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Laboratory Studies of Atmospheric Chemical Processes

Kinetics and Photochemistry of Acetone

Role of Laboratory Measurements

Kinetic and photochemical parameters, needed in chemical models for predicting

capability of Air Quality and Climate, can be determined under isolated and
controlled conditions in the laboratory.

Example Acetone, CH,C(O)CH,
: ubiquitous key species
large abundance (~1ppb)
source of PAN (CH,C(O)O,NO,) and HOx

Focus: Evaluate it as a source of HOx
Atm Loss processes: OH Reaction and Photolysis
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Evaluation of Acetone as source of HOx in the UT
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Use laboratory measurements to Evaluate the Relative
Significance of OH Reaction and Photolysis



Atmospheric Loss: OH Reactivity
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Pulsed Laser Photolysis- Laser
Induced Fluorescence Apparatus
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CH,C(O)CHy+ OH —» CH,C(O)CH, + H,0 50 %

—> CH,C(O)OH + CH, 50 %



OH Reaction Products - Atmospheric Impact

Direct detection of products:
CH,C(O)CH,+ OH — CH,C(O)CH, + H,0 96 * 11 %
— CH,C(O)OH + CH, <1%

> Branching Ratio: Independent of Temperature (237 - 353 K)

®Reaction occurs via H-abstraction

pathway under all atmospheric
conditions.
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Atmospheric Loss: UV Photochemistry
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Quantum Yields from Earlier Studies
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» ® is small and o is small-- difficult to
measure

» Sensitive technique has been
developed in our laboratory.

®Uncertainties in QY exist.
®Impacts J

®Impacts HOx production rate
®*Primary products were not measured.

d Detect the primary photolysis product, CH,CO

CH,C(O)CH, ¥ CH,CO + CH,

- Developed spectroscopic method.




Direct Sensitive Detection of Acetyl Radical, CH,CO

¢ CH,CO Visible spectrum measured for the first time / Photalyss Lasr
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» New way to detect acetyl radical
» Enables direct measurement of a primary
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(DCH3CO

CH,CO Quantum Yields in the Actinic region

Results from ongoing Experiments
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Summary and Conclusions

« Determined the OH rate Coefficients accurately under atmospheric \/
conditions
 Quantified the Products of OH reaction \/

« Characterized and quantified the Visible spectrum of CH,CO for the
first time. \/

« We are currently measuring the Photolysis quantum yields under
atmospheric conditions.

Once the Quantum Yields are determined under atmospheric
conditions, we can evaluate the HOx production efficiency of
acetone

Laboratory studies of reactivity and mechanisms of elementary
processes provide key building blocks for understanding
atmospheric chemistry.
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