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Petroleum Assessment of the Pottsville Coal Total 
Petroleum System, Black Warrior Basin, Alabama 
and Mississippi
By Joseph R. Hatch and Mark J. Pawlewicz

 Overview

The Pottsville Coal Total Petroleum System (TPS) in 
the Black Warrior Basin of Alabama and Mississippi (fig. 
1) produces natural gas from coals in the Lower to Middle 
Pennsylvanian Pottsville Formation. The areal extent of the 
Pottsville Coal TPS (about 7,100 mi2, fig. 1) is defined by 
the occurrence of coal in the upper part of the formation. The 
Pottsville Coal TPS includes one continuous gas assessment 

unit, the Black Warrior Basin Assessment Unit (AU), which 
has the same boundaries. 

Historical production data and the relation of this 
production to the basin’s geologic framework were used to 
estimate volumes of gas to be discovered in undrilled areas. 
Geologic framework factors, considered in the estimation 
of undiscovered hydrocarbon resources of the Pottsville 
Coal TPS and the Black Warrior Basin AU, are shown in the 
petroleum system events chart in figure 2.

Figure 1.  Location of the Pottsville Coal Total Petroleum System (TPS) and the Black Warrior Basin Assessment Unit (AU) in the Black 
Warrior Basin Province of northwestern Alabama and northeastern Mississippi.
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Source rocks for the gas accumulations in the Pottsville 
Coal TPS and the Black Warrior Basin AU are the Pottsville 
Formation coals, which also form the principal reservoirs. 
Coal gas was generated primarily through thermal maturation 
of coal during the late Paleozoic. Coal gases are characterized 
by having low gas wetness (median = 0.01 percent), low CO2 
and N2 contents (medians = 0.08 percent and <0.01 percent, 
respectively), and relatively negative δ13C1 (median = –47.4 
parts per thousand PDB), the latter indicating that some of the 
gas formed from a late-stage microbial process. 

Volumes of gas and water produced are dependent on 
well design and completion practices, well spacing, coal 
thickness, gas content (thermal maturity and coal chemical 
composition), and reservoir quality, which are determined by 
the abundance and openness of natural fractures, including 
cleats, joints, and fault-related shear fractures. Virtually all 
coal-gas production from the Pottsville Formation is from 
high-volatile A bituminous or higher rank coals, which occur 
in areas of Tuscaloosa, Jefferson, and Walker Counties, 
Alabama, in the southeastern part of the Black Warrior Basin 
AU.

Through the first quarter of 2000, more than 3,500 gas 
wells had been completed within the Black Warrior Basin 
AU, of which about 3,200 were still producing. Cumulative 
production through January 2003 was about 1.42 trillion 
cubic feet of gas (TCFG). Our resource analysis resulted in 
estimated volumes of potential additions to reserves within 

the AU to be 4.61 TCFG at the 95-percent certainty level, 6.85 
TCFG at the 50-percent certainty level, 10.18 TCFG at the 5-
percent certainty level, and a mean resource estimate of 7.06 
TCFG. 

Geologic Setting

Stratigraphic and Sedimentological Framework 

The Lower to Middle Pennsylvanian Pottsville Formation 
is composed principally of shale, sandstone, and coal; 
thicknesses of the formation locally exceed 6,000 ft (Thomas, 
1988). The formation is exposed at the surface in the eastern 
one-third of the Black Warrior Basin and is overlain with 
angular unconformity by poorly consolidated Mesozoic and 
Cenozoic strata of the Gulf Coastal Plain and Mississippi 
Embayment in the western two-thirds of the area (fig. 3) 
(Mellen, 1947). Economically important coals, primarily in the 
upper part of the formation, are assigned to several widespread 
“coal zones” (McCalley, 1900). In ascending order, these are 
the Black Creek, Ream, Mary Lee, Gillespy, Curry, Pratt, 
Cobb, Gwin, Utley, and Brookwood “coal zones” (fig. 4).

Figure 2.  Petroleum system events chart showing interpreted timing of elements and processes related to hydrocarbon generation 
and accumulation for the Pottsville Coal Total Petroleum System and the Black Warrior Basin Assessment Unit, Black Warrior Basin, 
Alabama and Mississippi. Modified from Magoon and Dow (1994). MYBP, million years before present; Paleo., Paleocene; Eoc., Eocene; 
Olig., Oligocene; Mio., Miocene; Plio., Pliocene.
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Butts (1926) was the first to recognize the evidence for 
repeated marine transgressions and regressions during Pottsville 
deposition. Wanless (1976) made passing mention of cyclicity 
in the Pottsville Formation, but it was not until the intensive 
exploration for conventional hydrocarbons and coal-bed gas in 
the 1980s that basinwide depositional cycles were confirmed 
(Sestak, 1984; Thomas, 1988; Pashin and others, 1991; Pashin, 
1994a, b). The first cyclostratigraphic subdivision of the upper 
part of the formation was made by Pashin and others (1991), 
who defined a series of basinwide coarsening-upward and 
coaling-upward cycles. Pashin (1994a, 1998) and Pashin and 
others (2004) suggested that high-frequency glacial eustasy in 
the Milankovitch long eccentricity band (about 0.4 Ma) was the 
dominant causal mechanism of the depositional cyclicity.

Pottsville Formation cycles are internally heterogeneous, 
consisting primarily of mudstones and sandstones (Pashin, 
1994b, 1998) (fig. 5). The basal surface of each cycle is 
typically sharp and locally truncates strata of the underlying 
cycle; marine fossils are concentrated above this surface 
(fig. 5). The mudstone above the fossil concentrations is 
typically between 30 and 300 ft thick, coarsens upward, and 

contains burrows and scattered shells. Sandstone varies from 
litharenite containing low-grade metamorphic rock fragments 
to quartzarenite (Mack and others, 1983). The litharenite is 
dark and impermeable, whereas the lighter colored, quartzose 
sandstone is permeable and of reservoir quality (Pashin and 
others, 1991). In places, the litharenite is more than 150 ft thick 
and includes progradational foresets and a variety of channel 
fills. Each cycle is capped by a lithologically heterogeneous 
coal zone containing one or more coals of variable geometry 
and thickness that are intercalated with mudstone and sandstone 
(Pashin and others, 2004). 

