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Organization of Center

e Three major Research Projects: (1) Biostatistics,
(2) Cheminformatics, and (3) Computational
Infrastructure for Systems Toxicology

e Administrative Unit
e Public Outreach and Training Activity (POTA)

o “Functional areas” of Analysis, Methods
Development and Tools Development overseen
by a panel of experienced investigators
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(1) Biostatistics In
Computational Toxicology

e Emphasis on strengths in
microarray analysis,
elucidation of
networks/pathways,
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Bayesian approaches

o Stresses existing
capabilities
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(2) Chem-informatics

 seeks to establish a
universally applicable and
robust predictive toxicology
modeling framework

e Focuses on Quantitative
Structure Activity/Property
Relationships (QSAR)

 Establishes a modeling
workflow, toxicity
prediction scheme and plan
for software development
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Figure 5. Workflow Logic of Model Generation Process

User input




(3) Computational o L ETE

Framework for
Systems Toxicology -~
* Uses model for toxicity
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PrOJect 1

Fred Wright, Ph.D. (P.1.) —statistical genetics, genomic analysis
Mayetri Gupta, Ph.D. — sequence analysis, motif detection

Young Troung, Ph.D. — Bayesian network genetic analysis, SVM
methods for metabolomic data

Joseph Ibrahim, Ph.D. — Bayesian analysis of microarray data

Danyu Lin, Ph.D. — haplotype-phenotype analysis, microarray
analysis

Fel Zou, Ph.D. — statistical genetics, genomic analysis

Andrew Nobel, Ph.D. — clustering, data dimensional reduction,
genetic pathway analysis

Master’s trained personnel
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Project 1 objectives

*to provide analysis capability to the environmental
sciences community

to develop appropriate new methods to apply to public
data from the EPA and the broader community

to develop computational tools to further the
objectives.

to disseminate research findings to the computational
toxicology community, train students, and to
coordinate additional statistical research in
computational toxicology.
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Methods (to name a few)

Sample size estimation for high-throughput data
P-value computation, significance testing
Multiple-testing issues, false discovery rates
Dose-response modeling

New measures of differential expression
Transcriptional regulation and motif discovery
Network analysis, discrimination methods
Pathway analysis
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Tools

Much of initial code has been implemented In
R/Bioconductor. This is directly useful to other
statistical investigators.

Work with project 3 investigators and students to
produce user-friendly web-based and/or
standalone applications

Work to increase utility of methods by integration
with informatics and biological annotation

We view the SAM software as a model for
Independent successful dissemination. Project 3
personnel are training to implement appropriate
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Example 1. New ways of detecting

Log(sample mean)

Which we can exploit to
reduce the false discovery
rate...

differential expression

Expression measurements
show a mean-variance
relationship...

FDR

Grey envelope shows all
the SAM procedures
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Example 2. Significant genes/pathways/categories: the
Significance Analysis of Function and Expression
procedure (honest pathway significance testing)
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GO Tree with significant nodes
Key: blue (p<0.001) green (0.001<=p<0.01), red (0.01<=p<0.1).
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Example 3. A Bayesian approach for finding
probabilities of transcription factor binding sites

The complicated stuff (M. Gupta and
colleagues)...

Pr(x|H A,single) B Zj‘:—f"“ Pr(x N the motif starts at position j)
Pr(x|Hy) Pr(x|Hy)

Zf:_fuﬂ P"’(X[1:j—1]|90) : P?‘(X[j:j+m—1]|9) : PT(XU+w:L]|90) JoE (1 - 3)L_w
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Cumulative CDF

Cumulative CDF

The simple results — each gene/transcript has a posterior probability of
containing the motif. Here are results for the Affy U95A array, 5000bp
upstream sequences, using the JASPAR database
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Example 4. Isotonic regression: gene expression dose-
response data

Cyclin-dependent kinase inhibitor 1A (p21, Cip1)
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Pyrethroid Biomarker Project (J. Harrill, K.
Crofton and colleagues, U.S. E.P.A)

* Problem: Lack of a cost efficient biomarker of effect
hampers assessments of the cumulative risk of
pyrethroid insecticides.

«Aim: Develop a biochemical biomarker of effect for
pyrethroids that reflects changes in neuronal firing
rates.

