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A geostatistical approach for describing
spatial pattern in stream networks 

Lisa M Ganio1, Christian E Torgersen2, and Robert E Gresswell3 

The shape and configuration of branched networks influence ecological patterns and processes. Recent inves­
tigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a 
two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is 
discerning non-random patterns along the network. On the other hand, data collected in the network may be 
spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method 
that uses commercially available software to construct an empirical variogram to describe spatial pattern in 
the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical 
and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to 
incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric 
technique to ascertain if the pattern in the empirical variogram is non-random.  
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Branched networks form pathways that interconnect 
organisms and their habitats; for example, the move­

ment of organisms may be restricted to corridors of suit­
able habitat (Rosenberg et al. 1997). Physiographic fea­
tures such as mountain ranges, ridge tops, water bodies, 
and climate patterns create spatial barriers that restrict 
migration and dispersal (Figure 1). Similarly, species 
interactions, such as competition, predation, and disease, 
can limit the direction and distance over which individu­
als or resources may relocate. The branched structure of 
streams is perhaps the most visible example of a network 
on the landscape (Figure 2). However, beyond a casual 
acceptance that physical and biological systems are often 
organized in branched networks, the influence of network 
structure on ecological processes is not well understood, 
and there are few studies of spatial structure that explic-

In a nutshell: 
• Branched networks are ubiquitous in aquatic and terrestrial 

environments, and their role in physical and ecological 
processes is an expanding field of research in ecology 

• Commercially available software for quantifying pattern in 
auto-correlated data from networks is lacking, making it diffi­
cult for ecologists to explore data collected along stream net­
works 

• We provide an overview of statistical considerations and a way 
to adapt a standard geostatistical tool, the empirical variogram, 
to describe spatial pattern in stream networks 
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itly consider the branching patterns of the network. 
In ecological studies of streams, where the drainage net­

work is immediately apparent, studies can be conducted 
at a scale that effectively reduces the network to an 
unbranched linear system. In this case, conceptual mod­
els are based on a linear, as opposed to a network, per­
spective (Fisher 1997). The lack of information on rela­
tionships between network structure and ecological 
patterns in streams indicates that a more spatially explicit 
examination of stream networks is needed (Power and 
Dietrich 2002; Benda et al. 2004). In the analysis of net­
works, the objective is to quantify connectivity and iden­
tify the mechanisms through which network structure 
influences the physical and ecological processes within 
the network system. 

In three-dimensional space, streams have width, depth, 
and length. However, for the purpose of network analysis, 
a stream may be thought of as a series of line segments 
joined together at nodes to form a branched network that 
eventually ends in a single outlet (Haggett and Chorley 
1969). Nodes occur where attributes of the system change 
(eg channel morphology and tributary junctions). The 
configuration of the connections in the network, but not 
the shape or orientation of the branches, is called the 
network topology (Figure 3). For example, the network 
commonly depicted in studies of food webs is a mesh 
topology, whereas hydrologic drainage patterns typically 
have branched (rivers) or star (lakes and estuaries) 
topologies. 

Network configuration can influence physical and eco­
logical processes in networks. Connectivity among sites 
in a branched network differs from connectivity over a 
plane or in an unbranched linear system. Fagan (2002) 
used mathematical modeling to show that population 
persistence and the effects of fragmentation events dif­
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fered between a branched network and a 
linear system. Downstream flow in a stream 
network has also been reported to provide a 
means for plant communities to compen­
sate for local extinction processes (Honnay 
et al. 2001). Benda et al. (2004) proposed 
the Network Dynamics Hypothesis that 
relates geomorphic heterogeneity in 
streams to network structure and distur­
bance regimes. Because thermal and pro­
ductivity regimes are discontinuous at trib­
utary junctions, these points can influence 
the distribution of aquatic organisms. For 
example, the abundance and composition 
of macroinvertebrate species that are com­
monly associated with sediment size were 
found to change at tributary junctions 
(Rice et al. 2001). 

Response values collected from contigu­
ous channel units throughout a stream net-

Figure 1. The complex topography of the Oregon Coast Range mountains restricts 
the movement and dispersal of aquatic and terrestrial organisms to corridors and 
network pathways. 

work may not meet the assumptions of tra­
ditional statistical methods. When values are related by 
virtue of nearness in space they are likely to be spatially cor­
related; thus, the statistical assumption of independence is 
violated, and standard analysis procedures are inappropriate 
(Carroll and Pearson 1998). In contrast, spatial statistical 
methods incorporate the distance between data points into 
the analysis to account for correlation among nearby values 
(spatial autocorrelation), increase precision, and correct for 
bias (Cressie 1993). 