The individual cycles are interpreted as flooding-surface-
bounded parasequences, in the terminology of Vail (1987). 
The basal surfaces are transgressive surfaces of erosion, or 
ravinements, and the associated fossil concentrations are in 
condensed sections that rest directly on the ravinement surfaces 
(Liu and Gastaldo, 1992; Pashin, 1998) (fig. 5). The coarsening-
upward mudstone intervals above the fossil concentrations 
and litharenite foreset beds record deltaic progradation during 
highstand (for example, see Gastaldo and others, 1993), and 
each mudstone unit apparently rests on a maximum flooding 

Figure 3.  Generalized elevation contour map of the unconformity separating the Pennsylvanian Pottsville Formation and Upper 
Cretaceous strata in the southeastern part of the Black Warrior Basin, Alabama. Modified from Kidd (1976) and Pashin and others 
(2004, their fig. 25).
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Figure 4.  Stratigraphy of the upper part of the Pennsylvanian Pottsville Formation, as shown in core and geophysical well logs in the 
Curry 12–10–370 well, Tuscaloosa County, Alabama. Modified from Pashin and Hinkle (1997, their fig. 3) and Pashin and others (2004, 
their fig. 5); coal zone and coal names are from Pashin and Hinkle (1997, their fig. 3). g/cc, grams/cubic centimeter; sh, shale; ss, sand-
stone; f, fine; m, medium; c, coarse; cgl, conglomerate.
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surface (fig. 5). Pottsville coal zones accumulated in diverse 
coastal-plain settings from highstand into the early stages of 
marine regression (Pashin, 1998). The associated sandstone 
units include a broad range of fluvial and tidal-flat deposits, 
and the mudstone units represent flood-basin and mudflat 
environments (Rheams and Benson, 1982; Pashin and others, 
1991; Demko and Gastaldo, 1996). Coals are the products of 
peat swamps, and those in the Pottsville Formation represent 
a spectrum of domed and low-lying peat swamp deposits that 
spanned the coastal plain (Eble, 1990; Pashin, 1994a, c; Pashin 
and others, 2004).

The four cross sections on plate 1 illustrate the 
stratigraphic architecture of the eight lower coal zones (Black 
Creek through Gwin coal zones) in the Warrior coal field. 
These cross sections were modified from Pashin and others 
(2004; their cross sections D–D’ on pls. 2, 4, 6, and 8). Cycle-
bounding flooding surfaces are present at the base of the thick 
mudstone units and are overlain by mudstone with slightly 
higher radioactivity than adjacent shale units. All cycles 
thicken toward the southeast (pl. 1), and the upper part of 
the Pottsville Formation is thickest in the Moundville–Cedar 
Cove depocenter in northern Hale and southern Tuscaloosa 
Counties, Alabama (Pashin and others, 2004). This 
southeastward increase in thickness is shown by the isopach 
map of the interval between the Ream and the Gwin coal 
zones in figure 6 (Pashin and others, 2004).

The total thickness of coal, in beds thicker than 1 ft, in 
the upper part of the Pottsville Formation is shown in figure 
7. Net coal thickness in the Black Creek through Brookwood 
coal zones increases toward the southeast, and net coal 

thickness exceeds 40 ft in much of the Moundville–Cedar 
Cove depocenter (see fig. 6) in northern Hale and southern 
Tuscaloosa Counties, Alabama. In some localized areas in 
northern Hale County, net coal thickness exceeds 70 ft (Pashin 
and others, 2004).

Structural Framework

Strata associated with the Pottsville Formation coal 
intervals lack matrix permeability to water; thus, virtually all 
flow is through natural fractures (Pashin and others, 1991), 
which include joints, cleats, and fault-related shear fractures 
(Ward and others, 1984; Pashin and others, 1991, 1999a; 
Pashin, 1998). Pashin and others (1995) and Pashin and 
Groshong (1998) suggested that large-scale folds and faults 
determine the abundance and openness of natural fractures 
and thereby influence gas production from coals (Pashin and 
others, 2004).

Appalachian Folds and Thrust Faults

The structural framework of the Black Warrior Basin 
can be characterized in general terms as a homocline that dips 
southwest toward the Ouachita orogenic belt and contains 
numerous superimposed folds and faults (Thomas, 1988) (fig. 8).  
Folds of the Appalachian orogenic belt are superimposed 
on the southeast margin of this homocline and include the 
Sequatchie anticline, the Coalburg syncline, and the Blue 

Figure 5.  Illustration showing an idealized depositional cycle in the Pennsylvanian Pottsville Formation, Black Warrior Basin, Alabama. 
Modified from Pashin (1994b, 1998) and Pashin and others (2004, their fig. 6).
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Plate 1.  Stratigraphic cross sections for: (A) Black Creek and Ream coal zones; (B) Mary Lee coal zone; (C) Gillespy, Curry and Pratt coal zones; and (D) Cobb and Gwin coal 
zones, Pennsylvanian Pottsville Formation, in the southeastern part of the Black Warrior Basin, Alabama. Modified from Pashin and others (2004, their cross sections D–D’, on 
pls. 2, 4, 6, and 8).

739080199344
TT

981284499692891599184166400343086195636574997399797979578314821597459170887495279446

Ream
coal zone

Black Creek
coal zone

Cedar Cove
fieldPeterson fieldHolt fieldDeerlick Creek fieldBlue Creek field

0

50

100

150

200

250

50

300

350

400

Ve
rt

ca
l s

ca
le

 (f
t)

200

150

100

0

0 2 431 5 6 mi

2 4 6 8 10 km

0

50

100

150

200

250

50

300

7390801969119812844996928915991841664308619574027399797979578314821597459170887495279446
T T

4006

Ve
rt

ca
l s

ca
le

 (f
t)

Cedar Cove
fieldPeterson fieldHolt fieldDeerlick Creek fieldBlue Creek field

Mary Lee
coal zone

0

0 2 431 5 6 mi

2 4 6 8 10 km

73908019691198128449969289159918416643086195590374027399797979578314821597459170911795279446
T T

4006

Peterson field
Cedar Cove

 fieldHolt fieldDeerlick Creek fieldBlue Creek field

Pratt
coal zone

Curry 
coal zone

Gillespy
 coal zone

0

50

100

150

200

250

50

300

350

400

450

500

600

700

800

900

1000

Ve
rt

ca
l s

ca
le

 (f
t)

0

0 2 431 5 6 mi

2 4 6 8 10 km

41664003430861956365749979578314 73908019934498128449969289159918821597459170887495279446

0

0 2 431 5 6 mi

2 4 6 8 10 km

TT
74007744

Gwin
coal zone

Cobb
coal zone

Cedar Cove
fieldPeterson fieldHolt fieldDeerlick Creek fieldBlue Creek field

0

50

100

150

200

250

50

300

350

400

Ve
rt

ca
l s

ca
le

 (f
t)

250

200

150

100

D

D

D'

D'

Oak Grove

White Oak Creek

Blue Creek

Short
Creek

Pleasant Grove

Field boundary

Stratigraphic cross section

Holt

Brookwood

Cedar Cove

Moundville

D
ee

rl
ic

k
C

re
ek

PetersonLittle Sandy
Creek

Little
Buck
Creek

Robinson's
Bend

Big Sandy
Creek

Taylor
Creek

Thornton
Creek

0 5 10 mi5

5 0 5 10 15 km

EXPLANATION

6424 Well permit number

Gamma-density logs

Aggradational sandstone
(color-coded by parasequence)

Interbedded mudstone and 
sandstone (color-coded by 
parasequence)

Primary resource bed
Secondary resource bed
Thin marker bed

Coal

Gamma
ray

Density

Cycle-bounding
flooding surface

Minor flooding surface

D

C

B

A

North South

U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY
U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

DIGITAL DATA SERIES DDS–69–I
CHAPTER 4, PLATE 1



    �Assessment of Pottsville Coal Total Petroleum Sytem—Black Warrior Basin Province