*Methods: Use gene arrays and RT-PCR to identify
dose-responsive transcripts in rat CNS. Permethrin
and deltamethrin each examined at four doses,
Affymetrix arrays.
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Dose-response, cont.: a statistic to rank genes...

. f(dosehighest) o 1’:\(doselowest)

Standard error estimate.

\/V «—  Could be improved.

Comparison of M-statistics

Permethrin (M-statistic)
o

Dose-response data
on pyrethroid in rat
brains, courtesy of
J. Harrill and K.
Crofton, U.S. E.P.A.
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Project 2
Chem-informatics

Alex Tropsha, Ph.D. (P.l.) —computational chemistry, QSAR

Weifan Zheng, Ph.D. — computational methods in drug discovery,
QSAR

Alexander Golbraikh, Ph.D. — mathematical approaches in QSAR
development

Yufeng Liu, Ph.D. — Support vector machines, semi-supervised
machine learning

additional personnel



Project 2 objectives
*to develop an innovative QSPR modeling workflow
based on the principles of combinatorial QSPR
modeling, model validation and consensus prediction

to develop toxicity predictors using the workflow
*to integrate modeling tools and endpoint predictors
using workflow design middleware and workflow

deployment in a predictive toxicology web portal

*Applied to toxicology datasets

20
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Project 2 builds on years of research in the Tropsha lab on
QSAR/QSPR modeling and developing robust predictors

Many of the machine learning and cross-validation ideas
are used In statistical genomics

Descriptors — topological molecular indices, size and
shape, hydrophilic/phobic indices, physical propoerties,
etc.

Try to predict biological activity

Analysis of the Carcinogenic Potency Database
(collaboration with Dr. A. Richard, EPA) was performed,
applied to 693 compounds, with classification KNN QSAR
prediction accuracies estimated at 85%-90%.

21
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Structures DATASET Activities

'I’ Descriptor sets 1,2,..., M

v v

Division into training and test sets (multiple times for each type
of descriptors)

y v

Multiple training sets Multiple test sets

;

Y-Randomization

v

OSAR methods 1.2.....N OSAR methods 1.2.....N

v
Models —l li‘ Models

Activity F_’rediction <

y

Validated predictive models

Flowchart of the
combinatorial QSAR

methodology
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———*| Y-Randomization

Multiple
Training Sets

A\ 4

Combi-QSAR
Original Spl!t into Modeling
Dataset Training and
Test Sets
il Only accept models
Multiple Activity that have a
Test Sets Prediction q°>0.6
R? > 0.6, etc.
b Validated Predictive
Data ase€ 1. | Models with High Internal |«
Screening & External Accuracy

Flowchart of predictive toxicology framework based on
validated combi-QSAR models. Numerous public datasets

proposed. ﬁ

23
b



Input Input
Structure Descriptor
File File

Input
Activity
File

QSAR
Model(s)

Database
to Screen

— functions —programs [::::]——-Userinput

Predictive QSPR modeling workflow




Do y-random
Testing?

Update
Status DB
To Complete|

Collect
GRID
Process
RESIS




David Stotts, Ph.D. (co-P.l.) — computer science, software
engineering

lvan Rusyn, Ph.D. (co-P.l.) — toxicology, genomics

Wei Wang, Ph.D. — computer science, data mining

Brad Hemminger, Ph.D. — informatics and metadata issues
David Threadgill, Ph.D. — mammalian genetics, genomics
Additional programmers and students



Project 3 objectives

*Develop and implement algorithms that streamline the analysis
of multi-dimensional data streams in dose-response assessment
and cross-species extrapolation.

Facilitate the development of an industry-standard workflow for
(i) analysis of the -omics data, (i) linkages to classical indicators
of adverse health effects, and (iii) integration with other types of
biological information such as genome sequences and genetic
differences between species.

27
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Project 3 objectives, cont.

*Build web-based, open-source and user-friendly graphical
Interfaces associated with interoperable computational tools for
data analysis that facilitate incorporation of new data streams
Into basic research and decision-making pipelines (methods from
Projects 1 and 2).

