions;

two or more genes interacting in a nonadditive manner to confer a phenotype

p(D) Genotype						
	ВВВВ		bb			
AA	0.0	0.0	1.0			
Aa	0.0	0.5	0.0			
aa	1.0	0.0	0.0			

Epistasis

- Biologists believe bio-molecular interactions are common
- Single locus studies do not replicate
- Identifying "the gene" associated with common disease has not been successful like it has for Mendelian disease
- Mendelian single-gene disorders are now being considered complex traits with gene-gene interactions (modifier genes)

"gene-gene interactions are commonly found when properly investigated"

[Moore (2003)]

Traditional Statistical Approaches

- Typically one marker or SNP at a time to detect loci exhibiting main effects
- Follow-up with an analysis to detect interactions between the main effect loci
- Some studies attempt to detect pair-wise interactions even without main effects
- Higher dimensions are usually not possible with traditional methods

Traditional Statistical Approaches

- Logistic Regression
 - Small sample size can result in biased estimates of regression coefficients and can result in spurious associations (Concato et al. 1993)
 - Need at least 10 cases or controls per independent variable to have enough statistical power (Peduzzi et al 1996)
 - Curse of dimensionality is the problem (Bellman 1961)

Curse of Dimensionality

N = 100 50 Cases,

50 Controls

SNP₁

AA Aa aa

Curse of Dimensionality

N = 100 50 Cases, 50 Controls

bb 🔳

Curse of Dimensionality

Traditional Statistical Approaches

- Advantages
 - Easily computed
 - Easily interpreted
 - Well documented and accepted

- Disadvantages
 - Susceptibility loci must have significant main effect
 - Difficult to detect purely interactive effects
 - Need a very large sample size to explore interactions between more than two variables

Objectives for Novel Methods

- Variable Selection
 - Choose a subset of variables from an effectively infinite number of combinations
- Statistical Modeling
- Generate Testable Hypotheses

Objectives for Novel Methods

- Variable Selection
 - Choose a subset of variables from an effectively infinite number of combinations
- Statistical Modeling
- Generate Testable Hypotheses

GOAL: Detect genetic/environmental factors associated with disease risk in the presence or absence of main effects from a large pool of potential factors

Methods to Detect Epistasis

- Multifactor Dimensionality Reduction (MDR)
- Random ForestsTM
- Restricted Partition Method (RPM)
- Classification and Regression Trees (CART)
- Symbolic Discriminant Analysis (SDA)
- Focused Interaction Testing Framework (FITF)
- Set Association
- Combinatorial Partitioning Method (CPM)
- Patterning and Recursive Partitioning (PRP)
- •

Methods to Detect Epistasis

- Multifactor Dimensionality Reduction (MDR)
- Random ForestsTM
- Restricted Partition Method (RPM)
- Classification and Regression Trees (CART)
- Symbolic Discriminant Analysis (SDA)
- Focused Interaction Testing Framework (FITF)
- Set Association
- Combinatorial Partitioning Method (CPM)
- Patterning and Recursive Partitioning (PRP)
- •

There are theoretical and/or practical concerns with each!

How Many Combinations are There?

- Genome-wide association studies
- ~500,000 SNPs to span the genome

Number of Possible Combinations

SNPs in each subset

How Many Combinations are There?

- Genome-wide association studies
- ~500,000 SNPs to span the genome

How Many Combinations are There?

- Genome-wide association studies
- ~500,000 SNPs to span the genome

We need methods to detect epistatic interactions without examining all possible combinations!!!

 3.0×10^{21} days to complete (8.2 x 10^{18} years)

SINPS IN each subset

Novel Approaches

- Pattern Recognition
 - Considers full dimensionality of the data
 - Aims to classify data based on information extracted from the patterns
 - Neural Networks (NN)
 - Clustering Algorithms
 - Self-Organizing Maps (SOM)
 - Cellular Automata (CA)

- Developed 60 years ago
- Originally developed to model/mimic the human brain
- More recently, uses theory of neurons to do computation
- Applications
 - Association, classification, categorization

- NNs multiply each input node (i.e. variable, genotype, etc.) by a weight (a), the result of which is processed by a function (Σ), and then compared to a threshold to yield an output (0 or 1).
- Weights are applied to each connection and optimized to minimize the error in the data.

Advantages

- Can handle large quantities of data
- Universal function approximators
- Model-free

Limitations

- Must fix architecture prior to analysis
- Only the weights are optimized
- Weights are optimized using hill-climbing algorithms

- Advantages
 - Can handle large quantities of data
 - Universal function approximators
 - Model-free

- Limitations
 - Must fix architecture prior to analysis
 - Only the weights are optimized
 - Weights are optimized using hill-climbing algorithms
- Solution: Evolutionary computation algorithms can be used for the optimization of the *inputs*, *architecture*, and *weights* of a NN to improve the power to identify gene-gene interactions.