73
90

80
19

93
44T

T
98

12
84

49
96

92
89

15
99

18
41

66
40

03
43

08
61

95
63

65
74

99
73

99
79

79
79

57
83

14
82

15
97

45
91

70
88

74
95

27
94

46

R
ea

m
co

al
 z

o
n

e

B
la

ck
 C

re
ek

co
al

 z
o

n
e

C
ed

ar
 C

ov
e

fie
ld

Pe
te

rs
on

 fi
el

d
H

ol
t f

ie
ld

D
ee

rl
ic

k 
C

re
ek

 fi
el

d
Bl

ue
 C

re
ek

 fi
el

d

0 50 10
0

15
0

20
0

25
0

50 30
0

35
0

40
0

Vertcal scale (ft)20
0

15
0

10
0

00
2

4
3

1
5

6 
m

i

2
4

6
8

10
 k

m

0 50 10
0

15
0

20
0

25
0

50 30
0

73
90

80
19

69
11

98
12

84
49

96
92

89
15

99
18

41
66

43
08

61
95

74
02

73
99

79
79

79
57

83
14

82
15

97
45

91
70

88
74

95
27

94
46

T
T

40
06

Vertcal scale (ft)

C
ed

ar
 C

ov
e

fie
ld

Pe
te

rs
on

 fi
el

d
H

ol
t f

ie
ld

D
ee

rl
ic

k 
C

re
ek

 fi
el

d
Bl

ue
 C

re
ek

 fi
el

d

M
ar

y 
Le

e
co

al
 z

o
n

e

00
2

4
3

1
5

6 
m

i

2
4

6
8

10
 k

m

73
90

80
19

69
11

98
12

84
49

96
92

89
15

99
18

41
66

43
08

61
95

59
03

74
02

73
99

79
79

79
57

83
14

82
15

97
45

91
70

91
17

95
27

94
46

T
T

40
06

Pe
te

rs
on

 fi
el

d
C

ed
ar

 C
ov

e
 fi

el
d

H
ol

t f
ie

ld
D

ee
rl

ic
k 

C
re

ek
 fi

el
d

Bl
ue

 C
re

ek
 fi

el
d

P
ra

tt
co

al
 z

o
n

e

C
u

rr
y 

co
al

 z
o

n
e

G
ill

es
p

y
 c

o
al

 z
o

n
e

0 50 10
0

15
0

20
0

25
0

50 30
0

35
0

40
0

45
0

50
0

60
0

70
0

80
0

90
0

10
00

Vertcal scale (ft)

00
2

4
3

1
5

6 
m

i

2
4

6
8

10
 k

m

41
66

40
03

43
08

61
95

63
65

74
99

79
57

83
14

73
90

80
19

93
44

98
12

84
49

96
92

89
15

99
18

82
15

97
45

91
70

88
74

95
27

94
46

00
2

4
3

1
5

6 
m

i

2
4

6
8

10
 k

m

T
T

74
00

77
44

G
w

in
co

al
 z

o
n

e

C
o

b
b

co
al

 z
o

n
e

C
ed

ar
 C

ov
e

fie
ld

Pe
te

rs
on

 fi
el

d
H

ol
t f

ie
ld

D
ee

rl
ic

k 
C

re
ek

 fi
el

d
Bl

ue
 C

re
ek

 fi
el

d

0 50 10
0

15
0

20
0

25
0

50 30
0

35
0

40
0

Vertcal scale (ft)

25
0

20
0

15
0

10
0

D

D

D
'

D
'

O
ak

 G
ro

ve

W
h

it
e 

O
ak

 C
re

ek

B
lu

e 
C

re
ek

Sh
o

rt
C

re
ek

Pl
ea

sa
n

t 
G

ro
ve

Fi
el

d
 b

o
u

n
d

ar
y

St
ra

ti
g

ra
p

h
ic

 c
ro

ss
 s

ec
ti

o
n

Holt

B
ro

o
kw

o
o

d

C
ed

ar
 C

ov
e

M
o

u
n

d
vi

lle

Deerlick
Creek Pe

te
rs

o
n

Li
tt

le
 S

an
d

y
C

re
ek

Li
tt

le
B

u
ck

C
re

ekR
o

b
in

so
n

's
B

en
d

B
ig

 S
an

d
y

C
re

ek

Ta
yl

o
r

C
re

ek
Th

o
rn

to
n

C
re

ek

0
5

10
 m

i
5

5
0

5
10

15
 k

m

EX
P

LA
N

A
TI

O
N

64
24

W
el

l p
er

m
it

 n
u

m
b

er

G
am

m
a-

d
en

si
ty

 lo
g

s

A
g

g
ra

d
at

io
n

al
 s

an
d

st
o

n
e

(c
o

lo
r-

co
d

ed
 b

y 
p

ar
as

eq
u

en
ce

)

In
te

rb
ed

d
ed

 m
u

d
st

o
n

e 
an

d
 

sa
n

d
st

o
n

e 
(c

o
lo

r-
co

d
ed

 b
y 

p
ar

as
eq

u
en

ce
)

Pr
im

ar
y 

re
so

u
rc

e 
b

ed
Se

co
n

d
ar

y 
re

so
u

rc
e 

b
ed

Th
in

 m
ar

ke
r b

ed
C

o
al

G
am

m
a

ra
y

D
en

si
ty

C
yc

le
-b

o
u

n
d

in
g

flo
o

d
in

g
 s

u
rf

ac
e

M
in

o
r f

lo
o

d
in

g
 s

u
rf

ac
e

D C B A

N
o

rt
h

So
u

th

U
.S

. 
D

E
PA

R
T

M
E

N
T

 O
F 

T
H

E
 IN

T
E

R
IO

R
U

.S
. 

G
E

O
L

O
G

IC
A

L
 S

U
R

V
E

Y
U

.S
. 

D
E

PA
R

T
M

E
N

T
 O

F 
T

H
E

 IN
T

E
R

IO
R

U
.S

. 
G

E
O

L
O

G
IC

A
L

 S
U

R
V

E
Y

D
IG

IT
A

L
 D

A
TA

 S
E
R

IE
S
 D

D
S
–6

9
–I

C
H

A
P

T
E
R

 4
, 

P
L
A

T
E
 1

Figure 6.  Generalized isopach map of the Ream through Gwin coal zones, Pennsylvanian Pottsville Formation, in southeastern part of 
the Black Warrior Basin, Alabama. Modified from Pashin and others (2004, their fig. 8).
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Figure 8.  Generalized structural contour map of the top of the Pratt coal zone, Pennsylvanian Pottsville Formation (fig. 4), southeastern 
part of the Black Warrior Basin. Known normal faults are located. Modified from Pashin and others (2004, their fig. 21).

Creek anticline. The Sequatchie anticline, a prominent 
frontal structure of the Appalachian orogen in Alabama and 
Tennessee, plunges southwestward, terminating in west-central 
Jefferson County, Alabama (fig. 8). The anticline is detached 
along a slip plane in Cambrian shale, above crystalline 
basement, and these relations provided the basis for the first 
thin-skinned structural models of the Appalachian orogen 
(Rodgers, 1950; Pashin, 1994c; Pashin and Groshong, 1998; 
Pashin and others, 2004).

