From Data to Models: Systems biology
methods and potential applications to
toxicoinformatics

|.P. Androulakis
Biomedical Engineering Department
Chemical & Biochemical Engineering Department

RUTGERS

School of Engineering
environmental bioinformatics and
e Computational Toxicology Center




From Data to Models: What is it?

Disclaimer: this a rather philosophical discussion so | would not necessarily spend too
much time thinking about this page. However, it may be useful to set the stage

From Data to Petterns
e |t is an undeniable fact that data is everywhere and we have to do
something with it ... not sure what sometimes
- Beer and nappies — A data mining urban legend
e The idea of collecting, annotating, warehousing, and analyzing data for

the purpose of unraveling possible patterns has been extensively
discussed and will not be part of this talk

From Data to Models

e A pattern is simply a coincidence or a potentially useful observation, if
repeated at a very high rate, unless it can be interpreted using
available laws or can be used to develop new laws that explain old
behaviors and predict new

- Warning: This is an expression of my personal bias
e The model is a quantification, not necessarily in closed form, of a law

e Actions and testable hypotheses in science and engineering are better
designed with models rather than “knowledge”
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What's in a Pattern?
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From Data to Models
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/n silico Biology ?

Two major innovations opened up major opportunities
e Decoding of the (human) genome < State space definition
e High-throughout experimentation <~ Measurement of coordinated changes

The system can be “systematically” probed and reverse-engineered to develop
hypotheses for the next perturbation

Courtesy of Dbekaio

Johns Hopkins University
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A Prototypical Example: Systems Biology

||||||||||
........

Biological systems propagate T
external perturbations across = .o % A . = Basic module
a complex network of ‘~

interacting elements

Signals

mm) Systems of modules

!

mm) Networks of systems

Complex Behavicur
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From Data to Models:
Some Important Problems

Which of the features capture the structure in the
data?

Which of the samples increase the information
content of the data?

Which of the modules are important?

Which of the interactions among the modules are
Important?

How are biological systems organized in the form
of complex networks?

How can we develop models that explain the
propagation of disturbances through the
interaction of modules giving rise to observed
emerging behaviors?

In this talk

e How to use computational thinking
e This is not a comprehensive review
e This is not the end of the story
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High-throughput Measurement of Gene Expression

Prepare cDNATErobe BrepareMicroarray.
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High dimensional spaces probably

Feature Selection and Model Complexity

Obliqgue Multicategory Decision Tress

include redundant, i.e.
uninformative, features

Formalize concept of model complexity
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Feature Selection and Model Complexity
Oblique Multicategory Decision Tress
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Sample Selection to Improve Clusterability

e Hypothesis: the more similar the promoter regions, the higher the
possibility of coregulation
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Sample Selection to Improve Clusterability

Consensus Clustering

Traditional clustering assumes that all
samples must belong to classes

We explore the hypothesis that not
all data should be clusterable but original dataset J
that a subset exists composed of

all the pairs of samples that show a | g
. - . S t ti :
higher probability of either umber of Hlasters —

e Belonging to the same cluster,

or
_ Build
e not belonging to the same the agreement matri
cluster

This “clusterable” subset of samples
can potentially have a high
probability of being relevant in
terms of a coherent response

Gene selection

Cluster selection
Measure accuracy
by Randidx
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Sample Selection to Improve Clusterability
Consensus Clustering

Sample selection
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Synthesis and Analysis of Regulatory Networks

Transcriptionally regulated responses can be controlled by appropriate
manipulation of critical putative targets
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Structurally Equivalent Modules of Regulatory
Control

Knock-out experiments have demonstrated that equivalent structural alternatives
are available to the cell largely contributing to the apparent robustness of
biological systems, Kitano, Nature (2004)

Integer cuts allow for the systematic generation of potentially equivalent
structural alternatives
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Network Reconstruction
Overlapping Biclustering
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Network Reconstruction
Overlapping Biclustering
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Network Quantification
Deconvolution of Dynamics

Non-linear Strengths
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Intrinsic Dynamics and Essential Responses
Clustering & Selection in Multidimensional Temporal Data
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Intrinsic Dynamics and Essential Responses
Clustering & Selection in Multidimensional Temporal Data
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Global Dynamic Models
Exploring Global Transcriptional Dynamics

Air Exposure

Ultrafine particle
depoEitiun

Red
Blood
Cells

Plasma
Extracellulal
Fluid

S
‘ U;i:ie ‘ Feces |

Combining tissue -specific
transcriptional dynamics
and PBPK models

Alveolus

[

i

are functions of TNF
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Global Dynamic Models
Exploring Global Transcriptional Dynamics

