Stratospheric Air Sampled at the Surface at Mauna Loa Observatory

G.S. Dutton, S.J. Oltmans, E.A. Ray, F.L. Moore & Mauna Loa personnel

- NOAA/ESRL Global Monitoring Division
- •NOAA/ESRL Chemical Sciences Division
- University of Colorado, CIRES

Conventional wisdom:

NOAA baseline observatory near the top of Mauna Loa.

3397 meters above sea level.

Day time up-slope conditions bring warm air up Mauna Loa and raises boundary layer.

Mauna Loa, Hawaii

Night time downslope conditions bring upper free tropospheric air to the observatory.

MLO in situ CFC-11

Cooper, O.R., et al. (2005), Direct transport of midlatitude stratospheric ozone into the lower troposphere and marine boundary layer of the tropical Pacific Ocean, *J. Geophys. Res., 110*, D23310, doi:10.1029/2005JD005783

Stratospheric Intrusions May 2006

Potential Vorticity May 5, 2006

NCEP Potential Vorticity

April 28 to May 28, 2006

Halocarbon in situ measurements

Continuous surface Ozone measurement started at Mauna Loa in 1973.

Day and Night Comparison

Spring Time

Nocturnal Spring Ozone

Long range transport

Convective transport

Stratosphere-Troposphere Analyses of Regional Transport (2008)

Summary...

JTLS air is sampled at MLO almost every Spring and early Summer.

Surface trace gas measurements may show signs of changes in strat-trop exchange related to climate change.