Structures along the southeast margin of the Black 
Warrior Basin include a series of northeast-striking folds 
associated with the forelimb of the Birmingham anticlinorium 
(fig. 8), a broad anticlinal structure in which Cambrian-
Ordovician carbonate strata are exposed along a thrust fault 
with basal detachment in Cambrian shale (Osborne and others, 
1989; Thomas, 2001). The Coalburg syncline is a flat-bottomed 
structure that shares its northwest limb with the Sequatchie 
anticline (Semmes, 1929) and has an axial trace that follows 
the southeast margin of the basin (fig. 8). The southeast limb 
of the Coalburg syncline is nearly vertical and was overthrust 
in part by Cambrian-Ordovician carbonate strata of the 
Birmingham anticlinorium (Butts, 1910, 1927; Osborne and 
others, 1989). The Blue Creek anticline is an arcuate structure 
that strikes northeast and is thought to have formed above a 
blind detachment developed at least partly within Mississippian 
siliciclastic rocks (Thomas, 1985; Cates and Groshong, 1999). 
Pottsville strata can be traced across the anticline, and the 

Mary Lee coal zone is exposed on both flanks (Semmes, 1929; 
Pashin and others, 1991; Pashin and others, 2004) (fig. 8). The 
forelimb of the structure locally dips more than 50° N.W. and 
is thought to be a major recharge zone that fed freshwater deep 
into the Pottsville Formation through the exposed coal beds 
and fractures (Pashin and others, 1991; Ellard and others, 1992; 
Pashin and Hinkle, 1997). 

Throughout the eastern part of the Black Warrior Basin, 
the southwest-dipping homocline is broken by normal faults 
that generally strike northwest (fig. 8). Trace lengths of faults 
mappable in the subsurface range from about 1 to 8 miles. Fault 
strikes range from N. 7° W. to N. 54° W., averaging about N. 
30° W., and dip is generally between 50° and 70°. The faults 
form a horst-and-graben system in which about 60 percent of 
those mapped dip southwest, and the rest to the northeast. The 
faults tend to be planar or are composed of planar segments 
with sharp bends (fig. 8). Vertical separation is typically less 
than 250 ft but approaches 1,000 ft along a fault in Hale County, 
Alabama (Pashin and others, 2004).

Pottsville Formation Fracture Systems

Fracture systems include joints, cleats, and fault-related 
shear fractures (figs. 9, 10, 11). Vertical joints are widespread 
in shale and sandstone and are typically spaced between 0.5 
and 10 m apart. Closely spaced joints (about 0.5 to 2.5 cm) in 
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Figure 9.  Small normal fault and associated fracturing in an abandoned mine highwall, Brookwood coal zone,  
Pennsylvanian Pottsville Formation, Tuscaloosa County, Alabama. Modified from Pashin and others (2004, their fig. 26).

Figure 10.  Jointed shale above the Gwin coal zone, Pennsylvanian Pottsville Formation, Jefferson County, Alabama. Modified from 
Pashin and others (1991, 2004, their fig. 27). 
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Figure 11.  Bedding plane exposure of a cleat system in Alabama coal. Modified from Pashin and others (2004, their fig. 28).

coals are called cleats and are a primary control on aquifer and 
reservoir quality in the Pottsville coal interval. Joint systems 
tend to be strata-bound (Pashin and others, 2003); that is, the 
upper and lower tips of the fractures tend to be at or near the 
upper and lower contacts of the host shale, sandstone, or coal 
(figs. 9, 10, 11). Pashin and others (2003) observed that fracture 
spacing in shale and sandstone increases logarithmically 
with bed thickness, and McFall and others (1986) and Pashin 
and others (1999a) observed that cleat spacing decreases 
markedly as coal rank increases. Therefore, fracture height in 
the Pottsville Formation generally equals bed thickness, and 
fracturing of adjacent beds took place with a high degree of 
mechanical and thermal independence. Joint systems constitute 
orthogonal sets of vertical fractures composed of systematic 
joints and cross joints (figs. 9, 10, 11) (Ward and others, 1984; 
Pashin and others, 1999a, 2004). 

Systematic joints are planar fractures that can have 
surface-trace lengths on the order of 100 m. Cross joints are 

shorter than systematic joints, tend to strike perpendicular to 
systematic joints, and commonly terminate at intersections 
with systematic joints. In coal, systematic joints are referred to 
as face cleats, and cross joints are called butt cleats (fig. 11). 
Systematic joints and cleats have distinctive orientations in the 
eastern Black Warrior Basin (Ward and others, 1984)  
(fig. 12). Joints in sandstone and shale can be subdivided into a 
regional joint system and a localized cross-joint system that is 
restricted to the area containing Appalachian folds on the east 
basin margin (fig. 12A). Systematic joints of the regional joint 
system strike with a vector mean azimuth of N. 47° E., whereas 
systematic joints of the fold-related system strike with a vector 
mean azimuth of N. 64° W. Similarly, cleat systems can be 
subdivided into a regional cleat system and a localized system 
that is restricted to the southeast basin margin (fig. 12B) (Pashin 
and others, 2004). Face cleats of the regional cleat system strike 
with a vector mean azimuth of N. 62° E., which is 15° east of 
the regional systematic joint system. Face cleats in the localized 

FFCC BBCC

FC = Face cleat (systematic joint)
    BC = Butt cleat (cross joint)

Bedding plane exposure
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fracture system along the southeast margin of the basin 
strike with a vector mean azimuth of N. 36° W.

Joints and cleats in the Pottsville Formation are 
commonly mineralized (Pashin and others, 1999b; 
Pitman and others, 2003), with calcite the dominant 
fracture-filling mineral in shale and sandstone, and 
pyrite and calcite more common in coal. Fracture-filling 
minerals generally have a patchy distribution and seldom 
fill fractures completely, so these minerals are generally 
considered not to be major obstacles to fluid flow and, 
in places, may even help prop fractures open that would 
otherwise be closed (Pashin and others, 2004).

Dipping fractures and fractures with slickensides 
are abundant within 10 m of normal faults and form 
crisscrossing networks that have been subdivided into 
synthetic and antithetic shear fractures by Pashin and 
others (1991) (fig. 9). Synthetic shears dip parallel to the 
associated fault, whereas antithetic shears dip opposite 
to the associated fault. Faults and the associated shear 
fractures cut across bedding and thus are possible 
avenues for hydrologic communication between the 
surface and the reservoir coals. In a study of gas seeps 
in the Black Warrior Basin, Clayton and others (1994) 
investigated a number of exposed normal faults and 

Figure 12.  Generalized maps showing joint (A), and cleat (B) systems in the southeastern part of the Black Warrior Basin, Alabama. 
Modified from Pashin and others (1991; 2004, their fig. 29).
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reported a significant gas seep along one fault in Oak Grove 
field. However, Pitman and others (2003) observed pervasive 
cementation of coal cleats within 10 m of normal faults in 
the Black Warrior Basin. This cementation appears to inhibit 
flow in coal along large segments of many faults (Pashin and 
others, 2004).