Extracting dynamics
from liver microarray

d™c
;Kn el f(x)
C = Compartment
K = Reparameterized Constants
f(x) = stimulus profile

Fits with Models of Different Order (Acute Corticosteroid)
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Reverse Engineering of Mechanistic-based Models
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Reverse Engineering of Mechanistic-based Models
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Reverse Engineering of Mechanistic-based Models

Normalized Signal Intensity
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Reverse Engineering of Mechanistic-based Models

Intervention
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Case Study I: /n utero exposure to Dibutyl Phthalate (DBP)

Girate Gycle

Vaine, Leucine

Metabolic pathways grow into metabolic
networks; DBP affects cholesterol biosynthesis
before steroid hormone biosynthesis

Gene networks allow us to predict putative TF's

)
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Phylogenetics: Cross-species Extrapolation of MoA

Cross-species promoter conservation
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Annals of Biomedical Eng., 2006; unpublished data, 2007

Case Study I1: Triazole Conazole Fungicides

Myclobutanil vs. Triadimefon
Myclobutanil vs. Propiconazole

Non-Tumorigenic vs Tumorigenic

Taste
Long-termdepression
Phosphatidylinositol signaling system

Oxidative phospt

Glycerolipid metabolism

Axonguidance Parkinson's disease

pathway pathway
Glycanstructures i nath
C21-Steroid hormone metabolism patway
rolemespor

PROP | oo TRIA
I

mTOR signaling pathway  Alkaloid biosynthesis 11
Thyroid cancer Biotin metabolism

Reductive carboxylate cycle
Tightjunction ~ Caprolactam degradation

lineage
Basal transcription factors
Inositol phosphate

Glyoxylate and dicarboxylate metabolism

Arsenic Exposure — Zebra Fish

DNA-damage-inducible
GADD45

GluthathioneTransferase

Heat Shock Protein

HSP70
: Beta-actin,
HeatShock Protein | -+ — - : bactin1&2
HSP90
°
>
Q
-
c
o
73
n
e
3 glucose phosphate
5 isomerase
& gpia
RASoncogene
RAB14
RAB5a 9 10 1 12
RAB1 N\ 2 1 1
[T A\ S ¥ G
| I I [
o X - -] o N - -
[ [ 1
5 - — — T 9 ol —
/ L ol ﬂ

24 48 % 08 a8 g
Pyruvate

Dehydrogenase Actin, tubulin " | Heat Shock Protein excision repair
Pdhal Tuba, actl HSP60 ERRC

RUTGERS

School of Engineering

environmental bioinformatics and
c Computational Toxicology Center



ebCTC — An Integrative Approach

The focus today was on only one
aspect of the activities taking place
at ebCTC

We have a well-integrated network of
Interactions

e Physiomics, Toxicokinetics and
Toxicodynamics —
Georgopoulos

e Systems Level — Androulakis

e Proteomics , Metabolomics
and Metabolic Engineering —
Floudas, lerapetritou

e Bio-network Modeling and
Dynamics — Rabitz

e Receptors and Molecules -
Welsh
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Summary and Outlook

A systems approach to toxicogenomics allows the integration of multiple data sources in
an attempt to place interpretation of experimental observations in a reasonable
context

One the most challenging, yet promising, outcomes would be higher level models that
allow developing associations and hypotheses

The examples and methodologies presented emphasized:
e Essential responses and PBPK models
e Context-specific regulators and controls
e Combining expression and relational data
e Cross-species extrapolations of MoA
e Metabolic context of expression data

Main conclusions: Significant opportunities related to optimization and modeling of
complex systems and need for high-throughput data generation (multiple
disturbances, time course data)

The wish list is well defined (data, promoters, annotations etc.). What we need to
promote is the attitude that systems biology is a hypothesis generation framework
closely interacting with and guiding experimental design rather that a test bed for
algorithm development or software development
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Possibilities and Limitations

Despite being in the genomics-era we are still seriously data limited

« We may have more analytical and computational capabilities that we
have data ...

Initiatives such as ToxCast™ (www.epa.gov/ncct/toxcast) can have
significant impact
Relevant data is a critical enabler for any future success
e Relevant in terms of significance
e Relevant in terms of resolution

These activities should embrace and foster close collaboration
between scientists and engineers with diverse background
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