Grammatical Evolution

- Evolutionary computation algorithm inspired by the biological process of transcription and translation.
- Uses linear genomes and a grammar (set of rules) to generate computer programs.
- GE separates the genotype from the phenotype in the evolutionary process and allows greater genetic diversity within the population than other evolutionary algorithms.

DNA: The heritable material in GE is the binary string chromosome. The GE chromosome is divided into codons, undergoes crossover and mutation, and can contain non-coding sequence just as biological DNA.

RNA: In GE, the binary chromosome string in transcribed into an integer string. This integer string is a linear copy message of the original heritable material that can then be processed further.

Polypeptide String: The integer string is translated using the grammar provided into the code for a functional NN.

Protein Folding: The grammar encoding is then interpreted as a multi-dimensional NN. This NN produces a classification error, just as a protein produces a phenotype within an organism.

Function: In GE a lower classification error indicates higher fitness. Natural selection will work at the level of reproductive fitness, forcing changes in the heritable material of both biological organisms or GE individuals.

Step 1: A population of individuals is randomly generated, where each individual is a binary string chromosome (genetic material). The number of individuals is user-specified.

Step 2: Individuals are randomly chosen for tournaments – where they compete with other individuals for the highest fitness, and the tournament winners get to pass on their genetic material.

Step 3: Of the winners, user-specified proportions participate in crossover, mutation, or duplication of their genomes to produce offspring.

Step 4: When pooled together, these offspring will become the initial population for the next generation of evolution.

Steps 1-4 are repeated for a user-specified number of generations, to produce offspring with the highest possible fitness.

Example Results

CV	Factors in Model					CE	PE
1	SNP_1	SNP_200				0.26	0.15
2	SNP_1	SNP_200	SNP_630	SNP_755		0.38	0.22
3	SNP_1	SNP_200	SNP_512			0.32	0.29
4	SNP_1	SNP_200	SNP_333	SNP_467	SNP_987	0.19	0.35
5	SNP_1	SNP_200	SNP_814	SNP_900		0.12	0.32
6	SNP_1	SNP_200	SNP_665			0.20	0.19
7	SNP_1	SNP_200	SNP_742	SNP_801		0.21	0.22
8	SNP_1	SNP_200	SNP_245	SNP_294		0.19	0.28
9	SNP_1	SNP_200	SNP_410	SNP_502	SNP_873	0.18	0.28
10	SNP_1	SNP_200	SNP_311			0.26	0.18

Example Results

CV	Factors in Model					CE	PE
1	SNP_1	SNP_200				0.26	0.15
2	SNP_1	SNP_200	SNP_630	SNP_755		0.38	0.22
3	SNP_1	SNP_200	SNP_512			0.32	0.29
4	SNP_1	SNP_200	SNP_333	SNP_467	SNP_987	0.19	0.35
5	SNP_1	SNP_200	SNP_814	SNP_900		0.12	0.32
6	SNP_1	SNP_200	SNP_665			0.20	0.19
7	SNP_1	SNP_200	SNP_742	SNP_801		0.21	0.22
8	SNP_1	SNP_200	SNP_245	SNP_294		0.19	0.28
9	SNP_1	SNP_200	SNP_410	SNP_502	SNP_873	0.18	0.28
10	SNP_1	SNP_200	SNP_311			0.26	0.18

Significance Testing

- Final Model is forced
- Average PE is calculated
- Permutation testing is used to ascribe statistical significance to the model

Prediction Error: 15.4% p<0.01

Successes of GENN

- High power to detect a wide range of main effect and interactive models
 - Motsinger-Reif AA, Dudek SM, Hahn LW, and Ritchie MD. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. <u>Genetic</u> <u>Epidemiology</u> 2008 Feb 8 [Epub ahead of print]
- Robust to changes in the evolutionary process
 - Motsinger AA, Hahn LW, Dudek SM, Ryckman KK, Ritchie MD. Alternative cross-over strategies and selection techniques for Grammatical Evolution Optimized Neural Networks. In: Maarten Keijzer et al, eds. <u>Proceeding of Genetic and Evolutionary Computation Conference</u> 2006 Association for Computing Machinery Press, New York, pp. 947-949.
- Higher power than traditional BPNN, GPNN, or random search NN
 - Motsinger AA, Dudek SM, Hahn LW, and Ritchie MD. Comparison of neural network optimization approaches for studies of human genetics. <u>Lecture Notes in Computer Science</u>, 3907: 103-114 (2006).
 - Motsinger-Reif AA, Dudek SM, Hahn LW, and Ritchie MD. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. <u>Genetic</u> <u>Epidemiology</u> 2008 Feb 8 [Epub ahead of print]