Concepts of distance and connectedness in a stream net­
work are more complicated than in planar space. Distances 
between points along a network may not be adequately rep­
resented by the shortest, “as the crow flies” distance, 
because of limitations to movement imposed by the net­
work structure (Fagan 2002; Figure 4). Alternative mea­
sures of distance may be necessary, depending on the nature 
and ecological setting of the questions posed (Wenburg and 
Bentzen 2001). However, new measures must conform to 
specific mathematical criteria. The distance through water 
between sampling stations has been used in estuaries to pre­
dict patterns of water quality (Little et al. 1997; Rathbun 
1998), and a distance measure based on stream order has 
been used for temperature data (Gardner et al. 2003). For 
some response values, such as water chemistry, the direction 
of stream flow may provide a basis for distance measures. 
Other types of models for connectivity based on stream flow 
are also being investigated (J Ver Hoef pers comm), and fur­
ther research is needed. For the purposes of this paper, we 
define network distance as the shortest distance along the 
stream channel between nodes. 

A spatial statistic, the empirical variogram, is used to 
graphically describe spatial relatedness in a set of data col­
lected over a surface (Matheron 1963). Here, we demon­
strate how empirical variograms can be used as an 
exploratory tool to detect spatial dependence in a network 
and to characterize different patterns of spatial variability in 

relative fish abundance in a headwater stream network. 
The objective of this paper is to make the analysis of spatial 
networks more accessible to ecologists by: (1) explaining 
the statistical model that is used to estimate empirical vari­
ograms in a stream network; (2) describing the integration 

Figure 2. Dendritic drainage pattern in the Republic of South 
Yemen. 
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(a) mesh topology (b) branched topology 

(c) star topology 

Figure 3. Network topology is defined by connections between 
nodes. Three common networks found in nature are (a) the 
mesh, (b) branched, and (c) star topologies. 

of a geographical information system (GIS) and statistical 
programming in commercially available software to calcu­
late a network variogram; and (3) demonstrating the utility 
of these methods for describing spatial patterns of fish distri­
bution in different stream networks. 

• A statistical model for spatial data 

Models for spatially referenced data differ, depending on the 
structure of the data and the region in which the data exist. 
Models to describe spatial relatedness are often based on the 

Figure 4. Separation distance between points s1 and s2 can be 
measured either as the shortest distance between two points, ie 
Euclidean distance (de), or as the distance along the network 
pathway (dn). 

statistical covariance and variance among paired values. 
The covariance describes the extent to which the values 
covary. The variance is a measure of the variability in the 
values. Correlations are covariances that have been scaled 
by variances to have values between positive and negative 
one. Geostatistical methods were developed for data that 
varies continuously over a predefined, fixed spatial region 
(Matheron 1963). In contrast, lattice data models are 
defined for values associated with a finite number of loca­
tions in a grid, and point pattern analysis evaluates the clus­
tering of point occurrences over a region of interest (Cressie 
1993). We have chosen to use a geostatistical model in a 
stream network. Important features of this model for net­
work data are: (1) correlations between values at neighbor­
ing points are estimated and describe the relationship 
between near-neighbor values; (2) the correlation structure 
between neighboring response values depends only on the 
distance between locations, not on their particular loca­
tions; (3) distance can be defined in a number of ways, 
depending on the question of interest; (4) the variogram is 
a function of the correlation structure between values (or 
alternatively the covariance) and depends only on the dis­
tance between the locations of the values; and (5) statistical 
models for variograms must be evaluated to ensure that, in 
combination with the definition of distance, they allow sta­
tistical variances to be non-negative. 