Hydrocarbon Source-Rock 
Characterization

The potential for sedimentary rocks to generate 
hydrocarbons, and the nature of the hydrocarbons generated, 
depend on the amount, composition, and thermal maturity 
of organic matter in the rock (Tissot and Welte, 1984). Total 
organic carbon (TOC) content is measured in terms of weight 
percent (wt %). The relative hydrogen richness of the organic 
matter, and an indication of the types of hydrocarbons that 
will be generated, are measured by hydrogen index (HI, 
Rock-Eval®, S2/TOC, mg/g). Relative thermal maturity of 
organic matter is measured by Tmax (Rock-Eval®, °C), 
vitrinite reflectance (Ro), and calculations from proximate 
analyses and calorific value determinations (BTU/lb) of coal 
(for example, see American Society for Testing and Materials 
D–388, 2001). Source rocks for the gas accumulations in the 
Pottsville Coal TPS and the Black Warrior Basin AU are the 
Pottsville Formation coals and coaly shales, which also form 
the principal reservoirs (fig. 2).

Organic Carbon Contents—Organic Facies 

Ranges for TOC and HI for 39 coal and shale samples 
from the Pottsville Formation are summarized in table 1. The 
distribution of HI and organic facies (designated A–D, see 
below) for the samples is shown in figure 13. 

Jones (1987) defined a series of organic facies (A–D) for 
rocks worldwide on the basis of microscopic and chemical 
characteristics (HI, H/C ratios) of organic matter that is 
marginally mature with respect to petroleum generation (Ro  
about 0.50). The volume and type of generated hydrocarbons 
vary widely with organic facies. Organic facies A, AB, 
and B are sources primarily of oil. Organic facies BC has 
capacity to generate both oil and gas. Hydrocarbons generated 
from organic facies C are nearly always condensate and 
gas. Organic facies CD has a moderate capacity for dry 
gas generation, whereas organic facies D is essentially 
nongenerative (Jones, 1987).

As shown in figure 13, organic-matter compositions in 
the Pottsville Formation primarily represent organic facies 
CD (median HI = 130, with the range in compositions from 
organic facies C to D). Where thermally mature, the organic 
matter in facies CD should primarily generate dry gas.

Organic Matter Thermal Maturity

Thermal maturation (rank) of bituminous coals can 
be determined through calculations made from proximate 
analyses of coal (moisture, ash, volatile-matter, and fixed-
carbon contents), sulfur contents, and calorific values (Btu/lb), 
and (or) Ro measurements. Thermal maturation parameters 
have been mapped for each Pottsville coal zone by Winston 
(1990a, b), and the most recent thermal maturity mapping 
has relied on interpretation of proximate analyses and Ro 
measurements (Telle and others, 1987; Winston, 1990a, b; 
Levine and Telle, 1991; Pashin and others, 1999a). 

Rank of the Pottsville Formation coals ranges from high-
volatile C bituminous to low-volatile bituminous (Semmes, 
1929; Winston, 1990a, b). For the Mary Lee coal zone (fig. 
14), the coals are of high-volatile C bituminous coal rank in 
northern Walker County, western Fayette County, northeastern 
Pickens County, and eastern Lamar County, Alabama. Coals of 
medium-volatile and low-volatile bituminous rank are centered 
in an elliptical “bulls-eye” area in eastern Tuscaloosa County 
and western Jefferson County, Alabama, near the southeast 
margin of the Black Warrior Basin (fig. 14) (Winston, 1990a; 
Pashin and Hinkle, 1997). The southeast side of this elliptical 
area is marked by the upturned northwest limb of the Blue 
Creek anticline. The coal rank pattern in west-central Alabama 
does not reflect thickening of the Pottsville Formation coal 
interval into the Moundville–Cedar Cove depocenter (see fig. 6). 

Thermal Maturity Modeling

Present burial depths of the upper part of the Pottsville 
Formation in coal-bed gas fields of the Black Warrior Basin 
range from 0 to about 4,600 ft. During maximum burial in the 
Early Permian, the formation was buried to depths of 6,500 
to 10,000 ft (Telle and others, 1987; Levine and Telle, 1991; 
Carroll and others, 1995).

Table 1.  Ranges and median values of organic carbon con-
tents, and hydrogen indices for coal and shale samples from the 
Pennsylvanian Pottsville Formation in the southeastern part of the 
Black Warrior Basin, Alabama.
[wt %, weight percent; mg, milligram; HC, hydrocarbons; g, gram; TOC, total 
organic carbon; n, number of observations; for shale samples, Rock-Eval® 
Tmax ≤ 450 ºC; data from http://energy.cr.usgs.gov/prov/og/data2.htm]

Lithology Statistic
Total Organic Carbon

(wt %)
Hydrogen Index
(mg HC/g TOC)

Coal
Median
range 

(n)

71.2
60.7–77.0

(23)

126
91–198

(23)

 Shale

Median
range

(n)

1.3
0.5–27.8

(16)

74
39–246

(16)

http://energy.cr.usgs.gov/prov/og/data2.htm
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Figure 13.  Stacked bar histogram showing distribution of hydrogen indices for 16 shale samples and 23 coal samples from the Penn-
sylvanian Pottsville Formation, southeastern part of the Black Warrior Basin, Alabama. For shale samples, Rock-Eval® Tmax ≤ 450 ºC 
and total organic carbon ≥ 0.5 percent; organic facies boundaries (A through D) are from Jones (1987).

Figure 14.  Generalized map showing vitrinite reflectance (Ro) and rank of coals in the Mary Lee coal zone, Pennsylvanian Pottsville 
Formation, in the Black Warrior Basin, Alabama. Coal rank is based on calculations from proximate analyses, calorific values, and vitrinite 
reflectance measurements. Modified from Winston (1990a), Pashin and Hinkle (1997, their fig. 23), and Pitman and others (2003, their fig. 5).
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Lopatin modeling in Pickens County, Alabama (fig. 15) 
provides evidence for a complex burial and thermal history, 
enabling some generalizations about burial and hydrocarbon 
generation (Telle and others, 1987; Hines, 1988; Carroll and 
others, 1995). Major thermal maturation apparently took place 
during rapid burial associated with Appalachian-Ouachita 
orogenesis, and coal in the Pottsville Formation attained a 
rank of high-volatile A bituminous coal near maximum burial, 
which occurred near the end of the Paleozoic (about 265 Ma). 
Importantly, major thermogenic gas generation is thought to 
begin as coal reaches that rank (Jüntgen and Karweil, 1966). 
In the Pottsville Formation, virtually all coal-gas production 
is from coal of high-volatile A bituminous or higher rank 
(Ro ≥ 0.8) (Pashin and others, 2004). According to the 
Lopatin models, minor thermogenic gas generation may have 
continued during postorogenic unroofing but was effectively 
completed by the Late Cretaceous, when the Gulf Coastal 
Plain and Mississippi Embayment formed. 