*Provide an interdisciplinary computer science resource to the
environmental sciences and toxicology community

L_onger-term objectives include new software engineering
methods for better execution and maintenance of above, and
sharing and disseminating results

28
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A driving biological problem:

Toxicogenetic analysis of susceptibility to
toxicant-induced organ injury

The model is being used by Drs. Threadgill and
Rusyn involves extensive profiling of numerous
mouse strains (over 40) for relevant organs

Early data on acetominophen and alcohol on liver

Proposals for trichloroethylene and other toxicants
on liver, kidney, and other organs

29

)

=



The Mouse as a Model for Studying
Genotype-Phenotype Interactions

Genetic
Tools

Biological
Tools

Histology

o -
o Proteome ==

Content

Molecular
Profile

Physiology

Gene Content
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Knockouts

Transgenics Knockins

Engineering
Tools
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A large variation in response by
genetic background...
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Strain-specific susceptibility to
acetaminophen (APAP)-induced
liver injury. Serum ALT levels
(top panel) and tissue
histopathological changes
(bottom panel) were assessed
24 hrs after a single dose
exposure to APAP (300

mg/kg, i.g., 24 hrs).
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Toxicological and expression analysis of genotype-specific responses to
ethanol in liver. Serum and liver tissues were collected from mice of 6
different strains after acute (5 g/kg, 6 hrs; A) or subchronic (4 weeks, B)
treatment with ethanol.



Variation in expression of potentially
Important genes...
Fmo3d : flavin containing monooxygnease 3
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WebQTL can be used to select BXD strains that model genetic background-
dependent variability in metabolism genes across the population. The difference
in background expression of Fmo3 across BXD strains is shown.

Source: lvan Rusyn and colleagues 33
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17,637 Genes

High Responder ALT>500 U/L

Log, [ T I )
. . Low Responder ALT 100-500 U/L

o

- o
8 & & & Vehicle Control, ALT<100 U/L
ALT Level Unknown

Unsupervised hierarchical clustering of liver gene
expression from APAP- (300 mg/kg, 24 hrs) or vehicle-
treated mice shows distinct grouping of samples that
correlates with the degree of liver injury.
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Systems Biology Approach
Mouse Models SNP Genotypmg
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Transcriptome map of forebrain. The physical location of each gene
on the microarrays (y-axis is plotted with the genetic location of
QTLs that regulate the steady-state level of its transcripts. The
three major patterns of regulation are marked.

Trans-regulated gens Cis-regulated genes

AMAA
2000

1200

800
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HE Genes regulated by
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Genetic Location of QTLs f

Image courtesy of D.W. Threadgill
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Examination of genetic networks that regulate
gene expression In liver (webQTL and beyond)
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Transcriptome map for the murine brain and liver.
Source: lvan Rusyn and colleagues 37 IL



CYP2C29
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Correlation between gene expression of CYP2C29 and several liver-
specific phenotypes recorded for BXD strains.



Development of new methods for -omics data analysis:
Finding associations between gene expression profiles and
strain-specific genotyping data

1_
A =3P SNPs
0.8
2 15
© = 1
. Q 0.4} g
= o
SiZer B 05
- 0.2}
Smoothing i
oL,
approach

B:Dii‘f. Expressed Genes ww . Diff. Expressed Genes

e:fiA

Gene d
o (=]
N

)
.

o

20 40 60 80 100 120 140

E

Ac vs. Co SNP
Ac vs. Co Gene

Ch vs. Ac SNP
Ch vs. Ac Gene

Chvs. Co SNP
Chvs. Co Gene

—— — — — —
] —
| | | 1 | | | |

0 20 40 60 80 100 120 140
Physical location on the chromosome, Mb

—
b s R O O e B A e



Data analysis procedures in concert with project 1,
Including principal component analyses, distance-
weighted discrimination, SAFE, etc.

Specific data mining approaches also proposed, such
as subspace clustering (SNPs vs. phenotypes, gene
expression), that fall outside of typical statistical
framework

The computational challenges are immense when we
compare different —omics platforms (e.g., 100,000
SNPs X 30,000 transcripts)

This requires serious computer science (activities of
UNC SNP group).
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Solutions to a computational infrastructure

Software technology — federated systems and
architectures

Execution platforms — workstations, grid
computing, supercomputing

UNC has access to resources of the Renaissance
Computing Institute

Data access and management — data mining,
formats and data interchange, common
abstractions/metadata issues

41
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