Geostatistical analysis requires response values that are 
labeled with the spatial coordinates at which measurements 
were collected. Euclidean distance is defined as the shortest 
straight line between any two points, but any metric can be 
used to quantify the distance between two points as long as 
it is non-negative, symmetrical, and satisfies the triangle 
inequality (Rathbun 1998). The triangle inequality states 
that for three points separated in space, the distance 
between two of these points cannot be longer than the sum 
of the other two distances. Other valid distance metrics 
include Manhattan (city-block) and Mahalanobis distances 
(McCune and Grace 2002). The Manhattan distance 
between points is analogous to the distance between points 
along streets in a city made up of blocks. The route between 
the points must fall along one dimension at a time. 
Mahalanobis distance is often used to measure distance 
between two groups in multivariate space. The distance 
between the centroids of two groups is inversely weighted 
by the correlation among the dimensions of the multivari­
ate space. In practical applications, the distance between 
points may need to reflect more than physical distance 
(Legendre and Legendre 1983). Gardner et al. (2003) 
describe a distance metric for temperature data in a network 
that defines the distance between pairs of points based on 
stream order rather than physical distance. Newly proposed 
distance metrics should be evaluated against the above 
conditions, to ensure that they are a valid measure of dis­
tance. For example, a metric that implies different dis­
tances between two points, depending on the direction of 
travel, is not an appropriate measure of distance. 

We used the empirical variogram as an exploratory 
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graphical tool to detect the presence of spatial pattern and 
identify differences in spatial structure in data collected 
along stream networks; however, it can also be used in pre­
dictive applications. The variogram function is the variance 
of the difference between response values that are a given 
distance apart. Because it describes the covariance structure 
among the values along the network, the variogram is useful 
for both applications (Cressie 1993; Matheron 1963; Palmer 
2002). In the predictive geospatial application called “krig­
ing”, an empirical, nonparametric variogram is estimated 
from the data and a parametric model is used to approximate 
this estimated variogram. The modeled variogram is subse­
quently incorporated into the prediction of the response val­
ues over space (Journel et al. 1978). Parametric models for 
the variogram must allow the variance of the differences 
between values at two locations to be positive and, thus, 
should be checked to insure they are valid when used with 
non-typical measures of distance (Armstrong and Jabin 
1981). For example, not all parametric forms of the covari­
ance function are valid for the water distance metric 
(Rathbun 1998). The exponential model is a valid form, but 
Matérn, Whittle, and Gaussian models are not. 

• In-stream data collection 

Coastal cutthroat trout (Oncorhynchus clarki clarki) were 
sampled in five small (5–11 km2) watersheds (Racks Creek, 
Glenn Creek, Tucca Creek, and the North and South 
Forks of Hinkle Creek) in the Coast Range and Cascade 
Range mountains of western Oregon. These headwater 
basins are located above barriers to anadromous fish migra­
tion and are part of a larger broad-scale study examining 
the effects of landscape pattern on isolated coastal cut­
throat trout populations (Gresswell et al. 2004). The five 
watersheds have mean elevations of 400–800 m and were 
selected randomly from a population of 268 second- and 
third-order catchments in mixed conifer forests of the 
Pacific Northwest. Stream channel units were surveyed 
throughout the entire fish-bearing extent of each stream 
network and were classified as pools, riffle-rapids, or cas­
cades (Bisson et al. 1982). The abundance of adult (age ≥ 1 
year) coastal cutthroat trout was assessed with single-pass 
electrofishing without blocknets (Jones and Stockwell 
1995; Bateman et al. 2005) in all pools and cascades in 
each stream network. After fish were counted, they were 
released into the channel unit in which they were cap­
tured. The starting and ending points of each surveyed 
tributary were mapped in the field with aerial photographs 
and 1:24000-scale topographic maps. 

• Linking network distance and fish counts 

To automate the process of calculating the network dis­
tances between all pairs of pools and cascade units in each 
network, a map of the stream survey was created in a GIS. 
Dynamic segmentation methodology in ArcInfo GIS soft­
ware was used to assign a linear referencing system to the 

surveyed portion of the stream network (ESRI 2002; 
Torgersen et al. 2004). The spatial network in the GIS was 
based on field-measured lengths of channel units and was 
composed of line segments connected by nodes delineating 
the upstream and downstream boundaries of channel units. 
Landmarks such as road crossings and tributary junctions 
were used to calibrate stream length in the GIS (derived 
from 1:24 000-scale topographic maps) to the stream length 
measured in the field. Attributes associated with the chan­
nel units, including channel width, substrate composition, 
and fish counts were merged with the calibrated stream net­
work information and displayed graphically. The point 
location of a sampled pool or cascade was defined as the 
midpoint of a sampled channel unit. The network distance 
between any two sampled units was calculated by summing 
the lengths of all channel units between two sample points. 