Although burial associated with foreland basin 
subsidence may have been an important mechanism 
influencing thermal maturation, rank anomalies in the 
Pottsville Formation are not directly related to the regional 
isopach and structural contour patterns (figs. 6, 7), indicating 
that burial maturation was overprinted strongly by spatial and 
temporal changes in the paleogeothermal gradient (Telle and 

others, 1987; Winston, 1990a, b; Levine and Telle, 1991). 
Accordingly, the paleogeothermal gradient is thought to have 
been lowest in the area containing less thermally mature coal 
of high-volatile C and B bituminous rank and highest in the 
area containing medium-volatile and low-volatile bituminous 
coal. The origin of the elevated geothermal gradient is unclear; 
the best hypothesis advanced to date is tectonic expulsion of 
hot fluids from the Appalachian orogen (Winston, 1990a, b; 
Goldhaber and others, 2003; Pashin and others, 2004).

Produced Water Chemistry

Stiff diagrams (fig. 16) demonstrate that subsurface 
waters in the eastern part of the Black Warrior Basin contain 
variable concentrations of sodium bicarbonate and sodium 
chloride (Pashin and others, 1991). Water containing about 
30 equivalents per million of sodium bicarbonate is typical 
of subsurface water at depths less than 1,500 ft (for example, 
Oak Grove and Pleasant Grove fields, fig. 16). However, water 
containing significant concentrations of sodium chloride has 
been identified at depths near 1,000 ft (for example, see Oak 
Grove field, fig. 16). Bicarbonate concentration is essentially 
constant regardless of depth, and increasing concentrations 

Figure 15.  Plot showing relation between burial history and thermal gas generation in the Pennsylvanian Pottsville Formation in the 
Shell Holiman #13-16 well in Pickens County, Alabama. After Carroll and others (1995); modified from Pashin and Hinkle (1997, their fig. 
26). MYBP, million years before present; ºF, degrees Fahrenheit.
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Figure 16.  Stiff diagrams showing the composition of formation water produced from the Pennsylvanian Pottsville Formation in the 
southeastern part of the Black Warrior Basin, Alabama. Modified from Pashin and others (1991; 2004, their fig. 43).

of sodium chloride dominate the water chemistry at depths 
greater than 1,500 ft (Raymond, 1991; Ortiz and others, 1993; 
Pashin and Hinkle, 1997; Pashin and others, 2004).

At depths less than 1,500 ft in the Pottsville Formation 
(fig. 16), bicarbonate water apparently formed by meteoric 
recharge of the phreatic zone. Similar amounts of bicarbonate 
in deeper, higher salinity water (such as in the Brookwood 
field, fig. 16) suggest a genetic linkage with the shallower 
water, but increased chlorinity indicates that the deeper water 
is sufficiently old to have mixed with brine from strata below 
the Pottsville coals. The presence of contrasting bicarbonate 
and chloride waters between 1,000 and 1,500 ft indicates 
mixing within the productive reservoir zone (fig. 16). 
Dissolved-solids content is less than 10,000 milligrams per 
liter (mg/L) in most areas of coal-gas production (Pashin and 
others, 1991; Ellard and others, 1992, 1997; Sparks and others, 
1993; Pashin and others, 2004). 

Along the southeast margin of the basin, water in the 
Mary Lee coal zone consistently has dissolved-solids content 
less than 3,000 mg/L, and in places, dissolved-solids content 
is less than 1,000 mg/L (Pashin and others, 1991) (figs. 17, 
18). Upturned and fractured strata in the forelimb of the 
Birmingham anticlinorium form a recharge zone in which 
the coals are at or near the surface. Accordingly, water with 
dissolved-solids content less than 3,000 mg/L has been 
interpreted to define a series of active freshwater plumes that 
extend from the forelimb of the Birmingham anticlinorium 
deep into the Black Warrior Basin (Pashin and others, 1991). 

The freshwater plumes terminate at the edge of Cretaceous 
outcrops, suggesting that the poorly consolidated strata of the 
Upper Cretaceous Tuscaloosa Group intercept the freshwater 
recharge in those areas (Pashin and others, 2004).

Natural Gas Chemistry

Natural gases produced from coals in the Black Warrior 
Basin are very dry, with median gas wetness only about 0.1 
percent; median CO2 content is 0.08 percent, and median 
N2 content  less than 0.01 percent (table 2). There is no 
measurable H2S. Geographic distributions of sampled gases 
and gas wetnesses (Oak Grove, Brookwood, and Deerlick 
Creek degasification fields) are shown in figure 19. Rice 
(1993) interpreted the coal gases to be mainly of thermogenic 
origin. However, based primarily on the relatively negative 
δ13C1 compositions of the coal-bed gases, he (Rice, 1993) 
suggested that the gases are a mixture of thermogenic gas 
and gas produced during a late-stage methanogenesis. This 
methanogenesis was initiated by freshwater incursions into 
the shallower coals on the east side of the basin (see figs. 17, 
18) that may have begun during the late stages of Mesozoic 
unroofing. These incursions are apparently controlled by 
northwest-trending faults and fractures (Pashin and others, 1991).
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Figure 17.  Generalized map showing relation of freshwater plumes in the Mary Lee coal zone, Pennsylvanian Pottsville Formation, to 
geologic structure and Upper Cretaceous strata, along the southeast margin of the Black Warrior Basin, Alabama. Modified from Pashin 
and McIntyre (2003) and Pashin and others (2004, their fig. 45). mg/L, milligrams per liter.

P
IC

K
E

N
S

TUSCALOOSA

WALKER

FAYETTE

HALEGREENE

JEFFERSON

Figure 18.  Generalized structural cross section showing meteoric recharge areas and subsurface flow patterns in the upper part of 
the Pennsylvanian Pottsville Formation, along the southeast margin of the Black Warrior Basin, Alabama. Modified from Pashin and 
others (2004, their fig. 44). mg/L, milligrams per liter.
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Figure 19.  Generalized map showing the distribution of gas wetness for samples of coal gas from the Pennsylvanian Pottsville Forma-
tion in the southeastern part of the Black Warrior Basin, Alabama. Coal degasification field outlines (dashed blue lines) are from Pashin 
and others (2001a; 2001b; 2004); fields are identified in figure 20; gas wetness percent = 100 x (1–[C1mole %/ΣC1–C5 mol %].
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5.2 – 9.2
9.2 – 14.5

14.5 – 28.5

Table 2.  Ranges and median values for gas wetness, N2, and CO2 contents, 
and d13C1 for gases from coals in the Pennsylvanian Pottsville Formation, 
southeastern part of the Black Warrior Basin, Alabama.
[Gas wetness % = 100 x (1–[mole % C1/Σ mole % C1–C5]); n, number of observations; %, 
percent; ‰, part per thousand; PDB, relative to Pee Dee belemnite standard; < , less than. 
C1 to C5, N2 and CO2 analyses are from Moore and Sigler (1987) and Hamak and Sigler 
(1991); d13C1 analyses are from Pashin and Hinkle (1997, their table 3)]

Statistic Gas wetness (%)
CO2

(mole %)
N2

(mole %)
δ13C1

(‰ PDB)

Median
Range

(n)

0.01
<0.01 to 4.0

(19)

0.08
0.03 to 0.20

(19)

<0.01
<0.01 to 1.2

(19)

–47.4
–51.0 to –41.9

(17)
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Black Warrior Basin Assessment Unit

Gas and Water Production

Estimates of volumes of undiscovered gas from undrilled 
areas in the Black Warrior Basin are based on historical 
production data, well characteristics, distributions of gas and 
water production, and the relation of gas production to the 
geologic framework. 