Successes of GENN

- Robust to class imbalance
 - Hardison NE, Fanelli TJ, Dudek SM, Ritchie MD, Reif DM, Motsinger-Reif AA. Balanced accuracy as a fitness function in Grammatical Evolution Neural Networks is robust to imbalanced data. <u>Genetic and</u> <u>Evolutionary Algorithm Conference</u>. *In Press*.
- Scales linearly in regards to computation with the number of variables
 - Motsinger AA, Reif DM, Dudek SM, and Ritchie MD. Dissecting the evolutionary process of Grammatical Evolution Optimized Neural Networks. <u>Proceedings of the IEEE Symposium on Computational Intelligence</u> in Bioinformatics and Computational Biology 2006 pp. 1-8.
- Robust to genotyping error, missing data, and phenocopies
 - Motsinger AA, Fanelli TJ, Ritchie MD. Power of Grammatical Evolution Neural Networks to detect genegene interactions in the presence of error common to genetic epidemiological studies. <u>BMC Research</u> <u>Notes In Press.</u>

Successes of GENN

- Has higher power in the presence of heterogeneity than MDR
 - Motsinger AA, Fanelli TJ, Ritchie MD. Power of Grammatical Evolution Neural Networks to detect genegene interactions in the presence of error common to genetic epidemiological studies. <u>BMC Research</u> <u>Notes</u> *In Press*.
- The presence of LD increases the power of GENN
 - Motsinger AA, Reif DM, Fanelli TJ, Davis AC, Ritchie MD. Linkage disequilibrium in genetic association studies improves the power of Grammatical Evolution Neural Networks. <u>Proceedings of the IEEE</u> <u>Symposium on Computational Intelligence in Bioinformatics and Computational Biology</u> 2007 pp. 1-8.
- Has been favorably compared to other methods in the field in a range of genetic models
 - Random Forests, Focused Interaction Testing Framework,
 Multifactor Dimensionality Reduction, Logistic Regression
 - Motsinger-Reif AA, Reif DM, Fanelli TJ, Ritchie MD. Comparison of computational approaches for genetic association studies. <u>Genetic Epidemiology</u> *In Press*.

 Applied GENN to the AIDS Clinical Trials Group #384 dataset to identify potential genegene interactions that predict EFV pharmacokinetics and long-term responses.

- Participants from ACTG 384, a multicenter trial that enrolled from 1998-99.
- Participants were randomized to 3- or 4-drug therapy with EFV, nelfinavir (NFV), or both EFV plus NFV, given with ddl+d4T or ZDV+3TC.
- 340 were randomized to receive EFV (± NFV) had genetic data available.
- 3 years follow up
- Baseline characteristics:
 - 83% male
 - 50% white, 32% black, 17% Hispanic, 1% other race/ethnicity
 - CD4 count 270 ± 220 cells/mm3
 - baseline HIV-1 RNA 5.0 ± 0.9 log10 copies/ml

- Polymorphisms identified in the immune system and drug metabolism gene
- Outcome of interest:
 - CD4 increases in HIV patients undergoing potent antiretroviral therapy
 - <200 CD4 cells/mm3 increase from baseline with 48 weeks of virologic control</p>

CV	Factors in GENN Model							CE	PE
1	CD132_9823	IL2RB_6844						0.4153	0.4000
2	CD132_9823	IL2RB_6844	IL2RB_6844	IL15RA_19029	IL15RA_19411			0.4268	0.4091
3	CD132_9823	IL2RB_6844						0.4140	0.4227
4	IL2_9352	CD132_9823	IL2RB_6844	IL15RA_19371	IL15_87710			0.4173	0.4368
5	CD132_9823	IL2RB_6395	IL2RB_6844	IL15RA_18856				0.4186	0.4253
6	CD132_9823	IL2RB_6844	IL15RA_18856	IL15_4526				0.4122	0.5862
7	IL2_9511	CD132_9276	CD132_9823	IL2RB_6443	IL2RB_6844	IL2RB_29015	IL2RB_29015	0.4160	0.4483
8	CD132_9823	IL2RB_6844	IL2RB_6844	IL2RB_28628	IL15RA_19029			0.4109	0.4828
9	CD132_9276	CD132_9823	IL2RB_6844	IL15_4526	IL15_87191			0.4262	0.4828
10	CD132_9823	IL2RB_6844	IL15RA_18856	IL15_87435				0.4198	0.5402

Avg PE = 32.3% P<0.02

Future Directions

- Family data
- Both continuous and discrete input and output variables
 - Combine data types
- Empirical studies to aid in NN interpretation
- Improve computation time and evolutionary optimization

Acknowledgments

- Vanderbilt University
 - Center for Human Genetics Research
 - Scott Dudek
 - Lance Hahn, PhD
 - Marylyn Ritchie, PhD
 - CFAR
 - David Haas, MD
 - Todd Hulgan, MD MPH
 - Jeff Canter, MD MPH
 - Asha Kallianpur, MD
 - Tim Sterling, MD

- NCSU
 - Nicholas Hardison
 - Sandeep Oberoi
- EPA
 - David Reif, Phd
- Penn State
 - Theresa Fanelli

Questions?