Because the number of sampled channel units in each 
watershed was large (413–1002), a Visual Basic program in 
ArcGIS was used to calculate a list of distances between all 
pairs of sampled units along the network (Dussault and 
Brochu 2003). Furthermore, distance calculations required 
considerable computing power and the ability to work with 
large text files. After computing the list of network dis­
tances, the list of fish counts associated with each sampled 
unit and the list of pair-wise distances were merged into a 
single file that contained five data fields: (1) the identifica­
tion number of a sampled unit, (2) the number of fish at 
that unit, (3) the identification number of another sampled 
unit, (4) the number of fish at the second unit, and (5) the 
network distance between the two units. This file was 
imported into the statistical package S-PLUS (Insightful 
Corporation 2002) and its associated SpatialStats module 
(Mathsoft 2000). 

• Estimating and interpreting empirical variograms 

S-PLUS and the associated spatial statistics module are 
object-oriented programs with functions for computing 
spatial statistics, plotting empirical variograms, and fitting 
parametric variogram models. The program automatically 
creates a list of pair-wise Euclidean distances between 
point locations for input to other spatial analysis functions. 
As described earlier, we intended to use the network dis­
tance, and this prevented us from using the prepro­
grammed S-PLUS routine for computing variogram 
objects. A custom S-PLUS function was therefore created 
to compute a variogram object based on the network water 
distance that would be compatible with other spatial 
analysis routines in S-PLUS. To reduce the influence of 
unusually large or small values that were uncharacteristic 
of neighboring values, we calculated the robust variogram 
estimator (Cressie 1993). 

Empirical variograms are a graph of half of the estimated 
variogram value, termed semivariance, plotted against the 
separation distance between points. For each separation 
distance there are varying numbers of pairs of data points, 
and at least 30 pairs of points should be used (Cressie 
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Figure 5. Spatial distribution and empirical variograms of coastal cutthroat trout counts in 
(a) Racks Creek, (b) Tucca Creek, and (c) Glenn Creek, in western Oregon headwater 
streams. Variograms depict the semivariance (•) as a function of separation distance (d) 
with 2.5th and 97.5th percentiles from 5000 permutations displayed in red. 

shows no pattern. A random order­
ing of spatial data produces un­
structured scatter in the empirical 
variogram, but if spatial autocorre­
lation is present there is an increas­
ing trend in the variogram. To 
determine whether spatial pattern 
was present, we wrote an S-PLUS 
function to randomly permute the 
fish counts over the stream net­
work. This function was used to 
generate 5000 random permuta­
tions, and for each random order­
ing an empirical variogram was 
generated. For each separation dis­
tance, the 2.5th and 97.5th per­
centiles of the 5000 values at that 
distance were identified and com­
pared to the variogram of the 
actual data (Figure 5). Variogram 
estimates above or below the per­
centile boundaries indicated the 
presence of spatial pattern at the 
spatial scale determined by the sep­
aration distance on the x-axis that 
was significantly different from a 
random spatial pattern. 

Describing spatial pattern with 
empirical variograms 

Empirical variograms for Racks, 
Glenn, and Tucca Creeks exhib­
ited three important characteris­
tics: (1) a low non-zero semivari­
ance at short separation distances, 
(2) increasing semivariance with 

1993). This effectively defines the maximum separation dis- separation distance, and (3) a tendency for the semivari­
tance for generating an empirical variogram and typically ance to approach an asymptote at longer distances 
limits it to no more than half of the maximum separation (Figure 5). In all three streams, variogram values initially 
distance between any two points (Rossi et al. 1992). In our occurred below the percentile bounds and then exceeded 
study, half of the maximum separation distance between any the 97.5th percentile at 0.2–0.6 km, indicating the pres-
two points in the smallest watershed was 1500 m, so we used ence of spatial structure in fish counts among pools and 
this as the maximum separation distance for all watersheds. cascades at small and large spatial scales. In contrast, var-
The number of pairs of points 1500 m apart ranged between iograms of Hinkle Creek showed little evidence of spatial 
367 and 1919. Although there were sufficient pairs of points structuring beyond initial autocorrelation at small scales 
to calculate the variogram at distances of less than 5 m, we (Figure 6). The empirical variogram for the entire Hinkle 
were interested primarily in describing spatial patterns in Creek drainage revealed the presence of spatial structure, 
fish distribution at scales greater than 15 m. Therefore, 15 m but separate variograms for the two forks indicated that 
was used as both the minimum separation distance and the spatial structure was much stronger in the South Fork 
incremental change in the separation distance. than in the North Fork (Figure 6). 