Historical Production

The first coal-gas production in the Black Warrior Basin 
was associated with degasification of underground coal mines. 
Production began in both the Oak Grove and Brookwood 
coal degasification fields in 1981, and 20 coal-bed gas fields 
have since been identified (fig. 20). Production data from 

the 10 largest of these fields are listed in table 3. Cumulative 
production through January 2003 was about 1,415 billion 
cubic feet of gas (BCFG), with most of the production 
concentrated in the southeastern part of the Black Warrior 
Basin AU in Tuscaloosa and Jefferson Counties, Alabama 
(Alabama State Oil and Gas Board at http://www.gsa.state.
al.us/ogb/db_main.html). Volumes of produced coal gas and 
water and numbers of well permits and producing gas wells 
for the years 1980 through 1998 are shown in figure 21.

Wells in seven coal degasification fields (Little Buck 
Creek, Taylor Creek, Little Sandy Creek, Carrolls Creek, 
Wolf Creek, Boone Creek, and Pleasant Grove) (fig. 20) have 
been plugged and abandoned. Most wells in the Moundville 
field are listed by the State Oil and Gas Board of Alabama as 
temporarily abandoned. Active exploration is now focused in 
Blue Creek, White Oak Creek, and Short Creek fields in the 
northern part of the basin (Pashin and others, 2003).

Table 3.  Cumulative gas and water production data for the ten most productive coal degasification fields 
in the Black Warrior Basin, Alabama.
[BCFG, billion cubic feet of gas; MMbbl = million barrels of water. Data from the Alabama State Oil and Gas Board  
accessed at: http://www.gsa.state.al.us/ogb/db_main.html accessed May 2004; data summarized through December 31, 2003]

Field County Discovery year
Cumulative production
Gas

(BCFG)
Water

(MMbbl)

Big SandyCreek Tuscaloosa 1990 9.0 25.8

Blue Creek Tuscaloosa 1988 256.3 28.4

Brookwood Tuscaloosa, Jefferson 1981 327.9 93.9

Cedar Cove Tuscaloosa 1983 279.1 302.3

Deerlick Creek Tuscaloosa 1983 120.5 50.0

Holt Tuscaloosa 1982 35.8 11.6

Oak Grove Jefferson, Tuscaloosa 1981 221.7 200.5

Peterson Tuscaloosa 1984   44.2 23.3

Robinson’s Bend Tuscaloosa 1990 103.9 250.5

White Oak Creek Walker, Jefferson, Tuscaloosa 1989 127.2 31.9

http://www.gsa.state.al.us/ogb/db_main.html
http://www.gsa.state.al.us/ogb/db_main.html
http://www.gsa.state.al.us/ogb/db_main.html
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Figure 20.  Generalized map showing locations and status of coal degasification fields in the southeastern part of the Black Warrior 
Basin, Alabama (modified from Pashin and others (2001a; 2001b; 2004, their fig. 69).

Figure 21.  Histograms of coal-gas and water production (A) and new well permits and producing wells (B) in the southeastern part 
of the Black Warrior Basin, Alabama, for the years 1980 through 1998. Histograms are from the Alabama Geological Survey Web site 
accessed at http://www.gsa.state.al.us, May/2004. BCFG, billion cubic feet of gas; MMbbl, million barrels.

http://www.gsa.state.al.us


20    Assessment of Undiscovered Oil and Gas, Black Warrior Basin Province

Drilling Practices

Three types of coal-gas wells are drilled in the Black 
Warrior Basin—vertical wells, gob wells, and horizontal wells. 
Gob wells and horizontal wells are drilled in association with 
underground mining operations, whereas vertical wells are 
similar to conventional petroleum wells, have no dependence 
on mining operations, and are drilled in all coal-gas fields 
(Pashin and others, 2004).

Coal-gas development in the Black Warrior Basin 
began in 1980, and most wells have produced gas for 9 to 
15 years. The earliest wells, which were underground mine 
degasification wells drilled between 1975 and 1980, are 
in closely spaced patterns (about 15 acres) in eastern Oak 
Grove field and in Pleasant Grove field. Subsequent field 
development has primarily utilized 40- and 80-acre well 
spacing. Most wells were drilled between 1988 and 1991 prior 
to expiration of the Section 29 tax credit, and nearly all are 
still producing (Pashin and others, 2004). 

Completion practices in vertical wells vary considerably 
(for examples, see Lambert and others, 1980; Holditch and 
others, 1989; Pashin and Hinkle, 1997). Many early wells were 
open holes completed in single coals, but virtually all modern 

wells are cased and perforated in multiple coals (Graves and 
others, 1983). Stimulation practices have also varied—early 
wells were stimulated with water and sand, nitrogen foam, or 
cross-linked gel, whereas the most recent vertical wells were 
stimulated with nitrogen foam (Pashin and others, 2004).

Essentially all vertical wells produce at least some water 
and gas, and the volumes of fluid produced and the production 
decline characteristics of these wells can be difficult to predict; 
however, some generalizations can be made. Gas and water 
production tend to peak during the first 2 years that wells are 
on line, although it is not uncommon for some wells to take 
more than 4 years to reach peak flow rates (Pashin and Hinkle, 
1997). Once peak gas production is reached, it tends to decline 
exponentially (a constant rate of decline), whereas water 
production tends to decline hyperbolically (a decreasing rate 
of decline) (Pashin and others, 2004).

Cumulative Gas and Water Production 
The cumulative gas production map (fig. 22) shows a 

general arcuate trend to the area in which most wells have 
produced more than 300 million cubic feet of gas (MMCFG). 
Within this trend, which extends from the Cedar Cove field

 

Figure 22.  Generalized map showing cumulative gas production from vertical wells in the southeastern part of the Black Warrior 
Basin, Alabama. Modified from Pashin and others (2004, their fig. 77). Coal degasification field outlines (dashed blue lines) are from 
Pashin and others (2001a; 2001b; 2004). Fields are identified in figure 20. MMCFG, million cubic feet of gas.
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northward into the White Oak Creek field (fields identified 
in fig. 20), many wells have had cumulative production 
exceeding 1 BCFG, and some wells in the Cedar Cove field 
have produced more than 1.5 BCFG. Outside this arcuate 
trend, cumulative production exceeding 300 MMCFG of 
gas has a patchy distribution; in the Little Sandy Creek, 
Moundsville, Little Buck Creek, and Taylor Creek fields, for 
example, only one well has produced more than 100 MMCFG 
(Pashin and others, 2004). 

Cumulative water production has a more heterogeneous 
distribution than cumulative gas production (fig. 23). Wells 
have produced less than 100,000 barrels (bbl) over large parts 
of the Black Warrior Basin, but some wells with cumulative 
production exceeding 1,000,000 bbl exist in most fields. 
The largest areas, where cumulative water production has 
exceeded 100,000 bbl per well, are in the Robinson’s Bend 
and Cedar Cove fields and the western part of the Oak Grove 
field. From the northeastern part of the Cedar Cove field to 
the southeastern part of the Deerlick Creek field, high water 
production generally corresponds with the arcuate trend of 

high gas production (figs. 22, 23). However, farther north, 
from the northern part of the Deerlick Creek field into the 
White Oak Creek field, less than 100,000 bbl of water have 
been produced from the wells with high gas production 
(Pashin and others, 2004).

Well Production Controls

Many factors influence the productivity of coal-gas 
wells in the Black Warrior Basin, including well design 
and completion practices, well spacing, coal thickness, gas 
content, and the abundance and openness of natural fractures 
(Pashin and others, 1991; Pashin and Hinkle, 1997). Within 
the basin, Pashin and others (1991) observed an extremely 
poor correlation between net completed coal thickness and 
peak production of gas and water, concluding that although 
coal thickness and gas content were key determinants of the 
resource base, they were not the primary determinants of well 
performance (Pashin and others, 2004). 

Figure 23.  Generalized map showing cumulative water production from vertical wells in the southeastern part of the Black Warrior 
Basin, Alabama. Modified from Pashin and others (2004, their fig. 78). Coal degasification field outlines (blue dashed lines) are from 
Pashin and others (2001a, 2001b; 2004). Fields are identified in figure 20; bbl, barrels.
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Detailed studies in some fields have identifed structural 
controls on well performance (Pashin and others, 1991, 1995; 
Pashin and Groshong, 1998). In the Oak Grove field, for 
example, exceptionally productive gas wells are aligned along 
the axial trace of a small syncline that defines a structural 
hinge separating the crestal uplift of the Sequatchie anticline 
from the more gently dipping northwest limb of the Coalburg 
syncline (Pashin and others, 1991) (fig. 24). 

Reservoir quality is structurally controlled. For example, 
strata in anticlines (such as the Blue Creek anticline) adjacent 
to the thrust faults of the Appalachian orogen are more 
intensely fractured than are anticlines in other parts of the 
basin. This increased fracturing enhances permeability and gas 
productivity. Normal faults, which generally trend northwest-
southeast, are abundant in the Black Warrior Basin (fig. 8). 
These faults are related to extensional tectonics and form 

a series of linear to arcuate horst and graben blocks, which 
tend to compartmentalize production. In addition to the major 
normal fault system, two distinct sets of cleats are developed 
in the Pottsville coals. One dominant set, which strikes to the 
northeast, has been reported throughout the Alabama portion 
of the basin (see fig. 12). The other set is developed locally 
on the southeast basin margin in Jefferson and Tuscaloosa 
Counties, where the face cleats strike to the northwest (Pashin 
and others, 1991, 2004).

Control of gas and water production by normal faults 
is not obvious from regional maps. However, such control 
is indicated on detailed maps of the southeastern part of the 
Deerlick Creek field (fig. 25), where peak production of both 
gas (more than 300,000 cubic feet per day) and water (more 
than 750 barrels per day) is concentrated in a pair of half 
grabens. There is little, if any, production from the intervening 

Figure 24.  Generalized map showing alignment of exceptionally productive gas wells along a synclinal fold hinge in the Oak Grove coal 
degasification field in the southeastern part of the Black Warrior Basin, Alabama. Structure contours are drawn on the top of the Mary 
Lee coal. Modified from Pashin and others (1991; 2004, their fig. 83). MCFD, thousand cubic feet per day.
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Figure 25.   Generalized map showing relation of gas (A) and water (B) production to extensional structure in the Deerlick Creek coal 
degasification field in the southeastern part of the Black Warrior Basin, Alabama. Modified from Pashin and others (1995; 2004, their fig. 
84). MCFD, thousands cubic feet per day; BPD, barrels per day.
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half graben and full graben (Pashin and others, 1995; Pashin 
and Groshong, 1998; Pashin and others, 2004).

The highly productive wells within the Strip Mine graben 
penetrate the bounding fault and are completed within the Holt 
Lake half graben. Well performance within the half grabens is 
extremely variable. Pashin (1998) and Pashin and Groshong 
(1998) attributed this variability to variable structural 
conditions between wells that influence the abundance 
and openness of natural fractures, thereby determining the 
effectiveness with which wells can dewater and depressurize 
the reservoir.

Assessment Results

Through the first quarter of 2000, more than 3,500 gas 
wells had been completed within the Black Warrior Basin AU, 
and some 3,200 of these wells were still producing (Pashin and 
others, 2004). A graph showing the estimated ultimate recovery 
(EUR) for gas wells in all fields, based on production from 
3,200 wells, is shown in figure 26. Only wells with minimum 
recoveries of more than 10 MMCFG were used to calculate the 
EUR distributions shown in figure 26. The estimated minimum 
total recovery of 10 MMCFG was based on considerations of 
the minimum recovery that might be required for an untested 
cell to be economically viable within similar geologic and 
production constraints on producing gas wells in the basin.

EUR distributions by “thirds,” shown in figure 27, are 
based on dates of initial production for the first (early), second 
(middle), and third (late) fractions of the 3,200 producing 
gas wells; each third includes about 1,070 wells regardless of 
the number of years involved. Figure 27 shows two trends of 
interest to resource assessment: (1) earlier wells have overall 
lower maximum EUR projections, suggesting that more recent 
production has improved in terms of minimum recovery (likely 
the result of improved recovery technology); and (2) EUR 
projections of later wells have decreased from those of the 
middle wells, suggesting that the best wells (on average) have 
been drilled.

The EUR distributions were the primary basis for 
estimating minimum, median, and maximum ultimate 
recoveries for untested cells in the assessment unit. Our 
estimated median total recovery of gas per well of 400 
MMCFG was based on the EURs estimated for 50 percent 
of the most recent one-third of the producing wells in the 
assessment unit (fig. 27). In contrast, our estimated maximum 
total recovery of 20,000 MMCFG (fig. 27 at 100 percent) 
per untested cells reflects the possibility that other wells with 
this much production might exist. Within the Black Warrior 
Basin AU, a general southeast to northwest decrease in well 
productivity is predicted, a likely result of the decreasing coal 
thermal maturity, decreasing number of coal beds, and resultant 
decrease in EUR per well. Our estimate for the minimum 
percentage of the untested area within the AU that has the 
potential for additions to reserves during the next 30 years 
is about 9 percent (about 640 mi2). This value assumes that 

additional gas production will focus primarily on infill drilling, 
resulting in an increase in production within existing fields. 
Our estimated median percentage of untested area with the 
potential for additions to reserves in the next 30 years is about 
27 percent (about 1,920 mi2). This value includes additions to 
reserves from infill drilling coupled with expansion of fields 
into currently untested areas. 

Our analysis resulted in estimated volumes of potential 
additions to reserves within the Black Warrior Basin AU of 4.61 
TCGF at the 95-percent certainty level, 6.85 TCFG at the 50-
percent certainty level, 10.18 TCFG at the 5-percent certainty 
level, and a mean of 7.06 TCFG (U.S. Geological Survey, 2003, 
their table 1). In comparison, for the four Black Warrior Basin 
coal-gas plays characterized by Rice and Fenn (1995) for the 
1995 USGS National Assessment Oil and Gas Assessment, 
Charpentier and others (1996) listed an estimated 2.2 TCFG 
at the 50-percent certainty level of potential additions to gas 
reserves.
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