The variation in variogram patterns observed among 
A random permutation test for determining spatial watersheds suggested that the underlying spatial structure 
pattern in fish counts differed between headwater streams and 

was influenced by a complex interaction of physical and 
Identifying and interpreting spatial pattern from a vari- biological processes (Figures 5, 6). Bedrock lithology is 
ogram is difficult without comparison to a variogram that one factor that can affect the topography of channel net­
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works (Kobor and Roering 2004) 
and the spatial scale of variation in 
trout distribution (Gresswell et al. 
in press). The distance at which 
the semivariance reached a peak 
or asymptote (known as the 
“range” in geostatistics; see Rossi 
et al. 1992) provided an indication 
of the dominant spatial scale at 
which fish counts were correlated. 
In a survey of coastal cutthroat 
trout distribution in 40 headwater 
streams in western Oregon, shorter 
distances to the asymptote (eg 
Racks Creek) were associated with 
more resistant rock types (basalt 
and resistant sedimentary) subject 
to small-scale, shallow debris 
flows; longer distances to the 
asymptote (eg Glenn Creek) were 
associated with weaker rock types 
(weak sedimentary) subject to 
large-scale, deep earthflows (Gres­
swell et al. in press). An index of 
stream channel complexity (ratio 
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Figure 6. Spatial distribution and empirical variograms of coastal cutthroat trout counts in 
Hinkle Creek. Variograms were calculated for the entire Hinkle Creek watershed and 
individually for the North and South forks. Variograms depict semivariance (•) as a 
function of separation distance (d) with 2.5th and 97.5th percentiles from 5000 
permutations displayed in red. 

of summed tributary lengths to the 
longest length of stream per watershed) was also greater 
where rock types were less resistant to erosion (Guy 2004). 

Other aspects of the variogram, such as the slope of the 
ascending limb, the y-intercept, and the overall shape, 
can be used to provide useful information for characteriz­
ing spatial pattern (Legendre and Legendre 1983; Dent 
and Grimm 1999; Ettema and Wardle 2002). However, 
parametric modeling of the variogram and inference 
about specific features assumes that the mean of the fish 
counts and the covariance structure are stable over the 
entire drainage (ie stationary; Cressie 1993). Some of the 
spatial patterns and the variations among the drainages 
that we observed may be due to interactions between eco­
logical processes that cause non-stationarity. Before inter­
preting particular features of the variogram, investiga­
tions of local effects that may alter the estimated 
variogram are needed. Explaining this variation in fish 
abundance is the current focus of a larger study that is 
currently underway; this aims to elucidate the nature and 
complexity of these spatial patterns and the processes 
that generate them (Gresswell et al. in press; Torgersen et 
al. 2004). The variograms are provided here to illustrate 
the utility of empirical variograms as a first step in detect­
ing spatial pattern and to encourage ecologists to explore 
patterns of ecological heterogeneity in stream networks. 

• Conclusions 

Stream ecologists are attempting to understand how 
the structure of stream networks contributes to the 
physical and biological functioning of rivers and 

streams. Connectivity among stream units may imply 
that effects extend upstream as well as downstream. 
How far does the influence of a point extend up- or 
downstream? Are there patterns in successive measure­
ments along a stream? What is the minimum distance 
between statistically independent data? Does the 
covariance structure change in a predictable way along 
a stream network? These are all questions about spatial 
structure in a network. It can be difficult to identify 
spatial structure without analytical tools, but the 
empirical variogram provides explicit visual evidence 
that such structure exists. We believe that exploratory 
variogram analysis can be used as an initial step in 
answering questions concerning differences in response 
patterns among drainages (eg the range over which spa­
tial patterns exist, and their magnitude). 

In the past, one impediment to this type of analysis was 
the lack of commercially available software using a dis­
tance metric appropriate to a network. By linking a GIS, 
a user-written function, and the commercially available 
spatial statistics software in S-PLUS, we were able to 
quickly generate an empirical variogram and take advan­
tage of other existing routines in the Spatial Statistics 
module of S-PLUS for fitting variogram models. The S­
PLUS functions can easily be adapted to the use of other 
distance metrics for networks, and the method is easily 
transferred to other applications. Software designers may 
soon be adding network functionality to existing statisti­
cal analysis packages; however, in the meantime, all S­
PLUS functions and scripts described in this paper are 
available from the authors on request. 
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